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Abstract. A result of Herstein says in particular that if there exists n > 1
such that xn − x ∈ Z(R) for all x in a ring R then R is commutative. We give
an elementary proof of this fact for certain values of n, based on the theory of
centrifiers which we develop. For n = 5, 7, we also give an elementary proof of the
commutativity of rings R such that xn + x ∈ Z(R) for all x ∈ R.

1. Introduction

Given n ∈ N \ {1}, we call a ring R a ZP(n) ring if xn − x ∈ Z(R) for all x ∈ R;
here Z(R) is the center of R. Trivially, commutative rings are ZP(n) for all n. As
a consequence of more general results, Herstein showed conversely that ZP(n) rings
are necessarily commutative for all n > 1; see [4].

Herstein’s proofs use Jacobson’s structure theory of rings. Because a proof exists,
it follows from Birkhoff’s Completeness Theorem [1] that an elementary, purely
equational, proof must also exist. This follows because both ZP(n) rings for any fixed
n and commutative rings are varieties, i.e. definable by identities. Such elementary
proofs cannot employ structure theory because division rings do not form a variety.
See [1] or [11] for more details.

Birkhoff’s theorem however tells us nothing about how to construct such an
elementary proof, or whether such a proof of reasonable length exists for any given
n. Elementary proofs of the commutativity of ZP(n) rings are rather well known
when n = 2, 3: see for instance [7, Theorem 2] for k = 2 and [8, Theorem 2] for
k = 3. We know of no such proofs in the literature beyond this, with the exception
that n = 6, 12 are handled in [9] for rings with unity. However we do not assume
the existence of a unity in our definition of a ring, and we are interested in proofs
that require no such additional assumptions on the ring.

This situation contrasts with that of rings satisfying the stronger condition xn = x
for all x ∈ R. In this case, elementary commutativity proofs were given by Morita
[10] for all odd n ≤ 25 and all even n ≤ 50. Also MacHale [9] gave an elementary
proof of commutativity for all even numbers n that are not powers of 2 but that can
be written as sums or differences of two powers of 2.

Of course rings satisfying xn = x for all x are rather special, so it is not surprising
that elementary proofs of commutativity are known for more values of n than in the
case of ZP(n) rings. However the size of the gap is a little surprising.

In this paper we narrow the gap significantly. In particularly we give an elemen-
tary proof of commutativity for some small odd n and for many even numbers that
are sums or differences of two powers of 2, and these results imply in particular the
following result.

Theorem 1.1. ZP(n) rings are commutative for all odd n < 10 and infinitely many
even n, including the following values of n ≤ 30:

2, 6, 10, 12, 14, 18, 20, 24, 28, 30 .
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Note the absence of powers of 2 (other than 2) from the above list: among even
numbers, powers of 2 seem especially hard to handle by elementary methods. The
other even numbers below 30 for which we do not yet have elementary proofs are
22 and 26, the only even numbers below 30 that are not sums or differences of two
powers of 2.

To help with our investigation, we introduce the concept of the centrifier of an
element x in a ring R: this consists of all z ∈ R that commute with x, such that
triple products of x, z, and any other element y are independent of order, e.g.
xyz = yxz = xzy, etc. Centrifiers are a key tool in our analysis, but may also be of
independent interest.

To understand the relevance of centrifiers, consider a ring satisfying the identity
x = xn. This trivially implies that x2 = xn+1 for all k ∈ N, and allows one to deduce
that xn−1 is central (as are all other idempotents). In the case of a ZP(n) ring R,
it does not trivially follow that x2 − xn+1 ∈ Z(R) but if we can prove this, then
the theory of centrifiers allows us to deduce that xn−1 is central as a consequence of
the fact that certain near-to-idempotent elements are central; see Theorem 3.4 and
Corollary 3.7.

For any n > 1, we define the AZP(n) condition to be xn + x ∈ Z(R), x ∈ R. For
any given even number n, the ZP(n) and AZP(n) conditions are easily seen to be
equivalent (Lemma 2.2), so AZP(n) is of separate interest only when n is odd.

It follows from the main result in [5] that AZP(n) rings are commutative, but
this proof also uses the structure theory of rings so again elementary proofs are
desirable, and the following result indicates the cases in which we can do this.

Theorem 1.2. AZP(n) rings are commutative when n ∈ {3, 5, 7}.
Although we are mainly interested in ZP(n) rings in this paper, there are two

reasons we give elementary proofs of commutativity of AZP(n) rings for small n.
First, there are some commonalities between the proofs of commutativity of ZP(n)
and AZP(n) rings. More crucially, the proofs of commutativity of ZP(n) rings for
n = 5, 7, 9 all use the commutativity of AZP(m) rings for some number m < n.

After some preliminaries in Section 2, we introduce and develop the theory of
centrifiers in Section 3. We then prove various commutativity results for ZP(n) and
AZP(n) rings in Section 4 and Section 5 which imply Theorems 1.1 and 1.2.

2. Preliminaries

Elementary proofs of the next result are rather well known; see [7, Theorem 2]
for k = 2 and [8, Theorem 2] for k = 3. We will use this result repeatedly without
explicit reference.

Theorem 2.1. ZP(k) and AZP(k) rings are commutative for k = 2, 3.

We now state a well-known lemma, which we also use repeatedly without explicit
reference; the simple proof can be found for instance in [9, Lemma 1].

Lemma 2.2. If R is a ZP(n) or an AZP(n) ring for some even number n, then
2R ⊂ Z(R).

The above lemma implies that the ZP(n) and AZP(n) conditions are equivalent
when n is even, so we will examine AZP(n) conditions only for odd n.

We will frequently need information about the parity of binomial coefficients. A
result of Kummer [6, pp. 115–116] (see also [3]) says that the exponent of the highest
power of p dividing

(
n
m

)
is the number of borrows involved in subtracting m from n

in base p. We record here a consequence of this for p = 2.

Lemma 2.3.
(
n
m

)
is odd if and only if the binary expansion of m has a zero in every

position where the binary expansion of n has a zero.
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In the above lemma, it is understood that we pad the binary expansion of m
with zeros to make it equal in length with the binary expansion of n. We assume
implicitly that 0 ≤ m ≤ n when discussing

(
n
m

)
.

3. Centrifiers

Elementary proofs that conditions of the form xn = x for all x ∈ R imply that
R is commutative typically make use of the fact that idempotents are central in
such rings. Analogously, in a ZP(n) ring, we can construct certain elements that
are somehow “close-to-idempotent”, and we wish to conclude in certain situations
that such elements are central. For instance in a ZP(n) ring, e := xn−1 is close-to-
idempotent in the sense that e2 = e + xn−2z where z ∈ Z(R). Knowing that the
error term has this form does not make it easy to deduce that e is central. However
the notion of centrifiers allows us to prove that some close-to-idempotent elements
are central: see Theorem 3.4 below.

Definition 3.1. We say that z centrifies an element x ∈ R if

[x, z] = [x, y]z = z[x, y] = [z, xy] = [z, yx] = 0 , y ∈ R .

The centrifier of x, C(x), is the set of all z ∈ R that centrify x.

There is a certain symmetry in the definition of C(x): if Rop is the ring with the
same underlying set and addition operation as R but with multiplication reversed
(i.e. multiplication ◦ is given by x◦y = yx), then C(x) with respect to Rop coincides
with C(x) with respect to R. This symmetry can be used to shorten proofs that
z ∈ C(x): if a set of assumptions that also satisfies this symmetry implies that
[x, y]z = [z, xy] = 0, then we conclude for free that z[x, y] = [z, yx] = 0. Without
this symmetry in the assumptions, we can instead remove the equation [z, xy] = 0
from the definition, since it follows from the other equations.

Theorem 3.2. Suppose x is an element of a ring R, z ∈ C(x), and p(X) ∈ XZ[X].
Then

(a) C(x) is a subring of R.
(b) For all y ∈ R, the product xyz is invariant under all re-orderings of its

factors. In particular, xz ∈ Z(R).
(c) x ∈ C(z) (i.e. centrification is a symmetric relation).
(d) z ∈ C(p(x)).
(e) p(x)z = zp(x) ∈ C(x).

Proof. Part (a) follows immediately from the definition, while (b) follows by using
the commutator relations repeatedly: (xy)z = (yx)z = z(yx) = (zx)y = xzy, and
y(xz) = yzx. Part (c) follows immediately from part (b).

We now prove (d). Suppose z ∈ C(x). Since each of the commutators in the
definition of C(x) is Z-linear as a function of x, proving the desired result reduces
to proving that z ∈ C(p(x)) for p(x) = xk, k ∈ N. We show this inductively.

The case k = 1 is given by assumption, so suppose z ∈ C(xk) for all k ≤ j ∈ N.
Then xj+1z = xjxz = xjzx = zxj+1, so [xj+1, z] = 0. Also for every y ∈ R,

xj+1yz = x(xjyz) = (xyz)xj = yx(zxj) = yxxjz = yxj+1z ,

so [xj+1, y]z = 0. By symmetry, we get z[xj+1, y] = 0. Next

zxj+1y = (zx)xjy = x(zxjy) = xxjyz = xj+1yz ,

so [z, xj+1y] = 0, and by symmetry we get [z, yxj+1] = 0. This completes the
inductive step and the proof of (d).

Lastly we prove (e). Since each of the commutators in the definition of C(x)
is Z-linear as a function of z, we may assume that p(x) has the form p(x) = xk,
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k ∈ N. Since [x, z] = 0, it is easily to show that xkz = zxk and that [x, xkz] = 0.
Next [x, y]xkz = ([x, y]z)xk = 0 and xkz[x, y] = 0, so we need only show that
[xkz, xy] = [xkz, yx] = 0, k ∈ Z, k ≥ 0. The case k = 0 of these equations is true by
assumption, so we assume inductively that these results hold for 0 ≤ k ≤ j, where
j ≥ 0. Then

(xj+1z)xy = x(xjz)xy = xxy(xjz) = x(xyz)xj = xy(zxj+1) = xyxj+1z ,

so [xj+1z, xy] = 0. The fact that [xj+1z, yx] = 0 follows similarly. �
The next lemma gives a basic method for identifying elements of centrifiers. In

view of Theorem 3.2(b), this method gives all central elements of centrifiers.

Lemma 3.3. If both z and xz lie in Z(R), then z ∈ C(x). In particular if mR ⊂
Z(R) for some integer m, then mR ⊂ C(x) for all x ∈ R.

Proof. First [x, z] = [z, xy] = [z, yx] = 0 because z ∈ Z(R). Next x(yz) = (xz)y =
yxz so [x, y]z = 0, and hence z[x, y] = 0 because z is central.

Suppose next that mR ⊂ Z(R). If x, z ∈ R, then mz ∈ Z(R) and x(mz) =
m(xz) ∈ Z(R), so the second statement follows from the first one. �

We now come to our promised result which says that in certain situations, near-
to-idempotent elements e are central.

Theorem 3.4. Suppose R is either a ZP(n) or an AZP(n) ring for some n > 1.
Suppose e, x, z ∈ R are such that e2 = e + z, z ∈ C(x) ∩ Z(R), and e = p(x) for
some p(X) ∈ XZ[X]. Then e ∈ Z(R).

Proof. Let d := eye − ye. Then ed = zye, and z ∈ C(e) by Theorem 3.2(d). We
prove inductively that (de)k = (ed)k, k > 1. First

(de)2 = d(zye)e = (dez)ye = edzye = (ed)2 .

Suppose therefore that for some j ≥ 2, (de)k = (ed)k for 2 ≤ k ≤ j.

(de)j+1 = de(ed)j = (dez)ye(ed)j−1 = edzye(ed)j−1 = (ed)j+1 .

This completes the inductive step and so (de)k = (ed)k for all k > 1. Taking
k = n, and using either the ZP(n) or the AZP(n) condition, we conclude that
ed− de ∈ Z(R). But

ed− de = zye− (eye+ eyz − ye− yz) = ye− eye+ yz = ye2 − eye ∈ Z(R) ,

so by symmetry we also have e2y − eye ∈ Z(R). It follows that e2y − ye2 ∈ Z(R)
and, since e2 = e+ z and yz = zy, we conclude that ey − ye ∈ Z(R).

Now (ey)(ey− ye) = (ey− ye)(ey), so ey2e = ye2y = yey+ zy2. Bearing in mind
that z ∈ C(e), we see that

(3.5) (ye)2 = (ey2e− zy2)e = ey2e = e(ey2e− zy2) = (ey)2 .

Now e(e+ y) = e+ z + ey and (e+ y)e = e+ z + ye, so

(e(e+ y))2 = e2 + z2 + (ey)2 + 2ez + 2zey + e2y + eye

and
((e+ y)e)2 = e2 + z2 + (ye)2 + 2ez + 2zye+ ye2 + eye

But these two expressions are equal by (3.5), and zye = zey since z ∈ C(e), so we
conclude that e2y = ye2. Since e2 = e + z and z is central, we finally get ey = ye,
as required. �
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Remark 3.6. It is clear from the proof that the assumption that R is either a ZP(n)
ring or an AZP(n) ring can be replaced in Theorem 3.4 by the weaker assumption
that for each x ∈ R there exists n(x) > 1 such that xn(x) − h(x) ∈ Z(R), where h is
an endomorphism of (R,+) with the property that x ∈ Z(R) whenever h(x) ∈ Z(R).
Examples of such an endomorphism include h(x) ≡ x, h(x) ≡ −x, and the involution
∗ in a ∗-ring.

Our first application of Theorem 3.4 is as follows.

Corollary 3.7. Suppose R is a ZP(n) ring for some n > 1, and that y2 − yn+1 ∈
Z(R) for some y ∈ R. Then y − yn ∈ C(y) and yn−1 ∈ Z(R). If mR ⊂ Z(R)

for some m ∈ N, then
∑(n−1)/k

i=1 yik ∈ Z(R) whenever k is a factor of n − 1, and
(n− 1)/k is coprime to m.

Proof. Letting z := y − yn ∈ Z(R), we see that z ∈ C(y) (Lemma 3.3), and so
−yn−2z ∈ C(y) (Theorem 3.2(e)). But e := yn−1 satisfies e2 = e − yn−2z, so
e ∈ Z(R) by Theorem 3.4.

Suppose instead that mR ⊂ Z(R), that k is a factor of n − 1, and that t :=
(n−1)/k is coprime with m. Thus there exists an integer j such that jt is equivalent
to 1 mod m. Letting s := j

∑t
i=1 y

ik, we see that syk = s − jyk−1z, and so s2 =
s+mw+ p(y)z for some w ∈ R and some polynomial p(y) in y. But mw+ p(y)z ∈
C(y) by Lemma 3.3 and Theorem 3.2(e), so s ∈ Z(R) by Theorem 3.4. Finally,
ts ∈ Z(R) and by subtracting an element of mR, we conclude that

∑t
i=1 y

ik ∈ Z(R),
as required. �

The following consequence of Corollary 3.7 will be used frequently.

Corollary 3.8. Suppose R is a ZP(n) ring for some n > 1, and that mR ⊂ Z(R)
for some odd integer m. Then x− xn ∈ C(x) for all x ∈ R. Also xn−1 ∈ Z(R), and

more generally
∑(n−1)/k

i=1 xik ∈ Z(R) whenever k is a factor of n− 1, and (n− 1)/k
is coprime to m.

Proof. Letting z := x − xn ∈ Z(R), we see that (x2 − (x2)n) − z2 = 2xz ∈ Z(R).
Since also mxz ∈ Z(R), we conclude that xz ∈ Z(R). The result now follows from
Corollary 3.7. �

4. Commutativity of ZP(n) and AZP(n) rings for small odd n

In this section, we prove commutativity of ZP(n) rings for n = 5, 7, 9, and of
AZP(n) rings for n = 5, 7. Key parts of the ZP(n) proofs can be reduced to AZP(m)
for some m < n: in fact, ZP(5) and ZP(9) both reduce to AZP(3), and ZP(7)
reduces to AZP(5). The commutativity of ZP(7) rings in turn will be used in the
proof of results for even n in the next section: specifically it is used in the proof of
Theorem 5.2, which in turn is needed in the proof of Theorem 5.4.

In view of the difficulties of proving commutativity for powers of 2 (as referred
to in the next section), it is noteworthy that the proof of commutativity of ZP(9)
rings is relatively straightforward.

We first introduce some common notation and conventions that apply throughout
this section and the next. We generally denote by f : R → Z(R) the polynomial
that the ZP(n) or AZP(n) condition tells us is central in a ring R, so f(x) = x± xn

in all cases. When we define a function g via a formula for g(x), it is implicitly
assumed that the domain of g is the ring R under consideration, and normally its
range is contained in Z(R). For a given function g : R → R, we write Dg(x, y) :=
g(x+ y)− g(x)− g(y). We typically use x as a generic element of R, so if we write
g(x) ∈ Z(R), we mean that this holds for all x ∈ R, whether or not this is explicitly
stated.

We begin with a lemma that is useful for n = 5, 9.
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Lemma 4.1. If R is a ZP(n) or an AZP(n) ring, where n = 2m+1 for some m ∈ N,
and if 2R ⊂ Z(R), then R is commutative.

Proof. The ZP(n) and AZP(n) conditions coincide for rings R satisfying 2R ⊂ Z(R),
so we assume that R is a ZP(n) ring. Let f(x) := x − xn, so f(R) ⊂ Z(R). By
Lemma 2.3, we see that

(
n
i

)
is odd only for i ∈ {0, 1, n− 1, n}, so

Df (x, x
1+n) = x2n + xn2

+ z ∈ Z(R) ,

where z = zx ∈ 2S ⊂ Z(S). Thus

x+ x2 = f(x) + f(x2) + f(xn) + x2n + xn2 ∈ Z(R) ,

and so R is commutative. �
Forsythe and McCoy [2] gave an elementary proof that a ring R of prime charac-

teristic p satisfying xp = x is commutative. Their now well-known method of proof
is readily adapted to prove the following more general lemma; we include the proof
for completeness.

Lemma 4.2. If R is a ZP(p) or an AZP(p) ring for some prime p, and if pR ⊂
Z(R), then R is commutative.

Proof. Let x, y ∈ R be arbitrary, and let f(X) be eitherXp−X orXp+X, depending
on whether R is a ZP(p) or an AZP(p) ring. Expanding f(x+ iy)− f(x)− f(iy) for
i ∈ {1, . . . , p− 1}, we see that

p−1∑
j=1

ijsj = zi ∈ Z(R) .

where sj is the sum of all possible products of p factors, of which j are y and p− j
are x; for instance if p = 3, then s1 = x2y + xyx+ yx2, while s2 = xy2 + yxy + y2x.
This set of equations can be written in the form V s = z, where V = (vij)i,j is
a (slightly nonstandard) Vandermonde matrix given by vij = ij, and s, z are the
column vectors whose transposes are defined by st = (si), and zt = (zi).

Denoting by δ the determinant of V , and ri the cofactor of the element vi1,
i = 1, . . . , p − 1, we let W = rV , where r is the row vector (r1, . . . , rp−1). Then
Ws = rz ∈ Z(R). But by basic linear algebra, we see that Ws = δs1. By the
theory of Vandermonde matrices, δ is a product of factors of the form a or a− b, for
1 ≤ a, b ≤ p− 1 and a ̸= b. In particular δ is a unit in Zp, and so s1 ∈ Z(R). Thus
xs1 = s1x, and so xpy = yxp. Thus xp ∈ Z(R) for all x ∈ R. But xp ± x ∈ Z(R),
and so x ∈ Z(R). �
Theorem 4.3. ZP(5) rings are commutative.

Proof. Let f(x) := x − x5. Then 32f(x) − f(2x) = 30x ∈ Z(R). Since x = 15x −
7(2x), R is a sum of the subrings 15R and 2R. Moreover (15x)(2y) = (2y)(15x) = 0,
so it suffices to show that each of these subrings is commutative. The ring S := 15R
satisfies 2S ⊂ Z(S), so it is commutative by Lemma 4.1.

Let S := 2R. Then 15S ⊂ Z(S), and Corollary 3.8 implies that f(x) ∈ C(x) and
that x + x3 = (x + x2 + x3 + x4) − (x2 + x4) ∈ Z(S). But the centrality of x + x3

implies that S is commutative. �
Theorem 4.4. AZP(5) rings are commutative.

Proof. Let f(x) := x+ x5. Again 32f(x)− f(2x) = 30x ∈ Z(R) and, arguing as in
Theorem 4.3, we see that it suffices to prove that each of the subrings 15R, 6R, and
10R are commutative. Now S := 15R satisfies 2S ⊂ Z(S), so it is commutative by
Lemma 4.1, and S = 6R is commutative by Lemma 4.2.
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Finally suppose S = 10R, and so 3x ∈ Z(S) for all x ∈ S. Now (f(x))2−f(x2) =
2x6 ∈ Z(S) for all x ∈ S, so x6 = 2(2x6)− 3x6 ∈ Z(S). Thus

x6 + x24 − (x+ x4)6 = x15 + z ∈ Z(R)

for some z ∈ 3S ⊂ Z(S), and so f(x3)− x15 = x3 ∈ Z(S) for all x ∈ S. Next

Df (x,±x2) = ∓x6 + x7 ± x8 − x9 + z ∈ Z(S) ,

for some z ∈ Z(R). Now x6 and x9 are central, so x7 ± x8 ∈ Z(S). Taking a
difference of these last expressions, we deduce that x8 ∈ Z(R) for all x ∈ S. Thus
x25 = (x8)2(x3)3 ∈ Z(S) and so x = f(x)− f(x5) + x25 ∈ Z(S) for all x ∈ S. �
Theorem 4.5. ZP(7) rings are commutative.

Proof. Let f(x) := x− x7. By considering k7f(x)− f(kx) for k = 2, 3, we see that
126R ⊂ Z(R) and 2184R ⊂ Z(R), and so 42R ⊂ Z(R), since 42 = gcd(126, 2184).
Thus it suffices to prove the result for the three subrings 14R, 6R, and 21R.

Suppose first that S = 6R, so 7S ⊂ Z(S). Then commutativity follows by
Lemma 4.2. Alternatively, Corollary 3.8 implies that

x+ x5 =

(
6∑

x=1

xi

)
−

(
3∑

i=1

x2i

)
−

(
2∑

i=1

x3i

)
+ x6 ∈ Z(S) ,

and so S is commutative by Theorem 4.4.
Suppose next that S = 14R, and so 3S ⊂ Z(S). By Corollary 3.8, we see that

x6 ∈ Z(S), and x3 = (x3 + x6) − x6 ∈ Z(S) for all x ∈ S. Also (f(x))2 − f(x2) =
2x8 ∈ Z(S), so x8 = (2(2) − 3)x8 ∈ Z(S). Thus (x8)2(x3)11 = x49 ∈ Z(S), and so
x = f(x) + f(x7) + x49 ∈ Z(S) for all x ∈ S.

Finally suppose S = 21R, and so 2S ⊂ Z(S). Considering Df (x
j, xj+7) for j ∈ N,

and using the ZP(7) condition for powers of x7, we see that sj(x) :=
∑j+6

i=j+1 x
i ∈

Z(S). Thus tj(x) := sj(x)− sj+1(x) = xj+1 − xj+7 ∈ Z(R) for all j ∈ N.
In particular, both z := f(x) and xz = t1(x) are central. By Corollary 3.7,

e := x6 and d := x2 + x4 + x6 both lie in Z(S). Next

h(x) := x+ x3 + x5 = f(x) + s1(x)− d ∈ Z(S) ,

and Dh(x, x
2) = x4+x5+x6+x9+z for some z ∈ 2S ⊂ Z(S). Since also x6 ∈ Z(S)

and t2(x) = x3 + x9 ∈ Z(S), it follows that x3 + x4 + x5 ∈ Z(S). Subtracting this
quantity from h(x), we see that x − x4 ∈ Z(S). But now x3 − (x3)4 ∈ Z(S) and
x12 = (x6)2 ∈ Z(S), so x3 ∈ Z(S). Thus h(x) − x3 = x + x5 ∈ Z(S), and so R is
commutative by Theorem 4.4 (or indeed by Theorem 4.3, since 2S ∈ Z(S)). �
Theorem 4.6. AZP(7) rings are commutative.

Proof. Let f(x) := x + x7. As in the proof of Theorem 4.5, it suffices to prove the
result for the three subrings 14R, 6R, and 21R. For S := 21R, we have 2S ⊂ Z(S),
so x − x7 ∈ Z(S) and commutativity follows by Theorem 4.5. If S = 6R, then
7S ⊂ Z(S) and commutativity follows by Lemma 4.2.

Finally suppose that S = 14R, and so 3S ⊂ Z(S). Now (f(x))2 − f(x2) =
2x8 ∈ Z(S), so x8 = (2(2)− 3)x8 ∈ Z(S). Deleting an element of 3S and multiples
of x8k from 2Df (x

2,−x4) − 2Df (x
2, x4), we see that x20 ∈ Z(R), and so x4 =

f(x4) − x20 · x8 ∈ Z(R). Now deleting an element of 3S and multiples of x4k

from 2Df (x
1,−x2)− 2Df (x

1, x2), we similarly see that x10 ∈ Z(R), and hence that
h(x) := x2 ∈ Z(R). Thus 2Dh(x, x

2)−3x3 = x3 ∈ Z(R), and so x = f(x)−(x2)2x3 ∈
Z(R). �
Theorem 4.7. ZP(9) rings are commutative.



8 S.M. BUCKLEY AND D. MACHALE

Proof. Suppose R is a ZP(9) ring, so f(x) := x − x9 ∈ Z(R). By considering
k9f(x) − f(kx) for k = 2, 3, we see that 510R ⊂ Z(R) and 19680R ⊂ Z(R), and
so 30R ⊂ Z(R), since 30 = gcd(510, 19680). As usual, it suffices to prove the
result under each of the additional assumptions 2R ⊂ Z(R), 3R ⊂ Z(R), and
5(R) ⊂ Z(R). In the case 2R ⊂ Z(R), R is commutative by Lemma 4.1.

In the other cases we have mR ⊂ Z(R) for some odd m, so we conclude by
Corollary 3.8 that x8, x4, g(x) := x2 + x6, and x+ x3 + x5 + x7 are all central.

Suppose 3R ⊂ Z(R). For all t ∈ Z,
h(x, t) := Dg(x, tx

2)

= 2tx3 + 6tx7 + 15t2x8 + 20t3x9 + 15t4x10 + 6t5x11 ∈ Z(R) .

Thus x3 + x9 is central because it differs from h(x,−1) by an element of 3R, and so
x+ x3 = f(x) + (x3 + x9) ∈ Z(R), which implies R is commutative.

Suppose instead that 5R ⊂ Z(R). Now (x + tx2)4 − x4 − (tx2)4 ∈ Z(R), so
u(x, t) := 4tx5 + 6t2x6 + 4t3x7 ∈ Z(R). Now v(x, t) := u(x, t) − u(x,−t) = 8tx5 +
8t3x7 ∈ Z(R). Since 8v(x, 1) − v(x, 2) = 48x5, we see that x5 is central, and so
x = f(x) + f(x9)− x5(x4)19 ∈ Z(R). �

5. Commutativity of ZP(n) rings for certain even n

In this section we prove commutativity of ZP(n) rings for some even values of n.
Although the proofs for n = 5, 7, 9 in the last section contained some common ideas
and methods, they were essentially ad hoc in nature. By contrast, the results below
for even n each handle an infinite family of even numbers, and all associated proofs
employ variations of a common method. The values of n that we can handle are all
sums or differences of two powers of 2, and Lemma 2.2 is a key simplification at the
beginning of these proofs.

Our methods do not apply to powers of 2 larger than 2. Indeed these numbers
seem to be especially hard to treat by elementary means.

We do not consider AZP(n) for even n since Lemma 2.2 tells us that it is equiv-
alent to ZP(n) in this case.

Since 6 is of the form 2n + 2m, the commutativity of ZP(6) rings follows as a
special case of Theorem 5.2 below. However we first present two proofs of this
special case. The first is an ad hoc proof reminiscent of some of the earlier proofs
for odd n, while the second is really a special case of the proof of Theorem 5.2 below.

Theorem 5.1. ZP(6) rings are commutative.

Proof 1 of Theorem 5.1. Assume that f(x) := x − x6 ∈ Z(R) for all x in a ring
R. Now 2x ∈ Z(R) for all x ∈ R and, since Df (x, x

2) ∈ Z(R), we see that
x8 + x10 ∈ Z(R), and so x24 + x30 ∈ Z(R). Adding f(x4) + f(x5) ∈ Z(R) to this
last expression, we see that g(x) := x4 + x5 ∈ Z(R). Now Dg(x, x

2) + f(x) ∈ Z(R)
implies that h(x) := x + x9 ∈ Z(R), so u(x) := h(x2) + f(x3) = x2 + x3 ∈ Z(R).
Thus v(x) := u(x2) + f(x) = x+ x4 ∈ Z(R). Also

g(x)u(x) + f(x) = (x4 + x5)(x2 + x3) + x− x6 ∈ Z(R) ,

so x + x8 ∈ Z(R). However v(x2) = x2 + x8 ∈ Z(R), and so x− x2 ∈ Z(R), which
implies commutativity. �
Proof 2 of Theorem 5.1. Assume that f(x) := x − x6 ∈ Z(R) for all x in a ring R.
Since

Df (x
i, xi+3) + f(xi+1) + f(xi+2) ∈ Z(R)

and 2x ∈ Z(R), we deduce that gi(x) := xi+2 − xi+1 ∈ Z(R) for all i ∈ N. Thus
x− x2 = f(x) +

∑4
i=1 gi(x) ∈ Z(R), which implies that R is commutative. �
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We now prove two results for even numbers of the form 2n + 2m.

Theorem 5.2. If R is a ZP(2n + 2m) ring, where m > 0 and n−m ∈ {1, 2}, then
R is commutative.

Proof. First, we note that 2R ⊂ Z(R). Let N := 2n, M := 2m, K := N + M ,
r := N/M , and f(x) := x+ xK , so that f : R → Z(R). We claim that

s(α, β) := xα − xβ ∈ Z(R) , whenever α, β ∈ N \ {1} and (r − 1) | (β − α) .

The assumption n−m ≤ 2 is not required for this claim.
According to Lemma 2.3, the binomial coefficient

(
N+M

j

)
, 1 ≤ j ≤ K − 1, is odd

only when j = M and j = N . It follows that for all i ∈ N,
f(xi + xi+r+1) + f(xi) + f(xi+r+1) = x(i+1)(N+M) + x(i+r)(N+M) + z ∈ Z(R) ,

for some z ∈ Z(R). Adding f(xi+1) + f(xi+r) to this last expression, we see that

e(x, i) := xi+1 − xi+r ∈ Z(R) , i ∈ N .

Since
t−1∑
k=0

e(x, i+ (r − 1)k) = xi+1 − xi+1+t(r−1) ,

the claim follows.
If n = m+ 1, then r − 1 = 1 and

x− x2 = f(x)− f(x2)− s(N +M, 2(N +M)) ∈ Z(R) ,

which implies that R is commutative.
Suppose instead that n = m + 2, and so r − 1 = 3. N + M is equivalent to

either 1 or 2 mod 3. In the first case, by taking α = 7 and β = N + M , we see
that x− x7 ∈ Z(R), and so R is commutative by Theorem 4.5. In the second case,
by taking α = 2 and β = N + M , we see that x − x2 ∈ Z(R), and so R is again
commutative. �

By the above proof, we see that if R is a ZP(2n + 2m) ring for any n > m > 0,
then R is also a ZP(k) ring whenever k ≥ 2 and (r−1) | (2n+2m−k). This enabled
us to give an elementary proof of commutativity above whenever 0 < n − m ≤ 2,
but it also gives an elementary proof of commutativity in certain other cases.

Theorem 5.3. Suppose R is a ZP(2n + 2m) ring, where n > m > 0, and n + 1 is
coprime with d := n−m. Then R is commutative.

Proof. Let k := 2d−1, K := 2n+2m, and D(x, a, b) := x2a −x2b for 0 ≤ a, b ∈ Z. By
the proof of Theorem 5.2, xα−xβ ∈ Z(R) whenever α, β ∈ N \ {1}, and k | (α−β).
By factorization, we see that if d | (a − b), a, b ∈ N, then k | (2a − 2b), and so
D(x, a, b) ∈ Z(R).

Since K = 2n−d(2d + 1) and 2d + 1 ≡ 2 (mod k), we see that K ≡ 2n+1 (mod k)
and so R is a ZP(2n+1) ring. Since

D(x, 0, n+ 1− jd) = D(x, 0, n+ 1) +D(x, n+ 1, n+ 1− jd) ∈ Z(R) ,

for all j ∈ Z such that n+ 1− jd > 0, we see that R is also a ZP(2n+1−jd) ring for
all such j.

Since n+1 is not divisible by d, we may choose j so that a := n+1− jd satisfies
1 ≤ a < d. Note that a and d are coprime, so we can choose b, c ∈ N such that
ba − cd = 1. The ZP(2a) condition tells us that D(x, (i − 1)a, ia) ∈ Z(R) for each
0 ≤ i < b. Summing these expressions, we see that D(x, 0, ba) = D(x, 0, cd + 1) ∈
Z(R), and so

x− x2 = D(x, 0, cd+ 1) +D(x, cd+ 1, 1) ∈ Z(R) ,
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which implies that R is commutative. �

Note that the above corollary says that if d is prime and n+ 1 is not a multiple
of d, then R is commutative. It also tells us that if n − m is a divisor of n, then
again R is commutative.

We now consider numbers of the form 2n − 2m.

Theorem 5.4. If R is a ZP(2n − 2m) ring where m > 0 and n −m ∈ {2, 3}, then
R is commutative.

Proof. Much of the proof is similar to that of Theorem 5.2, so we concentrate on the
differences. Let N := 2n, M := 2m, K := N−M , r := N/M , and f(x) := x+xK , so
that f : R → Z(R), and again 2R ⊂ Z(R). We claim that s(α, β) := xα−xβ ∈ Z(R)
whenever α, β ∈ N \ {1} and (r − 2) | (β − α).

According to Lemma 2.3, the binomial coefficient
(
N−M

j

)
, 1 ≤ j ≤ K − 1, is odd

precisely when j is a multiple of M . It follows that

S(x, i) := f(xi + xi+r−1) + f(xi) + f(xi+r−1) = xi(N−M)

r−2∑
k=1

xk(N−M) + z ∈ Z(R) ,

for some z ∈ R. Considering S(x, i)− S(x, i+ 1), we see that

x(i+1)(N−M) − x(i+r−1)(N−M) ∈ Z(R) , i ∈ N .

The claim now follows in a similar fashion to the claim in the proof of Theorem 5.2.
If n = m + 2, then r − 2 = 2 | (N −M − 2), so as in Theorem 5.2 we see that

x− x2 ∈ Z(R), and so R is commutative.
Suppose instead that n = m + 3, and so r − 2 = 6. Now N − M is equivalent

to either 2 or 4 mod 6, depending on the parity of N . By taking β = N −M , and
α to be 2 or 10, we see that R is also a ZP(α) ring. Thus R is commutative (using
Theorem 5.2 for α = 10). �

As for ZP(2n + 2m), the claim in the above proof can be used to prove that
ZP(2n− 2m) rings are commutative for certain other numbers n,m, as evidenced by
the following result.

Theorem 5.5. Suppose R is a ZP(2n − 2m) ring, where n− 1 > m > 0, and n− 1
is coprime with m. Then R is commutative.

Proof. Let d := n−m− 1, k := 2d− 1, K := 2n− 2m, and D(x, a, b) := x2a −x2b for
0 ≤ a, b ∈ Z. By the proof of Theorem 5.4, xα−xβ ∈ Z(R) whenever α, β ∈ N \ {1}
and (2k) | (α − β). By factorization, we see that if d | (a − b), a, b ∈ N, then
2k | (2a − 2b), and so D(x, a, b) ∈ Z(R).

Since K = 2n−d−2(2d+2 − 2) and 2d+2 − 2 ≡ 2 (mod 2k), we see that K ≡ 2n−1

(mod 2k) and so R is a ZP(2n−1) ring. As in the proof of Theorem 5.3, it follows
that R is a ZP(2a) ring where a := n− 1− jd satisfies 1 ≤ a < d. Now n− 1 and d
are coprime, and so a and d are coprime. Choosing b, c ∈ N such that ba− cd = 1,
we deduce as in the proof of Theorem 5.3 that

x− x2 = D(x, 0, ba) +D(x, cd+ 1, 1) ∈ Z(R) ,

which implies that R is commutative. �

Note that Theorem 1.2 follows immediately from the combination of Theorems 2.1,
4.4, and 4.6. We now prove Theorem 1.1.
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Proof of Theorem 1.1. The commutativity of ZP(n) rings for n = 2, 3 is given by
Theorem 2.1, and for n = 5, 7, 9 by Theorems 4.3, 4.5, and 4.7, respectively. Each
of Theorems 5.2, 5.3, 5.4, and 5.5 provide us with infinite families of even numbers
n for which ZP(n) rings are necessarily commutative. Finally with regards to the
specific values of even n ≤ 30 that are listed, commutativity follows when n ∈
{6, 10, 12, 20, 24} by Theorem 5.2, when n = 18 by Theorem 5.3, when n ∈ {14, 28}
by Theorem 5.4, and when n = 30 by Theorem 5.5. �

As mentioned in the Introduction, it seems especially difficult to prove commu-
tativity by elementary means of ZP(n) rings when n > 2 is a power of 2. We would
be very interested in any such proof, even just for n = 4.
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