
BIOINFORMATICS ORIGINAL PAPER Vol. 21 no. 7 2005, pages 969–974
doi:10.1093/bioinformatics/bti100

Phylogenetics

DPRml: distributed phylogeny reconstruction by
maximum likelihood
T. M. Keane1, T. J. Naughton1,∗, S. A. A. Travers2, J. O. McInerney2 and
G. P. McCormack2

1Department of Computer Science and 2Department of Biology, National University of Ireland,
Maynooth, Ireland

Received on April 21, 2004; revised on September 23, 2004; accepted on October 15, 2004

Advance Access publication October 28, 2004

ABSTRACT
Motivation: In recent years there has been increased interest in
producing large and accurate phylogenetic trees using statistical
approaches. However for a large number of taxa, it is not feasible
to construct large and accurate trees using only a single processor.
A number of specialized parallel programs have been produced in an
attempt to address the huge computational requirements of maximum
likelihood. We express a number of concerns about the current set
of parallel phylogenetic programs which are currently severely limiting
the widespread availability and use of parallel computing in maximum
likelihood-based phylogenetic analysis.
Results: We have identified the suitability of phylogenetic analysis
to large-scale heterogeneous distributed computing. We have com-
pleted a distributed and fully cross-platform phylogenetic tree building
program called distributed phylogeny reconstruction by maximum like-
lihood. It uses an already proven maximum likelihood-based tree
building algorithm and a popular phylogenetic analysis library for all
its likelihood calculations. It offers one of the most extensive sets
of DNA substitution models currently available. We are the first, to
our knowledge, to report the completion of a distributed phylogenetic
tree building program that can achieve near-linear speedup while only
using the idle clock cycles of machines. For those in an academic
or corporate environment with hundreds of idle desktop machines,
we have shown how distributed computing can deliver a ‘free’ ML
supercomputer.
Availability: The software (and user manual) is publicly available
under the terms of the GNU general public licence from the system
webpage at http://www.cs.may.ie/distributed
Contact: tom.naughton@may.ie

1 INTRODUCTION
One of the great challenges of molecular biology is the completion of
the tree of life. The massive accumulation of genomic data has led to
increased interest in the production of large and accurate phylogen-
etic trees. However the decision problem associated with searching
for the best tree from a set of taxa is NP-hard (Bodlaender et al.,
1992). Therefore it is not feasible to perform an exhaustive search
of the tree space for trees of a non-trivial size. Maximum likeli-
hood (ML) evaluation has been widely acknowledged as one of the

∗To whom correspondence should be addressed.

most accurate techniques for reconstructing phylogenies. Felsenstein
(1981) first brought this framework to nucleotide-based phylogen-
etic inference. Numerous computer studies (Huelsenbeck and Hillis,
1993; Kuhner and Felsenstein, 1994; Huelsenbeck, 1995; Rosenberg
and Kumar, 2001; Ranwez and Gascuel, 2002) have shown ML pro-
grams can recover the correct tree from simulated data sets more
frequently than other methods. In a recent study timing the evolu-
tion of the HIV-1 virus (Korber et al., 2000), it was demonstrated
that ML techniques can be effective in solving important biological
problems.

Currently the most successful heuristic approach for building
phylogenetic trees is to employ a hill-climbing algorithm combined
with ML evaluation. Each taxon is added to the tree in a stepwise
manner and topological rearrangements are subsequently performed
on the best tree, in an effort to avoid local minima in the search space.
The most computationally intensive aspect of this approach is that
each candidate tree that is generated must have its branch lengths
optimized and likelihood calculated. Some of the most popular tree
building programs (Felsenstein, 1989; Rogers and Swofford, 1998)
are based on this method. Despite considerable improvements in
runtimes (Olsen et al., 1994; Guindon and Gascuel, 2003) the single
factor that is currently limiting the widespread use of ML techniques
in phylogenetic analysis is the huge computational requirements
(Hershkovitz and Leipe, 1998). A number of other authors (Stewart
et al., 2001; Schmidt et al., 2002; Stamatakis and Ludwig, 2003) have
concluded that the major limitation with each of these programs is
that they are limited to operating on a single processor, which means
that it is not feasible to build large phylogenetic trees using these
programs.

In an effort to construct large and accurate phylogenetic trees
while still keeping overall processing times reasonable, a number
of researchers have developed parallel ML programs that utilize the
stepwise insertion approach (Stewart et al., 2001; Stamatakis and
Ludwig, 2003). One of these programs (Stamatakis and Ludwig,
2003) also employs some simple distance-based heuristics to try to
reduce the number of generated trees. These programs have been suc-
cessful in speeding up phylogenetic computations but the overriding
problem with these programs is that specialized parallel hardware
and software is often required. For most researchers, this can make
these programs either prohibitively expensive or simply too complic-
ated to set up. Furthermore these programs are often implemented
in a platform-specific language which imposes a restrictive limit on

© The Author 2004. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oupjournals.org 969

http://www.cs.may.ie/distributed

T.M.Keane et al.

the numbers and types of machines that can be used in a parallel
computation. It should also be noted that some of these earlier par-
allel programs only allowed the user to choose from a very limited
number of DNA substitution models, which often leads to a poor
model fit resulting in suboptimal trees. Therefore, in our opinion,
the three most essential requirements of any generally usable paral-
lel tree building program must be that the program should not require
any sort of specialized or expensive parallel hardware or software,
should only require the most basic technical abilities to set up and use,
and should allow the user to choose from an extensive list of molecu-
lar evolution models. Currently there is no parallel phylogenetic tree
building program that fulfills all of these requirements.

We have identified the suitability of phylogenetic analysis to
large-scale heterogeneous distributed computing and have developed
a fully cross-platform distributed application, distributed phylo-
geny reconstruction by maximum likelihood (DPRml), which we
believe to be one of the most general and powerful likelihood-based
phylogenetic tree building programs currently available. DPRml
is, to our knowledge, the first distributed phylogenetic tree build-
ing program to satisfy each of the three requirements outlined
above. The generality of our program is demonstrated by the fact
that DPRml, written in Java, can run on virtually any architecture
and operating system simultaneously while only using the spare
clock cycles of donor machines. No specialized computer hard-
ware is required, and no expense is incurred if idle computing
resources are harnessed. This would not be as straightforward for
a distributed application written in a native language because the
application would have to be compiled for each particular archi-
tecture and operating system. We have demonstrated the ease of
use and platform heterogeneity of DPRml with experiments that
utilize the spare computing resources of several different architec-
tures and operating systems simultaneously. The user has a very
straightforward configuration file with which to tailor the computa-
tion and can choose from one of the most extensive ranges of DNA
substitution models currently available. Our performance analysis
demonstrates how effective DPRml can be for speeding up the pro-
cess of constructing large phylogenetic trees. DPRml implements an
already proven tree building algorithm (Olsen et al., 1994; Stewart
et al., 2001) and uses the popular Phylogenetic Analysis Library
(PAL) v1.4 (Drummond and Strimmer, 2001) for all its likelihood
calculations.

DPRml is just one application of large-scale distributed com-
puting. Our intention with this paper is to highlight the general
applicability of this computing paradigm to certain bioinformatics
computations. By a detailed presentation of this specific example
we wish to highlight the hallmarks of the paradigm which are
ease-of-use, flexibility, affordability and efficiency.

2 DISTRIBUTED COMPUTING AND
PHYLOGENETIC ANALYSIS

In recent years, the area of distributed computing has emerged as
a viable alternative to specialized parallel computing. By harness-
ing the spare clock cycles of idle machines (Buyya, 1999), it is
possible to emulate the computing power offered by a specialized
parallel machine at a fraction of the cost. Several successful systems
have been developed on this basis, e.g. Seti@Home (Korpela et al.,
2001), Folding@Home (Larson et al., 2004), Condor (Thain et al.,
2003) and Models@Home (Kreiger and Vriend, 2002). The type of

applications that are generally considered to be suited to distributed
computing have the capability to fully exploit ‘coarse-grained
parallelism,’ meaning that it should be possible to partition the
application into independent tasks or processes that can be com-
puted concurrently. Typically these types of problems must display a
high ‘compute-to-data’ ratio to make it worthwhile sending the data
over a network rather than computing locally.

The process of constructing large phylogenetic trees using ML
analysis generates thousands of candidate trees that must have their
branch lengths optimized and likelihood calculated. These two pro-
cesses can be done completely independently for each tree and the
set of trees generated at each stage can be represented, stored, and
transferred compactly using only a few Kbytes. Therefore the small
size of the data involved coupled with the long computation times
of ML analysis make this problem ideal for a large-scale distributed
computing implementation.

2.1 DPRml algorithm
We have taken the hill-climbing algorithm used by parallel
fastDNAml (Stewart et al., 2001) and have implemented a
platform-independent, distributed and much more generalized ver-
sion of the program. The algorithm implemented by DPRml is
outlined in Figure 1. The parameters m and v are contained in the
parameter file. Step 1 of the algorithm is a localized version of the
overall algorithm outlined in steps 2–7. A single donor machine
builds an initial tree for m minutes (default value is 30 min) as it
is more efficient to build this initial tree on a single donor machine
than to distribute this part of the computation. At each stage of the
algorithm, the set of generated trees is split into equal size groups
and issued to clients on a first come, first served basis. The inputs
to the application are a MODELTEST (Posada and Crandall, 1998)
output file, a FASTA sequence file (DNA or RNA) and an input para-
meter file. The outputs of the program are a Nexus format tree file,
a Newick format tree file, a PAL tree object file, a human readable
tree (text file) and the likelihood of the final tree. We have provided
a remote interface to the system that makes it possible to monitor the
progress of the application in real-time as it builds the phylogenetic
tree. The program supports all of the DNA substitution models that
MODELTEST v3.06 provides. The input parameter file lets the user
set various runtime options for the computation such as the max-
imum number of vertices that rearrangements can span, whether to
keep a copy of the best tree from every stage or just the best tree from
the previous stage, whether to add the taxa in a randomly generated
order or input order, and whether to optimize the branch lengths of
every tree that is generated or just optimize the final tree. If there was
a catastrophic event (e.g. a system wide power failure), it is possible
for the program to continue building the tree from where it left off.
Log files make it possible to fully examine and track the entire tree
building process.

2.2 Implementation
DPRml is implemented entirely in Java, meaning that the program is
completely platform-and network-independent. DPRml is just one of
the applications that can run on our general purpose distributed com-
puting platform, loosely based on the design of the Java distributed
computing library (JDCL) (Fritsche et al., 2001; Keane et al., 2003).
In our deployment of DPRml, we have our client software running
in a number of computing laboratories, consisting of approximately
200 desktop PCs of various modest specifications (Pentium IIs up

970

DPRml

Fig. 1. Tree building algorithm implemented by DPRml.

to Pentium IVs running assorted versions of Windows and Linux
OSs). To minimize disruption to users, we run the client as a low-
priority background service that only uses the idle clock cycles of
the machines. To illustrate the portability of our system, we have
also installed our client on every node of an IBM Linux cluster (32
Dual PIII 1 GHz nodes with between 256 and 768 MB memory per
node) with the desktops and cluster nodes connecting to a single
server.

3 PERFORMANCE ANALYSIS
A number of standard measures have emerged in parallel computing
for measuring the performance of parallel programs. Running time
measures the amount of time from when a parallel program is started
to when the program produces the final result of the computation.
Speedup s is the ratio between the running times using one processor
and multiple processors. It measures the performance improvement

Table 1. Runtime comparison of DPRml and FastDNAml for the three data
sets (50, 101 and 150 taxa). All times are in minutes

50 Taxa 101 Taxa 150 Taxa

DPRml 1386 57 373 123 484
FastDNAml 240 8726 14 685

gained through parallelization and is calculated from

s(n) = t(1)

t(n)
, (1)

where t(1) is the running time of the program using a single pro-
cessor, and t(n) is the running time of the program using n processors.
The maximum theoretical speedup occurs when there is an n times
speedup achieved using n processors. The ideal speedup curve is
rarely achieved because parallelism entails a certain amount of com-
munication and management overhead. It should also be noted that
the maximum speedup achievable depends greatly on the degree
of parallelism in a particular algorithm (Amdahl, 1967). Scalabil-
ity is the ability to maintain performance levels as the workload
increases by incrementally adding more system capacity (adding
more processors and/or computations running simultaneously).

We performed a full set of performance tests using the data set that
was used to benchmark parallel fastDNAml (Stewart et al., 2001).
This data set consists of three individual sets of taxa consisting of 50
taxa, 101 taxa, and 150 taxa that are 1858 (50 and 101 taxa) and 1269
(150 taxa) nucleotide positions in length. In our tests, we used the
HKY (Hasegawa et al., 1985) DNA substitution model with the same
three Ts/Tv ratio parameters as were used by parallel fastDNAml.
We examined several trees constructed by DPRml using this data
set and found that there were only minor differences due to the dif-
fering randomization of the taxa addition order. Several of the trees
produced are available from the system webpage. For all of our per-
formance tests, we ran a version of the program that adds the taxa
to the tree in the same order each time (so that the scaling behavior
of the program could be clearly understood) and the program was
configured to optimize the branch lengths of every tree generated.
The maximum number of vertices that rearrangements could cross
was set to five.

We compared the single-processor performance of DPRml and
fastDNAml (Olsen et al., 1994) using the three data sets. The
results of these tests are shown in Table 1. Although DPRml per-
forms approximately seven times slower than fastDNAml, DPRml’s
performance reduction is overcome by its greater cross-platform
compatibility.

3.1 Single problem speedup analysis
To analyse the speedup that can be gained by running DPRml, we ran
a single instance of DPRml on the distributed system with differing
numbers of clients and noted the total running time in each case. For
these particular tests, the set of clients consisted of two university
computing laboratories with a total of 60 desktop PCs (each machine
was a Pentium IV 2.4 GHz with 512 Mbytes of memory running
either Windows 2000 or Redhat Linux 7.0). Our server resided on a
Pentium III 600 MHz with 256 Mbytes of memory running Debian

971

T.M.Keane et al.

Fig. 2. Decrease in computation time with an increase in the number of
processors over each of the three data sets (50, 101 and 150 taxa). The average
over two runs for each data set is shown.

Fig. 3. Speedup achieved over each of the three data sets (50, 101 and 150
taxa). The average over two runs for each data set is shown. Linear speedup
is the theoretical maximum for parallel algorithms.

Linux with a 10 Mbit/s connection to the laboratories. We had our cli-
ent installed as a low-priority background service and the PCs were
in use, and were being rebooted between operating systems during
teaching hours. The graphs show the corresponding mean running
time decrease (Fig. 2) and speedup gained (Fig. 3) over two runs for
each point on the graphs. The main factor limiting the scalability
of the program is the synchronization barrier created by the staged
nature of the algorithm. If any of the donor machines are unexpec-
tedly switched off, DPRml must wait for the distributed system to
detect this and redistribute the data to another donor machine before
it can proceed to the next stage of the algorithm. Figure 3 shows
that DPRml scales extremely well, with the speedup increasing with
an increase in data set size. This is consistent with the findings of a
special purpose parallel phylogenetic program (Stewart et al., 2001).
For this particular data set, it is expected that the speedup gains

Fig. 4. Efficiency of the system over a period of 24 h for varying numbers of
DPRml computations running in the system.

Table 2. Average tree size after 24 h for varying numbers of DPRml problems
running simultaneously in the distributed system

Problems 1 2 4 6
Tree size 72 58 54 49

should plateau at approximately 150 processors because at this point
the number of processors would equal the number of trees being
generated at many of the stages. This would also be the case for any
other parallel tree building program.

3.2 Multiple problem efficiency analysis
One way to maintain consistently high efficiency (utilization of donor
machines) in the distributed system is to run several DPRml com-
putations simultaneously. Ideally, each computation would be at a
different stage in the tree building algorithm and therefore should
result in consistently higher overall efficiency. Multiple DPRml
computations can be submitted to the server, which allows users
to always make optimal use of the available donor machines. We
wanted to investigate fully how to optimize the efficiency of the
distributed system by running differing numbers of DPRml com-
putations simultaneously. We were also interested in the extent to
which an increasing number of DPRml computations running sim-
ultaneously would affect the rate at which the phylogenetic trees are
built. To investigate these two related issues, we used one of the
data sets that was used to test parallel fastDNAml (Stewart et al.,
2001), consisting of 101 taxa (1858 nucleotides per taxa), and we
ran varying numbers of DPRml computations on the system while
keeping the number of donor machines fixed. The set of clients con-
sisted of a university computing laboratory with a total of 40 desktop
PCs (each machine was a Pentium III 600 MHz with 128 Mbytes of
memory running Windows NT). By examining the distributed sys-
tem log files, we completed a graph (Fig. 4) showing the efficiency
of the system over a period of 24 h for each set of problems. We also
noted the average size of the trees built (Table 2) at the end of each
24-h period.

972

DPRml

Fig. 5. Speedup achieved over 50 taxa data sets with six problems run-
ning simultaneously. Linear speedup is the theoretical maximum for parallel
algorithms.

Figure 4 shows that efficiency is greatly increased when the num-
ber of tree building computations running simultaneously in the
system is increased. Table 2 is quite interesting as it shows that
by increasing the number of tree building computations from one to
six only reduced the average tree size by 31%. For this particular
data set and set of donor machines, six tree building computations is
sufficient to get almost 100% efficiency from the system. To further
investigate the effect on speedup of running multiple DPRml com-
putations in the distributed system, we completed a speedup graph
(Fig. 5) based on the running time of six simultaneous DPRml com-
putations. For this test, we used one of the data sets that was used to
test parallel fastDNAml (Stewart et al., 2001), consisting of 50 taxa
(1858 nucleotides per taxa), and ran six simultaneous computations
with varying numbers of clients. As expected, Figure 5 demonstrates
that DPRml achieves near-linear speedup when speedup is measured
with multiple DPRml computations running simultaneously.

The above results fit well with the expected usage of the program.
As the algorithm outlined in Section 2 is heuristic, it is possible
to become trapped in a local optimum, rather than a global one.
Typically a researcher would repeat the entire tree building process
with several different randomizations of the taxa addition order and
then compare the best of the resulting trees to determine a consensus
tree (Jermiin et al., 1997). As has been noted by parallel computing
authors (Amdahl, 1967), it is quite rare and difficult for a parallel or
distributed system to achieve 100% efficiency. We are the first, to our
knowledge, to report the completion of a distributed phylogenetic tree
building program that can achieve near-linear speedup and almost
100% system efficiency while only using the idle clock cycles of
standard desktop machines.

4 DISCUSSION
DPRml is an easy-to-use practical application that can harness the
idle computing resources of any research institute to construct large
phylogenetic trees using ML. The real significance of DPRml lies in
the fact that it gives a researcher, who may not have access to (or the
technical skills necessary to access) a dedicated parallel machine,

the ability to build large and accurate phylogenetic trees. Unlike
other parallel phylogenetic programs, no specialist parallel comput-
ing knowledge is required to set up and run DPRml. The program
offers an extensive list of DNA substitution models that allows users
to pick the substitution model that better reflect their data set. We
have shown how effective DPRml can be for speeding up phylogen-
etic computations by performing a full performance analysis. The
final outputs of the program are in standard formats that allow the
user to perform further manipulation and analysis of results using
other phylogenetic packages.

This first release of DPRml uses PAL v1.4 (Drummond and Strim-
mer, 2001) for all of its optimization and likelihood calculations. As
new features and algorithmic improvements appear in later versions
of PAL (Goode et al., 2004), we will release updated versions of
DPRml on our webpage to take advantage of the improvements. In
future versions of DPRml we plan to improve performance by focus-
ing our investigations on algorithmic improvements and plan to add
features such as bootstrap analysis and supertree construction. On
the wider issue of the large-scale distributed computing paradigm,
we have highlighted the principal advantages of the paradigm, which
are ease-of-use, flexibility, affordability and efficiency.

ACKNOWLEDGEMENTS
We would like to thank Matthew Goode of the PAL project for
help and advice on how to use PAL v1.4. This research was
funded by Embark Initiative from the Irish Research Council for
Science, Engineering and Technology: funded by the National
Development Plan.

REFERENCES
Amdahl,G.M. (1967) Validity of the single processor approach to achieving large-scale

computing capabilities. In AFIPS Conference Proceedings. AFIPS Press, Reston,
VA, Vol. 30, pp. 483–485.

Bodlaender,H., Fellows,M. and Warnow,T. (1992) Two strikes against perfect phylogeny.
Proceedings of the 19th International Colloquium on Automata, Languages, and
Programming. Lecture Notes in Computer Science. Springer-Verlag, NY, Vol. 623,
pp. 273–283.

Buyya,R. (ed) (1999) High Performance Cluster Computing: Architectures and Systems.
Prentice Hall Inc., NJ, ISBN-0130-1378-47.

Crandall,K.A. and Buhay,J.E. (2004) Genomic databases and the tree of life. Science,
306(5699), 1144–1145.

Drummond,A. and Strimmer,K. (2001) PAL: an object-oriented programming library
for molecular evolution and phylogenetics. Bioinformatics, 17, 662–663.

Felsenstein,J. (1981) Evolutionary trees from DNA sequences: a maximum likelihood
approach. J. Mol. Evol., 17, 368–376.

Felsenstein,J. (1989) PHYLIP—Phylogeny Inference Package (Version 3.2). Cladistics,
5, 164–166.

Fritsche,K., Power,J. and Waldron,J. (2001) A Java distributed computation library. Pro-
ceedings of the 2nd International Conference on Parallel and Distributed Computing,
Applications and Technologies PDCA 2001, Taipei, Taiwan, pp. 236–243.

Goode,M., Strimmer,K., Drummond,A., Buckler,E. and Rodrigo A. (2004) A brief intro-
duction to the phylogenetic analysis library, version 1.5. Proceedings of the Second
Asia-Pacific Bioinformatics Conference APBC 2004, Dunedin, NZ, pp. 175–179.

Guindon,S. and Gascuel,O. (2003) A simple, fast, and accurate algorithm to estimate
large phylogenies by maximum likelihood. Syst. Biol., 52, 696–704.

Hasegawa,M., Kishino,H. and Yano,T. (1985) Dating the human-age splitting by a
molecular clock of mitochondrial DNA. J. Mol. Evol., 22, 160–174.

Hershkovitz,M.A. and Leipe,D.D. (1998) Phylogenetic analysis. In Baxevanis,A.D. and
Ouelette,B.F.F. (eds), Bioinformatics: a Practical Guide to the Analysis of Genes and
Proteins. Wiley-Liss, New York, pp. 189–230.

Huelsenbeck,J.P. (1995) Performance of phylogenetic methods in simulation. Syst. Biol.,
44, 17–48.

Huelsenbeck,J.P. and Hillis,D.M. (1993) Success of phylogenetic methods in the four-
taxon case. Syst. Biol., 42, 247–264.

973

T.M.Keane et al.

Jermiin,L.S., Olsen,G.J. and Easteal,S. (1997) Majority rule consensus of maximum
likelihood trees. Mol. Biol. Evol., 14, 1296–1302.

Keane,T., Allen,R., Naughton,T., McInerney,J. and Waldron,J. (2003) Distributed Java
platform with programmable MIMD capabilities. In Guelfi,N., Astesiano,E. and
Reggio,G. (eds), Scientific Engineering for Distributed Java Applications, Lecture
Notes in Computer Science. Springer, Berlin, Vol. 2604, pp. 122–132.

Korber,B., Muldoon,M., Theiler,J., Gao,F., Gupta,R., Lapedes,A., Hahn,B.H.,
Wolinsky,S. and Bhattacharya,T. (2000) Timing the ancestor of the HIV-1 pandemic
strains. Science, 288, 1789–1796.

Korpela,E., Werthimer,D., Anderson,D., Cobb,J. and Lebofsky,M. (2001)
SETI@home—massively distributed computing for SETI. IEEE: Comput.
Sci. Eng., 3, 77–83.

Krieger,E. and Vriend,G. (2002) Models@Home: distributed computing in bioinform-
atics using a screensaver based approach. Bioinformatics, 18(2), 315–318.

Kuhner,M.K. and Felsenstein,J. (1994) A simulation comparison of phylogeny
algorithms under equal and unequal evolutionary rates. Mol. Biol. Evol., 11, 459–468.

Larson,S.M., Snow,C.D., Shirts,M.R. and Pande,V.S. (2004) Folding@Home and
Genome@Home: using distributed computing to tackle previously intractable prob-
lems in computational biology. In Grant,R. (ed.), Computational Genomics: Theory
and Application. Horizon Press, Norwich, UK, ISBN-1904-9330-17.

Olsen,G.J., Matsuda,H., Hagstrom,R. and Overbeek,R. (1994) FastDNAmls: a tool for
construction of phylogenetic trees of DNA sequences using maximum likelihood,
Comput. Appl. Biosci., 10, 41–48.

Posada,D. and Crandall,K.A. (1998) MODELTEST: testing the model of DNA substi-
tution. Bioinformatics, 14, 817–818.

Ranwez,V. and Gascuel,O. (2002) Improvement of distance-based phylogenetic meth-
ods by a local maximum likelihood approach using triplets. Mol. Biol. Evol., 19,
1952–1963.

Rogers,J.S. and Swofford D.L. (1998) A fast method for approximating maximum
likelihoods of phylogenetic trees from nucleotide sequences. Syst. Biol., 47, 77–89.

Rosenberg,M. and Kumar,S. (2001) Traditional phylogenetic reconstruction methods
reconstruct shallow and deep evolutionary relationship equally well. Mol. Biol. Evol.,
19, 1823–1827.

Schmidt,H.A., Strimmer,K., Vingron,M. and von Haeseler,A. (2002) TREE-PUZZLE:
maximum likelihood phylogenetic analysis using quartets and parallel computing.
Bioinformatics, 18, 502–504.

Stamatakis,A.P. and Ludwig,T. (2003) Phylogenetic tree inference on PC architectures
with AxML/PaxML. Proceedings of IPDPS2003 (High Performance Computational
Biology Workshop), Nice, France, pp. 157–160.

Stewart,C.A., Hart,D., Berry,D.K., Olsen,G.J., Wernert,E.A. and Fischer,W. (2001) Par-
allel implementation and performance of fastDNAml—a program for maximum
likelihood phylogenetic inference. Proceedings of SC2001, Denver, CO, USA,
pp. 20–31.

Thain,D., Tannenbaum,T. and Livny,M. (2003) Condor and the grid. In Berman,F.,
Hey,A. and Fox,G. (eds), Grid Computing: Making the Global Infrastructure a
Reality. John Wiley, NJ, pp. 299–335.

974

