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Markel Peñalba Retes, Giuseppe Giorgi and John V. Ringwood

Centre for Ocean Energy Research

Maynooth University, Co.Kildare, Ireland

mpenalba@eeng.nuim.ie

ggiorgi@eeng.nuim.ie

john.ringwood@eeng.nuim.ie

Abstract—The wave energy industry has grown considerably
over the past two decades, developing many different technolo-
gies, but still has not achieved economic viability. Economic per-
formance can be significantly assisted through the optimisation
of the device intelligence, implemented as a control algorithm,
including precise hydrodynamic models able to reproduce accu-
rately real device motions. Wave energy converters (WECs) are
designed to maximize power absorption with large motions, sug-
gesting significant non-linear behaviour, and so precise non-linear
models are imperative. Although similar modelling philosophies
could be applied to the wide variety of WECs, the dominant
physical phenomena vary from one device to another. As a
consequence, different non-linear effects should be considered
in each system, but only those being relevant should be chosen
to avoid extra computational costs and potential numerical
problems. This paper studies different nonlinear hydrodynamic
effects and their influence on the various types of WECs, and
suggests a critical classification of different methods to articulate
nonlinear effects.

Index Terms—Wave Energy, Nonlinear Modelling, Computa-
tional Fluid Dynamics, Boundary Element Methods, State-Space
Models

I. INTRODUCTION

Many wave energy device concepts have been developed

based on different principles, but none have been commercially

completed yet, which requires maximising economic return in

the form of energy/electricity and converted wave power across

the full range of sea states, to compete with other technologies

within the energy market.

The full range of sea states include highly nonlinear and

extreme sea conditions that some devices manage by switching

from power production mode to survival mode, to avoid poten-

tial structural damage. However, during power production

mode alone, there are still a wide range of wave conditions.

Although nonlinear dynamics are assumed in survival mode,

there is some uncertainty as to how relevant nonlinear dynam-

ics are in power production mode.

Some evidence [1]–[5] suggest the need for nonlinear mod-

els over some sea conditions and demonstrate not only how

linear models can overestimate power production, but also

their inaccuracy in reproducing the behaviour of wave energy

converters (WECs) over the full range of sea conditions.

This evidence leads to challenge typical approaches to

modelling wave energy converters and suggests a scenario

divided into three different regions: linear region, nonlinear

region and highly nonlinear region, as Figure 1 illustrates.

Thus, nonlinear models will also be essential within the

second region for accurate simulation of device motion, power

production assessment and model-based control design. This

paper focusses on Region 2, in order to shed some light

on nonlinear modelling methods by presenting some works

from the literature, introducing different hydrodynamic non-

linearities and analysing different existing models considering

nonlinear effects.

Fig. 1. Different operating regions for wave energy devices

The paper is organized as follows: Section II identifies

most relevant nonlinear effects and analyses their relevance

for each type of device while Section III suggests a critical

classification of the existing methods to articulate nonlinear

effects. Finally, conclusions are drawn in Section IV.

II. SEPARATION OF FORCES AND THEIR RELEVANCE

In this section, the hydrodynamic modelling problem is

subdivided into different forces, to analyse their characteristics

and relevance. Each force can be a source of nonlinearities and

so is important to analyse it not only independently, but also its

influence in the whole system. Figure 2 illustrates this problem

in a block diagram, where each block can be nonlinear and

where the bi-directional arrows reflect the interdependence of

components.

When analysing nonlinear systems, time domain models

are required. Equation (1) represents all the forces acting on

a wave energy device, without specifying the way they are

connected

MẌ(t) = f(Fg, FFK(t), Fdiff (t), Frad(t),

Fvis(t), FPTO(t), Fmoor(t), Fadd) (1)
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Fig. 2. Block diagram of different aspects participating on the SEAREV device [6]

where Fg is the gravity force, FFK is the Froude-Krylov

force, Fdiff is the diffraction force, Frad is the radiated force,

Fvis is the viscous force, FPTO is the force acting on the

structure due to the power take off (PTO) system, Fmoor

the force due to the mooring system and Fadd is the force

corresponding to any other additional force, such as drift,

wind, tidal or other body-water interactions.

In some studies, fully nonlinear codes are used [2], [7], so

there is no need to combine forces externally. In other works,

linear codes are extended to compute nonlinear effects [3], [8]

and, in some others, a nonlinear force is modelled separately

and then added to the initially linear Cummins equation to get

partially nonlinear results [4], [9], [10].

The following subsections analyse different forces sepa-

rately.

A. Incoming waves

Waves, implemented by the first block in Figure 2, can be

represented in many different ways, from linear monochro-

matic waves to irregular and fully nonlinear (including viscous

effects) waves.

Regular, linear waves can be extended to nonlinear waves

using, for example, higher-order Stoke’s water waves or

Rienecker-Fenton’s theory [11]. The most established way of

describing real sea-states is the Fourier analysis of records

taken in different sites, using different spectra such as Pierson-

Moskowitz [12] or the JONSWAP [13] spectra.

While Fourier analysis is well established, other methods

may offer more insight into the wave physics, especially in

non-stationary and highly non-linear conditions. [14] presents

a method, where the key part is the empirical mode decompo-

sition (EMD), and [15], [16] present another method, based on

a fast iterative algorithm, to compute the Dirichlet to Neumann

operator, able to generate numerical schemes for simulation of

fully nonlinear, non-breaking, three dimensional waves, to be

implemented in a numerical wave tank.

B. Froude-Krylov force

The Froude-Krylov (FK) force is the load introduced by the

unsteady pressure field generated by undisturbed waves. It is

generally divided into static (FFKstat
) and dynamic (FFKdyn

)

forces. The static part represents the relationship between

gravity and buoyant forces in a static situation with a still

ocean, while the dynamic part represents the force of the

incident wave.

Linear codes compute the FK force over the mean wetted

surface of the body, while nonlinear computation requires the

integration of the incident wave pressure and the hydrostatic

force over the instantaneous wetted surface at each time step,

as Eq. (2) shows.

FFK = FFKstat
+ FFKdyn

= −
x

S(t)

(Pstat + Pdyn)dS (2)

where S(t) is the instantaneous wetted surface of the body,

Pstat the static pressure and Pdyn the dynamic pressure.

The FK representation using mean wetted surface loses

accuracy when analysing large motions, where wetted surface

varies considerably over time. Froude-Krylov forces over the

instantaneous wetted surface have been addressed in different

ways by different authors. [17], [18] calcule the nonlinear

Froude-Krylove forces based on the water pressure computed

at the center of each wet panel of the mesh, i.e. panels

being submerged. However, when estimating the instantaneous

wetted surface, panels in the border of the free-surface could

be partly submerged and partly out of the water, which lead

to a misestimation of the wetted surface. That is why [2]

computes the pressure over the instantaneous wetted surface,

as in Eq. (2), using a very fine mesh to precisely estimate

the instantaneous wetted surface, while [2], [3], [19] use

a remeshing routine, modifying those panels being partly

submerged and partly out of the water.

The linear computation of Froude-Krylov forces can be

accurate for small body motions, or even for situations where

the device behaves as a wave follower in big waves. Nonlinear

dynamic Froude-Krylov forces may then be neglected, as

shown in [20], where experimental data is well reproduced

just by considering a nonlinear restoring force.
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Fig. 3. Device motion for linear and nonlinear simulations with latching
control strategy, [21]

However, when the relative motion between the device

and the free-surface is big enough, for example when the

device resonates due to a control strategy, the influence of

the nonlinear dynamic Froude-Krylov on the dynamics of

the system becomes important [21]. In such situations, linear

models are not able to reproduce the behaviour of the device:

they tend to overestimate the motion of the device and, as

a consequence, the power absorption. Furthermore, control

strategies based on linear models lose performance, as shown

in Figure 3.

There is, however, a geometric factor to consider, as pointed

out in [21]. Nonlinear Froude-Krylov effects are important,

even for small and flat waves, in the case where the cross-

section is non-uniform, such as a sphere, while the linear

model representation appears to be accurate for the case where

the cross-section is uniform.

C. Diffraction force

The diffraction force is the load associated with the action

of the diffracted wave. This disturbance is introduced into the

wave system by the presence of the floating bodies, given as:

Fdiff = −

∫
∞

−∞

Kdiff (t− τ)η(τ)dS (3)

where Kdiff is the impulse response function for diffraction

forces and η the free-surface elevation.

FK forces, together with diffraction force, make up the

total non-viscous forces acting on a floating body. Therefore,

linear analysis computes the dynamic FK and diffraction force

together as an excitation force, using a convolution product

with an impulse response function for the excitation force.

[22] mentions that neglecting the diffraction term might be a

reasonable approximation to the excitation force, in particular

if the body is very small in comparison to the wavelength. In

addition, it is computationally convenient to use this approxi-

mation.

D. Radiation force

The radiation force is the hydrodynamic force associated

with the motion of the floating body, also expressed by a

convolution product (4), according to Cummins equation [23]:

Frad = −µ∞Ẍ −

∫
∞

−∞

Krad(t− τ)Ẋ(τ)dτ (4)

where, µ∞ is the added mass at infinite frequency and Krad

the impulse response for the radiation force. In general, a

linear approach for the radiation force is reasonably good

for devices which are much smaller than the wavelength,

but a more precise computation of diffraction-radiation time-

derivative terms is possible, by expansion to second-order,

using, for example, a Taylor’s series expansion of the total

potential, as shown in [8].

Some works in the literature [3], [19] have proven that

nonlinear computation of radiation-diffraction forces do not

make a significant difference for point absorbers (PAs). This

is achieved by comparing an extended linear model based on

potential theory that computes nonlinear FK forces, diffraction

and radiation forces, to another considering only nonlinear

FK forces. However, nonlinear diffraction and radiation forces

may not be neglectable for all kind of devices, an area which

needs further study.

E. Viscous force

Viscous effects are generally neglected within linear models,

as fluid is considered homogeneous, incompressible, inviscid

and with an irrotational flow.

However, the nature of viscous drag is nonlinear and can be

identified when using wave tank experiments [2], [24]–[26] or

fully viscous modelling methods that generally are based on

Navier-Stokes equations: Numerical wave tank (NWT) sim-

ulations implemented in computational fluid dynamic (CFD)

codes [1], [27] or specific hydrodynamic codes [2], [28]. As a

consequence of viscous effects, unusual behaviours have been

identified in the literature with different devices by using these

techniques, which would be unpredictable with traditional

linear models.

Another way to consider viscous effects is via the semi-

empirical Morison equation [29], by identifying a viscous

damping coefficient from experiments or simulations consid-

ering viscosity, corresponding to a viscous force

Fvis = −
1

2
ρACDẊ | Ẋ | −ρV ClẌ, (5)

where ρ is water density, A the cross-sectional area, CD

the viscous drag coefficient, V the volume of the body and

Cl the inertia coefficient. Viscous effects can be more or less

significant depending on the type and amplitude of the motion

and the shape and dimension of the body.

1) OWC: Fixed OWC converters are located on the coast,

where waves have nomally already broken. Therefore, waves

arriving at the chamber with high components of turbulence

create shedding vortices around the outer wall of the chamber.

A similar phenomenon appears in the case of floating devices,

although waves are not broken in that case. [30] demonstrates

this phenomenon by simulating the fluid around, and inside,

a fixed OWC converter.
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In addition, free surface motion inside the OWC chamber

cannot be accurately reproduced by linear models and as a

consequence, the predicted pressure differential in the chamber

cannot be accurately estimated. Usually, a piston model, based

on a homogeneous motion of the free surface inside the

chamber, is used to predict the pressure differential in com-

mercial codes such as WAMIT [31], AQWA [32] or Aquaplus

[33]. However, free surface elevation is rarely constant in the

chamber due to viscous effects such as sloshing or vortex

generation, and so the linearised model under- or over-predicts

the pressure [34].

Viscous effects are therefore relevant for OWC devices,

and viscous forces can be inlcuded by models that already

incorporate them automatically as in [28], or can be included

externally through a calibration process by using experimental

data or fully viscous simulations as in [35].

2) Heaving PA: Viscous effects appear to have a low influ-

ence in small heaving devices [20], [27]. Vortex shedding is

generated by the motion of the body relative to the surrounding

fluid, but this shedding is not powerful enough to produce

significant changes in the behaviour of the body and its power

production capacity, as shown in Table I.

3) Pitching PA: Motion with large velocity and amplitude

encourage the relevance of viscous effects, the SEAREV

device [36] being a good example with pitching angles be-

tween -10◦ and 20◦. [2] has proven nonlinear hydrodynamic

behaviour in some wave tank experiments, such as parametric

roll or slamming, which could not be predicted beforehand

by linear numerical models. Such nonlinear behaviour can be

predicted by nonlinear models which include viscosity effects.

4) Surging converter: Surging devices normally consist

of large bodies with significant movement relative to the

water, which makes the viscous drag force important. Different

studies have analysed viscous effects for such devices and

important nonlinear behaviour has been observed, such as

slamming, as in the case of pitching devices. Turbulent vortices

around surging devices is normally strong and has a significant

impact on the motion [1]. In addition, due to the slamming

phenomenon, a water jet is created as the device re-enters the

water [26]. This water jet travels up the face of the flap and

is finally ejected when the flap enters the water.

[1], [27] analyse heaving PAs and surging converters and

their viscous effects, comparing absorbed power production

(APP) rates considering and neglecting viscous effects for each

type of device. Table I shows a summary of APP rates with and

without viscous terms for heaving PAs and surging converters,

and offers good evidence of the relevance of viscous effects

for each device.

TABLE I
RELEVANCE OF VISCOUS EFFECTS IN POWER PRODUCTION

WEC Power Without With

type output viscous term viscous term

Heaving PA APP 58 kW 56 kW

Surging converter APP 114 kW 74.4 kW

F. Power take off force

Different PTO systems are under development for wave

energy devices, such as turbines, high-pressure hydraulic sys-

tems or direct electrical drives [37]. In many studies, the

PTO systems are modelled as a linear spring and damper in

parallel, or even just as a single linear damper, consciously

avoiding nonlinear effects, which does not mean the relevance

of nonlinear effects in PTO systems is low.

1) Air-turbines: OWC turbines (Wells turbines being the

most popuar) are specially designed for OWC wave energy

converters due to the demanding conditions of reciprocating

and highly variable flow. Therefore, peak-efficiency for such

rectifying turbines is lower (about 0.7-0.8) than for regular

turbines, and drops dramatically with movement from the peak

efficiency area. [38] compares the pressure drop and flow rates

from experimental tests and numerical models as a model

validation exercise, and a relation between the pressure drop

and flow rate was found as

∆p
1

2

q
= K, (6)

where ∆p is the pressure drop, q the flow rate and K is a

damping parameter.

However, in order to get the maximum pneumatic power,

it is important to not only individually optimise the chamber

and the turbine, but also the chamber-turbine coupling, which

likely includes more nonlinearities.

2) Hydraulic-turbines: Hydraulic PTO systems are based

on a very well known technology, as they have been used

for many years in different industries, especially in hydro-

power. Likewise in small hydroelectric plants [39], turbines are

located between the reservoir of an overtopping device and the

mean sea level [40]. In general, the most relevant parameter

that drives the choice of the typology of turbine is the head

of the plant. For low-head plants, i.e. the Wavedragon device,

axial reaction turbines are used, such as Kaplan turbines. In

contrast, high-head impulse turbines, such as Pelton turbine,

are sometimes used in oscillating devices as alternatives to hy-

draulic motors at the end of high-pressure hydraulic systems,

described in the following subsection.

3) High-pressure hydraulics: The high-pressure hydraulic

PTO requires both a high-pressure (HP) and a low-pressure

(LP) system, along with high- and low- pressure accumu-

lators to feed the hydraulic motor with the working fluid.

The hydraulic circuit guarantees energy storage (accumulating

working fluid in high pressure) and allows to maintain a

constant flow to the hydraulic motor, hence to generate regular

power.

In order to describe the nonlinearities of the hydraulic

circuit, the model have to consider time-varying gas volume

and pressure in the accumulators, the flow rate supplied to

the hydraulic machine (motor or turbine), losses on the valves

(leakages) and losses on the circuit (viscosity) [9].

4) Direct drive: A direct drive generator generally consists

of three parts: the armature, the translator and a set of springs
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attached between the seabed and the armature. [41] shows

different available concepts, such as the Snapper concept, the

linear permanent magnet synchronous machine, the linear air-

cored permanent magnet synchronous machine or the slot-less

tubular permanent magnet synchronous machine.

The Snapper is a new concept developed particularly for

wave energy devices, whose armature and translator present

respectively a series of permanents magnets along thier length,

mounted with alternating polarity. The relative motion between

the armature and the translator, hence between the two series

of magnets is used to generate power. As the translator moves,

a magnetic attraction is induced in the armature that moves

with the translator. [42], [43] describes different forces, some

of which can lead to nonlinear behaviours, that participate in

the operation within the machine: interaction of the two sets of

magnets, electromagnetic damping due to the current-carrying

coils and forces due to losses like eddy currents in armature

and translator, saturation and reactive field losses and losses

due to the proximity effects.

G. Mooring system force

WECs are subject to drift forces due to waves, currents and

wind, therefore they have to be kept on station by moorings.

The offshore industries provide examples of many different

mooring systems that have been already analysed as moorings

for wave energy devices [44].

There are several factors relevant to choose the optimal

mooring system: type and dimensions of the device, number

of devices and the installation site (seabed depth or conditions

and environmental loads). Close to the shore, devices can be

tightly moored, while slack moorings are necessary where the

seabed is deepe. Nonlinear effects seem to be in general much

more significant in the case of slack moorings (whose mooring

cables are approximately modelled as catenary lines [45]) than

in the case of tightly moored devices [46].

A common modelling approach for mooring system relies

on the quasi-static assumption. [45] shows a clear nonlinear

behaviour for surge motion of a slack mooring line. In [47] for

the slack mooring system and in [46] for the tightly moored

system, two-dimensional quasi-static approaches are used in

time-domain analysis to consider nonlinear mooring forces.

However, dynamic effects such as cable inertia, viscous drag

forces or slow varying forces are ignored with the quasi-static

approximation. [48] presents some measurements where the

relevance of dynamic effects is demonstrated by comparing

experimental results with two different simulations: run by

the fully-dynamic software OrcaFlex [49] and a quasi-static

simulation presented in [50].

III. DIFFERENT NONLINEAR MODELLING OPTIONS

A critical classification of the different modelling options

is presented in this section, based on the method used to

model the nonlinear problem. Hence, the existing models are

organised in three groups (fully nonlinear models, potential

flow models and system identification models), where different

models are presented and described in each of the groups.

Among the studies in the literature, none of the analyses

the whole nonlinear problem as a whole, except the works

using fully nonlinear models. However, as mentioned before

in Section II, as important as analysing nonlinear effects

independently is analysing how to combine them, since due

to the nonlinear nature of nonlinear forces, application of

linear approaches, such as superposition theory, should not

be considered obvious.

A. Fully Nonlinear models

Fully nonlinear models are supposed to consider all the

effects of the wave and the wave-body interaction, including

viscous effects, studying the fluid flow by solving a set

of differential equations known as Navier-Stokes equations.

The fundamental basis of almost all problems are governed

by the transfer of mass, momentum and heat, described by

the following equations: continuity equation (7), equation of

motion (8) and conservation of energy (9).

∂ρ

∂t
+▽(ρu) = 0 (7)

∂u

∂t
+ (u▽)u = −

1

ρ
▽ p+ F +

µ

ρ
▽2 u (8)

ρ(
∂ǫ

∂t
+ u▽ ǫ)−▽(KH ▽ T ) + ρ▽ u = 0 (9)

where ρ is the fluid density, u the velocity vector, p the

pressure field, F the external force per unit mass, µ the

fluid viscosity, ǫ the internal energy, KH the heat conduction

coefficient and T the temperature.

However, equations 7, 8 and 9 cannot be solved analytically,

and so numerical discretization will be necessary to obtain a

solution. It is here where computational codes enter into play,

where complete Navier-Stokes equations are implemented

using different discretization methods, turbulence models and

solving-algorithms in order to achieve a numerical solution.

In the case of wave energy converters, these computational

codes allow simulating wave tank experiments or real-sea tests

numerically, by using NWT simulations [51], implemented in

CFD codes. These numerical simulations have been used for

decades in offshore and ocean engineering for the fluid-body

interaction analysis.

Different fully nonlinear codes are presented in the follow-

ing subsections:

1) Computational fluid dynamics: CFD is a branch of fluid

mechanics that uses numerical methods and algorithms to

solve fluid flow problems. As mentioned in Section III-A,

discretization of the problem is essential to solve the equations

numerically and lies in three main steps: mesh generation,

space discretization and time discretization. The whole nu-

merical procedure is normally divided into three different

processes: pre-processing, solving and post-processing.

During the pre-processing, the geometry of the problem is

defined and the volume of fluid is discretized generating the

mesh, physical modelling is defined and boundary and initial

conditions are set. That way, continuous differential equations
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are discretized into a system of linear algebraic equations,

breaking continuity into finite portions in time, by using time-

steps, and in space, by using different methods.

Several discretization methods can be found in the literature:

the finite element method, the finite volume method, the

finite difference method, the spectral element method or the

boundary element method among others. Generally, each CFD

code uses one of these methods and a specific algorithm to

solve the problem. More details about numerical discretization

methods are given in [52].

Before the simulation starts, turbulent model needs to be

chosen, being one of the most important decisions to make

in the pre-processing part, and again several models are avail-

able. [53] presents a classification of different models and a

description of each of them. Depending on the objective of the

analysis, a different model could be the optimal one. Reynolds-

average Navier-Stokes (RANS) model is the most widely

used method, due to the high computational requirements of

other methods like the large eddy simulation (LES) or direct

numerical simulation (DNS).

As two different fluids (air and water) take part in the

problem, using Navier-Stokes equation-based methods for

modelling hydrodynamics of WECs involves the calculation of

the free surface in a NWT and the simulation of the turbulent

flow. Therefore, a free-surface modelling technique is required

and two different techniques have been applied in the anal-

ysed works: the tracking method and the interface-capturing

method. The tracking method models the free surface as a

sharp boundary [54], while the interface-capturing method

includes water and air in the mesh, being the volume of fluid

(VOF) method [55] the most used technique.

NWT simulations implemented in CFD codes have some ad-

vantages and disadvantages when comparing to real wave tank

tests, but both appear to be essential in the process towards

an optimal design of a WEC. For wave tank experiments,

one needs, first of all, a real device to be tested, which is

normally a scaled device due to the dimensions of the tank.

Despite the great experience designing scaled prototypes based

on different similitude coefficients [56], results need to be

analysed carefully due to the scale effects. NWT simulations

avoid the complexity and costs of creating a real prototype

and the scale effects of the tank tests, as full scale devices

can be easily simulated numerically. In addition, reflection

effects from tank walls can be controlled effectively and a

large variety of situations can be studied easily.

[57] presents main advantages and drawbacks of of using

CFD methods in the design process of a WEC, being the

high computational requirement the main weakness of such

methods.

2) Hydrodynamic approaches for Wave Energy: CFD codes

are normally very general codes used for many and very

different applications where fluid-flows are considered. Nev-

ertheless, other specific models especially created for the

analysis of wave-structure interactions and based on Reynolds-

averaged Navier-Stoke (RANS) equations are also available.

Two of the specific models found in the literature are presented

in Sections III-A2a and III-A2b: spectral wave explicit Navier-

Stokes equation (SWENSE), developed by the Hydrodynamic

and Ocean Engineering group of the Ecole Centrale de Nantes

(ECN) [58] and IH2VOF developed at IH Cantabria [59].

a) SWENSE: The SWENSE approach based on RANS

equations combines the advantages of potential and viscous

solvers by solving each physical problem with the right

tool: propagation of the waves with the potential solver and

diffraction-radiation with the viscous solver [60].

b) IH2VOF: The IH2VOF model was initially created

for coastal structures and includes realistic wave generation,

second order generation and active wave absorption. It solves

the 2-Dimensional wave flow by the resolution of the volume-

averaged Reynolds averaged Navier-Stokes (VARANS) equa-

tions, based on the decomposition of the instantaneous velocity

and pressure fields and the k-ǫ equations for the turbulent

kinetic energy (k) and the turbulent dissipation rate (ǫ) [61].

Regarding to wave energy applications, many different

codes based on Navier-Stokes equations have shown their

capacity to reproduce wave-structure interactions and viscous

effects reasonably well even in the case of large motions

[2], [62], [63], but their computational requirements are still

too high, which makes difficult to use CFD codes for long

simulations. However, fully nonlinear hydrodynamic codes

could be very useful for identification purposes, as shown

later in Section III-C or to estimate viscous effect coefficients

to be included into other hydrodynamic models based on

other methods by using, for example, the Morison equation

presented in Section II-E.

3) Smoothed-particles hydrodynamics: The smoothed-

particles hydrodynamics (SPH) method is a purely Lagrangian

technique that divides the fluid into a set of discrete elements

or particles, instead of using a mesh, and has been successfully

applied to a broad range of problems [64], [65]. The discrete

elements or particles are transported with the local velocity

and they carry the information of the field, such as pressure

or density.

In order to define continuous fields, field variables are

smoothed by using a kernel function. Thus, the physical

quantity of any of the field variables can be obtained by

summing the relevant properties of all of the particles within

the range of the kernels. This means, for example, that pressure

at any position r depends on the pressure of all the particles

within a radial distance 2h of r, being h the smoothing length.

The contribution of all the particles within the radial

distance 2h is not the same. This contribution is weighted

related to the distance between the analysed particle and the

contributor particle, and their density, and is mathematically

governed, again, by the kernel function. As a consequence,

the field variable is known at a discrete set of points within

this radial distance and so the field variable can be defined as

follows at the position r:

A(r) =

N∑
j

mj

ρj
A(rj)W (r − rj , h) (10)

608C1-3-



where A(r) is any field variable at any position r, N the

number of contributor particles, m and ρ are respectively the

mass and the density associated to the particle and W the

kernel function.

Different SPH techniques can be applied, as shown in [66],

depending on the characteristic of the flow and the problem

to be studied.

B. Potential flow models

Potential flow models, also known as boundary element

methods (BEMs), are based on potential theory, where the

potential flow describes the velocity flow as the gradient

of the velocity potential. This potential of the incident flow

can be split into three different parts in order to study

the water-structure interaction: undisturbed incident poten-

tial (ΦI ), diffracted potential (Φdiff ) and radiated potential

(Φrad), being their sum the total potential of the incident flow

(Φtot). Hence, the pressure of the total incident flow acting

on the body can be obtained by deriving this total potential in

the Bernoulli’s equation.

Some well known hydrodynamic codes, such as WAMIT

[31], AQUAPLUS [33] or NEMOH [67] in frequency-domain,

or ACHIL3D [68] in time-domain, are based on potential flow

theory, being all of them linear codes.

In order to analyse nonlinearities, specific nonlinear con-

siderations can be added to the linear hydrodynamic model,

resulting in partially nonlinear models in time-domain. First

to be presented is the linear method, to which different

improvements are added to consider nonlinear effects.
a) Linear model: The linear model accepts the assump-

tions of inviscid fluid, irrotational and incompressible incident

flow, constant wetted surface and small body motion ampli-

tudes.

Pressure acting on the body can be presented as a sum

of different potentials (undistrubed, diffracted and radiated),

dividing the total force acting on the body into different

forces, where second order diffraction-radiation terms are also

considered.

P = −ρgz − ρ
∂φI

∂t
− ρ

| ▽φI |2

2

− ρ
∂φdiff

∂t
− ρ

| ▽φdiff |2

2
− ρ

∂φrad

∂t
− ρ

| ▽φrad |2

2
− ρ▽ φI ▽ φrad − ρ▽ φI ▽ φdiff − ρ▽ φdiff ▽ φrad

(11)

One can observe some nonlinearities, such as quadratic and

second-order radiation-diffraction terms, in Eq. (11). For the

linear case, all the nonlinearities are disregarded by neglecting

quadratic and second order terms and computing pressure over

a constant wetted surface as follows,

MẌ = Fg −KHX −

∫
∞

−∞

KEx(t− τ)η(0, 0, τ)dτ

− µ∞Ẍ −

∫
∞

−∞

Krad(t− τ)Ẋ(τ)dτ (12)

Thus, diffraction force and dynamic FK forces are summed

into excitation force, by using the excitation force kernel

Kex. KH is the hydrostatic stiffness that gives the relation

between the gravity force and the static pressure. In the

case of the radiation force, it is expressed as a convolution

product based on Cummins equation [23], where µ∞ is the

infinite frequency added mass parameter and Krad the reduced

radiation impulse-response function.

b) First nonlinear extension: From this linear basis,

the model can be extended to consider nonlinear effects. In

this first extension, nonlinear FK forces are considered by

integrating the pressure over the instantaneous wetted surface.

This means that wetted surface needs to be estimated and

remeshed at each time-step, as described in Section II-B.

This time, static and dynamic FK forces are summed into the

instantaneous FK force, while other forces, such as radiation

or diffraction, remain linear and are computed separately.

MẌ = Fg −

∫
S(t)

(Pstat + Pdyn)
−→n dS

−

∫
∞

−∞

Kdiff (t− τ)η(0, 0, τ)dτ

− µ∞Ẍ −

∫
∞

−∞

Krad(t− τ)Ẋ(τ)dτ (13)

c) Second nonlinear extension: The second extension

is another step, but not the last, towards a fully nonlinear

model. In this case, a more precise computation of radiation-

diffraction forces is presented. Gilloteaux, [8], proofs that

Taylor series extension of the total potential, including not

only quadratic but also second-order terms, can be performed

over the mean position of the body.

First extension improves considerably the results by con-

sidering nonlinear FK forces, while the improvement of the

second extension is quite low. In addition, this second model

requires a recalculation of hydrodynamic parameters at each

sampling instant, resulting in a high computational overhead.

In any case, linear or nonlinear, the time-domain solution

of a BEM simulation is based on Cummins equation [23]

as shown in Eq.(12) and Eq.(13), which needs to solve the

convolution integral by using any of the following techniques:

direct convolution [69], truncation of the convolution [20] or

state-space approximation in frequency- [70], [71] or time-

domain [72], [73].

C. System identification models

Other alternative modelling approaches are system identifi-

cation models, which are well established in the control system

community, where really complex models are determined by

input/output data. System identification models use statistical

methods to build mathematical models of dynamic systems

from measured data, being particularly interesting for very

complex systems, where the physical principles can be too

complicated to formulate.

Every identification method consists basically of
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• selecting a series of representative data of the system to

be reproduced,

• determining the structure of the model (model type and

order) and

• defining the fitting criteria.

The choice of the structure of the model is probably the

key point in order to create a representative model. There are

several possibilities of model structures, from a structure based

on the knowledge of the physical principals (white-box) of

the system to a structure completely regardless of the physical

principals (black-box) [74]. Parameters of the selected model

are estimated by using the specified fitting criteria.

One of the difficulties of theses models is that input/output

data needs to represent the system significantly. In addition,

it is not always easy to isolate the required data from the

hydrodynamical simulations (either BEM or CFD), where

there is little transparency between the physical system and

the model.

If the system is considered linear, then an autoregressive

with exogenous input (ARX) model can be chosen, while if the

system is nonlinear, the way to analyse the nonlinearity (the

form) and its complexity have to be selected. Many different

options, from block-structured systems [75] to neural networks

[76], are available.

Some models that can be used for nonlinear modelling of

the wave energy converters are presented in the following

subsections:

1) Hammerstein and Feedback block-oriented models: A

nonlinear static block is added to the linear block in order

to consider nonlinear effects. In the case of the Hammerstein

model, the static bloc r is connected in cascade, while in the

case of the feedback block-oriented model, the structure is

characterized by a negative feedback [77]. Both models are

shown in Figure 4.

Fig. 4. Block diagram of the Hammerstein model on the left and the feedback
block-oriented model on the right [75]

Both blocks of the structures in Hammerstein and feedback

models, the ARX block and the static block, are linear in the

parameters and they are identified by using linear regression

and least squares. It is interesting that a physical meaning

was found for the static block in Hammerstein and Feedback

models by [75]. For the Hammerstein model, ther(fIN (t)) was

found to be interpreted as the inverse of the restoring force,

while in the feedback model g(y(t)) was the negative of the

restoring force. Therefore, the static block in both models can

be identified separately from the linear dynamic block, from

the knowledge of the restoring force as a function of the body

position.

2) Volterra model: The Volterra method is a black-box

model having a nonlinear input-output relationship, but it is

always convergent and remains linear in parameters.

[78] presents a Volterra-type model that uses a polynomial

nonlinearity to model the relationship between free-surface

elevation and excitation force in wave energy devices.

3) Artificial neural networks: Artificial Neural Networks

(ANNs) are statistical learning algorithms used to estimate

or approximate complex systems or functions that depend on

several and generally unknown inputs.

ANNs are generally presented as systems of interconnected

neurons, simple artificial nodes, consisting of sets of adaptive

weights. ANNs are capable of approximating nonlinear func-

tions of their inputs, where adaptive weights are connection

strengths between neurons.

There is not a single definition or model of ANNs and

there exist different structures. Hence, through the modelling

procedure, different conditions, such as the number of layers

and the number and type of neurons in each layer, must be

determined to define the required structure of the ANNs.

[76] proposed to use a multi-layer perceptron (MLP) form

including delay elements at the network input layer and uses

an optimisation algorithm to determine parameters of the

structures. NWT is used to produce hydrodynamic data, where

three identification tests are performed: one wave excitation

(irregular sea-state) and two types of direct force inputs (chirp

and random amplitude random period (RARP).

IV. CONCLUSION

Different aspects of nonlinear modelling are analysed in this

paper. Section II studies different nonlinear forces or effects

that affect WECs and their relevance:

• Nonlinear waves are an important step in the way towards

the ’real’ sea state simulation and their influence on the

behaviour of the device is also significant.

• Computation of nonlinear FK forces seems to be essential

for controlled point absorbers, where the big amplitudes

of the relative motion between the device and the free-

surface makes the variation of the wetted surface impor-

tant. In addition, control strategies need to be adapted to

the nonlinear models.

• Nonlinear diffraction or radiation forces seem to be

negligible, at least for devices much smaller than the

wavelength.

• In the case of viscous effects, there is big uncertainty.

Some studies show that for flap-type surging converters

or pitching point absorbers, viscous effects not only

are relevant, but also lead to nonlinear behaviours such

as slamming or parametric roll, that would never be

observed in linear models. Viscous effects for heaving

point absorbers nonetheless, seem to be weak, even if

effects like shedding vortex generation exist.

• Nonlinear effects of any of the PTO systems are signifi-

cant enough not to be simply modelled as linear dampers.
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• Dynamic effects of mooring lines seem to be important

enough to be considered, instead of using simple quasi-

static approximations, especially within the design pro-

cess.

Regarding the different modelling methods presented in

Section III, CFD codes are probably the most realistic ones,

but their computational costs make them prohibitive. Never-

theless, CFD can be very useful for parameter identification,

since viscous effects are also computed. SPH methods seem to

be adequate for extremely nonlinear effects, such as impacts

or slamming, but not as a complete alternative to CDF codes,

due to their bigger computational weight.

BEM, or potential theory based codes, are able to compute

some nonlinear forces accurately, but they are not able to com-

pute viscous effects, although viscous effects could be added

by using the Morison equation. However, the computational

load can become heavy when nonlinearities are analysed.

Another useful option for nonlinear modelling is based on

Cummins equation with a superposition of different forces,

where nonlinear effects are studied independently using any

of the methods shown in the paper and introduced to the model

at a later stage as additional loads. However, the possibility of

using superposition with nonlinear terms need further work,

especially with several nonlinear terms.

Finally, system-identification models still need to be further

developed, but they have already been used in different fields

with great success and they could be an option in the future,

as the few results available in the literature promise.
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