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Abstract: In the present paper, modelling extreme temperature to assess risk of 
global warming in Ireland is addressed. The approach used is a combination of 
peak-over-threshold (POT) – generalised Pareto distribution (GPD) in which 
the parameter of distribution is allowed to vary with a dominant feature of 
climate at the location. The dominant climatic feature at a location is 
approximated by climatic variables derived from the National Centre for 
Environmental Prediction (NCEP) reanalysis data. Data from six stations were 
used to develop seasonal models for winter, spring, summer and autumn. 
Future changes in extreme temperature values are generated by using climate 
variables derived from (HadCM3) GCM for the A2 emissions scenario. The 
software extRemes was used to develop the models as it serves the proposed 
modelling approach. Results indicate that significant changes in extreme 
temperature events are projected to occur in Ireland over the course of the 
present century. These include hotter summers and mild winters. 
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1 Introduction 

The occurrence of extreme, whether associated with intense precipitation, high or low 
temperature extremes or storm activity, can have significant impacts on society. With 
increasing anthropogenic influence evident on the climate system, such events are 
projected by the IPCC (2007) to increase over the coming century. In order to assess and 
manage any associated risk resulting from the occurrence of such extreme events – use of 
risk management models, which include associated loss events, are required (Wu and 
Olson, 2009). An assessment of future extreme events (e.g., extreme precipitation or 
temperature), needs to be tackled within a model, which could be analytical, advanced or 
a complex statistical one (Wu and Olson, 2010); and it will form part of the risk 
management model. Therefore, adequate modelling of these extreme events, and 
associated return periods, is of great importance, and ultimately lead to a better 
assessment and management of the associated risks. 

Projection of future climate variables are traditionally obtained from general 
circulation models (GCMs) of the atmosphere, which usually provides output at a 
relatively coarse resolution (typical grid scale is 300 km × 300 km); whereas flood or 
heat wave impact studies are typically required to be taken at sub-grid scale (of order  
10–50 km2). Thus, there is a disjoint between the scale at which GCMs output future 
climate information and the scale at which the events of interest occur. Therefore, a 
methodological step is required to link the large scale GCM variables to a finer scale at 
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which temperature or rainfall are normally measured. The model proposed here is in a 
form of a statistical distribution whose parameters are a function of the large scale 
climate; the scale at which models typically generate output. Therefore, the motivation 
for this research is to develop a model, under a stochastic framework, which is capable of 
modelling extreme temperature events for maximum (Tmax) and minimum (Tmin) 
temperatures, on the basis of the large scale climate. 

This section introduces the context under which the present research is undertaken. 
Section 2 reviews techniques and methods used in modelling extreme events generally 
and with particular reference to Ireland. Section 3 describes the approach used in 
modelling extremal distributions and the software used. Section 4 describes data used in 
the study. Section 5 explains how the study is conducted and the steps involved in 
developing the temperature models. In Section 6, obtained results are presented and 
discussed. Summary and concluding remarks of the study are given in Section 7. 

2 Review of models 

Numerous techniques have been previously employed (e.g., Wilby and Dawson, 2007) to 
link GCM outputs to local and regional scale climate variables such as temperature and 
precipitation. These include dynamic regional modelling, pattern scaling, delta change 
methods and statistical downscaling models. The latter has become widely used in 
generating climate scenarios of extreme events, due to its ease of implementation and 
limited computational requirements. Statistical models are based on developing statistical 
relationships between observed local variables and the large scale state of the 
atmosphere. The derived relationships are then applied to a similar suite of variables 
produced by a GCM to generate future scenarios of the local climate variable (Karl et al., 
1990; von Storch and Zwiers, 1999). In developing these statistical relationships (or 
transfer functions), both linear (e.g., multiple regression) and non-linear (e.g., neural 
networks; generalised linear models) approaches are widely used (Wilby et al., 1998). 
The fundamental assumptions in the statistical models are that these statistical relations 
are time invariant and their parameters are stationary. While such an assumption cannot 
be fully verified, Charles et al. (1999) suggests that the assumption of time invariance in 
predictor-predict and relations may be robust provided that the choice of predictors is 
sensible. 

Departure from the fundamental assumptions of time invariant and stationary 
parameters in downscaling has also been attempted. For example, consideration for the 
non-stationary nature of surface weather variables, such as temperature and rainfall has 
become more prevalent, especially after a provocative statement by Milly et al. (2008). 
Milly et al. (2008) claim that anthropogenically-induced climate change is the reason that 
stationarity has died and ‘cannot be revived’. Although they acknowledge that the 
validity of the assumption has been questioned regularly in the past, Milly et al. (2008) 
highlight a pressing need to address this issue due to a convergence of observations and 
research findings that demonstrates the urgency of the influence of climate change and 
variability on surface climate variables processes. 

Khaliq et al. (2011) applied a non-stationary form of Poisson process to model hot 
weather events (HWE) in Canada in order to develop useful probabilistic climate change 
information. The Poisson process was applied to temperature exceeding a defined 
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threshold in order to differentiate between maximum and minimum daily temperature. 
Khaliq et al. (2011) employed a compound Poisson process gamma (CPPG) model 
consisting of two basic components: one relating to the occurrence of HWEs and the 
second, to their durations. Utility of this approach was demonstrated by using two sets of 
HWE data from Southern Quebec for the period 1941–2000. 

Northrop and Jonathan (2011) presented a method to model non-stationary extreme 
values by allowing a change in a threshold used in extracting the extreme values 
themselves. The threshold is allowed to vary linearly with a suitable covariate which has 
significant impact on quantiles calculated from the extreme value series. The method was 
successfully illustrated using storm peak wave heights selected from 72 sites in the Gulf 
of Mexico. 

Frías et al. (2012) analysed changes of maximum temperatures in Europe using two 
regional climate models (RCMs) from the EU ENSEMBLES project. Extremes were 
expressed in terms of return values using a time-dependent generalised extreme value 
(GEV) model fitted to monthly maxima. The study used data in period (1961–2000) as 
calibration/validation period, and assessed the changes projected for the period  
2061–2100 considering the A1B emission scenario. The maximum temperature response 
to increased greenhouse gases, as projected by the A1B scenario, was found consistent 
with the two RCMs used. 

The dependence of extremal model parameters on covariates has previously  
been considered in Ireland in the context of modelling rainfall occurrence, but not  
for temperature. For example, Khaliq and Cunnane (1996) modelled point rainfall 
occurrences with a modified Bartlett-Lewis rectangular model. They applied a  
six-parameter version of the model to long hourly rainfall data recorded at Valentia and 
Shannon Airport in Ireland. The authors applied five different sets of statistics of rainfall 
data for each month to estimate six parameters of the model, employing the Rosenbrock 
(1960) optimisation technique. Stability and sensitivity for the obtained parameters to 
number and type of rainfall statistics in a set were examined and an optimum set and 
number was derived. No use was made for climate variables in this model. The 
conditional distributions of rainfall depth obtained from the model compared favourably 
with the historical ones. Another study, undertaken by Demissie (2004) in a study of the 
effects of climate change on rainfall characteristics, employed atmospheric circulation 
and moisture variables from both the NCEP/NCAR reanalysis data and the HadCM3 
GCM to model rainfall properties at Shannon, Mullingar and Rosslare synoptic stations. 
Initially, a statistical downscaling model was developed using both multiple linear 
regression and neural network models to predict local mean rainfall at these stations. 
Using the cluster point process model, Demissie (2004) then developed a stochastic 
model for simulating future extreme rainfall events in these stations by conditioning the 
parameters of this conceptual rainfall model upon the statistically downscaled mean 
rainfall properties obtained earlier. Results from the model suggested an increase in 
rainfall magnitude and in dry spell durations and a decrease in frequencies of rainfall 
depth. Kiely (1999) also investigated the impacts of climate change on precipitation and 
stream flow. He analysed five decades of hourly precipitation (at eight sites) and daily 
streamflow at four rivers in Ireland. In part of his study, he associated the trend changes 
in rainfall and streamflow with changes in the North Atlantic Oscillation (NAO) index 
that occurred in the mid1970s. 
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In all the above-mentioned attempts of modelling extreme events in Ireland, only 
rainfall was considered and no study included extreme temperature events. Although the 
probabilistic nature and seasonality of extreme rainfall have been acknowledged in those 
studies, none of the previous studies have explicitly conditioned or associated change in 
the parameters of extreme rainfall on a climate variable (or a covariate) or over time. 
Therefore, the present study seeks to fill this gap. 

Previous studies of modelling extreme rainfall or temperature in which model 
parameters are allowed to change with time or climate variables (covariates), are found in 
work of Katz (1999), Coles (2001) and Katz et al. (2002). Katz et al. (2002), based on 
earlier work by Coles (2001), presented a methodology for statistical downscaling of 
extreme events through the incorporation of covariates into the extremal distribution. The 
developed methodology fits extremal distributions by maximum likelihood (ML), similar 
to the situation with time dependent parameters, but unlike a deterministic trend variable, 
a covariate is itself a random variable. Therefore, by fitting the extremal distribution 
conditional on the values assumed by the covariate, the problem reduces to that of a time 
varying parameter. For instance, given the value of a covariate (y), the conditional 
distribution of the extremal series could be assumed to follow a generalised extreme 
value (GEV) distribution with location parameter (y), scale parameter (y) and shape 
parameter (y). A typical parameterisation would be the same as in the following 
equation: 

0 1

0 1

( ) ( ) changing location with
ln ( ) ( ) changing scale with
( ) unchanging skewness with

y y y
y y y

y y
 (1) 

More generally, the covariate y could actually be a vector (i.e., consisting of one or more 
covariates, say y1, y2, etc.). 

The main factor in obtaining a good extremal model in any location depends on 
selection of appropriate covariate(s) that might has/have dominant effects on the 
local/regional scale variable on an annual or seasonal time scale. One natural candidate to 
serve as a covariate for hydrologic extremes is the El Nino-Southern Oscillation (ENSO) 
phenomenon, the dominant mode in global climate variation on an annual time scale 
(e.g., Katz et al., 2002). It has been associated with climate anomalies (such as droughts 
or floods) across large regions of the world. Similarly, the NAO, which is the dominant 
mode of wintertime atmospheric variability in the North Atlantic, has significant 
influence on climate variability in Western Europe, and specifically Ireland as 
highlighted by Kiely (1999). 

Similar to the case of traditional deterministic downscaling, in which large-scale 
atmospheric variables at grid point level are the field from which input variables of the 
downscaling models are selected, these large-scale atmospheric variables may also have 
the same effects on the extremal distribution parameters. Consequently, the local/regional 
extremal events could be affected by a change in the pattern of the large-scale 
atmosphere-ocean circulation at the grid point level corresponding to it. Therefore, the 
large-scale atmospheric variables are considered here as local covariates which affect 
extremal events (e.g., extreme rainfall, extreme maximum and minimum temperature). 

The methodology proposed by Coles (2001) and Katz et al. (2002) in downscaling 
extremal events are applied in an Irish context in the present research. However, unlike 
these studies, the extremal models presented here are seasonally based and their 
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associated covariates are selected from the large-scale atmospheric variables at a grid 
point level which corresponds to Ireland. The basic assumption made here is that 
parameters of a seasonal extremal distribution model at a location/region changes as 
function of large-scale atmospheric variables at the grid point level, since these variables 
incorporated the effects of NAO. 

3 The proposed model 

Generally, there are two main statistical models commonly used in modelling  
extreme values. These are the annual maximum, or block maxima (BM) model and  
peak-over-threshold (POT) model. The BM model uses a series of extreme values formed 
by selecting the highest value in a year or a block of time and then proceeds with fitting a 
statistical distribution to this extracted series. The POT model on the other hand uses all 
data above a threshold to form a series of extreme values and then proceeds with fitting a 
statistical distribution to this series. A rigorous discussion of merits and demerits of each 
model and the appropriate statistical distribution to be used with each one is given in 
Cunnane (1989), Coles (2001) and Palutikof et al. (2003) and only that part relevant to 
the current study is mentioned here. The description given here for the hybrid POT-GPD 
approach is based on the work of Gilleland et al. (2005). 

The modelling concept of POT is used in the present study to model extreme values 
series of maximum and minimum temperature, as it contains more information than 
selection of the BM value. Thresholds used in extracting the POT series are determined 
for each site using a specific procedure which will be described in Section 3.2. The 
appropriate distribution normally associated with such model, as mentioned in Cunnane 
(1989), Coles (2001) and Palutikof et al. (2003), is any one drawn from the family of 
generalised Pareto distribution (GPD). The distribution function, F(X), of the GPD is 
given by: 

1

( ) 1 1 ( )
e

F X x u  (2) 

where x is the random variable, x > u; and  is the scale parameter,  >0, with 

a threshold
shape parameter.

u
 

Depending on the value of the shape parameter, , the distribution can be classified as 
GPD type I, type II or exponential as follows: 

1 if  > 0, the distribution is GPD type I 

2 if  < 0, the distribution is GPD type II 

3 if  = 0, the distribution is an exponential distribution defined by: 
( )

( ) 1 .
x u

F X e  (3) 
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The return level-return period relation, or XT-T relation, is given by: 

( ) 1TX u T  (4) 

for GPD type I and type II, and by: 

( )TX u T  (5) 

for exponential distribution, where 

/ , is the number of peak over threshold extremes;
and is the total number of years.

return period (or recurrence period) in years.

m n m
n

T
 

The covariate concept (Gilleland et al., 2005) is based on associating a climate 
variable(s), considered to affect temperature in the named location, with one or all 
parameters of the distribution. In the present study, similar to Katz et al. (2002), only the 
scale parameter is allowed to vary with dominant covariates y1 and y2 for investigation 
purposes, while the shape parameter is kept constant. This is based on the assumption that 
the shape parameter, a characteristic of the temperature distribution at a location, is 
assumed to remain constant in the current and future periods. Two functional relations for 
the parameter with covariates are sought here. These are: 

1 2 0 1 1 2 2

1 2 0 1 1 2 2

ln , * * Logarithmic relation,  and,
, * * Identity relation

y y y y
y y y y

 (6) 

where (y1, y2) > 0 is the new value of the scale parameter as function of the covariates, 
0 is an intercept in the linear relation, and 1 and 2 are the slopes or trends of the 

variation in directions of y1 and y2. In the present study, the identity relation was used to 
describe change in the scale parameter, since the covariates are selected using stepwise 
regression. 

3.1 Model parameters estimation 

After determining a threshold and forming the POT series, parameters of the assumed 
GPD are need to be estimated. One of the methods used in estimating the model 
parameters is the ML method. The log-likelihood function to be optimised, for   0, is 
defined (Gilleland et al., 2005) as: 

1

( , ) log (1 1/ ) log 1
m

i

i

X ul m  (7) 

when  = 0 (i.e., for exponential distribution) the log-likelihood function is defined as 

1

1( ) log .
m

i
i

l m X u  (8) 

 

 



   

 

   

   
 

   

   

 

   

   28 Y.Z. Osman et al.    
 

    
 
 

   

   
 

   

   

 

   

       
 

One advantage of the ML method over other methods of parameters estimation is its 
adaptability to changes in model structures. This allows the incorporation of model 
parameters when they change as function of the covariates. The above likelihood 
functions will, respectively, change to the following forms: 

0 1 2 1 2
1 21

, , , log , (1 1/ ) log 1i i
i i

m
i

i

X ul y y
y y

 (9) 

0 1 2 1 2
1 21

, , log , .
,i i

i i

m
i

i

X ul y y
y y

 (10) 

As analytical maximisation of the log-likelihood function is not possible, so numerical 
optimisation techniques are always used for this purpose. These are generally techniques 
devoted for solution of non-linear equations, such as Newton-Raphson, method of 
scoring and BHHH method (Long, 1997). The numerical optimisation techniques  
of Nelder-Mead and Broyden-Fletcher-Goldfarb-Shanno (BFGS), as described in 
Henningsen and Toomet (2011), are employed by the ‘extRemes’ software used in this 
study. 

3.2 Threshold selection 

Selection of appropriate threshold is always difficult and represents point of weakness for 
a POT model over others. On one hand, a threshold must be set high enough so that only 
true peaks, with Poisson arrival rates (Palutikof et al., 2003) are selected. If this is not the 
case, the distribution of selected extremes will fail to converge to the GPD asymptote. On 
the other hand, the threshold must be set low enough to ensure that enough data are 
selected for satisfactory determination of the distribution parameters. 

Accordingly, a number of procedures have been used to aid in selecting an 
appropriate threshold for the POT model at a site. Two of these procedures are mentioned 
below: 

1 Mean residual life graphs: This is a plot of the mean excess over threshold as a 
function of threshold. For a GPD model, the graph should plot as a straight line, and 
the appropriate threshold value can be chosen by selecting the lowest value above 
which the graph is straight line (e.g., Davison, 1984). 

2 Model parameter graphs: This plots estimate each parameter as a function of 
threshold. For a GPD model, estimates of shape parameter should be approximately 
constant, while estimates of scale parameter should be linear, and the appropriate 
threshold value can be chosen by selecting the lowest value at which the graph is 
straight (e.g., Coles, 2001). 

In this study, the 90th percentile of the data has been used as a guide for selecting 
appropriate threshold for maximum temperature (Tmax) and the 10th percentile has been 
used as a guide for selecting appropriate threshold for minimum temperature (Tmin). 
Using combination of the procedures described above, thresholds guides are refined to 
yield appropriate ones. 
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3.3 Model diagnostics 

As the reason for fitting a statistical model to a set of data is to draw conclusions on some 
aspects of the population of the observed data, such conclusions could be sensitive to the 
accuracy of the fitted model. Thus, it is necessary to check the model accuracy and 
goodness-of-fit by checking its agreement with the data that were actually used to 
estimate it (model descriptive ability) and also checking its ability to simulate future 
values (model predictive ability). Four types of model diagnostics (Gilleland et al., 2005) 
are used in the present study to visually check the goodness-of-fit (descriptive ability) of 
the GPD to model the extreme values series. These are: 

a Probability plot, which is a comparison of an empirical (usually percentage rank) 
and the fitted distribution function in equations (2) or (3). In case of perfect fit, the 
data would line up on the diagonal of the probability plots as will be shown in 
Section 5. 

b Quantile plot, which is also a comparison of an empirical form for estimating the 
exceedance and the inverse of equations (2) or (3). Any departure from linearity 
indicates model failure in perfectly fitting the data. 

c Return period plot, which shows the return period in years against the return level 
from equations (4) or (5). Confidence intervals can be added to the plot to increase 
its informativeness. Empirical estimates for the return levels are also added to the 
plot to be used as a model diagnostic. If the GPD model is suitable for the data, the 
model-based curve and empirical estimates should be in reasonable agreement. 

d Density function plot, which is a comparison of the probability density function of a 
fitted model with the histogram of the POT data. This is less informative diagnostic 
for model as a histogram varies substantially with the choice of grouping intervals, 
which makes its use difficult and subjective. 

In order to assess the predictive ability of the GPD model, the method of split sample 
testing is used. The observed POT extreme series is divided into calibration sample 
(1961–1990) and validation sample (1991–2000). The distribution is fitted to the first 
sample using GPD without covariates and the estimated parameters are used to obtain the 
associated probability with which the observed POT in both samples has occurred. A 
second GPD fit with covariates is then performed, and the new estimated parameters are 
then used in conjunction with the probability obtained from the first fit to simulate model 
output. Correlation between the observed and simulated POT series is then established. 
The coefficient of determination is used here to check the model predictive ability (or 
efficiency) in both samples. 

3.4 Choice of preferred model 

When GPD parameters are considered function in covariates, there will be a number of 
possible models to choose from. The basic principle on choosing between models is 
parsimony, i.e., obtaining the simplest model (with less number of parameters) that 
explains as much variation in the data as possible. So in order to choose between model 
fits a test, known as likelihood ratio test, is used. The test proceeds as follows: 
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In case of two models M0 and M1, where M0 is a subset of M1, M0  M1 (e.g., M0 is 
without covariates and M1 is with covariates), the deviance statistic is defined as: 

1 1 0 02D l M l M  (11) 

where l0(M0) and l1(M1) are the maximised log-likelihoods under models M0 and M1 
respectively. Large values of D indicate that M1 explains substantially more of the 
variation in the data than M0; small values of D suggest that increase in the number of 
model parameters does not bring worthwhile improvements to the model capacity to 
explain the data. Therefore, initial estimates of how large D should be before preferring 
model M1 over M0 is provided by the asymptotic distribution of the deviance function 
(Coles, 2001). This can be tested as follows: 

Model M0 is rejected by a test at the -level of significance if D > c , where c  is the 
(1 – ) quantile of the 2  distribution with v degrees of freedom where v is equal to the 
difference in the number of estimated parameters. 

3.5 The extRemes software 

The software used for fitting the GPD model to a POT series, which allows the parameter 
to change as function of the covariates, is extRemes version 1.62 (Gilleland et al.,  
2005). The software, written in the R language and benefited from Coles (2001)  
‘S’ functions, is based on the concept of ML for estimating GPD parameters.  
The key advantage of the software is that it facilitates the fitting of statistical distributions 
with covariates using the ML method and has options for choosing an appropriate 
threshold for POT series. The Toolkit is specifically designed to facilitate the use  
of extreme value theory in applications oriented towards weather and climate  
problems that involve extremes. 

4 Data 

Observed daily maximum (Tmax) and minimum (Tmin) temperature data for the period 
1961–2000, for six selected synoptic stations representing both coastal and inland parts of 
Ireland (Figure 1) are used in the present study. Data from Valentia (0305), Dublin 
Airport (0532), Belmullet (1034), Birr (4919), Rosslare (2615) and Malin Head (0545) 
synoptic stations were obtained from Met Éireann, the Irish meteorological service. Daily 
grid-point data for the atmospheric variables, for surface and upper atmosphere, shown in 
Table 1, are taken from Wilby and Dawson (2007) and they consist of National Centre 
for Environmental Prediction (NCEP) re-analysis data (Kalnay et al., 1996). For 
demonstrating the model proposed in the present study and how it can be used, climatic 
variables from the A2 emission scenario from the Hadley Centre’s Global Climate 
Model, HadCM3, extracted for the period 1961–2000, have been used. The NCEP data 
will serve as potential candidate of covariates for the seasonal extremal models 
developed. 
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Figure 1 Locations of synoptic stations used in the study 

 

Table 1 Surface and atmospheric variables employed in the analysis 

Daily variable Code 
Maximum temperature (K) Tmax 
Minimum temperature (K) Tmin 
Mean temperature over a day (K) TEMP 
Mean sea level pressure (hPa) MSLP 
500 hPa geopotential height P500 
800 hPa geoptential height P800 
Near surface relative humidity RHUM 
Near surface specific humidity SHUM 
Geostrophic airflow velocity P_F 
Vorticity P_Z 
Zonal velocity component P_U 
Meridional velocity component P_V 
Geostrophic airflow velocity (500 hPa) P5_F 
Vorticity (500 hPa) P5_Z 
Zonal velocity component (500 hPa) P5_U 
Meridional velocity component (500 hPa) P5_V 
Geostrophic airflow velocity (800 hPa) P8_F 
Vorticity (800 hPa) P8_Z 
Zonal velocity component (800 hPa) P8_U 
Meridional velocity component (800 hPa) P8_V 

Source: Wilby and Dawson (2004), UK SDSM data archive 
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5 Methodology 

The steps followed to build the seasonal extreme temperature models using the hybrid 
POT-GPD approach are summarised in the following seven steps: 

1 The daily maximum (Tmax) and minimum (Tmin) temperatures, together with  
the corresponding atmospheric variables obtained from NCEP and HadCM3 are 
arranged into four seasons. Winter is defined as December, January, and February 
(DJF); spring as March, April and May (MAM), summer as June, July and August 
(JJA) and autumn as September, October and November (SON). The lead and lag of 
variables in Table 1 were also derived to create additional covariate time series. A 
suffix of _1 (_2) is added to the present variable coding to represent a lagged time 
series of the variable (e.g., P_F_1, P5_U_2), whereas a suffix of +1 (+2) is added to 
represent a leaded time series of the variable (e.g., MSLP+1, SHUM+2). 

2 Threshold guides for an extreme seasonal series (u) of Tmax and Tmin for each 
station are obtained using their 90th and 10th percentiles, respectively, as guides, to 
comply with extreme event indices defined in the Statistical and Regional Dynamical 
Downscaling of Extremes for European Regions (STARDEX Project, 2003). The 
threshold is then refined while fitting the model and the optimum threshold in each 
case, is taken when estimated values of estimated parameters stabilise. The base 
period for the calculation of thresholds is the period 1961–1990. This 30-year period, 
defined by the World Meteorological Organisation (WMO) as the 30-year normal 
period, is considered representative of the present day climate and encompasses a 
range of natural variability (IPCC, 2001). Using the threshold, seasonal series of the 
Tmax and Tmin extreme values are extracted for each station together with their 
corresponding possible set of covariates. The Tmin series is modelled here as a 
maximum extreme series by transforming it into a maximum series. This is done by 
multiplying the extreme values in the minimum extreme series by (–1) to transform 
the whole series into a series of maximum negative values. To maintain consistency, 
the threshold of the POT series should also be multiplied by (–1) when estimating 
the Tmin quantile. After fitting the model and estimating its parameters, the 
calculated quantile should finally be multiplied by (–1) to transform it back to the 
normal domain. 

3 Covariate selection exercises are then run using stepwise regression between the 
extracted POT Tmax and Tmin series and the possible set of all covariates. Initially, 
a cross correlation is conducted between all possible seasonal covariates, at each 
station. This helps in excluding covariates demonstrating high degree of co-linearity. 
Then, covariates-extreme value correlations are obtained for each station using 
stepwise regression. This analysis, in combination with the cross correlation, allow 
determination of which covariates are most strongly correlated with the precipitation, 
which in turn helps in making an adequate selection of covariates for use in 
downscaling and reduces the problem of multi-co linearity. A t-test for significance 
of the correlation between the precipitations POT series and each covariate, obtained 
via the stepwise regression, is then run to help select the most dominant covariates 
(based on test results) in the location to use in the POT-GPD model. Tables 2 and 3 
below shows, respectively, summary of Tmax and Tmin statistics, appropriate 
covariates, thresholds, and number of extracted extremes in each station. 
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Table 2 Tmax seasonal models, statistics and parameters 
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Table 3 Tmin seasonal models, statistics and parameters 
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4 Having selected the appropriate covariates for different POT series, a GPD fitting 
with ML is performed in two steps to develop the seasonal extremal model in the 
station. In Step 1, the GPD fitting is performed using a guided threshold value  
and without the use of covariates. Following the second procedure described in 
Section 2.2 a refining value for the threshold is obtained. A refitting for the GPD  
is then performed again using the refined value of the threshold and the model is 
termed base model (M0) for the station. In step two, a third GPD fitting is performed 
with use of the selected covariates for the scale parameter only, and the model is 
termed seasonal model (M1) for the station. Diagnostic plots for the fit, provided by 
the extRemes software, judge how well model M0 fits the data. Which of the two 
models (M1 and M0) is preferred over the other is governed by running the likelihood 
ratio test. Moreover, an evaluation for the coefficient of determination, R2,  
between observed and simulated extreme values series is used as a test for model 
predictability and performance. Extreme values series from the period 1961–1990 is 
used for calibration and from the period 1991–2000 is used for validation. Values of 
R2 for each period and season are also shown in Tables 2 and 3. 

5 Perturbed climate seasonal return level – return period relations for each station are 
then developed by extracting corresponding values of covariates from the HadCM3 
model outputs. The extracted covariates are used to generate possible future values 
assumed by the scale parameter ( (y1, y2)), using fitting parameters of model M1 and 
equation (6). The shape parameter is considered constant. For each possible value of 
the scale parameter a value for the return level XT for a range of return periods T 
years is calculated using equation (4). Return periods considered are 2, 3, 5, 7, 10, 
20, 30, 50, 75 and 100 years. Values of XT from model M0 (referred hereinafter as 
NOCLM) are also calculated for the same return periods using equation (4) and 
model parameters values from fit M0. 

6 The maximum, minimum and average values of the calculated XT (Tmax/Tmin 
quantile) in each seasonal downscaling model are then obtained for the baseline 
period 0 (CLM1961-1990), period 1 (CLM1991-2020), period 2 (CLM2021-2050), 
and period 3 (CLM2051-2080). The number of years in each period (n) is 30 years. 

7 For each XT series in the periods outlined above, the maximum value of Tmax  
(or minimum value in case of Tmin) in the series is taken to represent a point in the 
effective XT-T relation in that period. The max (XT) and min (XT) points obtained  
are finally plotted against return period T to yield the affective seasonal return  
level-return period curve of Tmax/Tmin for any of the considered periods at all 
stations. 

6 Analysis and discussion of results 

Results obtained by applying the methodology described above on data from different 
locations, are analysed and discussed in this section. Tabular and graphical forms of 
presentation are used to aid the analysis and discussion, which come here in two parts. 
The first part is devoted for analysing the goodness of fit of the combined POT-GPD as a 
model for risky events of temperature at the stations and how incorporation of covariates 
improves the model predictability. The second part concerns with the discussion of  
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how the developed seasonal models could be used to drive an effective seasonal return 
level – return period relation, and the usefulness of these relations as tools for risk 
management of, e.g., heat wave or freezing conductions resulting from global warming at 
these stations. 

6.1 Building the Tmax/Tmin POT-GPD seasonal models 

Following the steps described in Section 5, a GPD with covariates model has been 
employed to fit seasonal POT series of maximum (Tmax) and minimum (Tmin) 
temperatures at all selected stations using the extRemes software. The hybrid POT-GPD 
modelling approach is used to build a total of 48 different POT-GPD seasonal models for 
Tmax and Tmin, in which the scale parameter of the GPD is allowed to vary as a function 
of selected covariates (four seasonal models for Tmax and four seasonal models for Tmin 
at each station). Tables 2 and 3 present results of estimated model parameters for each 
Tmax/Tmin models. Analysis and discussion of each group of models are given below. 

6.1.1 Tmax seasonal models 

Temperature is considered a less problematic physical variable to model. However, 
extreme values of Tmax can sometimes be difficult to model. The POT series of seasonal 
Tmax for each station is extracted using the 90th percentile of the series as an initial 
threshold. The methodology described in Section 5 is followed to build the Tmax 
seasonal models at each station. The stepwise regression process revealed that the 
optimum candidates for Tmax0305-Sum model covariate in the location are RHUM and 
TEMP, both of which display significant correlation with the Tmax series (r = –0.428 for 
RHUM and r = 0.455 for TEMP). After selecting suitable threshold and appropriate 
covariates, the data is fitted to the GP models M0 and M1. Likelihood ratio test is then 
used to select the preferred POT-GPD seasonal model for Tmax at the named station. 

Figures 2 and 3 showed diagnostic plots of M0 and M1, respectively, for the Valentia 
Observatory Tmax0305-Sum model. The diagnostics plots in these figures demonstrate 
that GPD fits the Tmax extreme values series at this station very well and that addition of 
covariates to the model produce a new model which also follow the same distribution. 
Similar results are obtained for all Tmax seasonal models in the other stations. The 
likelihood ratio test, described in Section 3.4, revealed that M1 is preferred over M0, for 
this station and all other stations. Since the calculated values of D were significant at the 
0.05 level, another significance level could be used. 

All the Tmax POT-GPD seasonal models developed in this study are shown in  
Table 2. The values of shape parameter in Table 2 indicate that all the Tmax seasonal 
models obtained are classified as GPD II, even after inclusion of covariates. The GPD II 
fits extreme Tmax series very well as judged by the diagnostics plots in Figures 2 and 3. 
The developed seasonal models predictability and efficiency are further checked here by 
evaluating the value of coefficient of determination, R2, yielded by correlating the 
observed and simulated extreme series, as explained in Section 5. For a significance level 
of 0.05, values for the coefficient of determination are found to be very high (more than 
80%) for all models for both the calibration and validation periods, as shown in the last 
two columns of Table 2. The reason for obtaining higher values of correlations is the 
inclusion of covariates in estimating future scale parameter for the distribution (i.e., 
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treating the distributional model as non-stationary). Therefore, the high values of the 
coefficient of determination and the good agreement in the diagnostic plots suggest that 
these models can reasonably be used to describe change in the occurrence of extreme 
Tmax events at these locations. 

Figure 2 Diagnostic plots for Tmax0305-Sum model at Valentia station for fit M0 (see online 
version for colours) 

Probability plot Quantile plot 

 
Return level plot Density plot 

 

Figure 3 Diagnostic plots for Tmax0305-Sum model at Valentia station for fit M1 (see online 
version for colours) 

Residual probability plot Residual quantile plot (exptl. scale) 
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6.1.2 Tmin seasonal models 

The extreme values series of Tmin temperature is extracted using the 10th percentile of 
the data series as initial threshold. The extracted series, which represent a minimum 
series of the variable, cannot be modelled as it is by the hybrid POT-GPD approach. The 
Tmin series is transformed to a maximum series following the procedure as outlined in 
Step 2 of Section 5. Then the rest of the methodology described in Section 5 is followed 
to build the Tmin seasonal models. A threshold value of 10th percentile was first used, 
then refined before selecting appropriate covariates from the NCEP data then go ahead 
with fitting models M0 and M1. The likelihood ratio test is then used to choose the best 
extreme Tmin POT-GPD seasonal model for each station. 

Figures 4 and 5 show the diagnostic plots resulted from fits M0 and M1, respectively, 
for the Valentia Observatory Tmin0305-Win model. The diagnostic plots of Figure 4 
indicate that GPD II fits the Tmin extreme values very well at this station. Similar results 
are also obtained for all other station models. Although the likelihood ratio tests, 
described in Section 3.4, revealed that M1 is preferred over M0, however the diagnostic 
plots of Figure 5 may look a little bit confusing. The confusion here comes as these plots 
reflect the influences of climate variables in a quantile magnitude and frequency, which 
are represented here by including of these covariates in the model. 

Figure 4 Diagnostic plots for Tmin0305-Win model at Valentia for fit M0 (see online version  
for colours) 

Probability plot Quantile plot 

 
Return level plot  
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Figure 5 Diagnostic plots for Tmin0305-Win model at Valentia for fit M1 (see online version  
for colours) 

Residual probability plot Residual quantile plot (exptl. scale) 

 

Table 3 shows all Tmin POT-GPD seasonal models developed in the present study. It is 
observed from these results that the shape parameter values in all models do not change 
their sign. That is to say, all the Tmin seasonal models follow the form of GPD II, even 
after inclusion of covariates in the models. It can also be noticed that GPD II predicts 
Tmin extreme quantiles very well as judged by the diagnostic plots in Figure 4. But the 
climate driven model of Tmin is not that good, judging by its fit in Figure 5. So, it can be 
noted here that GPD II does not predict Tmin extreme values very well. Thus, these 
models are not considered robust for generating future event of Tmin. 

6.2 Climate driven return level – return period relations 

The relations analysed and discussed in this section are obtained using the seasonal 
models presented in Tables 2 and 3. The derived effective return level – return period 
relations are then used to prepare characteristic curves for each station. Samples of these 
curves are shown here to demonstrate how future climate may possibly affect the 
magnitude and frequency of extreme temperature events associated with a specified 
return period. The characteristic curves for Valentia and Birr stations are used here to 
illustrate this. 

6.2.1 Tmax effective relations 

Figures 6(a), 6(b), 6(c) and 6(d) and Figures 7(a), 7(b), 7(c) and 7(d) represent graphical 
forms of Valentia and Birr effective Tmax return levels – return period relations. Each 
seasonal relation at a station shows five curves; one for each modelling period described 
in Section 4, and a fifth curve to represent the relation from NOCLM (or fit M0). All 
relation curves at both stations show general increase in the maximum temperature 
quantile magnitude as time moves into future with change in climatic conditions driven 
by the ongoing global warming. Period 3 curves, e.g., show the highest of this increase in 
the quantile magnitudes while the baseline curves give the lowest for all seasons except 
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the summer. Similarly, the curves correspond to the NOCLM (M0) generally fall far 
below the baseline curves for all seasons except the summer. 

Figure 6 return level versus return period plot for (a) Tmax0305-Aut, (b) Tmax0305-Spr,  
(c) Tmax0305-Sum and (d) Tmax0305-Win (see online version for colours) 

 
(a) 

 
(b) 

 
(c) 

 
(d) 
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Figure 7 Return level versus return period plot for (a) Tmax4919-Aut, (b) Tmax4919-Spr,  
(c) Tmax4919-Sum and (d) Tmax4919-Win (see online version for colours) 

 
(a) 

 
(b) 

 
(c) 

 
(d) 
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The curves in Figures 6(a), 6(b), 6(c) and 6(d) also reveal that difference in temperature 
increase in Tmax magnitude, as a result of climate change differs seasonally. For 
example, for the summer period at Valentia, a return period of 100 years gives a Tmax of 
31.9°C for NOCLM (M0) curve, 32.6°C for the baseline period, 29.3°C for period 1, 
33.2°C for period 2, and 35.4°C for period 3. So, on average, a likely increase of around 
2–3% is expected in the Tmax summer values as a consequence of climate change. This 
summer difference in temperature increase is significantly exceeded in Valentia spring 
and winter relations. 

For Birr station effective relations shown in Figures 7(a), 7(b), 7(c) and 7(d), similar 
results, as those obtained for Valentia, are found. The only difference here is that climate 
change effects are more pronounced. All Tmax return level-return relations obtained here 
indicate that warmer conditions are likely for the future. 

6.2.2 Tmin effective relations 

Figures 8(a), 8(b), 8(c) and 8(d) and Figures 9(a), 9(b), 9(c) and 9(d) show curves of 
effective return level – return period relations for Tmin at Valentia and Birr stations, 
respectively. The curves in these figures demonstrate that a general decrease in Tmin is 
expected as a consequence of climate change. This would translate into an increased 
likelihood of severe winters at these locations. The decrease in a Tmin magnitude, of  
100 years return period, is found to vary with climate periods considered. A maximum 
decrease of 9°C is projected at Valentia during wintertime between the baseline period 
and period 2. During the summer time, the decrease in Tmin is relatively lower. 
Consequently, colder conditions are expected at this location. 

Figure 8 Return level versus return period plot for (a) Tmin0305-Aut, (b) Tmin0305-Spr,  
(c) Tmin0305-Sum and (d) Tmin0305-Win (see online version for colours) 

 
(a) 

 
(b) 
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Figure 8 Return level versus return period plot for (a) Tmin0305-Aut, (b) Tmin0305-Spr,  
(c) Tmin0305-Sum and (d) Tmin0305-Win (continued) (see online version for colours) 

 
(c) 

 
(d) 

Figure 9 Return level versus return period plot for (a) Tmin4919-Aut, (b) Tmin4919-Spr,  
(c) Tmin4919-Sum and (d) Tmin4919-Win (see online version for colours) 

 
(a) 

 
(b) 
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Figure 9 Return level versus return period plot for (a) Tmin4919-Aut, (b) Tmin4919-Spr,  
(c) Tmin4919-Sum and (d) Tmin4919-Win (continued) (see online version for colours) 

 
(c) 

 
(d) 

For Birr station, the situation is somehow similar, and climate change influences 
appeared to be much stronger. The curves in Figures 9(a), 9(b), 9(c) and 9(d) suggest that 
a general decrease in Tmin is expected. The decrease is greater during the winter period, 
e.g., 15°C for a 100 years return period. The decrease is significantly reduced during the 
summer time, at 3°C. Accordingly colder conditions are expected at this location with 
this pattern of climate change. However, the extreme nature of the winter projections 
suggest a bias or error, possible associated with the parent GCM. 

7 Summary and conclusions 

In the present study, development of seasonal models for extreme maximum and 
minimum temperatures using the hybrid POT-GPD approach is addressed. The objective 
is to develop a seasonal model which is capable of maintaining the extreme value 
characteristics (magnitude and frequency) in addition to the ability to projecting climate 
change-related effects on these characteristics. The developed models are mainly  
based on fitting GPD to observed extreme events of both maximum and minimum 
temperatures, using a seasonally based POT theory as an extremal model. The reason for 
using this approach is that parameters of the fitted distribution are allowed to vary  
as function of some climatic variables (or covariates) selected from a large-scale 
atmospheric circulation pattern provided by a GCM model, at grid point level. Only the 
scale parameter is allowed to vary as function of the selected dominant covariates in the 
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named location. Observed data of maximum and minimum temperature from six stations, 
representing a mixture of both coastal and inland locations in Ireland, are used in building 
the seasonal models using the extReme software. Effective climate-driven return  
level-return period relations are also derived at each station based on the models 
developed. Results are presented in graphical and tabular formats and then analysed and 
discussed. Concluding remarks from this study can be summarised as follows: 

 The hybrid POT-GPD seasonal models proposed here are proved to model the 
extreme behaviour of Tmax and Tmin in a very successful manner. The addition  
of covariates to predict future changes in distribution scale parameters has led to 
significant improvements in the model descriptive and predictive abilities. 

 All developed seasonal models are suitable for use to obtain risky events of Tmax 
and Tmin quantiles for a given return period. All we needed are extraction of 
Tmax/Tmin POT series together with their covariates from NCEP data which has 
strongest relation 23 with them, generation of set of scale parameters using model 
parameters given in Tables 2 and 3 and corresponding GCM values of the associated 
covariates for the required future period, then calculate a series of possible values for 
the quantile. A maximum value for the Tmax quantile series (or a minimum for the 
Tmin quantile series) could then be selected to represent the desirable quantile. 

 Tmax climate driven return level – return period relations derived in the study 
suggest that there is a possible increase in the number of extreme events for Tmax  
in Ireland between the current and future climate. The difference in temperature 
increase is in orders of 0.5 to 2°C, which is compatible with the GCM models 
projections of future increases in global temperature. 

 Tmin climate driven return level – return period relations derived in the study 
suggest that there is a decrease likely in the number of extreme event of Tmin in 
Ireland with between the current and future time periods employed. This decrease, 
which seasonally varies, would translate into an expectation of milder winter 
conditions. 

 The suggested increase in extreme temperature events, if realised, would have 
adverse effects on the natural environment, temperature-related public health and 
socioeconomic activities. Taking uncertainty in GCM model outputs, the proposed 
seasonal models and effective quantile return period relations developed here can 
only be used as tools during planning stage or as guidance for assessing or managing 
risk on environment-related activities affected by current global warming. 
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