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Thermocouples are one of the most popular devices for temperature measurement due to their
robustness, ease of manufacture and installation, and low cost. However, when used in certain harsh
environments, for example, in combustion systems and engine exhausts, large wire diameters are
required, and consequently the measurement bandwidth is reduced. This article discusses a software
compensation technique to address the loss of high frequency fluctuations based on measurements
from two thermocouples. In particular, a difference equatibf) approach is proposed and
compared with existing methods both in simulation and on experimental test rig data with constant
flow velocity. It is found that the DE algorithm, combined with the use of generalized total least
squares for parameter identification, provides better performance in terms of time constant
estimation without any priori assumption on the time constant ratios of the thermocouples.

© 2005 American Institute of PhysicDOI: 10.1063/1.1847412

I. INTRODUCTION wg =k 1d™Z™M, (1)

Commercial and industrial applications frequently de-
mand accurate measurements of instantaneous temperature af

L . . . . ere k and m are approximately constant and arise from
certain fixed locations in engineering systems. The exact re?ﬁermodynamic considerations is the diameter of the ther-

sons for such a requirement are diverse, but generally Speahiocouple wire ana is the velocity of the gas. Large diam-
ing, the ab'“t_y to measure such tem_peratu!'esnu aIIowsg eter thermocouples are usually required to withstand harsh
closer look into the system behavior. This can potentially, . iconments such as engine combustion systems, thus re-

provide valuable insights for engineers, including more re—Sulting in a low bandwidth of typically less than 1 Hz. Un-

fmed_ performance anegS|s, advanced fault diagnosis a”ﬂ)rtunately, temperature variations, such as those in the ex-
possibly improved design. _ ~ haust of a reciprocating internal combustion engine, are
The thermocouple is a widely used device for measuring,q a1y 2-3 orders of magnitude faster which leads to raw
temperature due to its high permissible working limit andgjgnal measurements from the thermocouple that are both
good linear dependence with temperature. In addition, it%everely attenuated and lagged.
high robustness, low cost and ease of installation means ag gn example, among current techniques for such fluc-
there are many situations in which thermocouples are thﬁjating temperature measurement, up to 0.1-10 kHz in tur-
only suitable type of equipment for temperature measurepyjent flames and other combustion environments, a fine-
ment. wire resistance thermometer of 0.6u81 in diameter
While there are other types of thermometers, includingysually called “cold wire} is widely used because of its fast
liquid in glass, resistance, semiconductor and optical pyromresponse. Here the typical bandwidth is of the order of
eter(infrared, these are less suitable for certain engineering, kHz but the wire is mechanically very weak and is not
applications and are usually less durable and more experfurable enough to withstand the high temperature of com-
sive. However, the design of a thermocouple-based tempergustion. A “fine-wire” thermocouple of 20—56m in diam-
ture measurement system involves a compromise betweester, on the other hand, is generally superior to a cold wire in
robustness and speed of response; this poses major probledgability, but is a slow thermomefeof bandwidth in the
when measuring high frequency temperature fluctuationgange 1-10 Hz. In this case, appropriate compensation is
The bandwidthwg of a thermocouple is dependent on its required to produce accurate measurement of temperature
wire diameter according to the equation fluctuations. Before any such compensation can be done, an
acceptable model of the thermocouple is needed.
Jauthor to whom correspondence should be addressed; electronic mail: From the conservation of energy, the thermocouple heat
rkee@qub.ac.uk transfer equation can be written in words as
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[Convective heat transfbr Il. THERMOCOUPLE CHARACTERIZATION

=[thermal inertia Unfortunately, it is extremely difficult to estimate by cal-
culation the value of the time constant, even under the sim-
plifying assumption thak andm are constant. To determine
these requires information on the geometric configuration of

+[conductive and radiative heat trangfer

For well-designed thermocouples with long fine wires to . .
minimize axial heat conduction and radiative heat transfer, ifhe sensor an(_j the velocmyof_the surroun(_jmg_gas_. Further-
may be assumed that both the conductive and radiative hedtore: it the time constar_1t IS to b? estimateedsitu, the
transfers are negligible when compared to the convectivé’emc'tyv may not he easily determllned.
heat transfet-® Therefore a first-order lag model with time Expenmeptally, the_rmocouple time consta_mt; may be
constantr and unity gain can represent the frequency re_mea§ured using a cooling cufvé approach. Th's mvolvgs
sponse of a fine-wire thermocougi@® The simplified ther- Passing a current through a thermocouple wire placed in an
mocouple model can be written mathematically as air stream of a kpown speed. The a'pplled current hgats up the
thermocouple wires and when switched off, the air stream

cools the thermocouple. This is repeated at different stream
velocities to obtain a relationship between air velocity and
Using Eq.(2), the original gas temperatufig can be recon- time constfa_nt. While this mefch_od_ is accgptable f_or experi-

: mental verification purposes, it is impractical for high band-

structed if r, T, and T,, are available. In practice, this ap- . . ;
L . width thermocouples, as their cooling curves fall off too
proach is infeasible as the measured temperature may be :

noisy, and the derivative will be difficult to compute accu- quickly.
rately. In addition, since the bandwiddl is dependent upon
gas velocity as given in Ed1), the time constant will vary [ll. PROPOSED METHOD

Ty(t) = To(®) + 7T (1), 2

as follows: Hung et al. applied discrete-time system identification
o techniques to sensor characterizatidhis has the advan-
7= — = 2mwkd® My, (3) tage that it avoids the assumption of the time constant tatio
ws being time invariant and knowa priori.

Alternative more robust schemes for reconstruction of  The first-order difference equation model equivalent to
true gas temperature generally involve the use of two othe single thermocouple description in E8) is given by
more thermocou_ples with different time Constants._The_ tech- T.(K) =aTy (k= 1) +bT,(k— 1). 4)
nigues usually involve two separate stages: estimation of 9
time constants, followed by temperature reconstruction. ~ Assuming zero order holdOHs) and a sampling interval

Pfrientt in 1936 first proposed the use of double ther-7s the parameters of the discrete and continuous thermo-
mocouples for temperature measurements, and since théquple models are related by
many techniques have been developed. Time domain recon- I
struction(TDR)?>*is based on the continuous-time differen- ~ a= exr{— —S) (5
tial equation model, which requires numerical signal deriva- 7
tives for the time constant estimations. TDR algorithms mayand
only require am priori estimate of the time constant ratio b=1-a. (6)

between the two thermocouples. Frequency domain , ) ) ) i
reconstructio?!? on the other hand, uses the frequencyEquat'on (4) is an autoregressive with exogenous input

6 : . .
component for data processing, avoiding the need to calcARX) modef® and its parameters could be estimated using

late unreliable derivatives from noisy temperature data©@St Squares from an appropriate set of input-output samples

However, undesirable oscillatichmay be introduced in the @S Will be discussed further in the next section. Unfortu-
final reconstructions due to the nature of Fourier transform&@tely. in this applicatiofy(k-1) is unknown, henca and

and singularities due to noise. Attempts have also been made ¢@nnot be determined directly. However, a two-
to estimate time constants from the power spejf‘tra)wever thermocouple based identification method can be developed

even moderate amounts of noise can severely corrupt tH&SIN9 the ARX model as follows:

spectra. Tra(K) =y Tra(k— 1) + (1 —ay) Ty(k - 1),
In this article, the temperature measurements are limited
to those recorded in constant velocity flow environments.  Tmp(K) =@, Tp(k— 1) + (1 —ay) Tg(k - 1). (7)

The time constant is then assumed constant or approximately Ty difference equation methods have been developed:

constant during the course of data recording. A software, three-parameter and a two-parameter method, denoted the
compensation technique based on the measurements fro&r&mma and the beta methods, respectively.

two thermocouples is discussed. In particular, a difference

equation based algorithm is proposed which uses generalized

total least square§GTLS) for parameter identification. It s A Gamma least-squares approach

shown that this approach provides better performance in  The temperatur@y(k—1) can be eliminated from E¢q7)
terms of time constant estimation without aaypriori as-  to yield the following relationship between the thermocouple
sumption on the thermocouple time constants. outputs:
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3 ased parameter estimates since the input data are noisy. Other
T (k) N| Y2 tVsZ PT...z(k) models, which take account of colored noise on the output,
1_712-1 such as auto-regressive with moving average exogenous in-
put (ARMAX ) and output errofOE) were showh’ to indeed

FIG. 1. Equivalent ARX model for two-thermocouple parameter identifica- 9/V€ S|gn|f|cant reductions in bias. However, these all also

tion. assume a noise-free input in Fig. 1.
1-a B. Gamma total least-squares approach
Tl = 5T polk= )+ S22, 49 | least-squares approach
1-ay) To further improve difference equation model based sen-
a,(1-a,) sor characterizations, both input and output noise must be
-L- 2y (k=1). (8) dealt with simultaneously. Total least squaf€&S), a least
(1-ay m

squares formulation which takes account of noise present on
Note that Eq(8) is nonlinear in the unknown parameters. By both input and output signals, was investigated by Hahg
minimizing the mean-square prediction error ovér  al.'”in this context. The TLS solution, which is easily com-

samples, defined as puted using singular value decomposit((ﬁi'\/D),18 produces
N unbiased estimates, provided the noise variances on both in-

J(ay,ay) = 12 (Trpo(K) _-]-mz(k))z’ (9) put and output signals in Fig. 1 are the safh&his is usu-
Nic1 ally the case in a well-designed thermocouple measurement

A . . system, assuming only a background noise source.
whereT,(k) is the pred|ct|op gqurated by E®), p'aram- . Unfortunately, while TLS estimates are unbiased, they

etersa; anda, can now be identified. However, since this g 15 have a larger variance than LS estimates, with the
would require the use of nonlinear optimization, a better apqg it that in some situations the performance can in fact be
proach is to convert Eq8) into a three-parameter represen-qse than that of LS. Also, TLS has been found to be less
tation by defining robust than LS because it is more sensitive to assumptions

1-a, -a, about the noisé? Further, Eq.(10) provides an over-
Nn=d Y= 70 andys = - o (100 determined three-parameter relationship to the parameters
i ! ) ! anda, so that multiple sets of parameter solutions are pos-
Equation(8) can then be written as sible. To determiné; and 7, it is therefore necessary either

Tro(K) = Y1 Trp(k= 1) + 1Ty (K) + v3Tp(k—= 1), (11) to assume that only one set of the parameter estimates is

By choosingT (K) as the output variable arfti(K) as correct or perform a nonlinear optimization.

the input variable, the ARX structure illustrated in Fig. 1 is

obtained. Conventional linear identification such as leasf- Beta least-squares approach

sqguares can now be used to determine the estiniates,, Defining

and 3, and hence the thermocouple parameters via( Hi).
This difference equation approach relies on identification B =D5/by, (12

of an ARX sensor model in which both the input and outputEq. (8) is now reorganized to one containing only the two

signals are subject to noisassumed to be zero-mean Gauss-parametersb; and g8 in the output T,,(i) for i=kk

ian and whit¢. Conventional least squares will produce bi- -1, ...,2 as shown in Eq13):

Tro(K) = (1 =byB) Trp(k = 1) + BTy (K) = B(1 = by) Ty (k= 1),

Tmo(K=1) = (1 =018 Trp(k =i = 1) + BTy (k=) = B(1 =by) Ty (k=i = 1), (13

Tim2(2) = (1 =byB) Trp(1) + BTira(2) = B(L =by) Ty (D).
Equation(13) can be rewritten in vector-matrix form as
Y =X, (14)
where
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M_Q estimation. However, simulation studies to be presented in
PO 5 Sec. IV A reveal that the beta total least-squares estimates
[ v Tm(®) were still biased, even when the measurement noise on each
T, thermocouple was independent and of equal variance. A de-
1.0 & tailed analysi® shows that due to the wa)} and Y are
I v Tua(K) constructed in3-TLS, the resulting noise covariance matrix
ez(t+) C no longer meets the requirements for unbiased parameter

estimations, i.e., it can no longer be expressedCasl,
FIG. 2. Block diagram representation of the simulated two-thermocouplevherev is a scalar and is the identity matrix.

measurement system. Generalized total least squaré&TLS), on the other
hand, which employ generalized singular value decomposi-
Y =[Too(K) = Trp(k = 1)]1; tion (GSVD), can produce unbiased parameter estimates un-
der these conditions providélis known. The idea here is to
X =[Tm(K) = Tra(k=2) Tra(k=12) = Trp(k = D) ; transform the augmented SVD mat@xo the GSVD matrix
Sg using a weighting matrixV so that the resulting trans-
0=[06: 6,]" 2B byal"; (15  formed noise covariance matri®,=[W 1]TC[W ] meets
) ] ] ] the unbiasedness requirement. This is achieved by defining
T k=1) =[Tmgk=1) Tk =i = 1) Tgk—i-2) W as
* Trpk=i=N+1)]". Co=WW, (18)

The least-squares estimate é#then follows directly as where C, is proportional to the noise covariance matéix

0=[0, 0,]"=(X™X)2XTY . (16)  (i.e.,C=uCy, u an arbitrary scalar The required weighting
matrix W is given by the Cholesky decomposition G,

The parameters in Eq13) are then given by Although in most cases the noise variances from the two-

B: ;91 thermocouple signals are unknown, it is still possible to ex-
pressC, as a matrix function o#, the ratio of those noise
andb, = 8,0, 17 variances? as follows:
There are various advantages in this so-called beta least- 2¢ -¢ O
squares method. First, it involves estimating two parameters. Cy(¢)=|-¢ ¢+1 1|, ¢>0. (19
This means that there are no over-determined ARX param- 0o 1 2

eters. The thermocouple time constantend T, can now be

obtained directly, using Eq5) and Eq.(6). Second, the al- It is safe to assumeé to be unity in practice since the noise
gorithm is believed to be more resilient to background meavariances of both thermocouple outputs are usually equal.
surement noise and numerical errors than those used in Seddius the GSVD is given by

[1l A'and Il B. One reason for this is that the use@fwhich Se=[X;Y]=UgZG™t

is almost constan{proof in the Appendix enables more ’ e=s=

stable @ optimization. In contrasta; anda, vary in a larger W =V3,Gt (20)
range.

DEED AN D
D. Beta generalized total least-squares approach whereUg is (N-1x3), Vg is (3% 3), G is (3X 3) and are

The beta approach described in the last section can bal orthogonal matrices while&g, % and 3, are all (3
extended so that total least squares can be used for paramet¢B) diagonal matrices. In particula¥s contains the gener-

Simulated sinusoldal temperature signais Simulated periodic ramp temperature signals

FIG. 3. (Color online Simulated(a)
sinusoidal andb) periodic ramp gas
temperatures and the corresponding
thermocouple output§time constants
are 0.0238 and 0.1168 s, respectiyely

@ ®)
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Ervor tau1 estimates from sin input ve. K " Error of taut estimates from ramp input ve. K
0 50
) 40
2w 2w -
s 5 FIG. 4. Mean and standard deviation
& 85 of percentage errors o€, against
E § noise relative to signaK from (a)

3
3

sinusoidal and(b) ramp signals, re-
spectively.

o
o

Y
o
o
A
©
©

alized singular values and the corresponding generalized sin- The gas temperatufk, can be estimated directly by sub-
gular vectors are contained in the matr&=[g,; g, gs]. stituting the difference equation parameters into the corre-
Therefore the GTLS solution is given as sponding difference equations.

- 1
[0;-1]=- g_  Ga, (21) IV. SIMULATION RESULTS

3.3 Two simulation tests were conducted to evaluate the per-
formance of the algorithms under ideal conditions. The
wheregs is the vector associated with the smallest generalnpjses added to the two thermocouple measurements were
ized singular value ands 5 is the last element of;. Again,  hoth (i) zero-mean, Gaussian sequences @ndwith equal
the difference equation parametgssand b; can be deter- variances. The first assumption is not always the case prac-

mined using Eq(17) as in Sec. Il C. tically. As discussed earlier, the second assumption is of par-
038 Distrbution of % err a2 vs % err a1 at K=2 Distribution of % err tau2 vs %err tau1 at K=2
I
03 —:
! .
0z - L
I I I I
- I I I
_ 02 o8 ) ) |
Lo -: §°'__I'__I'__l___:___:___:___I___I___I
? [ | | | | | | | | |
01 | L it el il it el il it i Rt |
I I I I
I 2 I I I
0.05 =l I I I
| 0 [
o — |- P @ T e L : 2
I
0.05 ! -4
“ 4 R!

FIG. 5. (Color online Distribution of
percentage errors @, vs 3, [Eq. (23)]
@ ®) and 3-_2 vs 7, from different algorit‘hms
at noise leveK =2 for (a) and(b) sinu-
soidal and for(c) and(d) ramp signals,
respectively. TDR-Kee distributions
were outside the range and are thus
omitted.

Distrbution of %err a2 vs %err a1 atK=2 - Distribution of % err tau2 vs %err taut at K=2
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from noise comupted signals at K=2 and trus time constants

90
20
7
5 5 FIG. 6. (Color online Sinusoidal
g g” temperature reconstructions from
8 50 noise corrupted thermocouple out-
g puts atk=2 and true time constant;
£% g“’ (b) is a close-up version ofa) be-

tween 0.1 and 0.2s. “Tgrl” and
“Tgr2” are the reconstructions from
thermocouple outputs 1 and 2, re-
spectively.

8

I

|
10 I 1 |
01 on 012 0.13 014 015 0.18 0.17 0.18 019 02
time ()

@ ©)

ticular importance to the stability and accuracy of TLS pa-cycles of these two inputs and the corresponding thermo-
rameter estimation. Simulations were based on the Matlab®ouple outputs for time constant values of 0.0238 and
Simulink model shown in Fig. 2. The thermocouples were0.1168 s. The outputs of the two thermocouples are signifi-
modeled as low-pass filters with unity gain and different timecantly attenuated and phase shifted as compared to the gas
constants. Noise was added after the gas temperature signaputs. The sinusoidal input and the time constant values
was filtered by each thermocouple. The noises added to botfjere chosen to resemble the experimental test rig conditions

thermocouple outputs were not correlated. (see Sec. Y Zero-mean Gaussian white noise sequences
were added to both thermocouple signals in each run. The

A. Variation of average time constant estimates with noise power was chosen to gitevalues in the range 0%-—

noise level 6%. For eaclK, the percentage estimation errers ande,,

The first test is the study of the resilience of the algo-from Eq.(23) in 100 runs were averaged and recorded, along
rithms to the level of measurement noike HereK is de-  with their corresponding standard deviations. Figure 4 shows

fined as the percentage rms noise, as given by the results for both temperature signals with a sampling in-
1000 \/WQ) terval of 0.0QZ s_for all th_e differ_ence_equation based time
K=—"="" =100/ —— (22)  constant estimation algorithms given in Sec. Ill. For com-
(P=P)ms var(P) parison, results are included for the time derivative algorithm

whereP andQ are generic signal and noise sources, respec?y Keeet al. (hereafter denoted TDR- K&e in which it is
tively. assumed that that the ratio of the two time constants is
For a given noise level, the performance of each algoknown a priori, and a sliding window with polynomial

rithm was assessed in terms of the percentage estimatigiinoothing is used to get improved derivative estimates.
errore,,,, defined as Within each window, the time constants are estimated from

- an analytical expression that was derived by minimizing the

10007, - 7) . .
=D (23) time-averaged difference between two reconstructed tem-
Tn peratures given by the continuous-time domain model of Eq.

Each simulation run lasted for 10 s. A sinusoidal signal(2). These time constants are then used to give two recon-

and a periodic ramp signal were each used as input gas teratructions from the measured data. These should be close,
peratures. For clarity, Figs.(® and 3b) show only three but not necessarily equal—the reconstructed temperature

s rom noise signais at K=2 and true time rom noise corrupied signals at K=2 and true time constants
I I I I
Tt | | —_ I:'(‘M)
B A1t — T
Tgr2 ! ! ! —Tm1
[P AU W Y SN DS S ) P 1Y
| Tmt ! T
~ I I I
o H—§F—- -_— = - - - — =l - - . .
g“ " ' [ : FIG. 7. (Color online Portions of
[ Vgl B N Y V48 _ postfiltered(a) sinusoidal andb) pe-
§ Y | | riod ramp temperature reconstruc-
H sp--- J. - -t i. N7 AN I tions from noise-corrupted thermo-
oYY ___ VY ___\Y couple outputs aK=2 and true time
| | | | | | constants. The filter bandwidths are
e i Y et e e e S (@) 20 and(b) 50 Hz, respectively.
I S T NS D B
[} 0.05 0.1 015 02 025 03
time (s)
@ (b)
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Heat Input Refi vs tructed ref temperatures
Wity »
&= ;
KicSaply 6
| =) o
[ & Needle Valve &
= Pes
=
2w
]
FIG. 8. (Color onling Schematic illustration of test rig. é“
2
40
may be taken as an average, or the reconstruction from the -
thermocouple with the smaller time constant.
' The pattern of blase§ a.nd variances can be easily seen in e 0% oa Y Y
Fig. 5, where sample distributions af and 7, are shown. time (s)

The centers and radii of the ellipses represent the means and .
standard deviations of the percentage estimation errors, r&l: 9 RecordedT e and reconstructed o reference thermocouple

. 7,6=0.0026 $ temperature signals. It is evident that due to the very small
spectively. Note that results from TDR-Kee are all out ofjme constant, attenuation . is negligible.
range. Note also that the normally distributed noise leads to
ARX parameter estimates that are normally distributed, bu{

that the time constant estimates are not normally distribute

because they are obtained from the nonlinear transformatio&vo_loaSS forward and backward filtering, implemented with

in Eq. (5). I . i
The simulation results show that all the difference equa—the Matlab® command filtfilt. Figure 7 shows filtered recon

. . structions of both the sinusoidal and periodic ramp tempera-
tion methods outperformed TDR-Kee. In particular, the TLS P b P

: imat | biased than their LS ttures. For the sinusoidal signal, the filtering returned very
parameter estimates were 1ess biased than their coun edﬁ)od reconstructions, while some fluctuation remained after
parts. They-LS andB-LS methods gave equal biases, while

! . ) postfiltering in the periodic ramp reconstruction. This is be-
B-TLS producec_j slightly less biased estimates for the fas’teéause the latter contains some high frequency components
thermocouple signals only. The performancesyefLS and

: . . .which are also removed during the noise reduction process.
B-GTLS, which both resulted in unbiased parameter esti- 9 b

. . Thus, postfiltering is a compromise between retaining high
mates at low noise levels, can be regarded as equivale

) - }’e uency temperature dynamics and noise removal.
Their means and standard deviations for the parameter esp{l— a 4 P y

mates were almost the same at all noise levels. It is noted s S FRO s G
that, the variances of TLS estimates are bigger than thog¥ RESULTS FROM TEST RIG DATA

from LS. To test the algorithms that compensate the responses
In addition, it seems that all algorithms were more ca-from the thermocouples, experiments were carried out to col-

pable of estimating larger time constant values with highefect measurements from thermocouples in an air stream with

accuracies. Both the biases and standard deviations, of a fluctuating temperature and a constant velocity.

were generally smaller than those fr

ring. In this article, a fifth order Butterworth filter was
sed. The introduction of phase lag can be avoided using

A. Test rig

B. Temperature reconstructions Forney and Fralickdescribe a constant flow temperature

There are many ways to reconstruct the gas temperaturaeasurement apparatus in which a rotating wheel configura-
after thermocouple sensor characterization. This includes thiion was used to deliver a constant velocity air stream. As the
time derivative method where gas temperature is estimatedheel rotated, holes passed the two gas tubes, thereby allow-
from the first-order thermocouple model in Eg). Unfortu-  ing a supply of hot and cold air to alternatively enter a tran-
nately, it also requires estimation of thermocouple signal desition tube before reaching the thermocouples. At the ther-
rivatives using, for example, polynomial fittihgnd could be  mocouples, the air flow over the thermocouples had a
an extra source of error if not properly performed. Alterna-periodic variation in temperature.
tively, the gas temperature can be directly evaluated from the The test rig used is illustrated in Fig. 8 and was similar
first-order difference equations along with the estimatedo that of Forney and FralickCold air was supplied to the
model parameters using E(). This eliminates the need for rig via a pressure regulator and a needle valve. Choked flow
derivative estimations. at the needle valve ensured that the mass flow rate was ap-

It is obvious that very good reconstructions will be proximately constant, and only small velocity variations
achieved when the signal is completely noise free and thaould arise downstream due to temperature variations. The
correct time constants are supplied. When noisy thermoflow was divided into two streams that were directed toward
couple outputs are used, the results are worse, as shown @nrotating eccentric disk; one stream was heated, while the
Fig. 6. Unwanted noise is amplified after reconstruction. Al-other remained at the supply temperature. As the disk ro-
though such amplification was less apparent for the fastetated, varying proportions of hot and cold air were supplied
thermocouple, it is still undesirable. The unwanted noise cato a collection tube, and directed at an array of fine thermo-
be reduced by postreconstruction filtering, or simpbstfil-  couples.
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TABLE I. Time constant estimations and reconstruction error level of test rig data.

TDR-Kee y-LS ¥-TLS B-LS B-TLS B-GTLS

7 (9 0.0192 0.0228 0.0229 0.0232 0.0233 0.0233
(9 0.0752 0.1076 0.1078 0.1098 0.1099 0.1099
a=7/7 0.2553 0.2119 0.2124 0.2113 0.2120 0.2120
er, without postfiltering(%) 18.52 14.42 14.43 14.47 14.52 14.52
e}g with postfiltering(%)? 19.42 15.20 15.18 15.20 15.23 15.23

*The postfilter bandwidth is 50 Hz.

B. Characterizations and reconstructions with a bandwidth of 100 Hz. If the signals were not filtered

In the experiments, the shaft rotated at approximateI)Prior to processing,' noise amplification would heavily cor-
600 rpm, to give a temperature that fluctuated at aboufuPt the reconstructions. . .
10 Hz. The air velocity at the thermocouples was approxi- Table | shows the time constants obtained from the five
mately 12 m/s during data capture and the sampling intervafifferent algorithms and their corresponding reconstruction
was 0.0002 s. Wire diameters of 0.001 and 0.002 inTfgr ~ €M levels. The reconstruction results, with and without
andT, ,, respectively, were usetNote that in the exhaust of p_ostfiltering, are also displayed. The table shows that the
an engine, such fine wires must be carefully mounted, andifference equation methods performed better than the TDR
may only survive for several minutes. This is usually suffi-ON€- However, the reconstruction error levels between the
cient for research purposgdo facilitate estimations using different difference equation methods are similar. This is be-

the TDR-Kee method, the time constant ratiodefined as ~ Cause the reconstruction quality is not so sensitive to biased
’ time constant estimation but is more affected by the noisy
r thermocouple measurements. The error level after postfilter-
a=—, 1<, (24)  ing is always slightly higher than with no filtering, suggest-
2 ing a compromise between reconstruction smoothness and
was estimated to be around 0.255 s using the ratio of instarfiocuracy- The reconstructions from f|Iter ‘N9 W'th. high band-
width contain a lot of unwanted fluctuations, while the ones

taneous derivatives at signal crossover po‘lrmindful of O i . . :

the memory requirements of SVD, only 2500 data pointSfrom filtering with a low bandW|_dth are smoo_th sinusoids l_out

were used to estimate the time constants in all cases. Due tenuated. Note that a postfilier with a higher bandwidth
| lows more temperature dynamics to be retained. Thus Figs.

the fact that the true thermocouple time constants are u d 7 illustrate th . de bet ol
known, there was no direct way to evaluate the performancg and 7rustrate the compromises made between tolerance
f noisy fluctuations and high frequency components.

of these algorithms on the real temperature data. HoweveP, ) 4

temperature reconstructions were carried out and compared Note that caution should be gxermsed on any c_onclu—
with a reference outpur,,.; from a very fine thermocouple sions drawn from these reconstruction error levels, gg is .
(0.0005 in. in diametgr The time constant for the reference _not in fact the true gas temperatur_e which is unkpown. st
thermocoupler, ., was estimated to be 0.0026 s by applying |t'can. be observed that generally difference equation methods
the B-GTLS algorithm toT,; andT,e;. Using this time con- give |m_proved reconstruction accuracy compared to the time
stant, the reference signal was reconstructed to give a mo'%erlvatlv_e pase_d approach. . . .
accurate indication of the true gas temperature. Figure 9 To d|st|ngu_|sh between the_d|fferent difference equatlon_
shows a comparison of the record&d; and reconstructed methods,_the time co_nstan_t est_|mates are plotted_ against vari-
T.wef reference signals, and it is evident that, due to the ver us pre-filter bandwidths in Fig. 10. Local maxima, found

small time constant, the attenuation of the sighgks from etween 400 and 500 Hz, can easily be located on the graph

the reference thermocouple was negligible. Thus the rewith the various algorithms. Those are the best time constant

corded temperaturd@, was used as a reference, and tc)values estimqted by diffe.rent algorithms from pre-filte_red
. . 2 temperature signals. This is because on the left-hand side of
compare _the quality of :che f|n_al reconstructiong, the re- the maxima, the time constants are attenuated due to a por-
construction error IevedeTg, defined as tion of the high frequency signals being removed. Erroneous
. estimates are found when the bandwidth cuts through the
e = 100[Tmref— T galims (25  fundamental frequenciabout 10 Hy, ill-conditioning all the
g [Tovethms difference equation algorithms. On the right hand side of the
peaks, noise gradually erodes the estimates, a trend consis-
was employed as a performance indicator. tent with Fig. 4. Thus, théest pre-filtering frequengyvhich
Difference equation approach reconstructions were pereorresponds to the first major local maxima away from fun-
formed usingT,y, andT,,, separately. This had the advantagedamental signal frequency on the plot, provides an alterna-
over time derivative based reconstruction in that it did nottive way to determine the quality of the time constant esti-
require polynomial smoothing. It was found necessary tamations. In Fig. 108-GTLS has the highest local maxima,
perform signal pre-conditioning before time constant estimawhich means it is the least affected by signal corruptions due
tion to achieve reasonable results. This involved pre-filteringo noise and model nonlinearity, etc. The reconstruction was
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most accurate usin@-GTLS time constant estimates at a tained in the outputs of thermocouples. The uspaitfilter-
pre-filter bandwidth of about 470 Hz. Figure 11 shows thising is found not to be the best method to eliminate the
reconstruction from the faster thermocouple. amplified noise in temperature reconstruction because such
filtering also removes high frequency components of the
thermocouple signals. Thus, an undesirable compromise has
to be made.

C. Discussion

Although the difference equation basgl algorithms
were shown to be better than all the other algorithms in term
of stability, it is arguable thaB-GTLS only provides mar- ACKNOWLEDGMENTS
ginal improvements over-TLS when noise variances are All authors wish to acknowledge the financial support of
equal, as in this application. However, in the case where théhe Virtual Engineering Centre, Queen’s University of Bel-
noise variance rati@ is not unity, 3-GTLS can easily ac- fast, http://www.vec.qub.ac.uk. All authors would also like to
commodate the situation with one parameter change, bubank P. White, S. Knox, B. Fleck, and M. Hauth for their
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consistency and unbiased estimations, plus the fact that
B-GTLS is a two-parameter estimator rather than three fopnPPENDIX: PROOF THAT BETA IS ALMOST
vy-TLS, it can be concluded that thgformulation is of better INVARIANT COMPARED TO a; AND a,

quallty._ A ) Recall the definition of3 from Eq. (12)
Estimated gas temperatuiig can be calculated either

from the differential or difference equation with estimated ~ 8="b2/b;. (A1)
time constants or model parameters. Compensated tempengsing Eq.(6), Eq. (A1) can be rewritten as
ture T, obtained in this way tends to amplify the noise con- C1-a, 1-exg-1Jm) 2
reconstructed temperatures from test rig signals after fiering at BWa50 Hz 1-a 1-exd-7/m)
D Now providedr is small comparing taq, i.e.,
3
5y, (A3)
60 n
5 then exg-7/7)~1-7/ 7 and Eq.(A2) can be approxi-
g% mated as
50
% 1- (1 - 5)
T T
%‘5 . 2/ _T1_ (A4)

B~ —F—2="2=q.
fa-2)

m

3

The invariant nature of the thermocouple time constant
ratio®® & makes also nearly invariant, provided the smaller
03 time constant is much bigger thag

0.1 0.2
time (s)

NOMENCLATURE
a,,b, = difference equation ARX parameters the
nth thermocouple

FIG. 11. (Color online Reconstruction from faster response thermocouple
using B-GTLS with pre-filtering bandwidth 470 Hz and postfiltering band-
width 50 Hz.
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C = noise covariance matrix of beta model wg = bandwidth of thermocoupléHz)
Y =X 0, whereC=puC, 36, %5, 2w = GSVD matrices
Co = normalized noise covariance matrix of f = time derivative of functiorf=df/dt
beta modely =X § _ _ | = kxk identity matrix
Cw = transformed noise of covariance matrix i = number of sample delay
of beta modely =X 6 n = nth thermocouple
d = thermOCOUp-le wire dlametém) ﬁ = estimated value of parametpr
G,Ug,Vg = GSVD matrices o
g« = kth generalized singular vector &f Abbreviations . .
g = generalized singular value & ARX = auto regressive model with exogenous
h = heat transfer coefficiertV/m?K) input(s) . _ _
J = cost function ARMAX = auto regressive model with moving aver-
k = sample number age exogenous inp(s)
K = percentage noise to signal level DE = difference equation N
¢ = thermocouple wire lengtfm) GSVD = generalized singular value decomposition
m = thermodynamic constant GTLS = generalized total least squares
N = total number of data sets LS = least squares
P,Q = generic signal source, generic noise OE = output error model
source rms = root mean square
S = augmented SVD matrix Ref = reference N
S = augmented GSVD matrix SVD = singular value decomposition
t = time (9) TLS = total least squares
T, = gas temperatur&C) ZOH = zero-order hold
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