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Difference equation approach to two-thermocouple sensor characterization
in constant velocity flow environments
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Thermocouples are one of the most popular devices for temperature measurement due to their
robustness, ease of manufacture and installation, and low cost. However, when used in certain harsh
environments, for example, in combustion systems and engine exhausts, large wire diameters are
required, and consequently the measurement bandwidth is reduced. This article discusses a software
compensation technique to address the loss of high frequency fluctuations based on measurements
from two thermocouples. In particular, a difference equationsDEd approach is proposed and
compared with existing methods both in simulation and on experimental test rig data with constant
flow velocity. It is found that the DE algorithm, combined with the use of generalized total least
squares for parameter identification, provides better performance in terms of time constant
estimation without anya priori assumption on the time constant ratios of the thermocouples.

© 2005 American Institute of Physics.fDOI: 10.1063/1.1847412g
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I. INTRODUCTION

Commercial and industrial applications frequently
mand accurate measurements of instantaneous tempera
certain fixed locations in engineering systems. The exac
sons for such a requirement are diverse, but generally s
ing, the ability to measure such temperaturesin situ allows a
closer look into the system behavior. This can potent
provide valuable insights for engineers, including more
fined performance analysis, advanced fault diagnosis
possibly improved design.

The thermocouple is a widely used device for measu
temperature due to its high permissible working limit
good linear dependence with temperature. In addition
high robustness, low cost and ease of installation m
there are many situations in which thermocouples are
only suitable type of equipment for temperature meas
ment.

While there are other types of thermometers, includ
liquid in glass, resistance, semiconductor and optical py
etersinfraredd, these are less suitable for certain enginee
applications and are usually less durable and more ex
sive. However, the design of a thermocouple-based tem
ture measurement system involves a compromise bet
robustness and speed of response; this poses major pro
when measuring high frequency temperature fluctuat
The bandwidthvB of a thermocouple is dependent on
wire diameter according to the equation
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vB = k−1dm−2vm, s1d

where k and m are approximately constant and arise fr
thermodynamic considerations,d is the diameter of the the
mocouple wire andv is the velocity of the gas. Large dia
eter thermocouples are usually required to withstand h
environments such as engine combustion systems, th
sulting in a low bandwidth of typically less than 1 Hz. U
fortunately, temperature variations, such as those in th
haust of a reciprocating internal combustion engine,
usually 2–3 orders of magnitude faster which leads to
signal measurements from the thermocouple that are
severely attenuated and lagged.

As an example, among current techniques for such
tuating temperature measurement, up to 0.1–10 kHz in
bulent flames and other combustion environments, a
wire resistance thermometer of 0.6–3mm in diamete
susually called “cold wire”d is widely used because of its fa
response.1 Here the typical bandwidth is of the order
1 kHz but the wire is mechanically very weak and is
durable enough to withstand the high temperature of c
bustion. A “fine-wire” thermocouple of 20–50mm in diam-
eter, on the other hand, is generally superior to a cold wi
durability, but is a slow thermometer2 of bandwidth in the
range 1–10 Hz. In this case, appropriate compensati
required to produce accurate measurement of tempe
fluctuations. Before any such compensation can be don
acceptable model of the thermocouple is needed.

From the conservation of energy, the thermocouplel:

transfer equation can be written in words as

© 2005 American Institute of Physics2-1
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fconvective heat transferg

= fthermal inertiag

+ fconductive and radiative heat transferg.

For well-designed thermocouples with long fine wires
minimize axial heat conduction and radiative heat transf
may be assumed that both the conductive and radiative
transfers are negligible when compared to the conve
heat transfer.3–6 Therefore a first-order lag model with tim
constantt and unity gain can represent the frequency
sponse of a fine-wire thermocouple.7–10 The simplified ther
mocouple model can be written mathematically as

Tgstd = Tmstd + tṪmstd. s2d

Using Eq.s2d, the original gas temperatureTg can be recon

structed ift, Tm and Ṫm are available. In practice, this a
proach is infeasible as the measured temperature ma
noisy, and the derivative will be difficult to compute ac
rately. In addition, since the bandwidthvB is dependent upo
gas velocity as given in Eq.s1d, the time constant will var
as follows:

t =
2p

vB
= 2pkd2−mv−m. s3d

Alternative more robust schemes for reconstructio
true gas temperature generally involve the use of tw
more thermocouples with different time constants. The t
niques usually involve two separate stages: estimatio
time constants, followed by temperature reconstruction.

Pfriem11 in 1936 first proposed the use of double th
mocouples for temperature measurements, and since
many techniques have been developed. Time domain r
structionsTDRd2–4 is based on the continuous-time differ
tial equation model, which requires numerical signal der
tives for the time constant estimations. TDR algorithms
only require ana priori estimate of the time constant ratioa
between the two thermocouples. Frequency dom
reconstruction,5,12 on the other hand, uses the freque
component for data processing, avoiding the need to c
late unreliable derivatives from noisy temperature d
However, undesirable oscillations4 may be introduced in th
final reconstructions due to the nature of Fourier transfo
and singularities due to noise. Attempts have also been
to estimate time constants from the power spectra,13 however
even moderate amounts of noise can severely corrup
spectra.

In this article, the temperature measurements are lim
to those recorded in constant velocity flow environme
The time constant is then assumed constant or approxim
constant during the course of data recording. A softw
compensation technique based on the measurements
two thermocouples is discussed. In particular, a differe
equation based algorithm is proposed which uses gener
total least squaressGTLSd for parameter identification. It
shown that this approach provides better performanc
terms of time constant estimation without anya priori as-

sumption on the thermocouple time constants.
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II. THERMOCOUPLE CHARACTERIZATION

Unfortunately, it is extremely difficult to estimate by c
culation the value of the time constant, even under the
plifying assumption thatk andm are constant. To determi
these requires information on the geometric configuratio
the sensor and the velocityv of the surrounding gas. Furthe
more, if the time constant is to be estimatedin situ, the
velocity v may not be easily determined.

Experimentally, thermocouple time constants may
measured using a cooling curve4,14 approach. This involve
passing a current through a thermocouple wire placed
air stream of a known speed. The applied current heats u
thermocouple wires and when switched off, the air str
cools the thermocouple. This is repeated at different st
velocities to obtain a relationship between air velocity
time constant. While this method is acceptable for exp
mental verification purposes, it is impractical for high ba
width thermocouples, as their cooling curves fall off
quickly.

III. PROPOSED METHOD

Hung et al. applied discrete-time system identificat
techniques to sensor characterization.15 This has the adva
tage that it avoids the assumption of the time constant raa
being time invariant and knowna priori.

The first-order difference equation model equivalen
the single thermocouple description in Eq.s2d is given by

Tmskd = aTmsk − 1d + bTgsk − 1d. s4d

Assuming zero order holdssZOHsd and a sampling interv
ts, the parameters of the discrete and continuous the
couple models are related by

a = expS−
ts

t
D s5d

and

b = 1 −a. s6d

Equation s4d is an autoregressive with exogenous in
sARXd model16 and its parameters could be estimated u
least squares from an appropriate set of input-output sam
as will be discussed further in the next section. Unfo
nately, in this applicationTgsk−1d is unknown, hencea and
b cannot be determined directly. However, a t
thermocouple based identification method can be deve
using the ARX model as follows:

Tm1skd = a1Tm1sk − 1d + s1 − a1dTgsk − 1d,

Tm2skd = a2Tm2sk − 1d + s1 − a2dTgsk − 1d. s7d

Two difference equation methods have been develo
a three-parameter and a two-parameter method, denot
gamma and the beta methods, respectively.

A. Gamma least-squares approach

The temperatureTgsk−1d can be eliminated from Eq.s7d
to yield the following relationship between the thermocou

outputs:

 license or copyright, see http://rsi.aip.org/rsi/copyright.jsp
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Tm2skd = a2Tm2sk − 1d +
s1 − a2d
s1 − a1d

Tm1skd

−
a1s1 − a2d
s1 − a1d

Tm1sk − 1d. s8d

Note that Eq.s8d is nonlinear in the unknown parameters.
minimizing the mean-square prediction error overN
samples, defined as

Jsa1,a2d =
1

N
o
k=1

N

„Tm2skd − T̂m2skd…2, s9d

whereT̂m2skd is the prediction generated by Eq.s8d, param-
etersa1 and a2 can now be identified. However, since t
would require the use of nonlinear optimization, a better
proach is to convert Eq.s8d into a three-parameter repres
tation by defining

g1 = a2, g2 =
1 − a2

1 − a1
andg3 = − a1

1 − a2

1 − a1
. s10d

Equations8d can then be written as

Tm2skd = g1Tm2sk − 1d + g2Tm1skd + g3Tm1sk − 1d. s11d

By choosingTm2skd as the output variable andTm1skd as
the input variable, the ARX structure illustrated in Fig. 1
obtained. Conventional linear identification such as l
squares can now be used to determine the estimatesĝ1, ĝ2,
andĝ3, and hence the thermocouple parameters via Eq.s10d.

This difference equation approach relies on identifica
of an ARX sensor model in which both the input and ou
signals are subject to noisesassumed to be zero-mean Gau
ian and whited. Conventional least squares will produce

FIG. 1. Equivalent ARX model for two-thermocouple parameter identi
tion.
where

Downloaded 17 Jan 2005 to 143.117.11.75. Redistribution subject to AIP
t

ased parameter estimates since the input data are noisy.
models, which take account of colored noise on the ou
such as auto-regressive with moving average exogeno
put sARMAX d and output errorsOEd were shown17 to indeed
give significant reductions in bias. However, these all
assume a noise-free input in Fig. 1.

B. Gamma total least-squares approach

To further improve difference equation model based
sor characterizations, both input and output noise mu
dealt with simultaneously. Total least squaressTLSd, a leas
squares formulation which takes account of noise prese
both input and output signals, was investigated by Hunet
al.17 in this context. The TLS solution, which is easily co
puted using singular value decompositionsSVDd,18 produce
unbiased estimates, provided the noise variances on bo
put and output signals in Fig. 1 are the same.18 This is usu
ally the case in a well-designed thermocouple measure
system, assuming only a background noise source.

Unfortunately, while TLS estimates are unbiased,
tend to have a larger variance than LS estimates, with
result that in some situations the performance can in fa
worse than that of LS. Also, TLS has been found to be
robust than LS because it is more sensitive to assump
about the noise.19 Further, Eq. s10d provides an ove
determined three-parameter relationship to the parameta1

and a2 so that multiple sets of parameter solutions are
sible. To determinet̂1 and t̂2, it is therefore necessary eith
to assume that only one set of the parameter estima
correct or perform a nonlinear optimization.

C. Beta least-squares approach

Defining

b = b2/b1, s12d

Eq. s8d is now reorganized to one containing only the
parametersb1 and b in the output Tm2sid for i =k,k
−1, . . . ,2 as shown in Eq.s13d:
Tm2skd = s1 − b1bdTm2sk − 1d + bTm1skd − bs1 − b1dTm1sk − 1d,

]

Tm2sk − id = s1 − b1bdTm2sk − i − 1d + bTm1sk − id − bs1 − b1dTm1sk − i − 1d, s13d

]

Tm2s2d = s1 − b1bdTm2s1d + bTm1s2d − bs1 − b1dTm1s1d.

Equations13d can be rewritten in vector-matrix form as

Y = Xu, s14d
 license or copyright, see http://rsi.aip.org/rsi/copyright.jsp
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Y = fTm2skd − Tm2sk − 1dg;

X = fTm1skd − Tm1sk − 1d Tm1sk − 1d − Tm2sk − 1dg;

u = fu1 u2gT, fb b1bgT; s15d

Tmpsk − id = fTmpsk − id Tmpsk − i − 1d Tmpsk − i − 2d

¯ Tmpsk − i − N + 1dgT.

The least-squares estimate ofu then follows directly as

û = fû1 û2gT = sXTXd−1XTY . s16d

The parameters in Eq.s13d are then given by

b̂ = û1

and b̂1 = û2/û1. s17d

There are various advantages in this so-called beta
squares method. First, it involves estimating two parame
This means that there are no over-determined ARX pa
eters. The thermocouple time constantst̂1 andt̂2 can now be
obtained directly, using Eq.s5d and Eq.s6d. Second, the a
gorithm is believed to be more resilient to background m
surement noise and numerical errors than those used in
III A and III B. One reason for this is that the use ofb, which
is almost constantsproof in the Appendixd, enables mor
stableu optimization. In contrast,a1 anda2 vary in a large
range.

D. Beta generalized total least-squares approach

The beta approach described in the last section ca
extended so that total least squares can be used for para

FIG. 2. Block diagram representation of the simulated two-thermoco
measurement system.
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estimation. However, simulation studies to be presente
Sec. IV A reveal that the beta total least-squares estim
were still biased, even when the measurement noise on
thermocouple was independent and of equal variance.
tailed analysis20 shows that due to the wayX and Y are
constructed inb-TLS, the resulting noise covariance ma
C no longer meets the requirements for unbiased para
estimations, i.e., it can no longer be expressed asC=yI ,
wherey is a scalar andI is the identity matrix.

Generalized total least squaressGTLSd, on the othe
hand, which employ generalized singular value decom
tion sGSVDd, can produce unbiased parameter estimate
der these conditions providedC is known. The idea here is
transform the augmented SVD matrixS to the GSVD matrix
SG using a weighting matrixW so that the resulting tran
formed noise covariance matrixCW=fW−1gTCfW−1g meets
the unbiasedness requirement. This is achieved by de
W as

C0 = WTW, s18d

whereC0 is proportional to the noise covariance matrixC
si.e., C=mC0, m an arbitrary scalard. The required weightin
matrix W is given by the Cholesky decomposition ofC0.
Although in most cases the noise variances from the
thermocouple signals are unknown, it is still possible to
pressC0 as a matrix function off, the ratio of those nois
variances,20 as follows:

C0sfd = 32f − f 0

− f f + 1 1

0 1 2
4, f . 0. s19d

It is safe to assumef to be unity in practice since the no
variances of both thermocouple outputs are usually e
Thus the GSVD is given by

SG = fX ;Yg = UGSSG
−1,

W = VGSWG−1, s20d

SG
2 = SS

TSSfSW
T SWg−1,

whereUG is sN−133d, VG is s333d, G is s333d and are
all orthogonal matrices whileSG, SS, and SW are all s3
33d diagonal matrices. In particular,SG contains the gene

FIG. 3. sColor onlined Simulatedsad
sinusoidal andsbd periodic ramp ga
temperatures and the correspond
thermocouple outputsstime constant
are 0.0238 and 0.1168 s, respectived.
 license or copyright, see http://rsi.aip.org/rsi/copyright.jsp
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alized singular values and the corresponding generalize
gular vectors are contained in the matrixG=fg1 g2 g3g.
Therefore the GTLS solution is given as

fû;− 1gT = −
1

g3,3
·g3, s21d

whereg3 is the vector associated with the smallest gen
ized singular value andg3,3 is the last element ofg3. Again,

the difference equation parametersb̂ and b̂1 can be deter
mined using Eq.s17d as in Sec. III C.
Downloaded 17 Jan 2005 to 143.117.11.75. Redistribution subject to AIP
- The gas temperatureTg can be estimated directly by su
stituting the difference equation parameters into the c
sponding difference equations.

IV. SIMULATION RESULTS

Two simulation tests were conducted to evaluate the
formance of the algorithms under ideal conditions.
noises added to the two thermocouple measurements
both sid zero-mean, Gaussian sequences andsii d with equa
variances. The first assumption is not always the case
tically. As discussed earlier, the second assumption is o

FIG. 4. Mean and standard deviat
of percentage errors ofet1 agains
noise relative to signalK from sad
sinusoidal andsbd ramp signals, re
spectively.

FIG. 5. sColor onlined Distribution of
percentage errors ofâ2 vs â1 fEq. s23dg
and t̂2 vs t̂1 from different algorithm
at noise levelK=2 for sad andsbd sinu-
soidal and forscd andsdd ramp signals
respectively. TDR-Kee distribution
were outside the range and are t
omitted.
 license or copyright, see http://rsi.aip.org/rsi/copyright.jsp
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ticular importance to the stability and accuracy of TLS
rameter estimation. Simulations were based on the Mat
Simulink model shown in Fig. 2. The thermocouples w
modeled as low-pass filters with unity gain and different t
constants. Noise was added after the gas temperature
was filtered by each thermocouple. The noises added to
thermocouple outputs were not correlated.

A. Variation of average time constant estimates with
noise level

The first test is the study of the resilience of the a
rithms to the level of measurement noiseK. Here K is de-
fined as the percentage rms noise, as given by

K =
100Qrms

sP − P̄drms

= 100ÎvarsQd
varsPd

, s22d

whereP andQ are generic signal and noise sources, res
tively.

For a given noise level, the performance of each a
rithm was assessed in terms of the percentage estim
error etn, defined as

etn =
100stn − t̂nd

tn
. s23d

Each simulation run lasted for 10 s. A sinusoidal sig
and a periodic ramp signal were each used as input gas
peratures. For clarity, Figs. 3sad and 3sbd show only three
Downloaded 17 Jan 2005 to 143.117.11.75. Redistribution subject to AIP
al
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n
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cycles of these two inputs and the corresponding the
couple outputs for time constant values of 0.0238
0.1168 s. The outputs of the two thermocouples are sig
cantly attenuated and phase shifted as compared to th
inputs. The sinusoidal input and the time constant va
were chosen to resemble the experimental test rig cond
ssee Sec. Vd. Zero-mean Gaussian white noise seque
were added to both thermocouple signals in each run.
noise power was chosen to giveK values in the range 0%
6%. For eachK, the percentage estimation errorset1 andet2

from Eq.s23d in 100 runs were averaged and recorded, a
with their corresponding standard deviations. Figure 4 sh
the results for both temperature signals with a samplin
terval of 0.002 s for all the difference equation based
constant estimation algorithms given in Sec. III. For c
parison, results are included for the time derivative algor
by Kee et al. shereafter denoted TDR-Kee4d, in which it is
assumed that that the ratio of the two time constan
known a priori, and a sliding window with polynomi
smoothing is used to get improved derivative estima
Within each window, the time constants are estimated
an analytical expression that was derived by minimizing
time-averaged difference between two reconstructed
peratures given by the continuous-time domain model o
s2d. These time constants are then used to give two re
structions from the measured data. These should be
but not necessarily equal—the reconstructed temper

FIG. 6. sColor onlined Sinusoida
temperature reconstructions fro
noise corrupted thermocouple o
puts atK=2 and true time constan
sbd is a close-up version ofsad be-
tween 0.1 and 0.2 s. “Tgr1” an
“Tgr2” are the reconstructions fro
thermocouple outputs 1 and 2,
spectively.

FIG. 7. sColor onlined Portions o
postfilteredsad sinusoidal andsbd pe-
riod ramp temperature reconstr
tions from noise-corrupted therm
couple outputs atK=2 and true tim
constants. The filter bandwidths a
sad 20 andsbd 50 Hz, respectively.
 license or copyright, see http://rsi.aip.org/rsi/copyright.jsp
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may be taken as an average, or the reconstruction from
thermocouple with the smaller time constant.

The pattern of biases and variances can be easily se
Fig. 5, where sample distributions ofâ1 and t̂1 are shown
The centers and radii of the ellipses represent the mean
standard deviations of the percentage estimation error
spectively. Note that results from TDR-Kee are all ou
range. Note also that the normally distributed noise lead
ARX parameter estimates that are normally distributed
that the time constant estimates are not normally distrib
because they are obtained from the nonlinear transform
in Eq. s5d.

The simulation results show that all the difference eq
tion methods outperformed TDR-Kee. In particular, the T
parameter estimates were less biased than their LS co
parts. Theg-LS andb-LS methods gave equal biases, wh
b-TLS produced slightly less biased estimates for the fa
thermocouple signals only. The performances ofg-TLS and
b-GTLS, which both resulted in unbiased parameter
mates at low noise levels, can be regarded as equiv
Their means and standard deviations for the parameter
mates were almost the same at all noise levels. It is n
that, the variances of TLS estimates are bigger than t
from LS.

In addition, it seems that all algorithms were more
pable of estimating larger time constant values with hig
accuracies. Both the biases and standard deviationst̂2

were generally smaller than those fort̂1.

B. Temperature reconstructions

There are many ways to reconstruct the gas temper
after thermocouple sensor characterization. This include
time derivative method where gas temperature is estim
from the first-order thermocouple model in Eq.s2d. Unfortu-
nately, it also requires estimation of thermocouple signa
rivatives using, for example, polynomial fitting4 and could be
an extra source of error if not properly performed. Alter
tively, the gas temperature can be directly evaluated from
first-order difference equations along with the estim
model parameters using Eq.s7d. This eliminates the need f
derivative estimations.

It is obvious that very good reconstructions will
achieved when the signal is completely noise free and
correct time constants are supplied. When noisy the
couple outputs are used, the results are worse, as sho
Fig. 6. Unwanted noise is amplified after reconstruction.
though such amplification was less apparent for the f
thermocouple, it is still undesirable. The unwanted noise

FIG. 8. sColor onlined Schematic illustration of test rig.
be reduced by postreconstruction filtering, or simplypostfil-
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e

in

d
-

t

n

r-

r

t.
i-
d
e

e
e
d

-

e

-
in

r

tering. In this article, a fifth order Butterworth filter w
used. The introduction of phase lag can be avoided u
two-pass forward and backward filtering, implemented
the Matlab® command filtfilt. Figure 7 shows filtered rec
structions of both the sinusoidal and periodic ramp temp
tures. For the sinusoidal signal, the filtering returned
good reconstructions, while some fluctuation remained
postfiltering in the periodic ramp reconstruction. This is
cause the latter contains some high frequency compo
which are also removed during the noise reduction pro
Thus, postfiltering is a compromise between retaining
frequency temperature dynamics and noise removal.

V. RESULTS FROM TEST RIG DATA

To test the algorithms that compensate the respo
from the thermocouples, experiments were carried out to
lect measurements from thermocouples in an air stream
a fluctuating temperature and a constant velocity.

A. Test rig

Forney and Fralick5 describe a constant flow temperat
measurement apparatus in which a rotating wheel confi
tion was used to deliver a constant velocity air stream. A
wheel rotated, holes passed the two gas tubes, thereby
ing a supply of hot and cold air to alternatively enter a t
sition tube before reaching the thermocouples. At the
mocouples, the air flow over the thermocouples ha
periodic variation in temperature.

The test rig used is illustrated in Fig. 8 and was sim
to that of Forney and Fralick.5 Cold air was supplied to th
rig via a pressure regulator and a needle valve. Choked
at the needle valve ensured that the mass flow rate wa
proximately constant, and only small velocity variati
would arise downstream due to temperature variations
flow was divided into two streams that were directed tow
a rotating eccentric disk; one stream was heated, whil
other remained at the supply temperature. As the dis
tated, varying proportions of hot and cold air were supp
to a collection tube, and directed at an array of fine the

FIG. 9. RecordedTmref and reconstructedT̂gref reference thermocoup
st̂ref=0.0026 sd temperature signals. It is evident that due to the very s
time constant, attenuation ofTmref is negligible.
couples.
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B. Characterizations and reconstructions

In the experiments, the shaft rotated at approxima
600 rpm, to give a temperature that fluctuated at a
10 Hz. The air velocity at the thermocouples was appr
mately 12 m/s during data capture and the sampling int
was 0.0002 s. Wire diameters of 0.001 and 0.002 in. forTm1

andTm2, respectively, were used.sNote that in the exhaust
an engine, such fine wires must be carefully mounted,
may only survive for several minutes. This is usually su
cient for research purposes.d To facilitate estimations usin
the TDR-Kee method, the time constant ratioa, defined as

a =
t1

t2
, t1 , t2, s24d

was estimated to be around 0.255 s using the ratio of in
taneous derivatives at signal crossover points.4 Mindful of
the memory requirements of SVD, only 2500 data po
were used to estimate the time constants in all cases. D
the fact that the true thermocouple time constants are
known, there was no direct way to evaluate the perform
of these algorithms on the real temperature data. How
temperature reconstructions were carried out and com
with a reference outputTmref from a very fine thermocoup
s0.0005 in. in diameterd. The time constant for the referen
thermocoupletmref was estimated to be 0.0026 s by apply
theb-GTLS algorithm toTm1 andTmref. Using this time con
stant, the reference signal was reconstructed to give a
accurate indication of the true gas temperature. Figu
shows a comparison of the recordedTmref and reconstructe
Tmref reference signals, and it is evident that, due to the
small time constant, the attenuation of the signalTmref from
the reference thermocouple was negligible. Thus the
corded temperatureTmref was used as a reference, and

compare the quality of the final reconstructionsT̂g3, the re-
construction error leveleT̂g

, defined as

eT̂g
= 100

fTmref − T̂g3grms

fTmrefgrms
, s25d

was employed as a performance indicator.
Difference equation approach reconstructions were

formed usingTm1 andTm2 separately. This had the advanta
over time derivative based reconstruction in that it did
require polynomial smoothing. It was found necessar
perform signal pre-conditioning before time constant est

TABLE I. Time constant estimations and recons

TDR-Kee g

t̂1 ssd 0.0192 0
t̂2 ssd 0.0752 0
â= t̂1/ t̂2 0.2553 0
eT̂g

without postfilterings%d 18.52 1
eT̂g

with postfilterings%da 19.42 1

aThe postfilter bandwidth is 50 Hz.
tion to achieve reasonable results. This involved pre-filtering
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with a bandwidth of 100 Hz. If the signals were not filte
prior to processing, noise amplification would heavily c
rupt the reconstructions.

Table I shows the time constants obtained from the
different algorithms and their corresponding reconstruc
error levels. The reconstruction results, with and with
postfiltering, are also displayed. The table shows tha
difference equation methods performed better than the
one. However, the reconstruction error levels between
different difference equation methods are similar. This is
cause the reconstruction quality is not so sensitive to b
time constant estimation but is more affected by the n
thermocouple measurements. The error level after post
ing is always slightly higher than with no filtering, sugge
ing a compromise between reconstruction smoothness
accuracy. The reconstructions from filtering with high ba
width contain a lot of unwanted fluctuations, while the o
from filtering with a low bandwidth are smooth sinusoids
attenuated. Note that a postfilter with a higher bandw
allows more temperature dynamics to be retained. Thus
6 and 7 illustrate the compromises made between tole
of noisy fluctuations and high frequency components.

Note that caution should be exercised on any con
sions drawn from these reconstruction error levels, asTmref is
not in fact the true gas temperature which is unknown.
it can be observed that generally difference equation me
give improved reconstruction accuracy compared to the
derivative based approach.

To distinguish between the different difference equa
methods, the time constant estimates are plotted agains
ous pre-filter bandwidths in Fig. 10. Local maxima, fou
between 400 and 500 Hz, can easily be located on the
with the various algorithms. Those are the best time con
values estimated by different algorithms from pre-filte
temperature signals. This is because on the left-hand s
the maxima, the time constants are attenuated due to a
tion of the high frequency signals being removed. Erron
estimates are found when the bandwidth cuts through
fundamental frequencysabout 10 Hzd, ill-conditioning all the
difference equation algorithms. On the right hand side o
peaks, noise gradually erodes the estimates, a trend c
tent with Fig. 4. Thus, thebest pre-filtering frequency, which
corresponds to the first major local maxima away from
damental signal frequency on the plot, provides an alte
tive way to determine the quality of the time constant e
mations. In Fig. 10,b-GTLS has the highest local maxim
which means it is the least affected by signal corruptions

on error level of test rig data.

g-TLS b-LS b-TLS b-GTLS

0.0229 0.0232 0.0233 0.0233
0.1078 0.1098 0.1099 0.1099
0.2124 0.2113 0.2120 0.2120
14.43 14.47 14.52 14.52
15.18 15.20 15.23 15.23
tructi

-LS

.0228

.1076

.2119
4.42
5.20
to noise and model nonlinearity, etc. The reconstruction was
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most accurate usingb-GTLS time constant estimates a
pre-filter bandwidth of about 470 Hz. Figure 11 shows
reconstruction from the faster thermocouple.

C. Discussion

Although the difference equation basedb algorithms
were shown to be better than all the other algorithms in te
of stability, it is arguable thatb-GTLS only provides mar
ginal improvements overg-TLS when noise variances a
equal, as in this application. However, in the case wher
noise variance ratiof is not unity, b-GTLS can easily ac
commodate the situation with one parameter change
TLS cannot, and will generate biased estimates. Based o
results that bothb-GTLS and g-TLS provided equivalen
consistency and unbiased estimations, plus the fact
b-GTLS is a two-parameter estimator rather than three
g-TLS, it can be concluded that theb formulation is of bette
quality.

Estimated gas temperatureT̂g can be calculated eith
from the differential or difference equation with estima
time constants or model parameters. Compensated tem

ture T̂g obtained in this way tends to amplify the noise c

FIG. 11. sColor onlined Reconstruction from faster response thermoco
usingb-GTLS with pre-filtering bandwidth 470 Hz and postfiltering ba

width 50 Hz.
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tained in the outputs of thermocouples. The use ofpostfilter-
ing is found not to be the best method to eliminate
amplified noise in temperature reconstruction because
filtering also removes high frequency components of
thermocouple signals. Thus, an undesirable compromis
to be made.
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APPENDIX: PROOF THAT BETA IS ALMOST
INVARIANT COMPARED TO a1 AND a2

Recall the definition ofb from Eq. s12d

b = b2/b1. sA1d

Using Eq.s6d, Eq. sA1d can be rewritten as

b =
1 − a2

1 − a1
=

1 − exps− ts/t2d
1 − exps− ts/t1d

. sA2d

Now providedts is small comparing tot1, i.e.,

ts

t1
! 1, sA3d

then exps−ts/t1d<1−ts/t1 and Eq. sA2d can be approx
mated as

b <
1 −S1 −

ts

t2
D

1 −S1 −
ts

t1
D =

t1

t2
= a. sA4d

The invariant nature of the thermocouple time cons
ratio8,9 a makesb also nearly invariant, provided the sma
time constant is much bigger thants.

NOMENCLATURE
an,bn 5 difference equation ARX parameters

FIG. 10. sColor onlined Test rig data
time constant estimations vs p
filtering bandwidth.
nth thermocouple
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C 5 noise covariance matrix of beta mo
Y =Xu, whereC=mC0

C0 5 normalized noise covariance matrix
beta modelY =Xu

CW 5 transformed noise of covariance ma
of beta modelY =Xu

d 5 thermocouple wire diametersmd
G ,UG,VG 5 GSVD matrices

gk 5 kth generalized singular vector ofG
g 5 generalized singular value ofG
h 5 heat transfer coefficientsW/m2 Kd
J 5 cost function
k 5 sample number
K 5 percentage noise to signal level
, 5 thermocouple wire lengthsmd
m 5 thermodynamic constant
N 5 total number of data sets

P,Q 5 generic signal source, generic no
source

S 5 augmented SVD matrix
SG 5 augmented GSVD matrix

t 5 time ssd
Tg 5 gas temperatures°Cd

T̂gn 5 reconstructed temperature from thenth
thermocouples°Cd

T̂g3 5 reconstructed temperature from therm
couples 1 and 2s°Cd

Tmn 5 measured temperature from thenth ther-
mocouples°Cd

Tmnsk− id 5 N-sample vector of thenth thermocoupl
output s°Cd

v 5 gas velocitysm/sd
W 5 GSVD weighting matrix

X ,Y 5 collection of data matrices which for
beta modelY =Xu

z−1 5 one sample delay

Greek symbols and others
a 5 time constant ratio
b 5 ratio of b2 to b1

etn 5 percentage time constant estimation e
of the nth thermocouples%d

eT̂g
5 percentage reconstruction error levels%d

k 5 thermodynamic constant
f 5 ratio of noise variances of thermocoup

1 to 2
g 5 gamma model parameter
u 5 beta model parameters

tn 5 time constant of thenth thermocouplessd
ts 5 sample intervalssd
m 5 arbitrary scalar

y 5 factor of proportionality ofC

Downloaded 17 Jan 2005 to 143.117.11.75. Redistribution subject to AIP
vB 5 bandwidth of thermocouplesHzd
SG,SS,SW 5 GSVD matrices

ḟ 5 time derivative of functionf =df /dt
I 5 k3k identity matrix
i 5 number of sample delay
n 5 nth thermocouple
p̂ 5 estimated value of parameterp

Abbreviations
ARX 5 auto regressive model with exogen

inputssd
ARMAX 5 auto regressive model with moving av

age exogenous inputssd
DE 5 difference equation

GSVD 5 generalized singular value decomposi
GTLS 5 generalized total least squares

LS 5 least squares
OE 5 output error model
rms 5 root mean square
Ref 5 reference

SVD 5 singular value decomposition
TLS 5 total least squares
ZOH 5 zero-order hold
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