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__________________________________________________________________________________________ 

 
 Abstract -- A technique for detecting tin whistle note onsets and 
transcribing the corresponding pitches is presented. This method 
focuses on the characteristics of the tin whistle within Irish 
traditional music, customising a time-frequency based 
representation for extracting the instant when a note starts and 
the music notation. 
Results show that the presented approach improves upon the 
existing energy based approaches in terms of the percentage of 
correct detections.  

__________________________________________________________________________________________
 

I  INTRODUCTION 

A musical onset is defined as the precise time when a 
new note is produced by an instrument. The onset of 
a note is very important in instrument recognition, as 
the timbre of a note with a removed onset could be 
very difficult to recognise. Masri [1] stated that in 
traditional instruments, an onset is the phase during 
which resonances are built up, before the steady state 
of the signal. Other applications use separate onset 
detectors in their systems, like in rhythm and beat 
tracking systems [2], music transcriptors [3, 4, 5], 
time stretching [6], or music instrument separators 
[7, 5]. Also, onset detectors can be used for 
segmentation and analysis of acoustic signals 
according to the position of the onsets. 
 
The onset detectors encounter problems in notes that 
fade-in, in fast passages, in ornamentations such as 
grace notes, trills and fast arpeggios and in glissando 
(fast transition between notes) or cuts and strikes in 
traditional music, which are discussed in section 3. 
Also, the physics of the instruments and recording 
environments can produce artefacts, resulting in a 
detection of spurious onsets. Amplitude and 
frequency modulations that take place in the steady 
part of the signal can also result in spurious 
detections. 
 
Section 2 focuses on the existing approaches that 
have dealt with the onset detection problem. In 
section 3 we describe the main characteristics of the 

Irish tin whistle and we present an onset detector 
method which takes those characteristics into 
consideration. Some results which validate the 
approach are shown in section 4 and finally, some 
conclusions and further work are discussed in section 
5. 

II  EXISTING APPROACHES 

There are many different types of onsets. However, 
the two most common are: 
A fast onset, which is a small zone of short duration 
of the signal with an abrupt change in the energy 
profile, appearing as a wide band noise burst in the 
spectrogram (see Figure 1). This change manifests 
itself particularly in the high frequencies and is 
typical in percussive instruments. 
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Figure 1: spectrogram of a Piano playing C4 



Slow onsets which occur in wind instruments like the 
flute or the whistle, are more difficult to detect. In 
this case, the onset takes a much longer time to reach 
the maximum onset value and has no noticeable 
change in the high frequencies. 
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Figure 2: Spectrogram of a tin whistle playing E4 

A significant amount of research on onset detection 
has been undertaken. However, accurate detection of 
slow onsets remains unsolved. 
Early work which dealt with the problem took the 
amplitude envelope of the entire input signal for 
onset detection [8]. However, this approach only 
works for signals that have a very prominent onset, 
which led to the development of multi band 
approaches for giving information on specific 
frequency regions where the onset occurs. This was 
first suggested by Bilmes [9], who computed the 
short time energy of a high frequency band using a 
sliding window, and by Masri in [1], who gave more 
weight to the high frequency content (HFC) of the 
signal. However, these two methods only work well 
for sharp onsets. Scheirer in [2], presents a system 
for estimating the beat and tempo of acoustic signals 
requiring onset detection. A filterbank divides the 
incoming signal into six frequency bands, each one 
covering one octave, the amplitude envelope is then 
extracted, and the peaks are then detected in every 
band. The system produced good results, however, 
the amount of band amplitude envelopes are not 
enough for resolving fast transitions between notes in 
non percussive onsets. Klapuri [10], developed an 
onset detector system based on Scheirer’s model. He 
used a bank of 21 non-overlapping filters covering 
the critical bands of the human auditory system, 
incorporating Moore’s psycoacoustic loudness 
perception model [11] into his system. To obtain the 
loudness of every band peak, their corresponding 
intensities must be first calculated. This is achieved 
by multiplying the peak onset value by the band 
center frequency, which gives more weight to high 
bands, thus favouring percussive onsets. Finally, the 
peaks in all frequency bands are combined together 
and sorted in time, by summing the peak values 
within a 50 ms time window. This approach is not 

appropriate for onsets that have energy in a few 
harmonics, because it would only produce peaks in a 
few bands. 
Duxbury [12] proposed a hybrid approach that uses 
different methods in high and low subbands for 
detecting different types of onsets, which can be 
tuned for detecting fast or slow onsets. The lowest 
subband (<2 kHz) used a Euclidean distance measure 
between successive time frames, obtaining the 
average energy increase over a frame.   
Other approaches [13,14,15] use phase based onset 
detection based on phase vocoder theory to calculate 
the difference between the expected and detected 
phase. 

III  PROPOSED APPROACH 

a) Introduction 

This section is subdivided into two parts: section b 
describes the most important aspects of the 
characteristics of the Irish tin whistle, and this 
knowledge is then used to develop an appropriate 
onset detector. 

b) Tin Whistle Theory 

Use of the tin whistle dates from the third century 
A.D. [16]. However, it was not until the 1960´s that 
the instrument started to occupy the important role in 
Irish traditional music that it has today. 
 
Tin whistles come in a variety of different keys. 
However, the most common is the small D whistle, 
which is used in more than 80% of Irish traditional 
tunes. This whistle is a “transposing instrument”, 
which means that when it is played, the note that is 
heard differs from the written musical notation. For 
example, for the small D whistle, if a D4 note is 
written on the score, a D5 note sounds (one octave 
higher). To refer to a given note, this score notation 
will be used in this paper. 
 
The tin whistle can play in 3 octaves, but only the 2 
lowest are played in Irish traditional music since the 
third octave sounds quite strident and shrill. 
Therefore, only those octaves are considered in this 
paper. 
 
The small D key whistle is capable of playing in 
many different modes. Some of them require a half 
hole covering, which is not practical in many musical 
situations. Without half covering, the following 
modes that are very common in Irish Traditional 
Music can be played with the small D Whistle [17]:  
� D Ionian (major scale) and D Mixolydian  
� E Dorian and E Aeolian (natural minor) 
� G Ionian (major) 
� A Mixolydian and A Dorian 
� B Aeolian (natural minor) 



If the tune is played in a key that requires half 
covering, like the F note in D Dorian, the player will 
change to a tin whistle that can play the mode 
without using half covering, like a C key Whistle. 
Therefore, only the following notes shown in table 1 
are considered in the presented algorithm: 
 

Octave 4 Octave 5 

D E F# G A B C C# D E F# G A B 

Table 1: Full covering notes for the D tin whistle 

Ornamentation plays a very important role in Irish 
Traditional music; however, it is understood in a 
different manner than in classical music. 
Ornamentation in traditional music is used for giving 
more expression to the music altering or 
embellishing small pieces of a melody. On the other 
hand, classical music adds music expression by 
adding notes to the melody.  
There are many different types of ornamentation in 
Irish traditional music: cut, strike, slide, rolls, trill, 
etc [17], but cuts and strikes are the ornamentation 
types most commonly used in Irish traditional music.  
Cuts and strikes are pitch articulations: the cut is a 
subtle and quick lift of the finger covering its hole 
followed by an immediate replacement, which 
increases the pitch, and the strike is a rapid impact of 
an uncovered hole that momentarily lowers the pitch. 
The sound of both is very brief, and not perceived as 
having a discernible pitch, note or duration [17]. 
Therefore, they are not considered to be notes, nor 
graces notes, but rather are just part of the onset.  
These articulations are selective to the player, and as 
stated above are not notes, therefore, they are not 
going to be considered as part of the music notation. 
However, because they are part of the onset, they 
provide relevant information for estimating the onset 
time more accurately. 
 
c) System Overview 
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Figure 3: system overview 

 

 

This section describes the different parts of the 
proposed onset detector system. A time - frequency 
analysis is first required, which splits the signal into 
14 frequency bands, one band per note shown in 
table 1. The energy envelope is calculated for every 
band, which is used then to obtain the first derivative 
function of the envelope. Peaks greater than a band 
dependent threshold in the first derivative function 
will be considered as onset candidates. Finally, all 
band peaks are combined to obtain the correct onset 
times and note pitches. 

Time-Frequency Analysis and Multi Band 
Decomposition 
The audio signal is first sampled at 44100 Hz. Then, 
the frequency evolution over time is obtained using 
the Short Time Fourier Transform (STFT), which is 
calculated using a 1024 sample Hanning window (23 
ms), 50% overlap between adjacent frames and 4096 
FFT length. These parameters interpolate the 
spectrum by a factor of 4, which is required for 
accuracy purposes. The STFT is given by: 
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where w(m) is the window that selects a L length 
block from the input signal  x(m), n is the frame 
number and H is the hop length in samples. 
 
Every frame is filtered using a bank of 14 band pass 
filters. Each band covers a logarithmic note range 
centered at the frequency of the notes shown in table 
1. 

Energy Envelope 
The average energy is calculated in each band for 
each frame using:  
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where is the filter output of band i,  ki is i’s frequency 
bin number and li, is the band i length in frequency 
bins. 
 
This operation smoothes the subband signal, limiting 
the effect of signal discontinuities. However, 
additional smoothing is still required, which is 
obtained by convolving the average energy signal 
with a 46 ms Half Hanning window. This operation 
performs a similar operation to the human auditory 
system, masking fast amplitude modulations but 
emphasizing the most recent inputs [2]. The 
smoothed signal after being convolved is denoted as 

. ),( niE



Peak Picking and Thresholding 
Next, the first order difference of the energy 
envelope is calculated for each band, and peaks that 
reach a predetermined threshold will be considered 
as possible onsets. Other multi-band energy based 
approaches [2, 10] used the same threshold for every 
band. However, as can be appreciated in figure 4, 
this is not adequate for wind instruments such as the 
tin whistle. The top plot of figure 4 shows an excerpt 
of a tin whistle playing 3 notes: G4, A4 and D4. In the 
middle plot it can be appreciated that setting a 
threshold T < 60 would be adequate for detecting the 
D4 onset peak (middle plot). However, a slide at the 
ending of the G4 note was played, producing a peak 
in the A4 band (frame 26 in bottom plot) that is larger 
than the threshold T resulting in a false onset 
detection. Also, there was an amplitude modulation 
during the steady state region of A4 that produced a 
peak (frame 49) which was close to T. Therefore, to 
avoid detecting spurious onsets in the A4 band, the 
threshold should have a higher value. 
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Figure 4: Excerpt of a tin whistle tune (top), D4 
frequency band (middle) and A4 frequency band 

(botton) 

Each note of a wind instrument has a different 
pressure range within which the note will sound 
satisfactory; this range increases with the frequency. 
Martin [18] stated that usual practice for recorder 
players is to use a blowing pressure proportional to 
the note frequency, thus the pressure increases by a 
factor 2 for an octave jump. We can then conclude 
that as with the note frequency, the general blowing 
pressure for different notes is spaced logarithmically. 
This also applies to the tin whistle, due to its acoustic 
similarity with the recorder. 
In both cases, the threshold should also be 
proportional to the frequency and will have a 
logarithmic spacing. Then, the threshold for a band i 
will be: 

122*
s

i TT =     (3) 
where T is the threshold required for the band of a 
given note x, and s is the semitone separation 

between the note in the i band and the reference note 
x. 
 
An onset candidate will be detected if: 
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Combining the peak bands and 
ornamentation 
Onset candidate peaks in every band are combined 
and sorted in time (frame number). If two or more 
peaks are located in the same, previous or next 
frame, we will consider that they belong to the same 
onset, keeping the strongest peak as final onset. 
Next, a sliding 46 ms window centered at every 
onset candidate is applied. At this stage, two 
different scenarios can occur: the window contains 
one or two peaks. 
If there is just one peak in the window, the peak 
frame number and the band number provide an 
estimation of the onset time and the new note pitch 
respectively (e.g.: if the peak occurs in band i = 2, an 
E4 note is transcribed). 
Two peaks within a window will mean that an 
articulation peak has been detected, which can occur 
in a different band than the one associated with the 
pitch, as can be appreciated in figure 5, which 
illustrates a G4 note being played with a cut. The 
onset of the new note will be composed of: 
� The articulation peak, which occurs right on 

the beat and gives us the onset time (see 
bottom plot) 

� The peak in the new note band, which 
occurs just after the articulation peak, and 
which gives us the pitch of the new note 
(see centre plot) 
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Figure 5: Cut ascending from note E4 to note G4 (top 
plot). Relative difference function in G4 frequency 
Band (middle plot). Relative difference function in 

A4 Band (bottom plot) 

More accurate onset time estimation 

The first derivative is adequate for looking for 
onsets, since the peaks are a good estimation of the 
prominence of the onset. However, is it not a 



satisfactory way to obtain the onset time, especially 
in slow onsets such as the tin whistle, which take 
some time to reach the peak [10]. 
Therefore, once the onset peak has been identified in 
the first derivative function, the actual onset time 
will be at the frame before the peak where the onset 
stops rising. 

IV  RESULTS 

Two excerpts of Irish traditional music tunes were 
used for evaluating the performance of the presented 
system on detecting note onset times and the 
corresponding pitches. These tunes come from Grey 
Larsen’s book [17] with the corresponding music 
notation, which was very useful for verifying the 
results. To consolidate the approach, the results 
obtained were compared against a widely cited 
energy based onset detector approach, which was 
described by Klapuri in [10]. 

The percentage of correct onset detections was 
calculated using the following equation [10]: 
 

%100*
total

spouriousundetectedtotal
correct

−−
=  (5) 

 
Comparison results are shown in table 2, the first 
tune used (Tune 1 in table 2) is a 17 seconds excerpt 
of "The boys of Ballisodare” [17, p134], and the 
second (Tune 2 in table 2) is a 16 seconds excerpt of 
“Bantry bay” [17, p152]. Results show that the 
whistle based onset detector performed better than 
Klapuri’s system, which had some problems on 
detecting fast transitions between notes that occur in 
the same band, as in the excerpt of Tune 2 plotted in 
figure 6. Also, the band dependent threshold was 
found to be adequate for dealing with strong signal 
modulations. The loudness perception model did not 
significantly alter the onset detector system 
performance, since the D tin whistle note frequency 
range falls in a flat part of the loudness curve. 
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Figure 6: “Bantry bay” tune excerpt 

Three spurious onsets were detected in Tune 1, 
which unsurprisingly occurred when a step wise 
descending note was played with a cut. This is the 
most complex cut type to play, which requires using 
another finger to cover a different hole, followed by 
lifting the cutting finger as close in time as possible. 
If the movement is not performed quickly enough, 
the peaks in the cut and pitch band are sufficiently 
separated to be considered as independent onsets by 
the system. 
All detected note onsets in Tune 1 (see table 3) were 
transcribed into music notation correctly, however, 
there is one wrong pitch detection in Tune 2, which 
occurred when the player articulated a repeated note 
using a strike but without a new blowing jet, 
confusing the system, which identifies the strike as a 
new note played without articulation. 
 

Tu-
ne 

Onset det. 
system 

Undetected Spuri-
ous 

Correct onset 
(%) 

1 Tin 
Whistle 0/50 = 0 % 3 94 % 

1 Klapuri 4/50 = 8 % 3 93.4 % 

2 Tin 
Whistle 0/42 = 0 % 0 100 % 

2 Klapuri   2/42 = 4.8% 2 85.7% 

Table 2: Onset detection comparison 

 
Tune Correct pitch detections (%) 

1 94 % 
2 97.6 % 

Table 3: Pitch transcription results 

V CONCLUSIONS AND FURTHER 
WORK 

A system that detects note onsets and transcribes 
them into music notation was presented. Previously, 
a summary of onset detector literature review was 
presented and the onset detector system was 
customised to the D key tin whistle. Also, a novel 
method for setting different band thresholds 
according to expected note blowing pressure was 
presented. The system improves upon the 
performance of Klapuri´s onset detector, which 
demonstrates that customising the system according 
to the characteristics of the instrument, improves the 
onset detection accuracy. 
Recently, we have become aware by personal 
communication of a new onset detector developed by 
Klapuri for analysing the meter of audio signals. We 
are currently studying the approach, and hope to 
present further comparison results in the near future. 
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