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Abstract — Land vehicle speed is usually measured by wheel speed or GPS. While
these methods are adequate for some purposes, there are some drawbacks. Wheel speed
may differ greatly from vehicle speed due to tyre slip. In addition, speed measured by
GPS contains little high frequency information and lags the actual vehicle speed. A
method is needed which combines both accuracy and good transient behaviour. This
paper describes a method that combines GPS and a Reduced Inertial Sensor System
(RISS), in this case a single accelerometer, to achieve an accurate estimate of vehicle
speed. Using a Kalman filter, the low frequency accuracy of the GPS and high frequency
response of the accelerometer are combined. A number of error correction strategies
are applied to provide a robust and accurate measurement system.
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I Introduction

Inertial Navigation Systems (INS) use inertial sen-
sors to determine the position, velocity and orien-
tation of a vehicle. An Inertial Measurement Unit
(IMU) consists of three accelerometers and three
gyros mounted orthogonally, and may be combined
with a Global Positioning System (GPS) receiver
to form a GPS/INS system [1]. Reduced Inertial
Measurement Systems (RISS) [2] use a sub-set of
the inertial sensors. Tightly coupled systems [3],
which combine raw GPS and INS data in a sin-
gle state estimator give the best performance but
are more expensive and less accessible than loosely
coupled systems. In loosely coupled systems, INS
data is combined with the data output from the
GPS state estimator. These systems offer accept-
able accuracy for many applications [4].

Although Micro-Electro-Mechanical Systems
(MEMS) technology has reduced INS cost and
weight considerably, for some applications a full
GPS/INS system may not be justified on the
grounds of cost, weight or complexity. This
paper presents a low cost single purpose sys-
tem to measure vehicle speed in the direction of

travel, more accurately than GPS alone. A single
longitudinally-mounted accelerometer is used to
augment GPS data in a loosely coupled GPS/RISS
system. The system is intended for use in testing
competition motorcycles, where weight is a factor.

II System overview

The system is shown in Fig. 1. The accelerom-
eter is sampled at a much higher rate than the
GPS so two models are used, one using data from
both sensors when available, and the other using
accelerometer data alone when a new GPS sam-
ple is unavailable. A separate Kalman filter is ap-
plied to each model and these are labelled “KF1
INS/GPS” and “KF INS” respectively. The INS
Kalman filter continues to provide vehicle speed
updates if the GPS signal is lost.

As shown in the accelerometer signal path in
Fig. 1, the accelerometer data may be multiplied
by a calibration constant, and compensation is ap-
plied for acceleration-induced vehicle pitch. The
dashed outlines enclose two error compensation
systems. Drift compensation cancels any offset on
the accelerometer measurement. GPS error com-
pensation detects any difference between GPS and



accelerometer data and adjusts the weighting of
sensor measurements in the Kalman filter. These
error correction mechanisms are treated in more
detail in Section VI.

III Measurement characteristics

GPS and accelerometer data are measured. Ac-
celerometer sample rates from 100 to 800 samples
per second were tested and the sample rate cho-
sen was 400 samples per second. A GPS receiver
with an update rate of 12.5 per second was used.
By combining GPS and accelerometer data, the
strengths of both sensors are exploited; the good
low frequency and steady state accuracy of the
GPS and the good high frequency response of the
accelerometer.

a) Accelerometer data

Accelerometer data, when integrated, provides
high frequency information about vehicle speed
but there are some problems. Due to engine and
road vibration, the signal is noisy. Any offset on
the accelerometer output creates drift when inte-
grated.

b) GPS data

GPS data does not give a good instantaneous mea-
surement of vehicle speed. The sample rate is low
and it lags the actual vehicle speed. The GPS
signal is sometimes lost when blocked by terrain.
However, the low frequency accuracy is good.

A measurement is available of the number of
satellites visible to the GPS receiver. A threshold
is applied, below which the the GPS speed signal
is considered invalid and accelerometer data alone
is used. For simplicity, this measurement is not
shown in Fig. 1, but it can be seen in some data
plots, for example Fig. 5.

IV Measurement model

The continuous time system, input and measure-
ment matrices are A, B and C respectively. The
discrete time state transition matrix, input and
measurement matrices are F, G and H respectively.

a) The accelerometer model

The accelerometer is modelled as an integrator as
shown in equation (1), where x1 and x2 are vehicle
speed and acceleration respectively and T is the
sample period.
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b) The GPS model

The GPS model is shown in equation (2), where
x3 and x4 are the vehicle speed and acceleration

respectively as measured by the GPS.
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The input is vehicle speed, x1. A continuous time
GPS model was found from recorded data using
Matlab’s System Identification Toolbox. The con-
tinuous time system matrices were found to be:

A =

[
0 1

−1427.2 −114.2

]
(3)

and

B =

[
0

1427.2

]
(4)

The discrete time matrices F and G are then cal-
culated for the appropriate sample rate.

c) The combined accelerometer and GPS model

Combining the two models described by equations
(1) and (2) gives:

Xk+1 = FXk (5)

where

X =
[
x1 x2 x3 x4

]T
(6)

and

F =




1 T 0 0
0 1 0 0
G1 0 F11 F12

G2 0 F21 F22


 (7)

F is the state transition matrix for the combined
model.

yk = HXk (8)

where

H =

[
0 1 0 0
0 0 1 0

]
(9)

States x2 (actual acceleration) and x3 (GPS speed)
are being measured.

As explained in Section II, a separate model is
used when only accelerometer data is available. It
is derived from the combined model above, by re-
defining the measurement matrix H.

H =
[
0 1 0 0

]
(10)

The state vector X and transition matrix F are
common to both models. The essential difference
between the models is in what is being measured.
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Fig. 1: System diagram

V Signal estimation

A separate Kalman filter operates on each of the
two models. The noise model parameters were
found empirically using recorded data and Kalman
filter gains for both were calculated off-line. The
state vector estimate X̂ is calculated by one or
other Kalman filter, depending on whether or not
a GPS sample is available.

a) INS/GPS covariance matrix specification

The process noise covariance matrix is:

P =




5 0 0 0
0 4 0 0
0 0 1 0
0 0 0 1


 (11)

and the measurement noise covariance matrix is:

R =

[
3.5 0
0 R22

]
(12)

where

R22 = 72E + 40 (13)

E is the GPS speed error. As the error varies from
0 to 5, R22 varies from 40 to 400. Kalman filter
gains were calculated off-line for values of R22 in
this range and the matrix elements were parame-
terised as functions of R22. When the system is
running, R22 is calculated from the GPS speed er-
ror and is then used to calculate the Kalman filter
gain.

b) INS covariance matrix specification

The process noise covariance matrix is the same as
for the INS/GPS Kalman filter, but the measure-
ment noise R = 0.4. R is a scalar because the only
measurement is the accelerometer. It has a lower
value than in the INS/GPS Kalman filter because
it is the only measurement and is being weighted
more heavily relative to the process noise.

VI Error correction

a) Vehicle pitch

Fig. 2: Pitch angle vs. acceleration and polynomial fit.

The accelerometer is nominally aligned with the
longitudinal axis of the vehicle, which is assumed



to be the direction of travel, and any deviation of
the accelerometer from this direction introduces an
error [5]. The attitude of the accelerometer varies
due to acceleration-induced pitch. This effect is
negligible on cars but is more pronounced on mo-
torcycles. Fig. 2 is a plot of motorcycle pitch
angle versus acceleration, and a polynomial which
was fitted to the data.

pitch = −0.0183a2 + 0.2822a+ 0.0207 (14)

where a is acceleration. For motorcycles, three
methods of handling pitch were considered; ig-
noring pitch altogether, calculating the pitch an-
gle accurately using suspension travel measure-
ments, and using the polynomial to calculate the
approximate pitch angle from measured accelera-
tion. Compared to calculating it from suspension
position, ignoring the pitch angle gave a maximum
error of approximately 0.28m/s. Calculating the
approximate pitch angle from acceleration using
the fitted polynomial gave a maximum error of ap-
proximately 0.07m/s. Measuring suspension posi-
tions requires extra hardware and complexity so it
was decided to use the approximate value given by
the curve fit.

b) Speed drift correction

Fig. 3: Acceleration offset and speed drift.

Any offset on the accelerometer measurement
causes drift when the signal is integrated to get
speed. A constant offset may exist due to bad sen-
sor calibration. If the vehicle is travelling up or
downhill, an offset exists due to gravity. Measured
acceleration, a is

a = A+ g sin θ (15)

where A is the vehicle acceleration, g is accelera-
tion due to gravity and θ is the angle of the slope.
While this offset is not constant, it changes slowly
with time.

The drift in vehicle speed is the difference be-
tween the vehicle speed output (x̂1) and inte-
grated acceleration. During the intervals between
GPS samples, vehicle speed is estimated using ac-
celerometer data alone. Therefore, if left uncom-
pensated, the effect of drift is most noticeable
when the GPS signal is lost for some time and the
system is completely dependent on accelerometer
data.

A separate Kalman filter is used to track the
speed drift and estimate the accelerometer offset
that gives rise to it. The model is again an inte-
grator:
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with the states x1 and x2 being speed and accel-
eration respectively.

H =
[
1 0

]
(17)

The output of interest is state x2, the accelerom-
eter offset. This offset is subtracted from the ac-
celerometer measurement.

Fig. 3 shows the signals of the system states.
The Kalman filter gain was tuned so as to give
an acceptable compromise between rise time and
steady state performance. The data was recorded
in a car, driven repeatedly around a short hilly
course. In Fig. 3, the acceleration offset is mul-
tiplied by 10, so in fact the accelerometer has an
offset of approximately −0.5m/s2.

c) GPS error

The GPS receiver provides an output of the num-
ber of visible satellites. When this number falls
below a set threshold, the GPS speed data is dis-
regarded. However, even with a high number of
visible satellites, GPS data may be incorrect. This
may occur when a satellite which forms part of the
GPS receivers current solution becomes invisible.
The receiver adopts another solution and the GPS
estimate of position may change abruptly [6]. This
in turn gives rise to velocity and acceleration er-
rors.

In the combined model described in Section IV,
states x1 and x3 represent speed as seen by the ac-
celerometer and GPS respectively. By taking the
difference between these states, a measure of dis-
agreement between the two sensors can be found.
This is done using the Kalman filter labelled “KF2
INS/GPS” in Fig. 1. Simply subtracting one state
from the other would result in differences which are
due to the GPS phase lag, so x1 is passed through
the GPS model to predict the expected value for
x3, given x1. The difference between this value
and x3 is the measure of GPS speed error. Given
that the accelerometer is a simpler sensor than the



GPS, it is assumed that the difference arises due to
GPS error. As explained in Section V, the differ-
ence is used to weight the Kalman filter gain away
from the GPS and towards the accelerometer.

Kalman filter “KF2 INS/GPS” has the
same process noise covariance matrix as “KF1
INS/GPS” (Eqn. 11) and a fixed measurement
noise covariance matrix

R =

[
3.5 0
0 40

]
(18)

so the calculation of GPS speed error is not af-
fected by changes to the weighting of the measure-
ments.

VII Results

a) Estimated speed compared to GPS speed

Fig. 4: Braking and acceleration.

Fig. 4 shows a number of characteristics of the
estimated vehicle speed x̂1. From time 0 to 3 sec-
onds, the car is accelerating; from 3 to 6 seconds,
it is braking and from 8 seconds on it is acceler-
ating again. From 0 to 3 seconds, the estimated
speed is close to the GPS speed. It can be seen
that the algorithm exploits the low frequency ac-
curacy of the GPS speed measurement. During the
braking period, the lag in the GPS signal can be
seen and the slow update rate of the GPS speed
is clear. When braking ends, the GPS speed data
overshoots. When the car begins moderate accel-
eration at 8 seconds, the lag in the GPS speed can
be seen again.

b) Loss of GPS signal

An important aspect of the system is its ability
to estimate vehicle speed when no GPS signal is
available or when not enough satellites are visi-
ble to provide the required accuracy. This may be
caused by terrain, and in the case of a two wheeled

Fig. 5: Loss of GPS signal in tunnel and accelerometer
signal.

vehicle, satellites may become invisible to the re-
ceiver due to lean angle [7]. Fig. 5 shows the car
travelling through a tunnel where the GPS signal
is lost for approximately five seconds. During this
time, the GPS speed and number of visible satel-
lites drop to zero. GPS data is used only when
seven or more satellites are visible to the receiver.
On entering the tunnel, the car accelerates at a
steady rate. Just before 12 seconds, the car stops
accelerating. This can be seen on both the esti-
mated speed and accelerometer data. When the
satellites become visible at the tunnel exit, the
GPS speed returns with a small overshoot. The
estimated speed matches the GPS speed and does
not need any correction.

c) GPS error

Fig. 6: Speed difference between accelerometer and GPS.

As described in Section VI, the disagreement
in measured speed between the accelerometer and
GPS is calculated. Fig. 6 shows this signal. The
value increases in places where the GPS signal
overshoots. In these places, the weighting in the



Kalman filter is shifted away from the GPS mea-
surement and towards the accelerometer.

VIII Conclusion

This paper has shown a basic integration method
between GPS and a Reduced Inertial Sensor Sys-
tem, which provides a more accurate estimate of
vehicle speed than GPS alone. It incorporates cor-
rection for the main sources of error and handles
short GPS outages such as when the GPS signal
is blocked by terrain. As a loosely coupled sys-
tem, it is easily accessible to vehicle or tyre man-
ufacturers, who require an accurate vehicle speed
measurement.
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