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Abstract—Wireless 802.11 links operate in unlicensed spectrum
and so must accommodate other unlicensed transmitters which
generate pulsed interference. We propose a new approach for
detecting the presence of pulsed interference affecting 802.11
links, and for estimating temporal statistics of this interfer-
ence. This approach builds on recent work on distinguishing
collision losses from noise losses in 802.11 links. When the
intervals between interference pulses are i.i.d., the approach
is not confined to estimating the mean and variance of these
intervals but can recover the complete probability distribution.
The approach is a transmitter-side technique that provides per-
link information and is compatible with standard hardware. We
demonstrate the effectiveness of the proposed approach using
extensive experimental measurements. In addition to applications
to monitoring, management and diagnostics, the fundamental
information provided by our approach can potentially be used
to adapt the frame durations used in a network so as to increase
capacity in the presence of pulsed interference.

I. INTRODUCTION

Wireless 802.11 links operate in unlicensed spectrum and

so must accommodate other unlicensed transmitters. These

transmitters include not only other 802.11 WLANs but also

Bluetooth devices, Zigbee devices, domestic appliances etc.

Importantly, the resulting interference is often pulsed in nature.

That is, the interference that consists of a sequence of “on”

periods (or pulses) during which the interference power is

high, interspersed by “off” periods where the interference

power is lower, illustrated schematically in Fig. 1. The former

might be thought of as corresponding to a packet transmission

by a hidden terminal and the latter as the idle times between

these transmissions. For this type of interferer, RSSI/SINR

measurements are of limited assistance since the SINR mea-

sured for one packet may bear little relation to the SINR

experienced by other packets. A further complicating factor

is that in 802.11 links frame loss due to collisions is a feature

of normal operation in 802.11 WLANs, and thus we need to

be careful to distinguish losses due to collisions and losses

due to channel impairment.

In this paper we propose a new approach for detecting the

presence of pulsed interference affecting 802.11 links and for

estimating temporal statistics of this interference under mild

assumptions. Our approach is a transmitter-side technique that

provides per-link information and is compatible with standard

hardware. This significantly extends recent work in [1], [2]

which establishes a MAC/PHY cross-layer technique capable

of classifying lost transmission opportunities into noise-related

losses, collision induced losses, hidden-node losses and of

distinguishing these losses from the unfairness caused by

exposed nodes and capture effects.
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Fig. 1. Illustrating a WLAN with interfering pulsed transmitter (e.g.
802.11 hidden terminal, Bluetooth device, microwave oven, baby monitor,
etc) inducing packet loss.

Detection and measurement of pulsed interference is par-

ticularly topical in view of the trend towards increasingly

dense wireless deployments. In addition to being of interest

in their own right for network monitoring, management and

diagnostics, our temporal statistic measurements can be used

to adapt network parameters so as to significantly increase

network capacity in the presence of pulsed interference. This is

illustrated in Fig. 2, which shows experimental measurements

of packet error rate (PER) versus modulation and coding

scheme (MCS) for an 802.11 network in the presence of a

pulsed microwave oven (MWO) interferer. Two curves are

shown, one for each fragment of a two packet TXOP burst

(below we discuss in more detail our interest in using packet

pairs). Observe that the PER is lowest at a PHY rate of 18-24

Mbps – importantly, the PER rises not only for higher PHY

rates, as is to be expected due to the lower resilience to noise at

higher rates, but also rises for lower PHY rates. The increase

in PER at lower PHY rates is due to the pulsed nature of the

interference – since the frame size in our experiment is fixed,

the time taken to transmit a frame increases as the PHY rate

is lowered, increasing the likelihood that a frame “collides”

with an interference burst. At a PHY rate of 1Mbps, the

frame duration is longer than the maximum interval between

interference pulses and, as a result, the PER is close to 100%.

We discuss this example in more detail in Section IV-B, but

it is clear the appropriate choice of PHY rate can lead to

significant throughput gains in such situations. We briefly note

that this type of MAC layer adaptation complements proposed

PHY layer interference avoidance techniques such as cognitive

radio [3].
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II. RELATED WORK

Previous work on estimating 802.11 channel conditions

can be classified into three categories. First, PHY link-level

approaches using SINR and bit-error rate (BER). Second, MAC

approaches relying on throughput and delay statistics, or frame

loss statistics derived from transmitted frames which are not

ACKed and/or from signaling messages. Finally cross-layer

MAC/PHY approaches that combine information at both MAC

and PHY layers.

Most work on PHY layer approaches is based on SINR

measurements, e.g. [4]–[6]. The basic idea is to a priori map

SINR measures into link quality estimates. However, it is well

known that the correlation between SINR and actual packet de-

livery rate can be weak due to time-varying channel conditions

[7], pulsed interference being one such example of a time-

varying channel. [8] considers loss diagnosis by examining

the error pattern within a physical-layer symbol, with the aim

of exposing statistical differences between collision and weak

signal based losses, but does not consider pulsed interference.

The cognitive radio literature considers PHY layer techniques

for optimising performance in the presence of interference via

joint spectral and temporal analysis [9]. There are some solu-

tions tailored to the ISM band [3], where customised hardware

has been devised with the aim of providing a synchronisation

signal based on periodic interference. However, cognitive radio

techniques are largely geared towards interference avoidance

and make use of non-standard hardware.

MAC approaches make up some of the most popular and

earliest rate control algorithms. Techniques such as ARF [10],

RBAR [11] and RRAA [12] attempt to use frame transmission

successes and failures as a means to indirectly measure chan-

nel conditions. However, these techniques cannot distinguish

between noise, collision, or hidden noise sources of error. In

[13], rate control via loss differentiation is suggested via a

modified ARF algorithm; it was shown to greatly improve

performance via the inclusion of a NAK signal, but this

requires a modification to the 802.11 MAC. Use of RTS/CTS

signals has been proposed for distinguishing collisions from

channel noise losses, e.g. [14], [15]. However, such approaches

can perform poorly in the presence of pulsed interference such

as hidden terminals [1].

With regard to combined MAC/PHY approaches, the present

paper builds upon the packet pair approach proposed in [1],

[2] for estimating the frame error rates due to collisions, noise

and hidden terminals. See also the closely related work in

[16]. [1], [2], [16] focus on time-invariant channels and do

not consider estimation of temporal statistics. [17] considers

a similar problem to [1], but uses channel busy/idle time

information.

Some work has been done on packet length adaptation as

a means of exploiting a time-varying channel. [18] modifies

the Gilbert-Elliott channel model to model bursty channels;

however, they do not consider the MAC layer. There are many

examples that use MAC frame error information [19]–[23],

but they lack the ability to distinguish between noise and

collisions. There has been some recent interesting work on a

cross-layer model for packet length adaptation in [24], which
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Fig. 2. Experimental measurements of packet error rate (PER) versus
modulation and coding scheme (MCS) for an 802.11 network operating on
channel 9 and physically located near an operational microwave oven (MWO).
See Section IV-B for further details of the experimental setup. Two curves
are shown, one for each fragment of a two packet TXOP burst. Observe that
the PER is minimised around 18-24 Mbps and rises at both lower and higher
MCS rates due to the pulsed nature of the interference.

relies on separation between noise errors and collision errors as

a means of tuning the packet length and optimising throughput.

III. PULSED INTERFERENCE TEMPORAL STATISTICS:

NON-PARAMETRIC ESTIMATION

A. Basic Idea

We start with the observation that packet transmissions over

a time-varying wireless link can be thought of as sampling the

channel conditions. Each sample covers an extended interval of

time, equal to the duration TD of the packet transmission, see

Fig. 3. On a channel with pulsed interference, the frequency

with which packet transmissions overlap with interference

pulses (and so the level of packet loss) depends on the duration

of the packet transmissions relative to the intervals between

pulses, and on the durations of the pulses. For example, it is

easy to see that when the packet duration TD is larger than

the maximum time between interference pulses, then every

packet transmission overlaps with at least one interference

pulse and we can expect to observe a high rate of packet

loss. Conversely, when the packet duration TD is much smaller

than the time between interference pulses, most of the packet

transmissions will not encounter an interference pulse and

we can expect a much lower rate of packet loss. Hence,

by varying the packet transmit duration and observing the

corresponding change in packet loss rate, we can hope to

infer information about the timing of the interference pulses.

We can make this intuitive insight more precise as follows.

Assume that the intervals between pulses are i.i.d. so that

they are characterised by a probability distribution function.

Then, we will shortly show that the information contained in

such packet loss information is sufficient to fully reconstruct

this distribution function. This, somewhat surprising, result

has important practical implications. Namely, that even when

the interference pulses are not directly observable (which we

expect to usually be the case), we are nevertheless still able to

reconstruct key temporal statistics of the interference process

from easily measured packet loss statistics.
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Fig. 3. Schematic illustrating “sampling” of a time-varying channel by data
packet transmissions. Since the data transmissions occupy an interval of time,
the sampling is of the channel conditions over that interval, rather than at a
single point in time. As the duration of the data transmissions increases, the
chance that a data transmission overlaps with an interference pulse also tends
to increase.

B. Mathematical Analysis

We now formalise these claims. Consider a sequence of

interference pulses indexed by k = 0, 1, 2, ... and let Tk denote

the start time of the kth interference pulse with T0 = 0, Sk >
0 denote the duration of the kth pulse and ∆k = Tk+1 −
(Tk + Sk) > 0 be the interval between the end of kth pulse

and the start of the (k + 1)th pulse. Defining state vector

Xt := (t, Tk(t), Sk(t),∆k(t)), t ∈ R
+, the sequence {Xt}

forms a stochastic process with Tk+1 = Tk + Sk +∆k, T0 =
0, k(t) = sup{k : Tk < t}. We assume that the random

variables ∆k, k = 1, 2, ... are i.i.d. with finite mean. Then

∆k
d
= ∆, where

d
= denotes equality in distribution, and let

Prob[∆ ≤ x] = F (x). Similarly, we assume that the pulse

durations {Sk} are i.i.d. with finite mean and Sk
d
= S.

Pick a sampling interval [t− TD, t]. This sampling interval

can be thought of as a packet transmission ending at time t.
Define indicator function UTD

(Xt) = 1 if interval [t− TD, t]
does not overlap with any interference pulse, and UTD

(Xt) =
0 otherwise. That is,

UTD
(Xt) =

{

1 t ∈ [Tk + Sk + TD, Tk+1) for some k
0 otherwise

.

(1)

Suppose we transmit a sequence of packets and let {tj} denote

the sequence of times when transmissions finish. Assume for

the moment that (i) a packet is lost whenever it overlaps with

an interference pulse and (ii) the intervals between packet

transmissions are exponentially randomly distributed and are

independent of the interference process. We will shortly relax

these assumptions. By assumption (i), UTD
(Xtj ) equals 1 if

the packet transmitted at time tj is received successfully and

0 otherwise. Hence, the empirical estimate of the packet loss

rate is

P̂t(TD) = 1−
1

N(t)

N(t)
∑

j=1

UTD
(Xtj ), (2)

where N(t) is the number of packets transmitted in interval

[0, t]. Provided the packet duration TD is sufficiently small

relative to the mean time between packets, by assumption

(ii) the transmit times {tj} effectively possess the Lack of

Anticipation property (the number of packet transmissions in

any interval [t, t + u], u ≥ 0, is independent of {Xs}, s ≤ t
[25]). When this property holds, by [25, Theorem 1] we almost

surely have

lim
t→∞

P̂t(TD) = lim
t→∞

Pt(TD) =: p(TD)

where

Pt(TD) = 1−
1

t

∫ t

0

UTD
(Xs)ds.

That is, the packet loss rate estimator (2) provides an asymp-

totically unbiased estimate of the mean value of UTD
.

Assumption (i) can be replaced by the weaker requirement

that the packet loss rate is higher when a packet transmission

overlaps with an interference pulse than when it does not. We

consider this in more detail later, in Section V. Assumption

(ii) can be relaxed to any sampling approach that satisfies the

Arrivals See Time Averages (ASTA) property, see for example

[26], [27].

It remains to show that statistic p(TD) contains useful infor-

mation about the interference process. We begin by observing

that Yt = sup{k : Tk ≤ t} is a renewal process – since the

∆k and Sk are i.i.d., the start times {Tk} of the interference

pulses are renewal times. The mean time between renewals is

E[S + ∆]. On each renewal interval t ∈ [Tk, Tk+1] we have

that UTD
(Xt) = 1 for duration [∆k−TD]+, where [x]+ equals

x when x ≥ 0 and 0 otherwise. The mean value of UTD
(Xt)

over a renewal interval is therefore
∫

∞

TD
(x − TD)dF (x) and,

by the strong law of large numbers,

p(TD) = 1−
1

E[S +∆]

∫

∞

TD

(x− TD)dF (x).

Since F (•) is a distribution function it is differentiable almost

everywhere, and thus so is p(•). At every point TD where p(•)
is differentiable we have

dp

dTD
(TD) =

1

E[S +∆]

∫

∞

TD

dF (x)

=
1

E[S +∆]
Prob[∆ > TD].

Provided p(•) is differentiable at TD = 0, then

E[S +∆] =
1

dp(0)/dTD

since Prob[∆ > 0] = 1, and so

Prob[∆ > TD] =
1

dp(0)/dTD

dp

dTD
(TD). (3)

Hence, knowledge of statistic p(TD) as a function of TD is

sufficient to allow us to calculate not only the mean time

between interference pulses E[S + ∆], but also the entire

distribution function F (x) = 1 − Prob[∆ > x] of the

interference pulse inter-arrival times.

Note that while we can formally differentiate p(TD), its

estimate p̂(TD) will be noisy and so differentiating p̂(TD) is
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(a) Periodic interference, period
T∆ = 100 ms
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(b) ccdf of ∆ for periodic interfer-
ence
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(c) Poisson interference, mean
inter-arrival time 1/λ∆ = 10 ms
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(d) ccdf of ∆ for Poisson interfer-
ence

Fig. 4. Theory and simulation for periodic and Poisson interference. Packet
transmissions are Poisson with mean rate λ = 0.01.

not advisable. The formal differentiation step is merely used

to gain insight into the statistical information contained within

p(TD) and there is no need to actually differentiate p̂(TD) in

order to infer characteristics of the interference process (e.g.

see the examples in the next section).

C. Two Simple Examples

We present two simple examples illustrating the use of

statistic p(TD) and for which explicit calculations are straight-

forward.

1) Periodic impulses: The first example is where the in-

terference consists of periodic impulses with period T∆ (so

Prob(∆ = T∆) = 1) and packets are always lost when they

overlap with an interference pulse. In this case,

p(TD) = 1−
1

E[S +∆]

∫

∞

TD

(x− TD)dF (x)

=

{

TD

T∆
TD ≤ T∆

1 TD > T∆
.

That is, p(TD) is a truncated line with slope T∆. Fig. 4(a)

plots this theory line, along with the measured packet loss

rate obtained from simulations. The interference period T∆

can be directly estimated from the slope of the measured line

of packet loss versus TD. The ccdf 1 − F (TD) shown in

Fig. 4(b) can be calculated using (3) or deduced based on

the interference period.

2) Poisson interference: The second simple example is

where the interference pulses are Poisson impulses, with rate

λ∆. In this case,

p(TD) = 1−
1

E[S +∆]

∫

∞

TD

(x− TD)dF (x)

= 1− λ∆

∫

∞

TD

(x− TD)λ∆e
−λ∆xdx

= 1− e−λ∆TD .

Fig. 4(b) shows the corresponding measured packet loss rate

obtained from simulations. Once again, the rate parameter λ∆

can be directly estimated from the measured curve of packet

loss versus TD (namely from the slope when p(TD) is plotted

on a log scale versus TD). The ccdf is also shown in Fig. 4(d),

and calculated as 1− F (TD) = e−λ∆TD .

D. Distinguishing Collision and Interference Losses in 802.11

The foregoing analysis focuses on packet loss due to inter-

ference and ignores other sources of packet loss. As already

noted, packet loss due to collisions is part of the proper

operation of the 802.11 MAC. In even quite small wireless

LANs, the loss rate due to collisions can be significant (e.g.

in a system with only two users, the collision probability

can approach 5% [28]) and so it is essential to distinguish

between packet loss due to collisions and packet loss due

to noise/inteference. To achieve this we borrow the packet-

pair bursting idea first proposed in [1]. We make use of the

following properties of the 802.11 MAC:

1) Time is slotted, with well-defined boundaries at which

frame transmissions by a station are permitted.

2) The standard data-ACK handshake means that a sender-

side analysis can reveal any frame loss.

3) Transmissions occurring before a DIFS are protected

from collisions. This is used, for example, to protect

ACK transmissions, which are transmitted after a SIFS

interval.

Using property 3, when two frames are sent in a burst with

a SIFS between them, the first frame is subject to both

collision and noise losses but the second frame is protected

from collisions and only suffers from noise/interference losses.

Such packet-pair bursts can be generated in a number of ways

(e.g. using the TXOP functionality in 802.11e/n, or the packet

fragmentation functionality available in all flavours of 802.11).

For 802.11 links, we therefore consider sampling the chan-

nel using packet pair bursts rather than using single packets.

For simplicity we will assume that the duration of both packets

is the same and equal to TD/2, although this can be relaxed.

In the remainder of this paper we will often refer to the first

packet in a burst as pkt1, and the second packet as pkt2. It

is important to note that the 802.11 MAC only sends pkt2
when an ACK is successfully received for pkt1. To retain

the Lack of Anticipation property, when no ACK is received

for the first packet we introduce a virtual transmission of the

second packet i.e. no actual packet is transmitted but the sender

still pauses for the time that it would have taken to send the

second packet. In practice this is straightforward to implement

by simply adding TD/2 to the interval between packet pairs

when an ACK for the first packet is not received. With this

procedure, when the intervals between the completion of one

packet pair and the start of the next packet pair form a

Poisson process, the packet loss statistics will satisfy the ASTA

property. Assuming that packet collisions occur independently

of interference pulses, the packet loss rate for the first packet

in the pair p̂1(TD/2) is then an estimator for

p1(TD/2) = 1−
1− pc

E[S +∆]

∫

∞

TD
2

(x−
TD

2
)dF (x),
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where pc is the packet collision probability. Note that it is

difficult to separate out the contribution pc due to collisions

from measurements of p1(TD/2), as already discussed. The

second packet in a pair is only transmitted if the first packet

was received successfully (per the standard 802.11 TXOP and

fragmentation semantics) and so the second packet measure-

ment data is censored. We therefore have that the packet loss

rate for the second packet in the pair p̂1(TD/2) is an estimator

for

p2(TD/2) = 1− 1
(1−p1(TD/2))E[S+∆]

∫

∞

TD
(x− TD)dF (x).

Combining the loss statistics p1(TD/2) and p2(TD/2) for

the first and second packets, we can recover our desired loss

statistic p(TD) from

p(TD) = 1− (1− p2 (TD/2)) (1− p1 (TD/2)) , (4)

and in this way separate out the contribution to packet loss

from interference from the contribution due to collisions.

E. Carrier Sense

The 802.11 MAC uses carrier sense to distinguish between

busy and idle slots on the wireless medium. If the energy on

the channel is sensed above the carrier-sense threshold, then

the PHY CCA.indicate(BUSY) signal will be issued by the

PHY to indicate to the MAC layer that the channel is busy.

Consequently, when an interference pulse is above the carrier-

sense threshold at the transmitter, packet transmissions will not

start. Instead, a packet waiting to be transmitted will be queued

until the channel is sensed idle (PHY CCA.indicate(IDLE)),

and then transmitted. This means that the packet transmission

times are no longer independent of the interference process and

the ASTA property is generally lost. In particular, the packet

loss rate is biased and tends to be underestimated since packet

transmissions that should have started during an interference

pulse (and so likely to have led to a packet loss) are deferred

until after the pulse finished (and so much less likely to be lost

since the time to the next interference pulse is then maximal).

When the duration of the interference pulses is short relative

to the time between pulses, then the magnitude of this bias can

be expected to be small. When the interference pulse duration

is larger, an approximate compensation for the bias can be

carried out as follows. Consider the indicator function

ŨTD
(Xt) =

{

1 t ∈ [Tk + TD, Tk+1) for some k
0 otherwise

.

This modifies (1) by lumping the time when the interference

pulse is active into the good window, roughly capturing the

fact that packet transmissions scheduled during a pulse will be

deferred until the pulse finishes. When the interference pulse

on and off times are i.i.d., this modified loss statistic is equal

with probability one to

p̃(TD) = 1−
1

E[S +∆]

∫

∞

0

dG(y)

∫

∞

TD

(y + x− TD)dF (x)

= 1−
1

E[S +∆]

(

E[S]Fc(TD)−

∫

∞

TD

(x− TD)dFc(x)

)

= p(TD)− ǫ, (5)
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(a) Packet loss rate versus packet duration TD with
and without carrier sense
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(b) Estimate F̂ (TD) of distribution function F (TD)

Fig. 5. Simulation example illustrating how the estimation bias introduced by
carrier sense can be largely removed using (6). Periodic interference, similar
to the microwave oven interference experimentally measured in Section IV-B
(period ∆ = 11 ms, pulse duration S = 9 ms).

where Fc(x) = 1 − F (x) is the ccdf, G(y) = Prob[S > y]

and ǫ = E[S]
E[S+∆]F (TD) is an approximation to the estimation

bias. Using integration by parts and that p̃(0) = 1− E[S]+E[∆]
E[S+∆] ,

(5) can be rewritten as

p̃(TD) = 1−
E[S]

E[S] + E[∆]
Fc(TD) +

1

E[S] + E[∆]

∫

∞

TD

Fc(x)dx.

(6)
Assuming that the measured packet loss rate approximates

p̃(TD), then given measurements of loss rate for a range of

TD values we can solve equation (6) to obtain an estimate for

F (TD) and E[S]. This can be carried out in a number of ways

– one simple approach is to write F (x) as a weighted sum of
∑K

i=1 wigi(TD) of orthogonal basis functions {gi(TD)}, and

select the weights {wi} and E[S] to minimise the square error

between the RHS of (6) and the measurement of the LHS. We

illustrate use of this approach in Fig. 5, which presents data

generated using a simulation with carrier sense and periodic

interference. The on-time of the interference pulses is S = 9
ms and the time between pulses is ∆ = 11 ms. Fig. 5(a) plots

the measured packet loss rate versus TD which is assumed

to approximate p̃(TD). Also shown is the loss rate p(TD)
when carrier sense is disabled. The bias ǫ between p̃(TD) and

p(TD) is clearly evident. Using this biased data for p̃(TD)
and rectangular basis functions {gi(TD)}, solving (6) yields

the estimate F̂ (TD) shown in Fig. 5(b). It can be seen that

F̂ (x) accurately estimates the true distribution function F (TD)
(also marked in Fig. 5(b)) i.e. that we have successfully
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TABLE I
SPECTRUM ANALYSER DETAILS AND SETUP FOR ZERO SPAN

MEASUREMENTS.

Model Rohde & Schwarz FSL6 with optional pre-amp

Video BW 10 MHz

Resolution BW 10 & 20 MHz

Sweep time 20 ms

Antenna LM Technologies LM254 2.4 GHz dipole

compensated for the carrier sense bias. In particular, the sharp

transition at 11 ms is accurately estimated.

IV. EXPERIMENTAL MEASUREMENTS

In this section, we present experimental measurements

demonstrating the power and practical utility of the proposed

non-parametric estimation approach. We collected data in

two separate measurement campaigns. The first consists of

measurements on an 802.11 link affected by interference from

a domestic microwave oven (MWO). Such interference is

common, and so of considerable practical importance. The

second shows measurements from an 802.11 lab testbed, with

two transmitting nodes and a number of hidden nodes acting

as the pulsed interference source.

A. Hardware and Software

Asus 700 laptops equipped with Atheros 802.11 a/b/g

chipsets (radio 14.2, MAC 8.0, PHY 10.2) were used as

client stations, running Debian Lenny 2.6.26 and using a

modified Linux Madwifi driver based on 10.5.6 HAL and

0.9.4 driver. A Fujitsu Lifebook P7010 equipped with a

Belkin Wireless G card using an Atheros 802.11 a/b/g chipset

(AR2417, MAC 15.0, PHY 7.0) was used as the access point,

running FreeBSD 8.0 with the RELEASE kernel and using the

standard FreeBSD ATH driver. The beacon period is set to the

maximum value of 1 s. We disabled the Atheros’ Ambient

Noise Immunity feature which has been reported to cause

unwanted side effects [29]. Transmission power of the laptops

is fixed and antenna diversity is disabled. In previous work

we have taken considerable care to confirm that with this

hardware/software setup the wireless stations accurately follow

the IEEE 802.11 standard and the packet pair measurement

approach is correctly implemented (see [1], [29], [30] for

further details).

A Rohde & Schwarz FSL-6 spectrum analyser is used to

verify that the test channels are unoccupied and also to capture

the time-domain traces (see Table I for details).

B. Microwave Oven Interference

1) Experimental Setup: The experimental setup consisted

of one client station, the AP and a 700 W microwave oven.

During the experiments, the MWO is operated at maximum

power to heat a 2 L bowl of water, and is located approxi-

mately 1 m away from the client station and AP; the exact

geometry of the setup is not important since the MWO is

close enough to the laptops to disrupt communications. The

antenna connected to the spectrum analyser is located such

that the energy from each RF source is of similar magnitude.
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(a) Measured packet loss rate versus packet duration
TD . Confidence intervals based on the Clopper-Pearson
method are displayed, but are small enough to be
partially obscured by the point markers.
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(b) Inter-arrival distribution of interference pulses

Fig. 6. Experimental measurements with microwave oven (MWO) inter-
ference. Data frames are transmitted at a PHY rate of 1 Mbps rate and the
duration TD is varied by adjusting the packet size. Both pkt1 and pkt2 are

equal length
TD
2

.

The MWO operates in the 2.4 GHz ISM band, with signif-

icant overlap (> 50%) with the WiFi 20 MHz channels 6 to

13; this was verified using the spectrum analyser. Our 802.11

experiments used channels 7 and 9 and took place in a room

that was cleared for co-channel interference before, during and

after each experiment.

The client station transmits packets to the AP with the MTU,

FRAG and packet size set to values that ensure that both pkt1
and pkt2 are of nearly identical duration (the deviation of

TD/2 is kept to below 1%). The packet duration is adjusted by

varying the packet size between 30 and 2110 bytes (yielding

TD from 1.4 ms to 18 ms). These packets are generated using

the standard ping command in a bash script. The interval

between each set of packet pairs is exponentially distributed

with rate λ = 30 packets per second, and the modulation and

coding rate is fixed at 1 Mbps.

2) Inferring Interference Statistics From Packet Loss Mea-

surements: Fig. 6(a) presents the measured packet loss rate

between the client station and the AP versus the packet

duration TD/2. Each point is averaged over more than 104 ob-

served packets. Using this packet loss data, Fig. 6(b) plots the

estimated distribution function F̂ (TD) for interference pulse

inter-arrival times. We use the approach described in Section

III-E to compensate for the bias introduced by carrier sense at

the client station. It can be seen that F̂ (TD) exhibits a sharp
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transition around 11 ms, along with some residual probability

mass between 11 and 15 ms. This indicates that the MWO

interference is estimated to be approximately periodic with

period ∆ = 11 ms. We confirm the accuracy of this inference

independently using direct spectrum analyser measurements of

the MWO interference in the next section, see Fig. 7.

Before proceeding however, it is worth comparing the

experimentally measured 802.11 loss data in Fig. 6(a) with

the simulation data in Fig. 4(a). This comparison highlights

the additional complexity introduced by carrier sense and

the censoring of second packet loss data. Nevertheless, our

approach is able to successfully disentangle these effects in a

principled way and thereby estimate F (TD).

3) Validation: Fig. 7(a) presents spectrum analyser data

showing two interference pulses generated by the MWO. A

packet pair transmission by the client station can also be

seen, lying between the interference bursts (this particular

packet pair transmission is successfully received by the AP,

verified by noting the presence of MAC ACKs at the end

of each packet). From this and other data, we find that the

MWO interference is approximately periodic, with period

T = 1/f = 20 ms i.e. a frequency of 50 Hz, as expected due

to the AC circuitry that is driving the MWO. The profile of the

interference bursts is, however, not uniform. Fig. 7(b) shows

a measured interference burst of where the interference power

is roughly constant over the duration (approximately 9 ms)

of the pulse. Fig. 7(c) shows an interference pulse where the

interference power dips during the middle of the pulse, so as to

effectively create two narrower pulses spaced approximately 4

ms apart. This variation in burst energy profile is attributed to

frequency instability of the MWO cavity magnetron, a known

effect in MWOs [31]. Our measurements indicate that the

MWO interference consists of pulses with mean interval 11

ms between pulses, with some deviation (Fig. 6(b)). These

direct measurements are therefore in good agreement with the

estimated distribution function, which was derived indirectly

using packet loss measurements.

C. 802.11 Network With Hidden Nodes

1) Experimental Setup: This test bed consists of a WLAN

formed from two client stations and an access point, plus three

additional stations configured as hidden nodes. These hidden

nodes (HNs) are created by modifying the Madwifi driver

such that the carrier sense is disabled (using the technique

as detailed in [32]) and setting the NAV to zero for all

packets – this effectively makes the HNs unresponsive to

any packets that they decode from the client, or energy that

may trigger a physical carrier sense. A script generates ping

traffic on the hidden nodes having exponentially distributed

intervals between packet transmissions, with a mean interval

of 50 ms. The ping packets sent are of duration 4.5 ms

(verified via the spectrum analyser). Since the transmissions

by each HN are Poisson with intensity λ = 20 packets/s,

the aggregate interference is also Poisson and with intensity

λ = 60 packets/s. The experiments used channel 13 of the

ISM band, and took place in a room that was cleared for co-

channel interference before, during and after the experiments.

(a) Packet pair transmitted between two MWO bursts.
The y-axis grid is in 2 ms increments. The packet pair
is encoded at the 1 MBps 802.11 rate, with both packets
having duration 4.36 ms.

(b) Second packet in a pair suffering a collision with
a MWO burst; after the MWO burst has finished and
carrier sense indicates the channel is idle, the packet is
retransmitted. The y-axis grid is in 2 ms increments.

(c) Packet pair and a MWO burst. The y-axis grid is
in 2 ms increments. The resolution bandwidth is set to
20 MHz, and thus captures about 99% of the WLAN
signal. The MWO burst has a dip in the middle, which
is attributed to frequency instability in the MWO cavity
magnetron.

Fig. 7. Spectrum analyser measurements of microwave oven (MWO)
interference.
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(a) Measured packet loss rate versus packet duration
TD . Confidence intervals based on the Clopper-Pearson
method are displayed, but are small enough to be
partially obscured by the point markers.
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(b) Inter-arrival distribution of interference pulses.

Fig. 8. Experimental measurements; primary network has two nodes
transmitting to AP, interference network has three hidden nodes.

2) Inferring Interference Statistics From Packet Loss Mea-

surements: Fig. 8(a) plots the measured packet loss rate in

the WLAN versus the packet duration. Note that this loss

rate includes a contribution due to collisions between the

two client stations in the WLAN and a contribution due to

interference from the hidden nodes. Nevertheless, using our

packet pair approach we are able to disentangle these two

sources of packet loss. Fig. 8(b) plots the resulting distribution

of interference pulse inter-arrival times estimated using this

packet loss data. The data plotted in Fig. 8(b) is the estimate of

1−F (TD), and is displayed using a logarithmic y-axis. Also

plotted in Fig. 8(b) is the theory line 1 − F (TD) = e−λTD

corresponding to Poisson distributed interference with rate

λ = 60 packets/s. It can be seen that the estimated data

is approximately linear on this log scale, as expected for

a Poisson distribution, and that the slope is close to the

expected value of λ = 60. The offset between the Poisson

theory line and the estimated line is explained by the presence

of a baseline packet loss rate of approximately 5% in our

experimental setup – this baseline loss rate is confirmed by

separate measurements (not shown here).

V. PULSED INTERFERENCE TEMPORAL STATISTICS:

PARAMETRIC ESTIMATION

Thus far we have considered estimating the interference

distribution function in a non-parametric manner. By making

stronger, structural assumptions about the interference process,

we can alternatively parameterise the distribution function

and our task then becomes one of estimating these model

parameters. A fairly direct trade-off in effort is involved

here, which is why it is important to consider both non-

parametric and parametric approaches. Namely, we have the

bias-variance trade-off whereby non-parametric approaches

make only weak assumptions about the interference process,

but require more measurement data, whereas parametric ap-

proaches make strong assumptions, but require less measure-

ment data for the same estimation accuracy (assuming that the

model structure is accurate).

In this section we present a parametric estimation approach

for one class of model. The model is related to the two-

state Gilbert-Elliot channel model [33], which is popular

for analysing communication channels with bursty losses,

extended to incorporate carrier sensing and the packet trans-

mission process. Although simple, this model is useful and we

demonstrate its effectiveness for estimating hidden terminal

interference. A number of extensions are possible, including

to a multi-state interference model [34], correlated losses [35],

fast fading [36] and so on, but we leave consideration of these

extensions to future work.

A. Parametric Packet Loss Model

1) Interference: We model pulsed interference as switching

randomly between two states, “good” (G) and “bad” (B), with

exponentially distributed dwell times in each state. Formally,

let S = {G,B} denote the set of interference states,

Q =

[

−λB λB

λG −λG

]

, (7)

and

Π =

[

0 1
1 0

]

. (8)

Let Y = {Yn, n = 0, 1, 2, ...} be a sequence of random

variables taking values in S and representing the evolving

state, with

Prob[Yn+1 = j|Yn = i] = Πij . (9)

With our the choice of Π, the Yn flip back and forth

between the G and B states so that Y is of the form

{..., G,B,G,B, ...}. Let {k} index the sub-sequence of B
states in Y . Let Sk denote the dwell time in the kth B
state and ∆k the dwell time in the following G state. The

dwell times Sk and ∆k are independent exponential random

variables having, respectively, mean 1/λB and 1/λG. The

sequence Tk+1 = Tk + Sk + ∆k is the sequence of jump

times at which the interference enters state B.

2) Packet Transmissions: The wireless station performing

measurements transmits a sequence of packets to a destination

station, with exponentially distributed pauses between trans-

missions. Similar to the foregoing interference model, we let

{Tx, Idle} be the two transmitter states, where Tx corre-

sponds to transmission of a packet. Let {Vm,m = 0, 1, 2, ...}
denote a sequence of random variables which flip back and

forth between the Tx and Idle states. The dwell time in the

Tx state is a constant TD, the dwell times in the Idle state are
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independent exponential random variables with mean 1/λD.

We index the sub-sequence of Tx states by packet numbers in

{n}, and let tn denote the time when transmission of packet

n starts.

3) Carrier Sense: The interference state at the packet

transmit time tn is Yk(n) where k(n) = sup{k : Tk ≤ tn}.

Let

pcs = Prob[tn ∈ [Tk(n), Tk(n) +∆k(n)]]

:= α
λG

λG + λB
,

where 0 ≤ α ≤ 1 and λG

λG+λB
is the probability than the

interference is in state B. In the following, we consider two

limiting situations. Firstly, where the carrier sense threshold

lies above the noise level in both interference states, in which

case the packet transmission times are decoupled from the

interference state and α = 1. Secondly, where the carrier sense

threshold lies above the noise level in interference state G but

below the noise level in state B, in which case α = 0.

4) Packet Loss: Packets are discarded when they fail a

checksum test at the receiver. Hence, we treat the channel

as an erasure channel. Let δn denote a random variable that

takes value 1 when packet n is erased and value 0 otherwise.

Let S̃n denote the time that the channel spends in state B
during the transmission of packet n. In general, we expect

that the probability Prob[δn = 1] that packet n is erased

depends on S̃n. Nevertheless, to streamline the presentation

we make the simplifying assumption that Prob[δn = 1] = pB
whenever S̃n > 0 and Prob[δn = 1] = pG otherwise, where

pB and pG are channel packet loss rate parameters in the B
and G states respectively. We also assume that packet erasures

occur independently, i.e. the random variables δn, δm are

independent for n 6= m.

5) Packet Error Rate Analysis: To determine the packet

error rate as a function of the packet transmit duration, we

need to analyse two coupled stochastic processes, namely the

channel and transmission processes. The joint process takes

state values in {G,B} × {Idle, Tx}. Since our interest is in

counting the frequency of packet losses, observe that we can

lump the (Idle,G) and (Idle, B) states together, since we

know that no packet loss can occur in these (Idle, •) states.

Also, when the system first enters state (Tx,B), then a packet

loss occurs and we do not need to keep count of the number of

subsequent transitions between (Tx,G) and (Tx,B). We can

therefore partition time into slots, with each slot being of three

possible types: Idle (corresponding to the lumped (Idle, •)
states), Loss (corresponding to lumping of states (Tx,G) and

(Tx,B) after the first transition from (Tx,G) to (Tx,B))
and Transmitting (corresponding to a dwell time in state

(Tx,G)). The transitions between these slots are as shown in

Fig. 9 and Table II.

The transition matrix P of this slotted time Markov chain

is:

P =





0 1− pcs pcs
1− pi(TD) 0 pi(TD)

1 0 0



 , (10)

where 1 − pi(TD) = exp(−λBTD). The stationary state

distribution satisfies π = πP, where π1 = Prob[Idle],

Idle

Transmitting

Loss

1− pcs

1− pi
pcs

pi

1

Fig. 9. Slotted time Markov chain.

π2 = Prob[Transmitting], and π3 = Prob[Loss]. Solving

yields,

πT =
1

2 + pi(TD) (1− pcs)





1
1− pcs

(1− pcs) pi(TD) + pcs



 .

The packet error probability for the first packet in a pair is

p1(TD) =
(1− pi(TD))π2pG + pi(TD)π2pB + pcsπ1pB

(1− pi(TD))π2 + pi(TD)π2 + pcsπ1

= (1− pi(TD))(1− pcs)pG + (pi(TD) (1− pcs) + pcs) pB

=: G1(TD, λB , pB , pG, pcs). (11)

The first term in the expression for p1(TD) corresponds to

the event where the interference stays in state G throughout

a packet transmission and a packet loss occurs. The second

term corresponds to the event that a packet transmission starts

with the interference in state G, but the interference changes

to state B during the course of the transmission and a packet

loss occurs. The third term corresponds to the event that a

packet transmission starts with the interference in state B and

a packet loss occurs.

Conditioned on the first packet transmission being success-

ful, the packet error probability for the second packet in a pair

is

p2(TD) = (1− pi(TD))
λB

λB + λG
pG

+

(

1− (1− pi(TD))
λB

λB + λG

)

pB

=: G2(TD, λB , pB , pG, pcs), (12)

where the λB

λB+λG
factor accounts for the event that the

interference is in the B state upon starting transmission of

pkt2.

B. Model parameters

Equations (11) and (12) together form a parametric model of

the packet pair loss process, which is described by parameters

λB , pB , pG and pcs.

Before proceeding, we briefly illustrate how the model

parameters λB , pB , pG and pcs affect the observed packet
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TABLE II
MARKOV MODEL STATE TRANSITIONS.

Idle → Transmitting (start Tx, interference in state G): 1− pcs

Idle → Loss (start Tx, interference in state B): pcs

Transmitting → Idle (interference in state G throughout Tx): 1− pi = exp(−λBTD)

Transmitting → Loss (interference enters state B during Tx): pi = 1− exp(−λBTD)

Loss → Idle (Tx of damaged packet ends): 1
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Fig. 10. Packet error rate versus packet duration TD ; λD = 30, variable
λB , pG = 0, pB = 1, pcs = 0, TSIFS = 10 µs.
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Fig. 11. Packet error rate versus packet duration TD ; λD = 30, λB = 100,
pG = 0.1, variable pB , pcs = 0, TSIFS = 10 µs.

loss versus TD curves. Our aim is to (i) illustrate the types of

loss curves that the model is able to capture and (ii) gain some

intuitive insight into the role of the various model parameters.

Fig. 10 shows the impact of λB , which produces a horizontal

shift in the loss curves. Fig. 11 shows the impact of pB , which

determines the right-hand asymptote of the loss curves. Fig. 12

shows the impact of the carrier sense parameter pcs (by varying

α), which produces a vertical shift in the left-hand asymptote.

Although not shown, the impact of pG also produces a vertical

shift in the left-hand asymptote.

C. Maximum Likelihood Parameter Estimation

Our objective is to estimate the model parameters λB , pB ,

pG and pcs from measurements of packet loss. The empirical

estimators for loss probabilities p1(TD) and p2(TD) are

p̂1(TD) =
1

N1

N1
∑

n=1

δ1n p̂2(TD) =
1

N2

N2
∑

n=1

δ2n,

where N1 is the number of first packets, N2 the number of

second packets, δ1n is the indicator function that equals 1 when
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Fig. 12. Packet error rate versus packet duration TD ; λD = 30, λB = 100,
pG = 0, pB = 0, variable pcs (by varying α), TSIFS = 10 µs.

the nth first packet is lost and 0 otherwise, and similarly δ2n
for second packets. Collecting packet loss measurements for

a sequence of packet durations TD1
, TD2

, ... and stacking the

corresponding loss probability estimates we have














p̂1(TD1
)

p̂2(TD1
)

p̂1(TD2
)

p̂2(TD2
)

...















=















G1(TD1
, λB , pB , pG, pcs)

G2(TD1
, λB , pB , pG, pcs)

G1(TD2
, λB , pB , pG, pcs)

G2(TD2
, λB , pB , pG, pcs)

...















+ η, (13)

where η denotes the estimation error in the packet loss esti-

mates. For N1, N2 sufficiently large, the estimation error η is

close to being Gaussian distributed. The maximum likelihood

estimates for parameters λB , pB , pG and pcs are then the

values that minimise the square error between the LHS and

RHS in (13).

D. Experimental Measurements

1) Experimental Setup: We revisit the WLAN experimental

setup discussed in Section IV-C, but now change the setup

slightly so that only a single wireless client (rather than two

clients) transmits in the WLAN. This change is introduced

because, for simplicity, we have not included packet collisions

in our parametric model.

2) Packet Loss Measurements: Fig. 13 shows the measured

packet loss rate versus the packet duration TD. Note that

the range of packet durations that we can use is constrained

by the maximum 802.11 frame size of 2272 B to lie in the

interval 1.4 ms to 18 ms. Two sets of results are shown, for

one and for three hidden nodes active. Each experimental

point is calculated as the average of more than 6 × 105

packet transmissions. Also shown are the maximum likelihood

fits to this data using parametric model (11) and (12); the
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Fig. 13. Experimental measurements and model fit for WLAN with hidden
node interference. Data points are for experiments using 1 and 3 interferers,
with each interferer having a packet transmission rate of λB = 20. Initial

values for the parameter estimator are λ̂B = 20, p̂cs = 0, pG = 0, and
pB = 0.5. Model parameters are given in Table III.

Number of interferers λ̂B p̂cs p̂G p̂B

1 19.9932 0.0286 0.0080 0.2678

3 54.7173 0.1011 0.0055 0.4055

TABLE III
DETAILS OF THE MAXIMUM LIKELIHOOD PARAMETER ESTIMATES FOR

MEASUREMENT DATA IN FIG. 13

corresponding model parameter estimates are given in Table

III, obtained using an interior-point solver.

3) Validation: The hidden node interferers each make

transmissions with exponentially distributed idle time between

packets so that the mean transmit rate is 20 packets/s. When

one interferer is active, we expect λB = 20 and when

three interferers are active we expect λB = 60. It can be

seen from Table III that the model estimates are close to

these predictions. Measurements taken with no hidden node

interferers active indicate that the baseline packet loss rate is

less than 1% and it can be seen from Table III that the model

estimate for pG is in good agreement with this. While it is

difficult to similarly validate the estimates for parameters pcs
and pB , we note that the estimated values are very reasonable.

4) Parametric vs Nonparametric Estimation: A parametric

model makes strong structural assumptions that allow the

loss curves to be parameterised using a small number of

parameters. Since there are fewer parameters, we expect to

be able to estimate their values with less data, but at the cost

of introducing a bias if the structural assumptions turn out

to be incorrect. Fig. 14 plots maxx |F̂∞(x) − F̂N (x)| versus

the number of observed packets N for both the parametric

and non-parametric approaches, where F̂N (x) is the estimate

of F (x) obtained using N observations and F̂∞(x) is the

estimate using all 6 × 105 observations. For the parametric

model, the parameter estimates are fed back into the model

equations (11) and (12), and the resulting parameterised Pe

curves are used to calculate F̂N (x). This provides a rough

indication of how estimates converge as the amount of data is

increased. It can be seen that the parametric solution converges

to within 5% of the asymptotic estimate after N = 900 packets

and to within 2.5% after N = 4000 packets, while the non-

parametric solution requires N = 6000 and N = 20000
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Fig. 14. Convergence of estimates of F (x) versus the number of packets

observed. F̂N (x) denotes the estimate using N packet observations and

F̂∞(x) denotes the estimate obtained using the full measurement trace.
For each N , we take 100 random subsamples of N packets from the full

measurement trace, calculate maxx |F̂∞(x) − F̂N (x)| for each subsample,
and average this value over the 100 subsamples to obtain the curves shown.
Data is shown for both parametric and non-parametric estimates. The data set
used is from the three interferer experiment, see Fig. 13.

Fig. 15. Spectrum analyser snapshot of hidden terminal interferers in time.
The y-axis grid is in 2 ms increments. Interferer burst durations are fixed at
4.5 ms, with arrivals at 10, 19, 80, 83 and 89 ms. Since each interferer has
a different path to the spectrum analyser antenna, the pulses are at different
power levels. The third and fourth pulses collide, resulting in a stepped feature.

packets, respectively, to achieve the same level of estimation

accuracy.

5) Discussion: It is interesting to note that, despite its

simplicity, the parametric model used here is remarkably

effective at capturing the behaviour in a complex physical

environment. For example, the model ignores the fact that

the interference power will depend on the number of hidden

node transmissions taking place at the same time. This effect

can be seen in the spectrum analyser measurements in Fig.

15, where overlapping transmissions by interferers leads to a

stepped interference pulse profile. The model also assumes that

the duration of interference pulses is exponentially distributed,

but this will not be the case in our experimental setup. More

complex parametric models are also possible, and in particular

can leverage the wealth of research on bursty communications

channels, but we leave this to future work.

VI. CONCLUSIONS

In this paper we propose a new approach for detecting

the presence of pulsed interference affecting 802.11 links,

and for estimating temporal statistics of this interference. Our
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approach is a transmitter-side technique that provides per-link

information and is compatible with standard hardware. This

significantly extends recent work in [1], [2] which establishes

a MAC/PHY cross-layer technique capable of classifying lost

transmission opportunities into noise-related losses, collision

induced losses, hidden-node losses and of distinguishing these

losses from the unfairness caused by exposed nodes and

capture effects.
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