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Abstract

The dithioester (CH2)4NCS2CH3 (PyDTM, 1-pyrrolidinecarbodithioate methyl ester) has been prepared by reaction of the parent

ammonium salt NH4PyDT ðPyDT ¼ ðCH2Þ4NCS�
2 Þ with methyl iodide in water/ethanol. The reaction of PyDTM with PdCl2

allowed to synthesize either [PdCl2(PyDTM)], in which the ligand is chelated by both sulfur atoms, or [PdCl2(PyDTM)2], in which

the ligand acts as monodentate through the thiocarbonyl sulfur. Thermal degradation of [PdCl2(PyDTM)] yielded the

[PdCl(PyDT)]n species as an intermediate, which, in the presence of donors as chloride ions or dimethyl sulfoxide (DMSO), gave

the complexes [PdCl(PyDT)(DMSO)] and NR4[PdCl2(PyDT)]. Moreover, PyDTM was found to react with various [PdCl(dithio-

carbamato)]n intermediates to form the mixed species [PdCl(dithiocarbamato)(PyDTM)], whose thermal degradation yielded the

[Pd(dithiocarbamato)(PyDT)] complexes. The behaviour of the prepared compounds in either solution or solid phase has been

described on the basis of IR and proton NMR spectra and thermogravimetric analysis (TG and DTA).

� 2004 Elsevier B.V. All rights reserved.
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1. Introduction

Our interest on platinum(II) and palladium(II) com-

plexes with sulfur containing molecules depends on their

detoxicant properties against heavy metal intoxication.

Despite of the wide number of platinum complexes
which have been tested for antitumor properties (about

3000 in the last 30 years [1]), cisplatin is so far the most

effective antitumor drug, along with a few carboxylato

analogues [2–4]. A recent study on sulfur-bonding

chemoprotective agents suggested diethyldithiocarba-

mate as the most effective rescue agent in a S-donor ser-

ies (thiourea, thiosulfate and glutathione) against

cisplatin toxicity [5]. In order to modulate cisplatin
activity and toxicity, a new strategy concerns the design

of new molecules containing either N or S donors [6–8].
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Among them, the dithiocarbamato complexes

[M(S2CNEt2)(L)]NO3 (M = Pd or Pt; L = 2,2 0-bipyridyl

or 1,10 leukaemie-phenanthroline) showed antitumor

activity against leukaemic cells [9]. In this line, we re-

ported various platinum and palladium complexes with

dithioesters and dithiocarbamates which were tested for
in vitro cytostatic activity against KB tumor cells [10–

12]. Among them, platinum and palladium complexes

with dithioesters containing the sarcosine moiety

produced interesting results. The complexes [MCl2-

(ESDTM)] (M = Pd or Pt; ESDTM = EtO2CCH2-

(CH3)NCS2Me) were prepared as a source for the

related polymeric dithiocarbamates of formula

[MCl(ESDT)]n [13,14]. The latter species reacts with
amines in organic media to form the [MCl(ESDT)

(amine)] complexes, which were tested for in vitro cyto-

static activity against human leukaemic HL-60 and

HeLa cells, the most active compounds being the pyri-

dine (Py) derivatives of formula [MCl(ESDT)(Py)] [15].
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The complex [PtCl(ESDT)(Py)] showed cytotoxic effi-

cacy, the ability to overcome cisplatin resistance and

low nephrotoxicity in respect to cisplatin [16,17],

whereas the palladium analoge causes severe damages

in the kidney [18]. The dithiocarbamates examined

(essentially ESDT, Me2DT or Et2DT) do not present
particular properties by themselves, apart from the gen-

eral detoxicant ability, whereas pyrrolidine dithiocarba-

mate has been widely reported in the last three years

owing to antioxidant, antiviral and antiinflammatory

properties and metal transport in membranes [19–24].

We thought then, of interest to extend the study to such

a particular dithiocarbamate.

As a first study, this paper reports the palladium
complexes with the dithioester PyDTM and with the

dithiocarbamate PyDT
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2. Experimental

2.1. Materials

Palladium chloride, NMe4Cl, NBu4Cl and (CH3)2-

NCS2CH2C6H5 (dimethyldithiocarbamate benzyl ester,

DMDTB) were used as supplied (Aldrich products).

The dithioester PyDTM (1-pyrrolidinecarbodithioato
methyl ester, (CH2)4NCS2CH3) was prepared by reac-

tion of an aqueous solution of NH4PyDT (ammonium

1-pyrrolidinecarbodithioate, Aldrich, 3.7 Æ 10�2 mol in

25 cm3) with MeI (3.5 Æ 10�2 mol in 10 cm3 of ethanol).

The colorless warm solution separated on standing

white crystals of the compound, which were filtered,

washed with small fractions of H2O/EtOH (1:1 vol./

vol.) and then with H2O, and dried under reduced pres-
sure. A further fraction of product was obtained by add-

ing H2O to the mother solution. Yield: 95%.

The dithioester ESDTM [EtO2CCH2(CH3)NCS2Me]

was prepared by reaction of sarcosine ethyl ester with
CS2 and then with MeI [13], whereas DMDTM

(Me2NCS2Me) was prepared by reaction of Na(Me2-

CNS2) with MeI [12].

The complex [PdCl(ESDT)]n has been obtained by

heating the parent [PdCl2(ESDTM)] species on an oil

bath (120 �C) under reduced pressure [25].
The complex [PdCl(DMDT)]n was prepared by reac-

tion of PdCl2 (5.1 Æ 10�3 mol) with DMDTB (5.2 Æ 10�3

mol in 15 cm3 of CH2Cl2). The suspension gradually

transformed into a pink powder (30 h with vigorous stir-

ring), which was filtered from the orange solution,

washed with CH2Cl2 and n-pentane and dried under re-

duced pressure. Yield: 88%. If the reaction was carried

out in benzene, mixtures of [PdCl(DMDT)]n and
[PdCl2(DMDTB)] were obtained.

2.2. Preparation of the complexes

The complex [PdCl2(PyDTM)] was prepared by add-

ing PyDTM (8.8 mmol) to a PdCl2 suspension in

CH2Cl2 (8.0 mmol in 10 cm3) with vigorous stirring

(18 h). The heterogeneous reaction yielded initially a
brown solution, which gradually separated an orange

solid. It was filtered, washed with CH2Cl2 and dried un-

der reduced pressure. Yield: 90%. Attempts to synthe-

size the compound in other solvents failed. In benzene,

the reaction (at reagents molar ratio 1:1) was slow and

unfinished within one week, whereas in acetone the

product was always impure for the 1:2 adduct.

The complex [PdCl2(PyDTM)2] was prepared by
reaction of PdCl2 (9.0 Æ 10�4 mol) and PyDTM

(2.4 Æ 10�3 mol) in 8 cm3 of CH2Cl2/benzene (1:1 vol./

vol.). The brown solution separated (3 h under stirring)

a brown solid, which was filtered, washed with benzene/

n-pentane (1:2 vol./vol.) and at the end with n-pentane

fractions.

The polymeric species [PdCl(PyDT)]n was obtained

by heating under reduced pressure the parent
[PdCl2(PyDTM)] complex up to 210 �C in an oil bath.

The initially orange solid turns gradually to a pink solid,

which is kept at 210 �C per ca. 1 h. The same product

was obtained by heating up to 170 �C solid samples of

[PdCl(PyDT)(DMSO)], obtained by stirring a

[PdCl(PyDT)]n suspension in a CH2Cl2/n-pentane (1:1

vol./vol.) solution of dimethyl sulfoxide (DMSO, molar

ratio 1:6, 1 d). The yellow solid was filtered, washed with
CH2Cl2/n-pentane and dried under reduced pressure.

Yield: 84%.

The NMe4[PdCl2(PyDT)] complex was obtained by

adding [PdCl(PyDT)]n (6.1 Æ 10�4 mol) to a NMe4Cl

solution in ethanol (1.5 Æ 10�3 mol in 5 cm3). The orange

solution separated, under stirring (2 h), an orange solid,

which was filtered, washed with EtOH and n-pentane

and dried under reduced pressure. Yield: 83%. The
NBu4[PdCl2(PyDT)] analogue was obtained by dissolv-

ing [PdCl(PyDT)]n (4.0 Æ 10�4 mol) in a CHCl3 solution
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of NBu4Cl (4.4 Æ 10�4 mol in 10 cm3). Traces of unre-

acted dithiocarbamate were filtered away and the orange

solution was treated with Et2O. The red oily product

was decanted from the orange solution and dried under

reduced pressure. The oil solidified on standing (5 d)

yielding an orange solid, which was washed with Et2O.
Yield: 60%.

The complex [PdCl(PyDT)(PyDTM)] was prepared

by adding [PdCl(PyDT)]n (5.0 Æ 10�4 mol) to a PyDTM

solution in benzene (1.5 Æ 10�3 mol in 5 cm3) under stir-

ring (3d). The orange solid was filtered, washed with

benzene/n-pentane (1:1 vol./vol.) and with n-pentane.

Yield: 80%. If [PdCl(PyDT)]n was treated with a differ-

ent dithioester in the same conditions, no appreciable
reaction was observed. As an example, a suspension of

[PdCl(PyDT)]n in a benzene solution of ESDTM, at

molar ratios from 1:1 to 1:4, did not show any change

after a week under vigorous stirring, as for the [PdCl-

(PyDT)]n/DMDTM system.

The species [PdCl(DMDT)(PyDTM)] and [PdCl-

(ESDT)(PyDTM)] were prepared by reaction of the par-

ent [PdCl(dithiocarbamato)]n intermediate with PyDTM
in benzene (molar ratio 1:1.1, overnight with stirring).

The orange powder was filtered, washed with benzene/

n-pentane (1:1 vol./vol.) and then with n-pentane. Yield:

ca. 65%.

The mixed bis-dithiocarbamate [Pd(DMDT)(PyDT)]

was obtained by heating [PdCl(DMDT)(PyDTM)] in

an oil bath (160 �C) under reduced pressure. The yellow

compound has also been prepared by reaction of
[PdCl(DMDT)]n (5.8 Æ 10�4 mol) with NH4PyDT

(6.4 Æ 10�4 mol) in EtOH with stirring (6 h). The powder

was filtered, washed with EtOH and n-pentane and dried

under reduced pressure. Accordingly, [Pd(ESDT)-

(PyDT)] was obtained either by thermal degradation

of the parent [PdCl(ESDT)(PyDTM)] (160 �C) or by

reaction of [PdCl(ESDT)]n with NH4PyDT in ethanol

(molar ratio 1:1.3).
The [Pd(PyDT)2] complex was prepared by thermal

degradation of solid samples of either [PdCl2(PyDTM)2]

(160 �C) or [PdCl(PyDT)(PyDTM)] (170 �C). Otherwise,

it was prepared by reaction of K2[PdCl4] and NH4PyDT

in H2O (molar ratio 1:2), as for [Pd(DMDT)2]. Samples

of the yellow [Pd(ESDT)2] compound were prepared by

heating [PdCl2(ESDTM)2] on an oil bath (140 �C, 2 h) in
the air [13].

2.3. Measurements

Elemental analyses were carried out on a Fisons

EA1108 CHNS-O microanalyser. IR spectra were re-

corded on Nicolet 5SXC FT-IR and 20F Far-IR spec-

trometers, as either Nujol mulls between KBr and

polyethylene discs or as KBr pellets. NMR spectra were
measured using a Bruker DRX 300 (ppm; internal stan-

dard, TMS). Thermogravimetric data in air were
obtained on Netzsch STA 449 thermoanalytical equip-

ment (flux rate, 50 cm3 min�1; heating rate, 5 �C min�1;

and ref. material Al2O3). The weight of the samples in

the crucible was about 15–25 mg.
3. Results and discussion

The ligand PyDTM was prepared by reaction of the

salt NH4PyDT with methyl iodide in H2O/EtOH (molar

ratio 1:1; Table 1). The complex [PdCl2(PyDTM)2] was

obtained by reaction of PdCl2 and ligand (molar ratio

ca. 1:3) in CH2Cl2/benzene. It is necessary to operate

with a ligand excess, otherwise the samples of the brown
product contain appreciable amounts of the orange 1:1

species. Impure samples were also isolated when the

reaction was performed in dichloromethane, addition

of benzene stabilizing the 1:2 complex, which is scarcely

soluble in the mixed solvent medium. The complex

[PdCl2(PyDTM)] has been prepared by reaction of

PdCl2 and PyDTM (molar ratio 1:1) in dichlorome-

thane. The reaction trend suggests that the brown
[PdCl2(PyDTM)2] solid is formed at first, which reacts

slowly with the residual palladium salt yielding the or-

ange 1:1 product. The suspension should be kept in

the dark, otherwise either [PdCl(PyDT)(PyDTM)] or

[PdCl(PyDT)]n are formed as side products. Large

amounts of side products were present by operating in

acetone, whereas the reaction was slow in benzene, the

resulting samples containing always unreacted palla-
dium chloride.

As observed previously, the palladium dithioester ad-

ducts present a low thermal stability [12,13]. They under-

go S-demethylation yielding the corresponding

dithiocarbamates [MCl(dithiocarbamato)]n and [M-

(dithiocarbamato)2] (dithiocarbamato = ESDT, DMDT

or DEDT) as degradation intermediates [13,25]. As

shown in Fig. 1, degradation of [PdCl2(PyDTM)] starts
at 150 �C (Table 2), the first step (endotherm at 189 �C)
corresponding to quantitative evolution of methyl chlo-

ride (weight loss of 14.8% against a calculated value of

14.9%). The [PdCl(PyDT)]n intermediate is stable in the

200–280 �C temperature interval, the subsequent decom-

position process ending at ca. 400 �C with formation of

palladium (total weight loss, 67.4% against a calculated

value of 68.6%). The weight increase in the 510–780 �C
temperature interval is caused by non-stoichiometric oxy-

gen uptake on the sample surface to form PdO, which re-

leases oxygen at 823 �C. Such a behaviour in the 400–850

�C interval is common to all palladium complexes with

either dithioesters or dithiocarbamates examined so far,

whereas the platinum analogues decompose generally to

platinum below 500 �C, the metal showing no tendency

to react with oxygen. Thermal decomposition of solid
[PdCl2(PyDTM)] allows to obtain the polymeric species

[PdCl(PyDT)]n, which, being coordinatively unsaturated,



Table 1

Analyticala and physical data

Compound Formula Color C H N m(CN) (cm�1)

Dithioesther Dithiocarbamato

PyDTM C6H11NS2 white 44.5(44.7) 6.7(6.8) 8.8(8.7) 1464

[PdCl2(PyDTM)] C6H11Cl2NPdS2 orange 21.4(21.3) 3.0(3.3) 3.9(4.1) 1583

[PdCl(PyDT)]n C5H8ClNPdS2 pink 20.9(20.8) 2.6(2.8) 4.7(4.8) 1548

[PdCl2(PyDTM)2] C12H22Cl2N2PdS4 brown 28.7(28.8) 4.3(4.4) 5.4(5.6) 1495

[Pd(PyDT2] C10H16N2PdS4 yellow 29.8(30.1) 3.8(4.0) 6.7(7.0) 1511

NMe4[PdCl2(PyDT)] C9H20Cl2N2PdS2 orange 27.6(27.2) 4.7(5.0) 7.0(7.0) 1533

NBu4[PdCl2(PyDT)] C21H44Cl2N2PdS2 orange 45.0(44.6) 8.8(7.8) 5.0(4.9) 1525

[PdCl(PyDT)(PyDTM)] C11H19ClN2PdS4 orange 29.6(29.4) 3.6(4.3) 5.8(6.2) 1495 1523

[PdCl(DMDT)(PyDTM)] C9H17ClN2PdS4 orange 25.4(25.5) 3.9(4.0) 7.0(6.6) 1498 1561

[PdCl(ESDT)(PyDTM)] C12H21ClN2O2PdS4 red oil 28.8(29.1) 3.9(4.3) 5.4(5.6) 1508 1520b

[Pd(DMDT)(PyDT)] C8H14N2PdS4 yellow 25.7(25.8) 3.5(3.8) 7.2(7.5) 1511, 1548

[Pd(ESDT)(PyDT)] C11H18N2O2PdS4 yellow 29.3(29.7) 3.8(4.1) 6.1(6.3) 1514c

[Pd(DMDT)2] C6H12N2PdS4 yellow 21.1(20.8) 3.5(3.5) 8.2(8.1) 1548

[Pd(ESDT)2] C12H20N2O4PdS4 yellow 29.1(29.4) 4.1(4.1) 5.7(5.7) 1517d

[PdCl(PyDT)(DMSO)] C7H14ClNOPdS3 yellow 22.8(23.0) 3.7(3.8) 3.7(3.8) 1554

a Calculated values (%) in parentheses.
b m(CO), 1745 cm�1.
c m(CO), 1742 cm�1.
d m(CO), 1739 cm�1.
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Fig. 1. Thermograms of [PdCl2(PyDTM)].
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can easily bind N, S or P donors yielding a variety of

mixed complexes. It is not possible to synthesize the poly-

meric intermediate by direct reaction of K2[PdCl4] and

PyDTanion. Attempts inwater or inwater/alcoholmedia

at various stoichiometric ratios always separated the spe-

cies [Pd(PyDT)2], as observed previously for various
dithiocarbamato ions. The complex [PdCl(PyDT)]n is
then obtained as a pink powder by gradually heating the

orange [PdCl2(PyDTM)] complex up to 210 �C, in oil bath
under reduced pressure. The [PdCl2(PyDTM)2] complex

is stable up to 130 �C (Fig. 2). In the 130–200 �C temper-

ature interval two methyl chloride molecules are evolved

(endothermic peak, 148 �C; weight loss, 21.0% against a
calculated value of 20.2%) to yield [Pd(PyDT)2] as degra-



Table 2

Thermal data for the complexes

Compound Decomposition interval (�C) Tg weight loss % DTA Peak temperature (�C)a

Experimental Calculated

[PdCl2(PyDTM)] 150–200 14.8 14.9 (–CH3Cl) 189 endo

280–830 52.6 53.7 (to Pd) 384 exo, 823 endo

[PdCl2(PyDTM)2] 130–200 21.0 20.2 (–2 CH3Cl) 148 endo

280–830 57.8 58.5 (to Pd) 406 exo, 818 endo

[Pd(PyDT)2] 290–825 72.9 73.3 (to Pd) 410 exo, 812 endo

NMe4[PdCl2(PyDT)] 25–260 – – 195 endo m

260–830 72.9 73.2 (to Pd) 287 endo, 395 exo, 822 endo

NBu4[PdCl2(PyDT)] 25–190 – – 102 endo m

190–830 81.4 81.2 (to Pd) 242 endo, 390 exo, 813 endo

[PdCl(PyDT)(PyDTM)] 150–200 11.5 11.2 (–CH3Cl) 160 endo

300–830 65.0 65.1 (to Pd) 378 endo, 409 exo, 823 endo

[PdCl(DMDT)(PyDTM)] 135–175 11.7 11.9 (–CH3Cl) 139 endo

250–830 62.6 63.0 (to Pd) 304 endo, 390 exo, 819 endo

[PdCl(ESDT)(PyDTM)] 130–200 11.0 10.2 (–CH3Cl)
b

200–830 67.4 68.3 (to Pd) 377 exo, 394 exo, 812 endo

[Pd(DMDT)(PyDT)] 280–830 71.4 71.5 (to Pd) 376 exo, 402 exo, 822 endo

[Pd(ESDT)(PyDT)] 230–830 75.4 76.1 (to Pd) 375 exo, 400 exo, 823 endo

[PdCl(PyDT)(DMSO)] 125–175 21.8 21.3 (–DMSO) 169 endo

280–830 48.7 49.6 (to Pd) 391 exo, 822 endo

a exo, exotherm; endo, endotherm; m, melting.
b The DTA curve is meaningless below 350 �C.
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Fig. 2. Thermograms of [PdCl2(PyDTM)2].
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dation intermediate, which is stable up to 280 �C. Sample

pyrolysis to palladium occurs in the 280–400 �C interval,

with a total weight loss of 78.8% (calculated value 78.7%).
The [Pd(PyDT)2] complex can be easily prepared by reac-

tion of K2[PdCl4] and NH4PyDT in water (molar ratio

1:2). The fact that the infrared spectra of the yellow
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product obtained in this way are identical to those of sam-

ples obtained by heating up to 200 �Cof the parent dithio-

ester complex allows to exclude the formation of sulfur

bridges of different nature in the thermal degradation pro-

cess. As shown in Fig. 2, methyl chloride release seems to

occur in two successive, partly superimposed, steps. Such
a trend suggests the initial release of one of the methyl

chloride molecule to form the mixed dithiocarbamato/

dithioester species [PdCl- (PyDT)(PyDTM)] as a first

intermediate.

The position of the m(CN) absorption of ligand and

complexes in the 1600–1450 cm�1 infrared region allows

to identify the nature of examined species (Table 1). The

m(CN) band, observed at 1464 cm�1 for PyDTM, shifts to
higher energy on coordination, owing to the increased

double bond character in the CN group, caused by elec-

tron delocalization toward the metal center. The related

absorption is observed at 1583 cm�1 for

[PdCl2(PyDTM)], with a shift of 119 cm�1 with respect

of PyDTM, whereas the corresponding band for

[PdCl2(PyDTM)2] falls at 1495 cm�1 (Dm = 31 cm�1). In

the square planar [PdCl2(dithioester)] complexes, the me-
tal coordinates both sulfur atoms of the ligand, the che-

lated configuration leading to reinforcement of the CN

bond. As for [PdCl2(PyDTM)], large m(CN) shifts with

respect of the corresponding free ligand have been ob-

served for [PdCl2(ESDTM)] (Dm = 100 cm�1) and

[PdCl2(DMDTM)] (Dm = 84 cm�1). Moreover, the cis

configuration of those species is confirmed by the pres-

ence of two Pd–Cl absorptions in the far infrared region,
observed for [PdCl2(PyDTM)] at 316 and 289 cm�1 (Ta-

ble 3), as for [PdCl2(ESDTM)] (322 and 296 cm�1) and

[PdCl2(DMDTM)] (318 and 296 cm�1). If the Dm values
of the CN absorptions can be correlated to the ligand

coordination ability, it can be deduced that the PyDTM

is the strongest donor in the series, the trend following

the order PyDTM > ESDTM > DMDTM. In the
Table 3

Selected IR frequencies in the 500–150 cm�1 regiona

Compounds Frequencies

(cm�1)

PyDTM 453 m 401 s

[PdCl2(PyDTM)] 436 w 402 w 352 m

[PdCl(PyDT)]n 413 w 370 ms 342 m

[PdCl2(PyDTM)2] 445 ms 408 w 345 m

[Pd(PyDT)2] 413 w 345 s

NMe4[PdCl2(PyDT)] 463 w 414 w 367 m

NBu4[PdCl2(PyDT)] 451 w 412 w 365 m

[PdCl(PyDT)(PyDTM)] 445 m 407 w 358 ms

[PdCl(DMDT)(PyDTM)] 445 s 407 w 376 s 350 m

[Pd(DMDT)(PyDT)] 441 w 415 w 375 w

[Pd(ESDT)(PyDT)] 485 w 415 w 378 w

[Pd(DMDT)2] 441 w 359 m

[Pd(ESDT)2] 486 w 416 w 359 m

[PdCl(PyDT)(DMSO)] 451 vw 420 m 382 m 352 m

a m(Pd–Cl) underlined; w, weak; m, medium; s, strong; b, broad; sh, shou
[PdCl2(dithioester)2] complexes, the ligand molecules

act as monodentate through the thiocarbonyl sulfur

atom. The trans geometry of the molecule is supported

by the single Pd–Cl band, observed at 327 cm�1 in

[PdCl2(PyDTM)2], whereas the m(CN) shift with respect

to PyDTM (Dm = 31 cm�1) suggests that the monoden-
tate dithioester is a weak S-donor, as for [PdCl2-

(ESDTM)2] (Dm = 28 cm�1) and [PdCl2(DMDTM)2]

(Dm = 22 cm�1). This fact explains the low stability of

the 1:2 adducts in solution. In fact, those species tend

to release one of the ligand molecules to form the parent

[PdCl2(dithioester)] adduct, which can undergo S-

demethylation to form [PdCl(dithiocarbamate)]n, and,

in the presence of the free ligand, the mixed [PdCl(dithio-
carbamate)(dithioester)] complex, the main final product

depending on time and sample solubility.

Although we do not dispose of experimental data

which could clarify the [PdCl(PyDT)]n nature, the

complex consists probably of a polymeric arrangement

of PdCl(PyDT) units, held by sulfur bridges. The crystal

structure of the [PdCl(mercaptonicotinic acid)]n ana-

logue showed that this compound is a trimer formed
by PdCl(mercaptonicotinic acid) units in which the ion

is chelated to palladium through the N and S atoms,

the latter being at the same time bound to a nearby pal-

ladium atom [26]. The whole structure is then held by

sulfur bridges, the chlorine atom being in terminal posi-

tion. The Pd–Cl absorption in [PdCl(PyDT)]n was ob-

served at 295 cm�1 (Table 3), below the corresponding

band in [Pd3Cl3(mercaptonicotinic acid)3] (322 cm�1),
whereas chlorine bridges between palladium atoms

should absorb at lower wavelengths.

The [PdCl(PyDT)]n intermediate can interact with

neutral or ionic donors which are able to break the sul-

fur bridges. For example, in the presence of a large ex-

cess of dimethyl sulfoxide the [PdCl(PyDT)(DMSO)]

complex is obtained, whereas the reaction with alkylam-
311 vw 257 s br 239 sh 182 w

336 m 316 s, 289m 202 w 146 w

295 s 261 w 194 m 155 vw

327 s 301 vw 274 vw 216 w

334 s 246 vw

334 m 292 s 267 m 201 w

334 m 306 s, 280 m 206 w

335 w 324 m 295 s 266 w 224 w

320 w 303 s 268 w 237 w

340 m

342 m

346 m 268 w

322 w

335 w 300 m

lder; v, very.
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monium salts, as NMe4Cl and NBu4Cl, allows to syn-

thesize the ionic species NR4[PdCl2(PyDT)]. The

[PdCl(PyDT)(DMSO)] spectrum contains the m(CN)

absorption at 1554 cm�1, whereas two strong bands

are observed in the 900–1200 cm�1 region, which is diag-

nostic of the binding atom in coordinated dimethyl sulf-
oxide. The m(SO) absorption, at 1125 cm�1 in the

complex, is at high energy with respect to free dimethyl

sulfoxide (1055 cm�1), as expected for a S bound mole-

cule, whereas the one at 1022 cm�1 should originate

from CH3 rock [27–29]. The fact that the Pd–Cl band

(300 cm�1) is very close to that of [PdCl(PyDT)]n (295

cm�1) supports the presence of terminal chloride ligands

in the latter. As expected for cis chlorine atoms, the
spectrum of NBu4[PdCl2(PyDT)] shows two Pd–Cl

absorptions (306 and 280 cm�1), which overlap in

NMe4[PdCl2(PyDT)], yielding a broad band centered

at 292 cm�1.

Dithiocarbamato intermediates, like [PdCl(DMDT)]n
or [PdCl(ESDT)]n, react easily with dithioesters in chlo-

rinated hydrocarbons with the formation of mixed spe-

cies of the type [PdCl(ESDT)(L)] (L = ESDTM or
DMDTM) [24]. On the contrary, [PdCl(PyDT)]n does

not react with those dithioesters. The pink suspension

is unchanged within one week, also if a large dithioester

excess is used, whereas PyDTM reacts slowly in analog-

uos conditions to give the mixed [PdCl(PyDT)

(PyDTM)] complex. Such a behaviour seems to confirm

that PyDTM is a stronger S donor than ESDTM and

DMDTM toward palladium. On the contrary, the
mixed species [PdCl(ESDT)(PyDTM)] and [PdCl-

(DMDT)(PyDTM)] are easily prepared by reaction of

the parent intermediates with PyDTM in stoichiometric

ratio. In the mixed complexes, the PyDTM molecule

binds to palladium through the thiocarbonyl sulfur

atom. Accordingly, the infrared spectra show two

bands, assignable as m(CN), the low energy one (ca.

1500 cm�1) belonging to monodentate dithioester. The
band related to the dithiocarbamato moiety varies with

the anion nature and is at 1561 cm�1 when the ion is

DMDT, at 1520 cm�1 for ESDT and 1523 cm�1 for

PyDT.

The first degradation process in the [PdCl(dithio-

carbamato)(PyDTM)] thermograms is correlated to

methyl chloride evolution to form the corresponding

bis-dithiocarbamates. As shown in Fig. 3, [PdCl(PyDT)
(PyDTM)] degradation starts at 150 �C, the first step

corresponding to CH3Cl release (weight loss of 11.5%

against a calculated value of 11.2%) to form

[Pd(PyDT)2], which is stable up to 300 �C. Accord-

ingly, the mixed species [PdCl(DMDT)(PyDTM)] and

[PdCl(ESDT)(PyDTM)] transform, in the appropriate

temperature range, into the asymmetrical dithiocarba-

mates [Pd(ESDT)(PyDT)] and [Pd(DMDT)(PyDT)].
The symmetrical bis-dithiocarbamate [Pd(DMDT)2]

shows one m(CN) absorption at 1548 cm�1, shifted to
lower energy in the ESDT (1517 cm�1) and PyDT

(1511 cm�1) analogues. The presence of different

dithiocarbamato ions originates the two m(CN) absorp-

tions in [Pd(DMDT)(PyDT)] (1548 and 1511 cm�1),

whereas one broad band is observed for [Pd(ESDT)-

(PyDT)] (1514 cm�1), due to overlap of the close
absorptions of the two dithiocarbamato moieties. All

complex spectra contain well resolved absorptions in

the 400–300 cm�1 range, which are absent in free

PyDTM (Table 3). Vibrations of Pd–S bond are usually

found in this region, but it is hard to assign the

observed absorptions to coordination modes of ionic

or neutral ligands.

Owing to the barrier to rotation about the CN bond
(ca. 63 kJ mol�1), the dialkyldithioester molecule is pla-

nar and the nitrogen substituents are magnetically non-

equivalent [30–32]. For this reason, the proton NMR

spectrum of DMDTM in deuterated chloroform con-

tains two distinct singlets for the methyl groups bound

to nitrogen (3.55 and 3.38 ppm), along with the SCH3

singlet at 2.64 ppm, palladium coordination causing a

general downshift [29]. The PyDTM spectrum in the
same solvent (Table 4) shows two signals for the methy-

lene groups bound to nitrogen (3.88 and 3.60 ppm),

originated from the different positions (syn or anti) with

respect to the thiocarbonyl group in the planar

molecule.

CH2

CH2
CH2

N

CH2

C
S

S CH3

syn

antii

The signals at 2.04 and 1.93 ppm belong to the chain

(CH2)2 protons, which are affected by the nearby

N(CH2)2 methylene situation. The SCH3 singlet is at

ca. 2.6 ppm in the examined solvents (Table 4), whereas

the methylene group resonances undergo an upfield shift

in benzene, due to interaction with ring current. The 13C
NMR spectrum of PyDTM in CDCl3 contains two sig-

nals for either N(CH2)2 (54.6 and 50.2 ppm) or ring

(CH2)2 (25.8 and 24.0 ppm) groups, the SCH3 and CS2
resonances being at 19.1 and 193.3 ppm, respectively.

The proton NMR spectrum of [PdCl2(PyDTM)2] in

CDCl3 supports the low stability of the complex. As

shown in Fig. 4, the spectrum, registered within a few

minutes after sample dissolution, contains two series
of signals, the more intense belonging to the 1:2 com-

plex. Ligand coordination is inferred by the downfield

shift of the SCH3 singlet (2.92 ppm), the N(CH2)2 reso-

nances (4.60 and 3.65 ppm) being far apart, the separa-

tion (ca. 1 ppm) being larger than for PyDTM (ca. 0.3

ppm). The weak signals at 2.64 ppm (SCH3) and 3.94,
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Fig. 3. Thermograms of [PdCl(PyDT)(PyDTM)].

Table 4

Proton NMR data (ppm; T, ca. 25 �C)

Compound Solvent SCH3 N(CH2)2 (CH2)2 Other

PyDTM CDCl3 2.60 3.88, 3.60 2.04, 1.93

(CD3)2SO 2.54 3.76, 3.60 2.01, 1.90

C6D6 2.56 3.68, 3.07 1.08

[PdCl2(PyDTM)] (CD3)2SO 2.83a 4.19a, 3.62a 2.03a, 1.90a

2.58b 3.78b, 3.62b 2.03b, 1.90b

3.62c 2.03c, 1.90c

[PdCl(PyDT)]n (CD3)2SO 3.66 1.97

[PdCl2(PyDTM)2] CDCl3 2.92a 4.60a, 3.65a 2.13a, 2.11a

2.64b 3.94b, 3.65b 2.00b, 1.98b

(CD3)2SO 2.83a 4.19a, 3.62a 2.02a, 1.92a

2.55b 3.76b, 3.61b 2.02b, 1.92b

[Pd(PyDT)2] (CD3)2SO 3.60 1.95

NMe4[PdCl2(PyDT)] (CD3)2SO 3.66 1.98 N(CH3)4: 3.10

NBu4[PdCl2(PyDT)] CDCl3 3.60 2. 00 N[(CH2)3CH3]4: 3.46, 1.78, 1.51, 1.02

[PdCl(PyDT)(PyDTM)] CDCl3 2.93 4.58, 3.74 2.20–2.00

2.66b 3.95b, 3.66b 2.20–2.00

[PdCl(DMDT)(PyDTM)] CDCl3 2.92 4.56, 3.74 2.15, 2.12 DMDT: 3.23, 3.22, (N(CH3)2)

2.66b 3.95b, 3.65b 2.15b, 2.12b

[PdCl(ESDT)(PyDTM)] CDCl3 2.93 4.56, 3.75 2.16, 2.14 ESDT: 3.30, N(CH3); 4.36, N(CH2); 4.26, 1.31, OEt

[Pd(DMDT)(PyDT)] (CD3)2SO 3.61 1.95 DMDT: 3.23, N(CH3)2
[Pd(ESDT)(PyDT)] CDCl3 3.71 2.03 ESDT: 3.34, N(CH3); 4.44, N(CH2); 4.25, 1.30, OEt

(CD3)2SO 3.62 1.96 ESDT: 3.30, N(CH3); 4.56, N(CH2); 4.16, 1.21, OEt

[Pd(PyDT)2] (CD3)2SO 3.60 1.95

[Pd(DMDT)2] (CD3)2SO DMDT: 3.23, N(CH3)2
[Pd(ESDT)2] CDCl3 ESDT: 3.34, N(CH3); 4.44, N(CH2); 4.25, 1.30, OEt

(CD3)2SO ESDT: 3.27, N(CH3); 4.57, N(CH2); 4.16, 1.21, OEt

a The signal belongs to monodentate PyDTM.
b The signal belongs to free PyDTM.
c The signal belongs to [PdCl(PyDTM)(DMSO)].
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3.65 ppm (N(CH2)2) are originated by incipient PyDTM

release to form [PdCl2(PyDTM)]. Complex dissociation

increases with time, with progressive separation of the

insoluble 1:1 complex, the 1:2 complex being held in

solution by the free ligand excess, in an heterogeneous

equilibrium situation like

½PdCl2ðPyDTMÞ2�¡½PdCl2ðPyDTMÞ� ðsÞ þ PyDTM

In the final spectrum, the amount of coordinated and

free PyDTM can be estimated by the well evident SCH3

signals (at 2.92 and 2.64 ppm, respectively). The down-
field N(CH2)2 signal (4.60 ppm) belongs to one of the

methylene groups bound to nitrogen in the 1:2 complex,

the parallel signal in free PyDTM being at 3.94 ppm.

The resonance of the second methylene group in both

coordinated and free PyDTM overlap in the signal at

3.65 ppm.

The pink [PdCl(PyDT)]n polymer dissolves in DMSO

yielding the yellow [PdCl(PyDT)(DMSO)] complex.
Owing to the anion symmetry, the proton spectrum is

very simple, the two signals at 3.66 and 1.97 ppm being

assigned to N(CH2)2 and (CH2)2 protons, respectively.

The complex [PdCl2(PyDTM)] undergoes massive

decomposition in the same solvent, the initial interaction

with DMSO causing the chelate opening to form the

[PdCl2(PyDTM)(DMSO)] species, which contains

monodentate dithioester. Further interaction with
solvent causes partial PyDTM release to form

[PdCl2(DMSO)2], along with partial S-demethylation

to give [PdCl(PyDT)(DMSO)]. Consequently, the spec-
Fig. 4. Proton NMR spectrum of [PdCl2(PyDTM)2] in CDCl3: (a)

after 2 min from dissolution; (b) after two days; (c) after five days.
trum contains broad signals, owing to superimposition

of free PyDTM and DMSO complex resonances (Table

4). A similar degradation trend in DMSO is observed

for [PdCl2(PyDTM)2], the main species being PyDTM

and [PdCl(PyDTM)(DMSO)], with traces of

demethylation.
The behaviour of the [PdCl(dithiocarbam-

ato)(PyDTM)] complexes in CDCl3 depends on the nat-

ure of the dithiocarbamato ion. The spectrum of

[PdCl(ESDT)(PyDTM)] contains well resolved signals

of monodentate PyDTM, at 2.93 ppm (SCH3) and

4.56 and 3.75 ppm (N(CH3)2), the ESDT ion resonances

showing the N(CH3) and N(CH2) signals at 3.30 and

4.36 ppm, respectively [13]. The main resonances in
the [PdCl(DMDT)(PyDTM)] spectrum belong to the

complex, very weak free PyDTM signals suggesting

incipient dissociation. Ligand release is instead evident

for [PdCl(PyDT)(PyDTM)], with progressive precipita-

tion of [PdCl(PyDT)]n. The spectra of the asymmetrical

dithiocarbamates contain the signals of the ions present

in the molecule, which are coincident with those ob-

served for the parent bis-dithiocarbamates.
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