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Abstract—Guesswork is the position at which a random string
drawn from a given probability distribution appears in the list of
strings ordered from the most likely to the least likely. We define
the tilt operation on probability distributions and show that it
parametrizes an exponential family of distributions, which we
refer to as the tilted family of the source. We prove that two
sources result in the same guesswork, i.e., the same ordering
from most likely to least likely on all strings, if and only if they
belong to the same tilted family. We also prove that the strings
whose guesswork is smaller than a given string are concentrated
on the tilted family. Applying Laplace’s method, we derive
precise approximations on the distribution of guesswork on
i.i.d. sources. The simulations show a good match between the
approximations and the actual guesswork for i.i.d. sources.

Index Terms—Ordering; Guesswork; One-to-One Codes;
Rényi Entropy; Laplace’s Method.

I. INTRODUCTION

Let Xn
:

= X1, . . . , Xn denote a random n-string drawn
from the parametric distribution µn

✓ (·) on a finite alphabet
X . Order all the |X |n strings of length n from the most
likely to the least likely. Denote Gn

✓ (X
n
) as the guesswork

random variable which is the order at which Xn appears
in this ordered list. It is clear that Gn

✓ (X
n
) takes values in

{1, . . . , |X |n}. The goal of this paper is to analytically under-
stand the probability mass function of Gn

✓ (x
n
), which finds

applications in sequential decoding, computational security
against brute-force attack, and source coding.

A. Related Work

The original motivation for the study of guesswork was
to provide lower bounds on the computational complexity of
sequential decoding [1] where the decoder sequentially ex-
amines several paths until it finds the correct coded sequence
using some distance metric. Average guesswork was first
studied by Massey [2] where he showed that guesswork is not
related to Shannon entropy in general. Arıkan [3] considered
guesswork on i.i.d. processes and proved that for long string
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lengths the moments are related to the Rényi entropy rate of
the process. This has been generalized to ergodic Markov
chains [4] and a wide range of stationary sources [5]. It
has also been studied subject to an allowable distortion [6],
and subject to constrained Shannon entropy [7]. Hanawal
and Sundarasen [8] rederived the moments of guesswork as-
suming large deviations principle (LDP) holds. Christiansen
and Duffy [9] established that guesswork satisfies LDP
and completely characterized the rate function. They also
provided an approximation to the distribution of guesswork.

Guesswork can also be used to quantify computational
security against brute-force attack [10]. Suppose that a secret
string is drawn from µn

✓ on Xn, which is used to secure a sys-
tem which would only allow access if the correct secret string
is provided, and does not reveal any information otherwise.
If a brute-force attacker adversary wants to guess the secret
string by query, Gn

✓ (x
n
) is exactly the number of guesses

that the smartest attacker has to make until he finds the
string xn. Christiansen et al. [11] studied guesswork over the
(weakly) typical set and proved that the exponent is strictly
smaller than that of a uniform set with the same support
size; they showed that the average guesswork of a password
over an erasure channel does not relate to the average noise
in general [12]; they also considered the setting where an
attacker wants to guess one or more out of many secret
strings drawn independently from not necessarily identical
string-sources [10]. Finally, the idea of guesswork has been
extended to the setup where the probability distribution is
unknown [7], [13], [14].

In the context of source coding, it is known that the length
of the optimal one-to-one source code for xn (that need not
satisfy Kraft’s inequality) is within one bit of logGn

✓ (x
n
),

and hence is related to the normalized zeroth moment of
guesswork (see [14]). The source coding problem without
prefix constraint dates back to Wyner [15] who showed
that the average codeword length of one-to-one codes is
upper bounded by the entropy. Alon and Orlistky derived
a lower bound on the average codeword length in terms of
the Shannon entropy [16], which was recently revisited for
other moments of guesswork [17]. Szpankowski [18] derived



the asymptotic average codeword length of one-to-one codes
on binary memoryless sources, which was subsequently gen-
eralized to finite-alphabet i.i.d. processes [19], [20], and later
studied under a universal setup [21]–[23].

B. Problem Setup

We study guesswork on i.i.d. processes over a finite
alphabet. Let X = {a1, . . . , a|X |} be a finite alphabet of size
|X |. An i.i.d. source is defined using the set of probabilities
✓i = P [X = ai] where

P|X |
i=1 ✓i = 1. We refer to

✓ = (✓1, . . . , ✓|X |) as the source parameter vector, which
is an element of the d = (|X | � 1) dimensional simplex of
all stochastic vectors of size |X |. Denote ⇤ as the (open) set
of all parameter vectors ✓ such that ✓i > 0 for all i 2 [|X |].1
We denote the parameter vector that results in uniform i.i.d.
symbols by u, i.e., u :

= (1/|X |, . . . , 1/|X |) 2 ⇤. We further
define ˜

⇤ as

˜

⇤

:

= {✓ 2 ⇤| ✓i 6= ✓j for all i 6= j}.

Our main tool in analysis will be the tilt operation defined
on any ✓ 2 ⇤, which is formally defined in the following:

Definition 1 (tilted ✓ of order ↵): For any ↵ 2 R, define
✓↵(2 ⇤) as “tilted ✓ of order ↵” given by

✓↵ :

=

(✓↵1 , . . . , ✓
↵
|X |)

P|X |
i=1 ✓

↵
i

.

Note that tilted ✓ of order 1 is the source parameter vector
✓ itself, i.e., ✓1 = ✓. We further use the notation (✓↵)i to
denote the i-th element of the vector ✓↵, i.e.,2

(✓↵)i =
✓↵iP|X |
i=1 ✓

↵
i

.

Definition 2 (tilted family of ✓): Let the set �+
✓ 2 ⇤ denote

the tilted family of ✓ and be given by

�

+
✓ :

= {✓↵}↵2R+ .

Note that the tilted family of ✓ is indeed an exponential
family (see [24]). Also, the surfaces of equiprobable types
form a linear family of distributions.

As an example, consider an i.i.d. source on a ternary alpha-
bet (|X | = 3). �+

✓ is depicted in Fig. 1 for ✓ = (0.2, 0.3, 0.5).
As can be seen, the tilted family of ✓ is a parametric curve
(parametrized by ↵) that lives in the 2-dimensional simplex
of stochastic vectors. The curve starts from the maximum
entropy point u (for ↵ = 0) and then moves to one of the
zero-entropy corner points of the simplex corresponding to
the most likely symbol as ↵ ! 1. We will show that these
properties hold generally for any finite alphabet size and any
parameter vector that lives in ˜

⇤.
In this paper, we establish two operational meanings of

�

+
✓ and show that this set plays key roles in determining the

1for any n 2 N, we define [n] := {1, . . . , n}.
2This is in contrast to ✓↵i which means ✓i (the i-th element of ✓)

exponentiated to the power of ↵.
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Fig. 1: The black lines depict the boundaries of the simplex of
all ternary probability vectors. The yellow pentagon marker
is the ternary source parameter vector ✓ = (0.2, 0.3, 0.5). The
purple diamond marker corresponds to the uniform parameter
vector u = ✓0 = (1/3, 1/3, 1/3). The blue curve depicts �+

✓ ,
i.e., the tilted family of ✓.

behavior of the probability mass function (PMF) of guess-
work. The organization of the paper and our contributions
are summarized below.

• In Section II, we define the optimal ordering and provide
the necessary definitions and notations.

• In Section III, we define the equivalent order class of a
parameter vector ✓ as the set of all i.i.d. sources on a
finite alphabet that lead to the same optimal ordering for
all strings of all lengths. We show that this set coincides
with �

+
✓ .

• In Section IV, we define the dominating type of certain
order as the type whose number of elements is the
largest among all types that are more likely than a given
type. We show that the dominating type asymptotically
converges to a certain member of �+

✓ .
• In Section V, using the findings about the dominating

type and Laplace’s method (the principle of the largest
term), we derive approximations on the PMF of the
guesswork.

II. OPTIMAL ORDERING

Denote xn+k�1
k = xkxk+1 . . . xn+k�1 2 Xn as a n-string

over X . Further, let xn
= xn

1 and for i > n, xn
i = ?, where

? denotes the null string. In this paper, we focus on i.i.d.
(string) sources on the finite alphabet X .

Let µ1
✓ denote the probability measure on X associated

with the source parameter vector ✓, i.e., µ1
✓(ai) = ✓i. Denote

µn
✓ as the i.i.d. probability measure on Xn, i.e., µn

✓ (x
n
) =Qn

i=1 µ✓(xi). Let ri(xn
) denote the count of the symbol ai



in string xn. Formally, ri(xn
) =

Pn
i=1 I{ai}(xi) where IA

is the indicator function of set A ⇢ X . Further, the vector

t(xn
)

:

=

1

n
r(xn

) =

✓
r1(xn

)

n
, . . . ,

r|X |(x
n
)

n

◆

denotes the type of the string xn. Therefore,

µn
✓ (x

n
) =

|X |Y

i=1

✓nti(x
n)

i

= exp(�n

|X |X

i=1

ti(x
n
) log

1

✓i
)

= exp(�n[H(t(xn
)) +D(t(xn

)||✓)])
= exp(�n[H(t(xn

), ✓)],

where exp(·) denotes exponentiation in base 2, and H(·) is
the |X |-ary entropy function defined as

H(✓) :=

|X |X

i=1

✓i log
1

✓i
, (1)

and D(·||·) is the |X |-ary relative entropy function defined
as

D(✓||�) :=
|X |X

i=1

✓i log
✓i
�i
, (2)

and

H(✓, �) :=H(✓) +D(✓||�)

=

|X |X

i=1

✓i log
1

�i
(3)

By definition H(✓, ✓) = H(✓).
We also need to define the Rényi entropy function of order

⇢ denoted by H⇢(·) as given by

H⇢(✓) =
1

1� ⇢
log

0

@
|X |X

i=1

✓⇢i

1

A . (4)

Note that lim⇢!1 H⇢(✓) = H(✓) for all ✓ 2 ⇤.
We refer to {µn

✓ }1n=1 as a string-source (or in short source)
with parameter vector ✓. We use the notation {µn

✓ } to denote
{µn

✓ }1n=1 as well. Further, let Tt(xn) denote the type class of
xn, i.e.,

Tt(xn) := {yn 2 Xn| t(yn) = t(xn
)}.

We further denote �n as the set of all type-classes of strings
of length n, i.e.,

�n = {Tt(xn)| xn 2 Xn}.

Let Sh 2 ⇤ denote the manifold of all parameter vectors
with constant entropy h, i.e.,

Sh :

= {✓ 2 ⇤| H(✓) = h}.

As described in Section I, understanding the guesswork
problem requires understanding of the ordering of the strings
from most likely to the least likely, which we shall call the
optimal ordering.

Definition 3 (ordering): Any one-to-one function Gn
:

Xn ! [|X |n] is called an ordering (on n-strings).
Definition 4 (optimal ordering for ✓): An ordering Gn is

said to be optimal for µn
✓ (or in short for ✓) if for any other

ordering G0n, and any i 2 [|X |n]

P✓[G
n
(Xn

)  i] � P✓[G
0n
(Xn

)  i]. (5)

It is straightforward to see that (5) is equivalent to the
following:

µn
✓ (x

n
) > µn

✓ (y
n
) ) Gn

(xn
) < Gn

(yn). (6)

Note that optimal ordering is not unique since swapping any
two equally likely strings in an optimal ordering would result
in another optimal ordering. In short, any arbitrary rule for
breaking the ties in likelihood of strings results in an optimal
ordering.

Let {ei}|X |
i=1 denote the standard basis for R|X |. Throughout

the paper, we let Xn
:

⌦ 7! Xn be a random n-string drawn
from µn

✓ .

III. ORDER CLASS OF THE SOURCE

In this section, we characterize the set of all i.i.d. sources
on alphabet X that induce the same optimal ordering of the
strings (from most likely to the least likely) and characterize
the locus of all the source parameters in the simplex of
probability vectors that have the same order as any given
parameter vector ✓.

Definition 5 (order equivalent): We say two string sources
{µn

✓ } and {µn
�} are order equivalent (or in short ✓ and � are

order equivalent) and denote by ✓ ⌘ � if and only if for all
n 2 N if Gn is an optimal ordering for ✓ it is also an optimal
ordering for �.

Definition 6 (equivalent order class): The equivalent order
class of a parametric string source {µn

✓ } is denoted by C✓

and is given by

C✓ = {� 2 ⇤| � ⌘ ✓}.

Note that the optimal ordering on n-strings (for any
n 2 N) drawn from the parametric sources � 2 C✓ is the
same. Therefore, they result in the same guessing procedure
and also the same one-to-one source code. Hence, we are
interested in finding the equivalent order class of ✓.

Theorem 1: For any ✓ 2 ˜

⇤, the equivalent order class of ✓
is given by

C✓ = �

+
✓ .

To prove the theorem, we need to state a few lemmas.
Lemma 1: For all ✓ 2 ˜

⇤, ✓↵ is continuous in ↵ 2 R+;
and lim↵!0 ✓↵ = u, where u = (

1
|X | , . . . ,

1
|X | ); and

lim↵!1 ✓↵ = em where m = argmax1i|X | ✓i.



Proof: The continuity is clear from the definition of ✓↵
and the limit as ↵ ! 0 is straightforward. The last part of the
claim follows because ✓ 2 ˜

⇤ implies m = argmax1i|X | ✓i
is unique.

Lemma 2: For any ✓ 2 ˜

⇤, the equivalent order class of ✓
contains �

+
✓ , i.e., �+

✓ ✓ C✓.
Proof: We need to prove that for any ✓↵ 2 �✓, we have

✓↵ ⌘ ✓, i.e., ✓↵ 2 C✓. To this end, we need to show that for
any Gn

✓ that is an optimal ordering on n-strings for ✓, we
have

µn
✓↵(xn

) < µn
✓↵(yn) ) Gn

✓ (x
n
) > Gn

✓ (y
n
).

It suffices to show that for any ↵ 2 R+, we have

µ✓(x
n
) > µ✓(y

n
) , µ✓↵

(xn
) > µ✓↵

(yn).

We show here

µ✓(x
n
) > µ✓(y

n
)

,
|X |Y

i=1

✓ri(x
n)

i >

|X |Y

i=1

✓ri(y
n)

i

,
|X |Y

i=1

✓↵ri(x
n)

i >

|X |Y

i=1

✓↵ri(y
n)

i (7)

,
|X |Y

i=1

 
✓↵iP|X |
j=1 ✓

↵
j

!ri(x
n)

>

|X |Y

i=1

 
✓↵iP|X |
j=1 ✓

↵
j

!ri(y
n)

(8)

,
|X |Y

i=1

(✓↵)ri(x
n)

i >

|X |Y

i=1

(✓↵)ri(y
n)

i

, µ✓↵
(xn

) > µ✓↵
(yn),

where (7) holds because ↵ > 0, and (8) holds becauseP|X |
i=1 ri(x

n
) = n. This completes the proof.

Now, we are ready to provide the proof of the theorem.
Proof of Theorem 1: To prove the theorem, we show

that for ✓ 2 ˜

⇤ and any 0 < h < log |X |, the intersection of
Sh and C✓ denoted by C✓ \ Sh contains one and only one
parameter vector. We further show that C✓ \ Sh 2 �✓.

Let �,� 2 C✓ \ Sh be two parameter vectors that are
contained in the intersection of Sh and C✓. Therefore,

nX

i=1

�i log
1

�i
=

nX

i=1

�i log
1

�i
= h.

Let r(n�) be defined as

r(n�) = arg min

ri2Z+

P|X|
i=1 ri=n

||r� n�||1.

Observe that r(n�) by definition is a type on n-strings.
Further, |ri(n�) � n�i| < 1. We define r(�, n) similarly.
Let xn 2 Tr(n�) and yn 2 Tr(n�) be two strings drawn from

type classes of r(n�) and r(n�), respectively. Therefore,

log

1

µ�(xn
)

=

|X |X

i=1

ri(n�) log
1

�i

=

|X |X

i=1

n�i log
1

�i
+

|X |X

i=1

(ri(n�)� n�i) log
1

�i

 nh+

|X |X

i=1

log

1

�i
.

On the other hand,

log

1

µ�(yn)
=

|X |X

i=1

ri(n�) log
1

�i

=

|X |X

i=1

n�i log
1

�i
+

|X |X

i=1

(ri(n�)� n�i) log
1

�i

� nh+ nD(�||�)�
|X |X

i=1

log

1

�i
.

Therefore, if � 6= �, for sufficiently large n, we have
µ�(xn

) > µ�(yn) and hence G�(xn
) < G�(yn). By

repeating similar arguments we can show that for suffi-
ciently large n, we have µ�(xn

) < µ�(yn), which leads
to G�(xn

) > G�(yn). Therefore, � and � are not order
equivalent, i.e., � 6⌘ �, which is a contradiction. Hence, the
intersection of C✓ and Sh is unique.

Next, we need to show that C✓ \ Sh is not empty and is
contained in �✓. This is carried out by invoking Lemma 1
and noting that H(u) = log |X | and H(em) = 0.

We find that the equivalent order class of a parametric
string source with parameter vector ✓ 2 ˜

⇤ is characterized
by a set of parameters that lie on a parametric curve in the
simplex of probability vectors, which starts (for ↵ = 0

+)
from the maximum entropy point corresponding to uniform
distribution and ends (for ↵ ! 1) in one of the zero-entropy
corner points in the simplex.

IV. DOMINATING TYPE

In this section, we provide another operational meaning
of the equivalent order class of the source ✓ by defining the
dominating type, which is the type with maximum cardinality
among all types whose elements are more likely than a given
string.

Definition 7 (dominating type of order ↵): tn✓,↵ is called
the dominating type of order ↵ and is defined as

tn✓,↵ :

=

(
arg max

t2�n

H(t)

s.t. H(t, ✓)  H(✓↵, ✓)
, (9)

where H(·, ·) is defined in (3).
Observe that tn✓,↵ is the type with the largest cardinality

among all n-strings whose probability is larger than or equal



to a constant specified through

1

n
log

1

µn
✓ (x

n
)

 H(✓↵, ✓).

Definition 8 (dominating class of positive orders): The
dominating class of all positive orders of the source is defined
as

{tn✓,↵}↵2R+ .

The theorem below shows the connection between the
dominating class of positive orders and the tilted family of
✓, which suggests a second operational meaning to �

+
✓ .

Theorem 2: The dominating type of order ↵ converges to
✓↵ as n ! 1. In particular,

||tn✓,↵ � ✓↵||2  1

n

Further, the dominating class of positive orders of source ✓
uniformly converges to �

+
✓ as n ! 1.

We need the following lemmas to prove the theorem.
Lemma 3: H(✓↵) is a decreasing function of ↵, which

starts from log |X | at ↵ = 0 and vanishes as ↵ ! 1.
Proof: We need to show that dH(✓↵)

d↵ < 0 for all ↵ 2 R+.
On the other hand, it suffices to show that dH(✓↵)

d↵

���
↵=1

< 0

due to the properties of the parametric curve that specifies
the tilted family.

dH(✓↵)

d↵

����
↵=1

=

|X |X

i=1

d(✓↵)i
d↵

����
↵=1

(log

1

✓i
� log e)

=

|X |X

i=1

✓i
log e

(H(✓)� log

1

✓i
)(log

1

✓i
� log e)

= E

⇢
1

log e
(H(✓)� log

1

✓i
)(log

1

✓i
� log e)

�

 1

log e
(H(✓)� E{log 1

✓i
})(E{log 1

✓i
}� log e)

(10)
= 0,

where (10) follows from concavity of (a � x)(x � b) with
respect to x and Jensen’s inequality. Note that the inequality
in (10) is strict unless ✓i =

1
e (which is impossible) or ✓i =

1
|X | , which is the uniform distribution and is only obtained
at ↵ = 0. Thus, the inequality is strict for ↵ 2 R+.

Lemma 4: Let ⇠✓,� be defined as

⇠✓,� = argmax

⇠

⇢
H(⇠)� 1

�
D(⇠||✓)

�
. (11)

Then, ⇠✓,� = ✓1/(1+�).

Proof: We have

H(⇠)� 1

�
D(⇠||✓) =

|X |X

i=1

⇠i log
1

⇠i
� 1

�

|X |X

i=1

⇠i log
⇠i
✓i

=

1 + �

�

|X |X

i=1

⇠i log
✓

1
1+�

i

⇠i

 1 + �

�
log

|X |X

i=1

✓
1

1+�

i (12)

= H1/(1+�)(✓),

where (12) is due to the log-sum inequality, and where
H1/(1+�)(✓) is the Rényi entropy of order 1/(1 + �) of
the source as defined in (4). Further, equality in (12) is
achieved if and only if ⇠i = C✓

1
1+�

i . This also implies that
⇠✓,� = ✓1/(1+�), which completes the proof.

Note that the solution to this minimization is related to the
rate function of the LDP as also formulated by Hanawal and
Sundarasen [8]. Next, we state the proof of the main result
in this section.

Proof of Theorem 2: The theorem is proved by relaxing
the integer constraint on the types, i.e., let

�✓,↵ :

=

(
argmax

�
H(�)

s.t. H(�, ✓) = H(✓↵, ✓)

Since H(·) is a concave function, this relaxed version of
the problem can be solved using Lagrange multipliers, from
which and Lemma 4, it is deduced that the maximizer
�✓,↵ satisfies �✓,↵ 2 �

+
✓ and hence �✓,↵ = ✓↵. Now, by

combining the above with Lemma 3, we conclude that:

✓↵ =

(
argmax

�
H(�)

s.t. H(�, ✓) � H(✓↵, ✓)

Therefore, the maximizer of the original problem is within
Euclidean distance 1

n of the relaxed problem, and hence, as
n ! 1, it converges to ✓↵.

V. APPROXIMATION OF THE OPTIMAL ORDERING
DISTRIBUTION

In this section, we present an approximation on the prob-
ability distribution of Gn

✓ (X
n
), where Gn

✓ (·) is an optimal
ordering on n-strings for all n 2 N. In Theorem 2, we
determined that the type that dominates guesswork is “close”
to the tilted family of ✓, i.e., guesswork is concentrated on
the tilted family. In this section, we further use Laplace’s
method (the principle of the dominating term) to approximate
the guesswork distribution within a multiplicative factor of
(1 +O(

1p
n
)).

We will argue that as n gets bigger, the size of dominating
type is going to dominate the number of strings whose
probability is larger than a certain limit. This in turn helps
us approximate the likelihood of the strings ordered by the
optimal guessing order.



Fig. 2: The approximation on the distribution of the guess-
work for a binary memoryless source (|X | = 2) and n = 15.

Fig. 3: The approximation on the distribution of the guess-
work for a ternary memoryless source (|X | = 3) and n = 15.

Definition 9 (projection of xn
on the tilted family of ✓):

Let ⇧(xn
) denote the projection of xn on the tilted family

of ✓ as given by

⇧(xn
) = {� 2 �

+
✓ : H(�, ✓) = H(t(xn

), ✓), (13)

where t(xn
) is the type of xn. Further, define ↵(xn

)

↵(xn
) = arg�{⇧(xn

) = ✓�}.

Observe that by definition ⇧(xn
) = ✓↵(x

n).
Lemma 5: H(✓↵, ✓) is a decreasing function of ↵ for all

↵ 2 R+. In other words, if ↵1 > ↵2 > 0, then H(✓↵1 , ✓) <
H(✓↵2 , ✓).

Proof: We need to show that d
d↵H(✓↵, ✓) < 0. On the

Fig. 4: The approximation on the distribution of the guess-
work for a 4-ary memoryless source (|X | = 4) and n = 8.

Fig. 5: The approximation on the distribution of the guess-
work for a 5-ary memoryless source (|X | = 5) and n = 8.

other hand, it suffices to show that
|X |X

i=1

d(✓↵)i
d↵

����
↵=1

log

1

✓i
< 0.

We have
|X |X

i=1

d(✓↵)i
d↵

����
↵=1

log

1

✓i
=

|X |X

i=1

✓i
log e

(H(✓)� log

1

✓i
)(log

1

✓i
)

= E

⇢
1

log e
(H(✓)� log

1

✓i
)(log

1

✓i
)

�


(H(✓)� E{log 1

✓i
})(E{log 1

✓i
})

log e
(14)

= 0,



where the reasoning for (14) is similar to that of (10) in the
proof of Lemma 3.

Lemma 6: For any xn such that µn
✓ (x

n
) > 1

|X |n , ⇧(xn
)

exists and is unique.
Proof: The existence follows from Lemma 5 and the

uniqueness is proved by following the same lines of the proof
of Theorem 1.

Let b✓ be the rate of change of the entropy on the tilted
family as given by

b✓ :

=

dH(✓�)
d�

���
�=1����

����
d✓�

d�

���
�=1

����

����
2

,

where d✓� is the element-wise differential of ✓� (with respect
to the parameter �).

Further, for any xn 2 Xn and ⇧ = ⇧(xn
) and ↵ = ↵(xn

)

that are the projection coefficients defined in Definition 9,
define G

n
(⇧) and Gn

(⇧) as:

G
n
(⇧)

:

=

1

1� exp (b✓↵
)

r
1

2⇡n
2

nH(⇧)�b✓↵ , (15)

Gn
(⇧)

:

=

1

1� exp (b✓↵
)

r
1

2⇡n
2

nH(⇧)+b✓↵ . (16)

Here is our main result on the approximation of the
distribution of guesswork.

Theorem 3: Let Gn
✓ (·) be any optimal ordering for ✓ on

n-strings. Then, for any xn:

Gn
(⇧)(1 +O(

1p
n
))  Gn

✓ (x
n
)  G

n
(⇧)(1 +O(

1p
n
)),

(17)
where ⇧ = ⇧(xn

) is the projection of xn on the tilted family
of ✓.

Sketch of the proof: Write down the Taylor expansion of
Gn

✓ (x
n
) around ⇧(xn

) and notice that the Euclidean distance
between ⇧(xn

) and the dominating type is bounded by 1
n

according to Theorem 2. Then using Laplace’s method for
summing all the terms that are more probable than xn we
arrive at the desired result of the theorem.

Note that in the binary case where |X | = 2, Theorem 3 is a
straightforward deduction of Lemma 1 of Szpankowski [18].
On the other hand, the proof of Szpankowski is not readily
extendible to |X | > 2 due to the complications that arise
in identifying the optimal ordering of the strings. Further
observe that these bounds are tight up to the multiplicative
(1 + O(

1p
n
)) factor in the sense that either end could be

achieved by some particular optimal ordering.
Next, we use this result to approximate the distribution

of (any) optimal ordering Gn
✓ (X

n
). The approximation is as

follows:

P✓

2

4Gn
✓ (X

n
) ⇡ 1

p
2⇡n(1� exp(

b✓,↵
a✓,↵

))

2

nH(✓↵)

3

5 (18)

⇡
P✓

h
Gn

(✓↵)  Gn
✓ (X

n
)  G

n
(✓↵)

i

�
n

n✓↵

�

⇡ P✓[⇧(Xn
) = ✓↵]�

n
n✓↵

�

⇡ exp(�nH(✓↵, ✓)), (19)

where in (18) the RHS is the geometric mean of G
n
(✓↵) and

Gn
(✓↵).

Although the above equation can be used to obtain an
approximation for P [Gn

✓ (X
n
) = i] for any i 2 [|X |n], this

approximation is only valid for strings for which Gn
✓ (x

n
) ⌧

|X |n. To show the accuracy of this approximations, we have
run several experiments and report four here (Figs. 2-5). The
approximation in (19) has been plotted as the solid blue curve
and the true probability distribution of (any) optimal ordering
is shown in pink. As can be seen, this is a good approximation
for small i and has no predictive value for i ⇡ |X |n. On
the other hand, when compared to the approximation on the
distribution derived in [9], this approximation is much more
accurate for small values of n primarily due to the exact
asymptotic expansion of the pre-factor in the large deviation
estimates.

VI. CONCLUSION

In this paper, we provided a geometric perspective on the
guesswork problem. We defined a tilt operation on stochastic
vectors and referred to the collection of all tilts of positive
orders as the tilted family of the source parameter vector.
We established two operational meanings of the tilted family
by demonstrating that this set coincides with the equivalent
order class of an i.i.d. source who lead to the same ordering
on all strings of all lengths. We also showed that all types
that dominate the guesswork lie close to the tilted family.
Using these results in conjunction with Laplace’s method,
we provided an asymptotic approximation on the probability
distribution of the guesswork, which is in good agreement
with the actual distribution even for small string lengths.
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