
Equivalence Partitioning as a
Basis for Dynamic Conditional

Invariant Detection

Worakarn Isaratham

Dissertation 2015
Erasmus Mundus MSc in Dependable Software Systems

Department of Computer Science
Maynooth University, Maynooth

Co. Kildare, Ireland

A dissertation submitted in partial fulfilment
of the requirements for the

Erasmus Mundus MSc Dependable Software Systems

Head of Department: Dr Adam Winstanley
Supervisor: Dr Rosemary Monahan

June 9, 2015

Word Count: 21036

Declaration

I hereby certify that this material, which I now submit for assessment of
the program of study leading to the award of Master of Science in Depend-
able Software Systems, is entirely my own work and has not been taken from
the work of other save and to the extent that such work has been cited and
acknowledged within the text of my work.

Worakarn Isaratham

i

Acknowledgements

First of all I would like to thank my supervisor, Dr Rosemary Monahan,
who let me run with my own ideas, and has provided constant support and
encouragement throughout the project. I also thank Dr Stephen Brown for
his invaluable inputs.

Special thanks to Inthraporn Aranyanak and Professor Ronan Reilly, who
helped me settle down during my first days in Ireland.

ii

Abstract

Program invariants are statements asserting properties of programs at
certain points. They can assist developers and testers in understanding the
program, and can be used for automated formal verification of the program.
However, despite their usefulness they are often omitted from code. Dy-
namic invariant detection is a technique that discovers program invariants
by observing execution of the program. One type of invariants that presents
challenge to this technique is conditional invariants, which are considered
to be computationally infeasible to be computed exhaustively. We present
a new approach to assist conditional invariants detection, by analysing test
suites used to drive the execution of the programs for their use of equivalence
partitioning – a very common testing technique – and inferring conditional
invariants from this information. A prototype implementation, named Ya-
con, is developed to work in conjunction with a mature dynamic invariant
detection tool Daikon. Given a set of splitting conditions, Daikon can use
them to infer conditional invariants. Yacon attempts to recover partitioning
information from a given test suite, producing splitting conditions as a re-
sult. We introduced two strategies to recover partitioning information, one
based on the presence of boundary value analysis testing technique; the other
based on invariants within the test suite itself. We evaluated the effectiveness
of each recovery strategy and the approach as a whole, and found that our
approach can help make Daikon perform significantly better. However, the
two recovery strategies only work well in limited circumstances, suggesting
possible improvement in finding more effective recovery strategies.

iii

Contents

1 Introduction 1
1.1 Background . 1
1.2 Motivation . 2
1.3 Problem Statement . 3
1.4 Aims and Objectives . 5
1.5 Outline . 5
1.6 Summary . 5

2 Related Work 7
2.1 Equivalence Partitioning and Related Testing Techniques . . . 7

2.1.1 Testing Techniques and Test Selection Hypothesis . . . 7
2.1.2 Domain-Based Testing 8
2.1.3 Equivalence Partitioning 8
2.1.4 Boundary Value Analysis 10

2.2 Dynamic Invariant Detection 11
2.2.1 Daikon . 11
2.2.2 Agitator . 12
2.2.3 DIDUCE . 12
2.2.4 DySy . 13
2.2.5 IODINE . 13

2.3 Conditional Invariant Detection 14
2.4 Summary . 16

3 Solution Design 17
3.1 High-Level Design . 17

iv

3.2 Extraction Phase . 19
3.2.1 Partitioning Information 19
3.2.2 Recovery Strategies . 20

3.3 The Partitioning File Format 25
3.3.1 Structure . 26
3.3.2 IMPORTS section . 26
3.3.3 PARTITION section 27
3.3.4 CLASS section . 29
3.3.5 Example File . 30

3.4 Translation Phase . 31
3.4.1 Splitter Files . 32
3.4.2 Translation From Partitioning Files to Splitter Files . . 34

3.5 Summary . 35

4 Implementation 36
4.1 Structure . 36
4.2 Data Models . 37
4.3 Extractor . 40

4.3.1 Boundary Value Recovery Strategy 40
4.3.2 Test Suite Invariants Recovery Strategy 43
4.3.3 User-Defined Strategies 50

4.4 Translator . 52
4.5 Testing . 54
4.6 Challenges and Issues . 54

4.6.1 Handling Multi-Catch Clauses with Spoon 54
4.6.2 Proxification of generic type parameters 55
4.6.3 Proxification process limitation on combination of gener-

ics and exceptions . 57
4.6.4 Running Chicory from within a Java Program 58
4.6.5 Reading Trace File Produced by Chicory in the Cor-

rect Encoding . 59
4.7 Summary . 62

5 Evaluation 63
5.1 Effectiveness Evaluation . 63

5.1.1 Experimental Setup 63
5.1.2 Program Selection . 64
5.1.3 Recovery Strategy Effectiveness 65
5.1.4 Invariants Detection Effectiveness 68
5.1.5 Correlation between Effectiveness of Recovery Strat-

egy and Invariants Detection 74

v

5.2 Performance Evaluation . 76
5.2.1 Experimental Results 77

5.3 Threats to Validity . 79
5.4 Summary . 79

6 Conclusion 81
6.1 Results and Contribution . 81
6.2 Future Work . 82

6.2.1 Automatic/Objective Assessment of Yacon 82
6.2.2 New Recovery Strategies 83
6.2.3 Comparative Assessment of Yacon against Other Split-

ting Policies . 83
6.2.4 Adapting Yacon to Different Tools 83

Appendices 84

A Mathematics Notions 85
A.1 Equivalence Relation, Equivalence Class, and Partition 85
A.2 Intervals . 86

B Partitioning File Format Syntax 87

C Building and Running Yacon 89
C.1 Building Yacon form Sources 89
C.2 Running Yacon . 90
C.3 Configuration . 90

D Evaluation Details 93
D.1 Environment . 93
D.2 Configuration Values for Yacon and Daikon 93

vi

1
Introduction

Objective: this chapter states the background and motivation of this work,
and identifies the research question. The structure of this dissertation is
also laid out.

1.1 Background
We are living in an age where society is becoming more and more depen-
dent on computers in all aspects of life, ranging from entertainment, trans-
portation, finance, health care, telecommunications and even life-critical
systems. One of the great challenges the software industry is currently fac-
ing, is to make sure that the computer systems on which our lives depend,
are really dependable. We want to know that the software products we
make are working as intended.

The traditional way of ensuring that software works as intended is
to test or simulate the software. The industry has been investing huge
amount of money and efforts into software testing, and these numbers are
on a rising trend. A recent study [13] found that the budget spent on
testing has increased from 18% in 2012, to 26% in 2014. Yet despite all
the efforts, the final products are not always reliable. On the contrary,
software products are constantly shipped with defects. Some are harmless,
but others can cause devastating effects. As an example, in August 2012,
a trading firm Knight Capital almost went out of business due to a loss
of $440 million over a period of 30 minutes, caused by a defect in its
trading software [49]. In an even worse catastrophe, during 1985–1987, six
people died because of an overdose from the radiation therapy machine
Therac-25, due to software error [42]. How could people continue shipping
out products with such a huge, life threatening mistake? It is possible

1

that these products were not appropriately tested. But even if they were
well-tested, we still cannot rule out a chance of errors, since there is an
inherent problem with software testing. In all but the most trivial cases,
testing can only ‘[show] the presence, not the absence of bugs’, as Dijkstra
famously pointed out [12, p. 16]. No matter how well we test, we can
never be 100% certain that a piece of software is free from defects.

An alternative method of ensuring correctness is formal verification.
Whereas software testing aims at showing the lack of empirical evidences
of errors, formal verification tries to use mathematical reasoning to prove
program correctness [36]. Under this approach, it is possible to say that
a function behaves correctly for all its possible inputs, without having to
exhaustively test for each of them. There exist a lot of different tech-
niques that are classified as formal verification, including well-established
approaches such as theorem proving and model checking [14]. Theorem
proving consists of a spectrum of different systems, from highly automated
ones to more interactive systems. These techniques express both the soft-
ware and its specifications as formal languages, then attempt to prove the
specifications correct by deducing them from some formal axioms and rules.
Model checking [5] builds models of a system, then proves that the desired
properties hold for all state spaces.

1.2 Motivation
Despite sharing the same goal – to make software more reliable – testing
and formal verification were once viewed as incompatible rivals. This
perception has changed a lot in recent years, so that the two approaches
are now seen as complementary [9]. It is then natural to ask, how can
the two approaches help support and improve each other? So we looked
at past and current research in this area, and found a number of different
ways that this question could be addressed. [9] explores a large amount of
number of these works. To name a few:

• Use formal specification to generate test cases.

• Derive test oracle from formal specification.

• Use existing test cases to verify formal specification.

• Use formal specification as a code coverage criterion.

• Derive formal specification from test cases.

2

While researching these areas, the topic of dynamic invariant detection
caught our interest. It is a technique that can be classified under ‘deriv-
ing formal specification from test cases’, one of the research direction we
explored. The technique works by generating program invariants from ac-
tual program executions. In this context, program invariants are properties
that always hold at certain points during all program executions. Dynamic
invariant detection fits our interest in connecting testing and formal verifi-
cation together because a) it requires observing program execution, which
is typically driven by running a test suite (a collection of test cases), and
b) the invariants it generates are useful in a lot of different areas, one of
them being formal verification [20].

Program invariants are useful in many areas, both to humans and tools.
These include software development activities such as design, documenta-
tion, coding, testing, formal verification, and maintenance [20]. In ideal
situation, programmers would follow formal-method oriented practice, such
as Design by Contract, and annotate programs with some form of con-
tracts or invariants. Regrettably, that is not the case, as a lot of software
developers never use formal method tools and techniques, and those who
know about them often consider them to be irrelevant in real-world sit-
uations [41]. Therefore the invariants need to be discovered – or rather,
‘recovered’. This is the purpose of dynamic invariant detection. If it can
be done, then it will be beneficial to many people in the software industry,
including developers, designers, and testers. For example, invariants can
help avoid bugs introduced by program maintenance [20].

While programmers usually do not use formal methods, in contrast,
testing is established as a standard practice [1]. A lot of software already
exist with comprehensive test suites. The recent surge in Test-Driven
Development pushes this even further, as under this software process, new
code will never be written unless a test has failed [4]. The combination of
this contrast in popularity with the fact that dynamic invariant detection is
usually driven by a test suite, as already stated above, leads us to explore
– could there be some useful information to be harvested from test suites, to
assist or improve discovery of invariants?

1.3 Problem Statement
There are 3 parts to this question: ‘could there be some useful information
to be harvested from test suites, to assist or improve discovery of invariants?’

1. What aspects of dynamic invariant detection are to be improved?

3

2. What information is to be extracted from test suites?

3. Can the answers to these two questions complement each other?

For the first part, we found a selection of program invariants that
are considered more difficult to detect than others. These are referred to
as conditional invariants. While invariants typically need to hold for all
possible executions, conditional invariants only hold under certain circum-
stances. These conditional invariants describe properties such as ‘if list
l is empty then function foo return 0’, or ‘the first n elements of list l
are sorted after n iterations’. These conditions occurs naturally on any
non-trivial programs. They are more difficult to detect because there are
so many possible conditional predicates to consider, that trying all of them
is computationally infeasible [19]. Clearly, some guidance is needed. Previ-
ous attempts at providing policies to help detecting conditional invariants,
which will be covered in section 2.3, are mostly some variants of source
code or execution traces analysis. None of them, to the best of our knowl-
edge, make use of any information from the test. This makes it a good
candidate as our answer to sub-question 1.

For part 2, we focused on extracting information from black-box testing
techniques1, rather than white-box/structural ones, since they are being
used more in the industry [31]. We settled on equivalence partitioning,
which is a testing technique that recommends testers to divide a domain
variable (a method parameter or a class variable) into different partitions –
each partition contains data that are processed in the same way, and create
one test case for each partition [10]. In other words it advises testers to
create one test case for each way a domain variable can conditionally
be processed, which is a good match for our desire to improve detection
of conditional invariants. Additionally, equivalence partitioning is a testing
technique used by most testers [15], if not explicitly then informally without
even realizing it [30]. In a survey in 2011, it was used by 60.9% of
the respondents, being one of the most-used specification-based testing
techniques [31].

Part 3 then becomes our main research question. We define the problem
statement of this work as answering the research question:

How can equivalence partitioning assist dynamic detection of
conditional invariants?

1testing techniques based solely on the specification and not the code

4

1.4 Aims and Objectives
The aim of this project is to study the possibility of using equivalence
partitioning to assist dynamic invariant detection in recovering conditional
invariants. To accomplish this, the following objectives have to be met:

• The concept of using information from equivalence partitioning to
help dynamic invariant detection has to be clarified – what exactly
is the information from equivalence partitioning, and how can it be
obtained.

• A working prototype has to be implemented as a proof of concept.

• The research question is to be evaluated for its effectiveness, by using
the prototype solution.

1.5 Outline
The rest of this dissertation is organised as follows:

• Chapter 2 provides the background on researches and theories re-
lated to our research question, including equivalence partitioning and
dynamic invariant detection.

• Chapter 3 elaborates the design of our solution.

• Chapter 4 details the implementation of the prototype solution, as
well as the issues we experienced during development.

• Chapter 5 presents the evaluation of the work in terms of its effec-
tiveness and performance.

• Chapter 6 concludes the work and suggests future research directions.

• The appendices provide more details on mathematical theories used,
instructions on building and executing our solution, and the specific
settings used in our evaluation.

1.6 Summary
This chapter identified the research question. We described the background
and motivation that lead us to the research question ‘How can equivalence
partitioning assist dynamic detection of conditional invariants?’. To answer

5

this we will build a prototype solution to help us validate and evaluate the
question.

6

2
Related Work

Objective: this chapter describes the context of the research question in
detail, explaining existing approaches to the problem and how our approach
differs.

As discussed in the previous chapter, this dissertation explores how we
can use equivalence partitioning testing technique to improve dynamic in-
variant detection. Here we explore these areas in more details focusing on
a) software testing techniques and theories related to equivalence parti-
tioning, and b) dynamic invariant discovery techniques. We then focus on
the problem of conditional invariant detection and how it is being handled
so far.

2.1 Equivalence Partitioning and Related Test-
ing Techniques

This section focuses on testing techniques related to equivalence partition-
ing, and theoretical background supporting these techniques.

2.1.1 Testing Techniques and Test Selection Hypothe-
sis

First we consider the reason for testing techniques to exist.
The objective of software testing is to test that a piece of program

behaves correctly for all possible inputs. Without testing techniques, testers
do not have other choices but to test all the inputs in order to meet the
objective. This is known as exhaustive testing. It is considered to be
generally impossible, except for trivial cases [30]. Some input domains are

7

infinite, thus testing all values is clearly impossible. Even for finite domains
it is considered infeasible, since domains are usually too large that it would
take too much time to test for every input [10].

As a result of the impossibility of exhaustive testing, testing techniques
are needed to make it feasible. Every technique relies on some heuristics
to select only a finite test set from the possibly infinite input and output
domains. These heuristics are based on assumptions, such that if they hold
true, they will produce a resulting test set that has good bug-revealing
power. Such assumptions are known as test selection hypotheses [25, 28].

2.1.2 Domain-Based Testing
A domain of a variable is defined as a ‘set that includes all possible values
of a variable of a function’ [39, p. 36].

A family of testing techniques bases their test selection hypotheses on
properties of domain variables. We use the term ‘domain-based testing
techniques’ to call any techniques with this property. Two of the most
well-known such techniques are equivalence partitioning and boundary value
analysis. Both are included in most of modern software testing textbooks
[10,30,35,38,46] and standards [1, 55], often as the very first specification-
based technique. They are also cited as 2 of the most used techniques in
the black-box category, with more than 60% adoption each [31]. In the next
sections we discuss about these 2 techniques, as equivalence partitioning
is one of the main focus or the research question, and boundary value
analysis is very closely related to equivalence partitioning and will be used
in our prototype solution.

2.1.3 Equivalence Partitioning
Equivalence partitioning1 (EP) is a black-box testing technique, meaning
that it works on the specification of programs rather than the source code.
Its test selection hypothesis is that the input and output domains can be
partitioned into equivalence classes, where all members of the same class
should behave in the same way. Therefore, only a single member of a class
is sufficient to represent the whole class. If the system pass the test on a
sample, then it is assumed that the system works correctly for all inputs
from the class that test sample belongs to. Conversely, if the test fails,
then it is assumed that it will fail for all members of that class.

1also called: equivalence partition testing, equivalence class partitioning, equivalence
class testing, equivalence classing

8

The test selection hypothesis described above is known as the uniformity
hypothesis. Gaudel [26] formally defined it as follows:

Definition 2.1. Given a specification SP and a system under test SUT.∪
1≤i≤p

UTSi = Exhaust(SP), and

∀i : 1 ≤ i ≤ p ∀t : t ∈ UTSi, SUT passes t ⇒ SUT passes UTSi

where Exhaust(SP) is the exhaustive test set based on the specification,
and UTSi are equivalence classes.

Equivalence partitioning has its root in the concepts of equivalence
relation, equivalence class, and partition, in mathematics2. Given these
concepts, the uniformity hypothesis can then be seen as the assumption
of the existence of an equivalence relation that divides input and output
domains into partitions.

By the mathematical definition of partition, every member of a domain
must be in an equivalence class, and no two equivalence classes can over-
lap. These are two properties that are desirable when applied to software
testing. The first property gives us a satisfying sense of completeness –
that the entire test set is well covered. The second means that there is no
redundancy in test cases [38]. However, the definition of the uniformity hy-
pothesis as formally stated previously does not require the non-overlapping
property to hold. This reflects the fact that overlapping partitions are
common in practice [52]. Therefore, the resulting products of equivalence
partitioning are not partitions, in the strict mathematical sense. Rather, to
be accurate they should be called sub-domains, and the technique should be
called ‘sub-domain testing’ instead [32,52]. Nevertheless, since ‘equivalence
partitioning’ is a long-standing term being regularly used in textbooks and
standards, we will continue using it in this dissertation. The word ‘parti-
tion’, however, can be ambiguous since it can be used to refer to both a
single sub-domain and the set of all sub-domains. For clarity, for the rest
of this dissertation we use the terms in the mathematical sense, as defined
in appendix A.1. A single sub-domain is called an equivalence class, or
simply a class, and the word partition means a set of equivalence classes.

In the context of our research question, each equivalence class when
considered individually should yield its own unique set of invariants. We
can say that these invariants are also true for the entire domain, if each
of them is contextualised by a conditional statement. In other words,

2See appendix A.1 for definitions

9

the existence of equivalence classes implies conditional invariants. Since
equivalence partitioning advises testers to create test cases according to
these equivalence classes, it is reasonable to see test suites written using
this technique as a source of conditional invariants.

Equivalence partitioning is also a very well-known testing technique
included in most software testing textbooks, is mandatory knowledge for
the most basic software testing certification [30], and is cited as one of
the most used techniques in the black-box category [31]. It is also said
to be used by most testers even without realizing [30]. Craig and Jaskiel
stated that ‘[it] is a technique that is intuitively used by virtually every
tester we’ve ever met.’ [15, p. 162] It follows that given an existing test
suite, there is a high probability that equivalence classes do exist in some
form – with formal documentation or otherwise, in the test cases design
stage, which is a good thing for our intended purpose of recovering the
partitioning information.

2.1.4 Boundary Value Analysis
Boundary value analysis (BVA) is another domain-based testing technique
closely related to equivalence partitioning. It is based on the same test se-
lection hypothesis – uniformity hypothesis, assuming that input and output
domains can be divided into equivalence classes. It adds another assump-
tion that different members of a class have different bug-revealing power. It
argues that errors tend to occur at or near the edge of the classes (the
boundary values), because in most cases programmers have to explicitly
write a conditional statement (an if clause or a loop) for each bound-
ary [38]. Since every program statement can introduce bugs, mistakes in
these conditions might produce errors at the extreme values. Therefore the
boundary values have more bug-revealing power than other values in the
same equivalence class – in other words, among all members of a domain,
it is more probable to find an error at the boundary values. The con-
clusion is that boundary values should be preferred when selecting a class
representative.

As an example, a common mistake is the use of wrong inequality oper-
ator, such as <= and <. Consider a function containing an integer domain
x and a condition using inequality operator, x < 10. In this case, the
boundary values of x < 10 are 9 and 10, because they are two consecutive
values that fall on different sides of the condition. The technique of bound-
ary value analysis advises testers to write a test case for each of these two
values. Suppose further that the condition x < 10 is mistakenly written
as x <= 10, which might occur due to a logical error on the programmer’s

10

part, or could be simply a typo. It can be seen that the only value of x
that can reveal the bug is 10, which is covered by the test cases developed
using boundary value analysis technique.

It can also be seen that test suites developed using boundary value
analysis can be useful in the context of the research question. In particular,
the boundary values can more accurately point out the condition part of
conditional invariants.

We have discussed equivalence partitioning and its related concepts,
which forms the first half of our research question. Next we consider the
other half, dynamic invariant detection and conditional invariants.

2.2 Dynamic Invariant Detection
Dynamic invariant detection is a technique used to recover invariants dy-
namically by observing program execution. An invariant is a property
that always hold at certain points during all program executions [22].
They include method preconditions, method postconditions, class invari-
ants, among others. The following statements are examples of invariants:
y = 5 × x − 1, x × y > 1, ‘list a is sorted’, and ‘graph g contains no
cycles’ [20]. These invariants are useful information that can help pro-
grammers and tools in various software development activities, including
design, documentation, coding, testing, formal verification, and mainte-
nance [20]. Dynamic invariant detection use real program execution to
deduce the invariants, as opposed to static program analysis, such as sym-
bolic execution [40] or model checking [5], which uses inspection of source
code or binary code to arrive at the invariants. One advantage of dynamic
techniques is that the source code of target program is not required. There
are 2 steps in dynamic invariant detection [20]:

1. Collecting trace data of the target program, and

2. Infer properties from the collected trace data.

The rest of this section presents a number of existing dynamic invari-
ant detection tools, and the reasons for us to select one of them for our
prototype solution.

2.2.1 Daikon
Daikon [21,22] is the first and primary tool in the area of dynamic invariant
detection. It was first developed in 1998, and has been in continuous

11

improvement and maintenance ever since, with a new stable release every
month. Daikon pre-calculates possible invariants at various program points,
then runs the target program, observes the values, and eliminates invariants
that do not conform with the executions. What remains are the discovered
invariants.

Figure 2.1: Daikon flow [20]

The workflow of Daikon is shown in figure 2.1. First, a subject program
is instrumented to be able to produce information necessary for analysis.
The resulting program is then exercised, typically by running a test suite,
under control of a front end program. This produces a trace database,
which is passed on to be analysed by the invariant detector. Finally the
detector reports its finding – the detected invariants of the subject program.

2.2.2 Agitator
Agitator [8] is a commercial product by Agitar software. The main purpose
of Agitator is to detect dynamic invariants (‘agitate’) in order to inform
users about tests, to enable them to write better test code. The prod-
uct focuses on invariants of the following type: equality, range, and null
checking.

2.2.3 DIDUCE
DIDUCE [34] is a highly scalable invariant detection tool with the main
purpose to find software bugs. It works on-line, that is, it detects the
invariants as the target program is being executed. DIDUCE is specialised
in detecting unexpected violation of invariants. The tool clearly separates
its operations into two modes: the training mode deduces all possible values
of the invariants, and the checking mode detects cases where the invariants

12

are violated – i.e. new values are observed. The tool is especially helpful
in detecting and explaining difficult-to-reproduce bugs.

2.2.4 DySy
DySy [16] is a tool for dynamic invariant detection that, in addition to
dynamically execute the given programs, it also uses symbolic execution to
enhanced the quality of dynamically inferred invariants. DySy differs form
Daikon in the source of invariants templates – while Daikon use predefined
templates, DySy derives them from symbolic execution.

2.2.5 IODINE
IODINE [33] is a dynamic invariant detector that discovers design prop-
erties of hardware designs. The invariants it produces are in the form
of state machine protocols, request-acknowledge pairs, and mutual exclu-
sion between signals. It executes test vectors on a simulation of the real
hardware, to learn about any resulting properties emerged from the design.

Tool Selection
We analysed these tools and decided to base our prototype implementation
on the tool Daikon, because of the following reasons:

• It is the most mature one, with active development and support.

• It works generally for any types of invariants instead of being spe-
cialised to only specific types.

• It is open-source, which enables us to inspect the inner working of
the tool.

• It can analyse programs written in many programming languages
such as Java, C, C++, C#, and Perl. It can also be extended to
work on other languages easily, by following the process described in
the developer’s manual [2] to develop a front end specifically for that
language.

• It has built-in support for conditional invariants – the subject of our
research question.

Now we turn to conditional invariants, to see why they are difficult to
detect, how Daikon currently detects them, and how our prototype solution
can fit into the picture.

13

2.3 Conditional Invariant Detection
Conditional invariants are properties in the implication form p ⇒ q. Dis-
junction can also be considered a form of implication, because of the iden-
tity p ∨ q ≡ ¬p ⇒ q. While program invariants need to hold true for all
circumstances, the consequence part of conditional invariants needs to be
true only under certain conditions. This type of invariants arises naturally
in any programs with conditional statements, such as if and while in
Java.

Since trying all combinations of predicates is computationally pro-
hibitive [21], Daikon relies on predicates called splitting conditions to split
the execution trace of a programs into parts. For each splitting condition,
it divides the executions into two groups – one that satisfies the condition
and the other that does not. The two groups are then processed sepa-
rately, to detect invariants on each side. These invariants, combined with
the splitting conditions, are then inferred to produce implications.

Figure 2.2: Detecting conditional invariants through splitting conditions
[18]

The quality of the resulting conditional invariants depends on how good
the splitting conditions are. For example, if a condition creates two groups
that produces the exact same invariants, then that condition is completely
useless. Strategies to select good splitting conditions are needed.

For Daikon, these strategies are called splitting policies. They are de-
scribed as splitter files (.spinfo), which can be created manually, or by
using some other means. The standard distribution of Daikon provides a
number of tools to accomplish this task:

Procedure Return Analysis. This is the built-in mechanism Daikon
provides. It looks at procedures that return binary values, and creates
splitting conditions based on the return values. Another source of condi-
tions is from procedures that have multiple return statements [18].

14

Static Analysis. This approach takes all boolean conditions in the pro-
gram, such as the if and loop statements, as the source of splitting condi-
tions. To use this policy, run the daikon.tools.jtb.CreateSpinfo com-
mand line program. The command takes Java source files as arguments
and create .spinfo files as its output. [3]

Cluster Analysis. This is a statistical analysis approach to divide exe-
cution traces into clusters, where similar data points are grouped together.
To use this policy, run the runcluster.pl Perl script. The command
receives execution trace files (.dtrace) and produce .spinfo files as its
output. Three clustering algorithms are currently supported: k-means,
x-means and hierarchical. [3]

Random Sampling. This is done by randomly creating a number of
subsets of data, find invariants in each subset, and compare the result
with the invariants in the overall dataset. Invariants presented in any
of the subsets but not in the overall can be taken as splitting condi-
tions. This method works better for unbalanced data since the chance of
them being discovered would be higher [19]. To use this policy, run the
daikon.tools.TraceSelect command line program, with the number of
subsets, number of runs, and execution trace files as parameters. [3]

Furthermore, there exists a number of methodologies other than those
distributed with Daikon.

Data Mining. Two standard data mining techniques, Association Rule
Mining and Decision Tree Learning, have also been proposed to be used
to generate splitting conditions from execution traces [23]. No analysis on
the effectiveness of this approaches are publicly available.

Sub-Cases Analysis. This is a log-based technique; the program under
analysis is instrumented to produce logs. These logs are partitioned into
sub-cases, each of the sub-case can then be passed to Daikon to infer the
pre- and post-conditions. The research [50] did not explicitly structure
the resulting conditions as conditional invariants, but it can be done in a
trivial fashion.

For our research question of using equivalence partitioning information
to assist detection of conditional invariants, since Daikon has provided a
way for users to specify the splitting condition in order to help detect-
ing conditional invariants, in the form of .spinfo files, the task of our

15

prototype implementation is reduced to creating a new splitting policy to
produce these files from equivalence partitioning information.

2.4 Summary
In this chapter we introduced the testing technique of equivalence partition-
ing and related concepts. We also discussed dynamic invariant detection
and the current tools in this research area, and the specifics of conditional
invariants. We conclude this chapter by stating that it should be possible
to extract information necessary for detecting conditional invariants from
equivalence partitioning, because of the following reasons:

• Equivalence partitioning implies in-class invariants, as discussed in
page 9.

• Equivalence partitioning is ubiquitous in test suites, as discussed in
page 10.

• Test suites are used to drive Daikon. To perform its analysis, Daikon
needs multiple trace runs of the subject program. While it is not
required so, it is most intuitive to drive the execution from a test
suite, as implied from the flow diagram (figure 2.1).

Combine these observations together, we might conclude that for any
existing Daikon’s subject program, it is highly probable that invariants
information should already exist in its driving test suite, hence our proposal
to extract invariants from equivalence partitioning.

16

3
Solution Design

Objective: this chapter presents the design of the prototype solution to
answer the research question of using equivalence partitioning to assist
dynamic invariant detection.

We describe in this chapter the detailed design of Yacon1, our prototype
solution.

3.1 High-Level Design

Figure 3.1: Integration of Yacon with Daikon
1The name is a reference to the vegetable yacón, to conform with Daikon’s conventional

practice of naming things after root vegetables!

17

In the previous chapter, we decided to base our prototype solution on
Daikon since it is mature, well-researched, and well-supported by active
development communities. We also identified that the purpose of our
solution is to draw equivalence partitioning information from test suite, in
order to produce splitting conditions, in the form of Daikon’s .spinfo files.
In this design, Yacon exists as an independent component of the Daikon
system, as shown in figure 3.1.

Figure 3.2: High-level flow diagram of Yacon

The work of Yacon is divided into two phases, a) extraction and
b) translation. An intermediate file, which will be in a format we called
partitioning file format, will be used to communicate partitioning informa-
tion from the extraction phase to the translation phase, as depicted in the
flow in figure 3.2.

The use of intermediate files as information medium, instead of pass-
ing it directly in-memory, is a design choice we settled upon because we
recognised that extraction will be implemented using a heuristic-based ap-
proach. Therefore, the partitioning information produced would not be
perfect. Using intermediate files permits users to inspect, verify, and mod-
ify the partitioning information.

To be precise, the two phases of Yacon have the following responsibility:

1. The extraction phase extracts partitioning information from test
suites, and create a partitioning file.

2. The translation phase processes the partitioning file, producing
splitting conditions.

This is summarised in the use case diagram in figure 3.3.

18

Figure 3.3: Use case diagram of Yacon

The rest of this chapter explores the design of each component of
Yacon, starting with the extraction phase (section 3.2), following by the
partitioning files (section 3.3), and then the translation phase (section 3.3).

3.2 Extraction Phase
This phase is responsible for extracting partitioning information from test
suites, and passed it on to translation phase, in the form of a partitioning
file. This section expands on two parts: first we clarify the concept of ‘par-
titioning information’, then we describe two recovery strategies – methods
to recover partitioning information from test suites.

3.2.1 Partitioning Information
Partitioning information consists of the following :

1. A set of all the domain variables within the target program being
subjected to partitioning.

2. The partition of each domain variable. By definition, a partition is a
set of disjoint subsets, known as equivalence classes, with their union
equals to the domain.

19

In simple terms, partitioning information describes how the domain
variables are to be divided into equivalence classes. The set of domains is
straightforward to represent, while partitions are more complex. To find
a way to express the equivalence classes, we utilise the facts that a) an
equivalence class is a set, and b) every set can be defined by its builder
predicate. For example, for the set of all even integers, its builder predicate
is P (x) = [x ∈ N ∧ ∃y ∈ N : x = 2y]. More generally, a set s = {x|P (x)}
has P (x) as its builder predicate.

Since there is no limitation to how builder predicates can be defined,
the partitioning file format should support any general predicates. At the
same time, we also recognise from the standard practice and textbooks on
equivalence partitioning, that a few special cases of equivalence classes do
arise frequently, such that they deserve special treatment separate from
normal builder predicates. We explore two such cases here.

Interval-based equivalence class For an enumerable single-dimension
domain, such as integers or floating point numbers, a usual way to partition
the domain into classes is to divide it into intervals. For example, an
integer domain could be divided by the sign into negative, zero, and positive
classes. The partitioning in this case is {[Min.. − 1], {0}, [1..Max]}, which
is indeed an interval-based partitioning.

Complementary equivalence class This is the class containing all do-
main members that do not belong to any other classes in the same domain.

The textual representation of partitioning information in the partition-
ing file format, as will be described later in section 3.3, must support these
two special cases of equivalence classes, as well as any generic classes.

In the next part we described two strategies to extract partitioning
information from test suites.

3.2.2 Recovery Strategies
One of our assumptions is that testers use equivalence partitioning tech-
nique when writing tests, either consciously so or otherwise. The objective
of this phase is to recover the intents of the testers from written test suites.
We recognise that in the process of converting intents into test cases, there
is likely be loss of information – the intent is not be retained in full. This
implies that it is generally impossible to recover the information perfectly.
Any recovery strategies need to be based on some more assumptions on
the properties of the test suites, such as the techniques and styles that

20

the testers follow. The result of these strategies would be potential equiva-
lence classes. Here we explore two strategies: a) boundary value recovery
strategy, and b) test suite invariants recovery strategy.

3.2.2.1 Boundary Value Recovery Strategy

This strategy is based on the boundary value analysis testing technique
(see section 2.1.4). It states that the values at the edge of equivalence
classes, known as boundary values, are more error-prone, and therefore
should be preferred when selecting test data. If we assume that the testers
who write the test suite followed this technique, then we would expected
to find adjacent values – the values that differ by the smallest unit – as
test parameters. Looking at this from the other direction, if we observe all
the values at a certain program point and found some adjacent pairs, then
these values can be used to deduce class boundaries. These boundaries can
then be used to define interval-based equivalence classes, a special case of
equivalence classes described previously.

This approach should work for any enumerable single-dimension do-
main, such as integers or floating point numbers. As for more complex
domains, the concept of boundary values is not well-defined [10]. However,
even for the single-dimension domain, there remains one question: how
do we determine that two given values are adjacent or not? This can be
answered by defining a predicate, which we called the adjacency predicate,
such that it receives two values, and evaluates to true if and only if the
two given values are considered adjacent.

Adjacency Predicates for Integers

The adjacency predicate for integer domains is trivial. since we know that
two integers are adjacent when they differ by exactly 1. So the adjacency
predicate is adj(x, y) = (|x − y| = 1).

Adjacency Predicates for Floating Point Numbers

Things are trickier when considering floating point numbers. Technically
there is a well-defined concept of adjacency. Floating point numbers
are discrete approximations of real numbers, there is always a clear an-
swer on the smallest number larger than a given one. Java provides
the functions Math.nextUp(double) and Math.nextUp(float) precisely
for this task. So, the adjacency predicate can be defined as adj(x, y) =
Math.nextUp(x) == y || Math.nextUp(y) == x.

21

Careful considerations are needed, though. Humans usually deal with
numbers in decimal system, and so we expect that software requirement
will often use decimal numbers as well. However, most decimal fractions
cannot be represented exactly in binary, so there is built-in imprecision
in floating point numbers. Conventionally, when comparing floating point
numbers, a small error tolerance is allowed [17]. We suspect that most
testers will adopt this practice of allowing for tolerance when applying
boundary value analysis to floating point numbers. This means that,
for the value of ‘the smallest double greater than 1.0’, we expect to
find decimal values such as 1.01, 1.001, or 1.0005, more than the pre-
cise value of Math.nextUp(1.0), which is 1 + 2−52, which approximates to
1.0000000000000002 in decimal.

Also, recall that we want to find adjacent pairs – a pair of values that
differ by the smallest unit. By this definition, equal values are considered
not adjacent. But comparing if two values are equal also suffers from the
same imprecision problem. So there has to be another tolerance – if the
difference between two values is less than this tolerance then they are
considered equal.

To accommodate both tolerances, the adjacency predicate becomes
adj(x, y) = ϵ0(x, y) < |x − y| ∧ |x − y| < ϵ1(x, y). The functions ϵ0(x, y)
and ϵ1(x, y) represent the equality tolerance and adjacency tolerance, re-
spectively. The functions might be a fixed constant (such as 0.001) or
varying based on the value of x and y (such as ‘1% of the smaller value’).
The content of these tolerance functions should be configurable by the
users.

Floating point also supports special values of positive infinity, negative
infinity, and NaN (Not a Number). Each of these should be considered as
belonging to separated equivalence class not subjected to boundary value
analysis.

Adjacency Predicates for Other Domains

The practice of letting the user define the tolerance function themselves
could be extended to support any other arbitrary enumerable domains. In-
stead of defining the tolerance function, users have to define the adjacency
predicate itself.

This strategy requires observation of all the arguments and return val-
ues of the subject program. This can be done statically, by performing
some kind of analysis on the test suite code, or dynamically, by observing
actual test runs. We decided in favour of the dynamic approach, because

22

of the following reasons:

1. Static analysis is a non-trivial task. It could even be impossible in
some cases, where not all the logic is contained in the source code
itself – some test suites read the test data from external resources,
such as spreadsheets or database. Dynamic approach is much more
straightforward.

2. Daikon itself is a dynamic analysis tool, as the task of observing
program values is precisely what the front-end component does. It
should not be difficult to adapt the front end to work for our pur-
poses.

To summarise, the implementation of boundary value recovery strategy
would consist of a) using a Daikon front end to observes the values being
passed to, and return from, the program under test, then b) select the
boundaries from all the observed values, and finally c) translate these
boundaries into equivalence classes, in the form of a partitioning file.

3.2.2.2 Test Suite Invariants Recovery Strategy

One of the reasons that testing techniques exist is to reduce the number
of test cases into manageable number. For equivalence partitioning, the
required number of test cases is one case per equivalence class. However,
in practice it is typical for a class to have more than one test cases. This
could be because testers also employ other techniques alongside equiva-
lence partitioning, resulting in more required test cases. Another possible
reason is that the test suite might run fast enough that achieving minimal
number of test cases is not the top priority, so testers opt to trade some
efficiency for more confidence, by using more test cases per equivalence
class. Regardless of the reasons, if there exist multiple test cases that
exercise the same equivalence class, then the test logic should be exactly
the same, with the test data as the only differences.

When implementing a test suite, testers could simply create one test
method for each test case. But if the test logic for these methods are
exactly the same, then there will be some redundancy in the test code. As
in any other software, redundancy makes code – the test suite, in this case
– difficult to maintain. One solution to this problem is to factor out the
common parts of the code into another entity, such as a utility method that
receives the input, expected output, or both, as parameters. Tests that use
such utility methods are called parameterized tests [45]. The approach is a

23

common practice, such that JUnit and TestNG, two very well-known Java
test frameworks, both provide explicit support for parameterized tests.2

Assuming that testers implement test methods belonging to the same
equivalence class as some form of parameterized tests, then the subject
program will be invoked several times from the same point in the test
suite. If we can derive some properties from the parameters and return
values at these points, then it makes sense to use these properties as the
builder predicates of equivalence classes. This is why we call this strategy
the test suite invariants recovery strategy.

As in the previous strategy, this one also requires observing values in
the test suite, so the arguments of using dynamic approach, and Daikon
front end in particular, also apply. Moreover, it also requires inferring
properties from the observed values, which is precisely what Daikon is
built to do, so the invariant detector part of Daikon could be utilised as
well, but instead of running it directly on the subject program, the test
suite itself is what being examined.

However, there is one problem with the idea of using the Daikon front
end to record values at invocation points: Chicory, the Java front end
component, does not include the invocation points as the program points
to be observed. To clarify, Chicory does observe values at the method
entries and exits, but what we need to know is the invocation points – the
point where target methods are called. This is a task for the prototype
implementation to extend default behaviour of Chicory to work with these
extra program points. This can be accomplished by any of the following
approaches:

1. Modify the source code of Chicory to support the needed behaviour.

2. Build a new front end that uses Chicory as an API.

3. Build an transformer to modify test suites into a form that Chicory
can works on directly.

4. Build a new front end from scratch.

The first 2 approaches are very tightly coupled with Daikon. Approach
1 requires merging and recompilation of source code for every new version
of Daikon. For approach 2, it might not be possible to use only Chicory’s
public methods to achieve our goals, so a hack into private methods might
be required, which means the implementation could break down at any

2JUnit provides Parameterized test runner [56, p. 17], and TestNG provides
@Parameters and @DataProvider annotations [7, p. 42].

24

Daikon updates. Approach 4 is the cleanest one, but it needs a lot more
effort compared with other options. So we decide that approach 3 is the
most preferable one that the Yacon should follow.

To summarise, the implementation of test suite invariants recovery
strategy would consist of a) building a new front end, or modifying the
Java front end Chicory, to observe program invocations from test suite,
b) inferring invariants from the observed invocations, then finally c) trans-
lating the invariants into builder predicates of equivalence classes, in the
form of a partitioning file.

3.2.2.3 Support for User-Defined Strategies

It is conceivable that there could be many more viable recovery strategies
than the two we have introduced, therefore it is desirable to build the
extractor in a way that allows for more user-defined strategies. To accom-
plish this, the implementation must declare a common interface that all
recovery strategies have to implement. It must also have a mechanism to
load user-defined strategy at runtime.

At the end of the extraction phase, a partitioning file is to be produced.
The next section describes the format of this file.

3.3 The Partitioning File Format
Partitioning files are generated by the extraction phase and processed by
the translation phase. We create requirements for the format, as follows:

• Partitioning files must be human-readable text files. As discussed
previously, human users should be able to inspect, verify and modify
partitioning information. For this reason, the files should be human-
readable. Additionally, it is desirable, but not required, that the
format is in conformance with Daikon file format convention [2].

• Partitioning files must be able to accurately express partitioning in-
formation of any Java domain types.

• Partitioning files must be able to express associations between parti-
tioning of a domain type and actual domain variables.

The partitioning file format is henceforth defined to accommodate all
these requirements.

25

3.3.1 Structure
A partitioning file is composed of several sections, separated by one or
more empty lines. There are 3 types of sections: IMPORTS, PARTITION,
and CLASS, in this order.

A partitioning file is to be processed in a line-by-line fashion. Leading
and trailing whitespace characters are ignored, therefore indentations can
be used for decorative purposes.

A line that starts with the character ‘#’ is treated as a comment, which
is completely ignored. Note that a comment line is to be distinguished
from an empty line, which is used to signify the end of a section.

Readers can refer to appendix B. for the grammar of the file format.
The rest of this section provides details of each of the IMPORT, PARTI-
TION , and CLASS sections.

3.3.2 IMPORTS section
The partitioning information needs to refer to Java classes throughout the
file. For example, we need to know the type (class) to which a partitioning
can be applied. One way to make these references is to use the fully quali-
fied name [29] of the classes. However, fully qualified names are composed
of the package and class names, which can result in very long, hard-to-read
names. The purpose of IMPORTS is to provide a way to use short aliases
for class names. This section is optional, and can only be placed as the
first section. Also, there cannot be more than one IMPORTS sections.

Here is an example of an IMPORTS section:
1 IMPORTS
2 List=java.util.List
3 Foo=package1subpackage1.subpackage2.Foo
4 Bar=package2.Foo

With this declaration, any reference to the standard java.util.List
class can be shortened to a simple ‘List’, similar to the effect of import
statements in Java source files. The difference is that the alias does not
have to be the simple name of the class, rather, it can be anything, as
demonstrated above by the use of ‘Bar’ as the alias of package2.Foo.

The fully qualified names of the classes on the right hand side of the
‘=’ symbols do not have to be unique; it is conceivable that a single class
could have more than one aliases. On the contrary, the aliases on the left
hand side must be unique.

The classes in the package java.lang, (e.g. String, Object, System,
Math, Integer, etc.), do not have to be specified in this section – their

26

simple names can be used directly.

3.3.3 PARTITION section
A PARTITION section describes how a domain can be divided into equiv-
alence classes. One PARTITION section then consists of its name, its
domain type, and a list of rules to construct equivalence classes. The
domain type can be either a fully qualified name of a type, or an alias
defined in the IMPORTS section.

Each partition is built upon class construction rules. 3 types of them
are supported: EQClass, IntervalClasses, and ComplementClass.

3.3.3.1 EQClass Rule

This rule is the most generic one – it can be used to express any equivalence
classes, by stating the builder predicate (see page 20) of the class using
the following syntax:

EQClass <predicate>

A special keyword $value is used to represent the variable in the
predicate. For example, a class of even integers may be represented by
EQClass $value % 2 == 0.

3.3.3.2 IntervalClasses Rule

This rule supports the special case of interval-based equivalence classes (see
page 20), by using the IntervalClasses syntax:

IntervalClasses [<transform>] <predicate> <mode> <boundaries>

In this rule, the boundaries list is a comma-separated expressions
that are evaluated to valid members of the current domain type. The
optional transform function is used to represent a mapping that transforms
all domain members into other values, which can be the same domain
or a different one. The keyword $value is again used to represent the
variable domain member within the transformation context. An example
of this optional transform part is Func[100.0 * $value]: double, which
describes a function that transforms values from a numeric domain (which
can be integers or floating points) to a floating point domain double.

The value mode determines the type of boundaries. Imagine a sorted
sequence of all domain members as a one-dimensional line, with the lowest

27

value on the left and the highest value on the right. Each boundary value
then marks the end of one equivalence class and the beginning of another.
The boundary itself must also belong to one of the classes it divides.
If it belongs to the class to the left, then we say it is the maximum
boundary (equivalently, the left interval is right-closed and the right one
is left-opened), otherwise it is a minimum boundary (the left interval is
right-opened and the right one is left-closed), as depicted in figure 3.4.

Figure 3.4: Minimum and Maximum boundaries for an integer x, denoted
x{Min} and x{Max} respectively.

If the mode is Minima, then the boundary values listed are all minimum
boundaries. If the mode is Maxima, then the boundary values are all
maximum boundaries. The other option is Mixed, where each boundary
value has to be accompanied by a suffix {Min} or {Max}, to indicate the
type of each one individually.

As an example, consider the partitioning of negative, zero, and positive
integers once again. There are 3 equivalence classes, therefore there are 2
boundaries, one that divides -1 from 0 and the other that divides 0 from 1.
The following are four different ways to represent these boundaries using
the IntervalClasses syntax:

• IntervalClasses Minima(0, 1)

• IntervalClasses Maxima(-1, 0)

• IntervalClasses Mixed(-1{Max}, 1{Min})

• IntervalClasses Mixed(0{Min}, 0{Max}) Notice that it is per-
fectly valid to have both {Min} and {Max} associated with the same
boundary value.

For integer domains it is concise to use the Minima or Maxima mode.
However, for floating point numbers it might not be easy to use these two
concise modes, hence the need for Mixed mode. Consider the equivalence
class of valid probabilities – any real number between 0.0 and 1.0 inclu-
sive. It is easy to represent the boundary at 0.0 as a minimum boundary

28

0.0{Min}, and the boundary at 1.0 as a maximum boundary 1.0{Max}.
However, suppose we want to use the Minima mode, then the boundary
1.0{Max} has to be rewritten as a minimum boundary, and the smallest
domain member greater than 1.0 is needed. That number, 1 + 2−52 for the
double domain, is not trivial to compute nor represent as decimal3. So
it makes more sense to keep both boundaries as they are and allow both
types to mix, instead of forcing all boundaries to be of the same type.

3.3.3.3 ComplementClass Rule

This rule supports the special case of complementary equivalence classes
– the classes of members not belong to any other classes. It has a very
simple syntax: a single word ComplementClass.

The complementary class is meaningless if it exists alone – therefore it
can only be declared in a program point that has at least one other classes.
It also does not make sense to have more than one complementary classes
in the same partition.

The PARTITION sections define a part of partitioning information. To
complete the information they must be applied on domain variables. This
is done using the CLASS sections.

3.3.4 CLASS section
A CLASS section lists all the domain variables to be partitioned within
the context of a single Java class. To apply partitions on more than one
class one would need an equal number of CLASS sections.

As in the PARTITION section, domain types can be specified either
as fully qualified name of Java types, or aliases defined in the IMPORTS
section. This includes the type declared in the first statement of the
section, which sets the context of all the domain variables in its section.

For a domain variable d and partitions p1 and p2, which must be
previously defined as PARTITION sections, we write d{p1, p2} to state
that these partitioning are associated with the type.

The type declaration syntax in this section consistently uses the postfix
style <name>:<type>, similar to programming languages such as Pascal,
Ada, Scala, etc. Field declarations start with a modifier (STATIC or IN-
STANCE), followed by the name and type of the field, such as

INSTANCE list: java.util.List
3The value is computed according to IEEE 754 Standard [60]

29

If a partition p0 is to be applied on this field (and every field should have
at least one partitioning, otherwise there would be no reason to declare
the field) then we can write

INSTANCE list: java.util.List{p0}
Similarly for method declarations, a Java method int f(String s,

double d) is referred to as
f(s: String, d: double): int

Partitions could be applied on any of the argument types and return types.
So we can write

f(s: String{p1, p2}, d: double): int{p3}
for the same method with partition p1 and p2 applied on the String argu-
ment, no partitioning on the double argument, and partition p3 applied on
the return value. Note that the return type of Java methods that return
nothing (a void method) is `void', and partitions cannot be applied on
this type.

Typically a field declaration would represent a partition at a class-level
program point. However, method executions can depend on the values
of some fields, which means that there exist invariants at method-level
program points that are conditional to the value of some fields. To rep-
resent this dependency, field declarations can be added to a method-level
program point after a DEPENDS clause, which is to be placed immediately
after a method declaration. For example, the following method declaration
depends on the value of a non-static field n, which is an integer domain
with partition p4:

METHOD f(): void
DEPENDS
INSTANCE n:int{p4}

3.3.5 Example File
Here is an example of a partitioning file based on the class baz.Bar in
figure 3.5, that demonstrates all the aspects of the file format.

1 # This is a comment
2
3 IMPORTS
4 Bar=baz.Bar
5
6 # predicate -based classes and complementary class
7 PARTITION SimplePartition: int
8 EQClass $value == 0

30

9 EQClass $value < 10 && $value >= 1
10 ComplementClass
11
12 # interval -based classes
13 PARTITION Sign: int
14 IntervalClasses Minima(0, 1)
15
16 PARTITION SignDouble: double
17 IntervalClasses Mixed(0.0{Min}, 0.0{Max})
18
19 # Mixed type interval -based classes
20 PARTITION Probability: float
21 IntervalClasses Mixed(0.0f{Min}, 1.0f{Max})
22
23 PARTITION Numeric: char
24 IntervalClasses Mixed('0'{Min}, '9'{Max})
25
26 PARTITION Alphabetic: char
27 IntervalClasses Mixed('A'{Min}, 'Z'{Max}, 'a'{Min

}, 'z'{Max})
28
29 # Transformation
30 PARTITION RadiusByArea: int
31 IntervalClasses Func[3.14159 * $value * $value]:

double Minima(0, 100, 10000)
32
33 CLASS Bar
34 STATIC c:char{Numeric}
35 INSTANCE f:Float{Probability}
36 METHOD f(n:int, d:double{SignDouble}): int{Sign}
37 DEPENDS
38 #applies more than 1 partitioning
39 STATIC c:char{Numeric, Alphabetic}
40

3.4 Translation Phase
The goal of this phase is to generate splitting conditions from partitioning
information. In Daikon system, splitting conditions are captured in files
with .spinfo extension, called the splitter files. We covered the existing
methods to generate these files in section 2.3.

In order to be able to generate these files, we need to understand their

31

format first. This section expands on the format of splitter files, then
explains why it is possible to translate a partitioning file into a splitter
file.

3.4.1 Splitter Files
A simplified version4 of the format of splitter files can be described as
follows: they are textual, composed of sections separated by one or more
empty lines. There are 2 types of sections, program point sections and
replacement sections.

Program Point Section

A program point section starts with the name of the program point, follows
by one or more conditions associated with that program point. A condition
may have optional formatting options, which describe textual representation
of the condition in different formats. The structure of a program point
section is illustrated in this following syntax:

PPT_NAME <program point name>
<splitting condition 1>

<formatting option 1.1>
<formatting option 1.2>
...

<splitting condition 2>
...

A program point refers to one or more specific places in the program
source code. At the time of writing, the current version (5.2.2) of Daikon
produces 4 types of program points: method entry, method exit, instance-
level and class-level. To help illustrate, examples of program points are
provided based on a hypothetical Java class Bar defined in figure 3.5:

4For full description, see section 6.2.1 in Daikon’s user manual [3].

32

1 package baz;
2 public class Bar {
3 static char c;
4 Float f;
5 public int foo(int x, double y) {
6 if(someCondition())
7 return x;
8 else
9 return (int)y;
10 }
11 ...
12 }
13

Figure 3.5: A hypothetical Java class baz.Bar

Program
point

Example Invariant type

Method entry baz.Bar.foo(int,
double):::ENTRY

Method precondition

Method exit baz.Bar.foo(int,
double):::EXIT7

Method postcondition at line 7,
among multiple return statements

baz.Bar.foo(int,
double):::EXIT

Method postcondition for all re-
turn statements

Instance baz.Bar:::OBJECT Instance invariant

Class baz.Bar:::CLASS Static invariant

A precondition is a condition that is true before the execution of the
method. A postcondition is true after the method is executed. The in-
stance invariants and static invariants are more generally known as class
invariants. The difference is that, as the names suggested, an instance
invariant is a property related to one or more instance variables that stays
true for all states of an object instance, while static invariants are related
to static variables.

Each splitting condition in a program point section is a Java expression
that evaluates to a boolean value. A condition expression can refer to
any variables that it has access to at that program point. For example,
a condition at class-level program point (a static invariant) can only refer

33

to static fields of that class, while a condition at the beginning of an
instance method (a precondition) can refer to any method arguments or
fields of that class. However, method calls are not allowed in the condition
expression. There is an exception to this rule; methods that are listed in
replacement sections can be called.

Replacement Section

The replacement section lists the methods that can be used by splitting
conditions. It starts with the keyword REPLACE, follows by one or more
pairs of lines, the first line is a method name, and the second is a Java
expression, called the replacement.

REPLACE
<method 1>
<replacement 1>
<method 2>
<replacement 2>
...

3.4.2 Translation From Partitioning Files to Splitter
Files

It can be seen that a partitioning file contains all the information needed
to generate a splitter file. This includes:

• Program point names. A partitioning file has references to methods
and fields in the class sections. These can be directly converted into
program point names.

• Splitting conditions. Each of the equivalence class in partitions as-
sociated with a domain variable can be translated into a splitting
condition under the program point containing that domain variable.
An equivalence class is a set, and every set has a builder predicate
(see page 20), which can be used as a splitting condition.

Note that a builder predicate can be any valid Java expression that
evaluates to a boolean value, while a splitting condition needs to be free
of method calls, other than those appear in the Replacement section.
Therefore the implementation of the translation phase need to extract
the method calls within builder predicates into the Replacement section in
order for these builder predicates valid as splitting conditions.

34

3.5 Summary
This chapter provided the design of Yacon, the prototype solution to the
research question of using equivalence partitioning information to assist
dynamic invariant detection. Yacon is designed to work in two phases,
the extraction phase extracts partitioning information from test suites and
writes it to an intermediate partitioning file; the translation phase parses
that file and produces a splitter file, which can be of assistance to Daikon
in detecting conditional invariants. Two recovery strategies for extracting
partitioning information were introduced – the boundary value recovery
strategy and the test suite invariants recovery strategy. We also described
the format of the partitioning file in detail, and explained how it should
be possible to translate from a partitioning file to a splitter file. The next
chapter will build upon the design in this chapter to produce a concrete
implementation of our prototype solution.

35

4
Implementation

Objective: this chapter presents the concrete implementation of Yacon, the
prototype solution to the research question of using equivalence partitioning
to assist conditional invariants detection.

4.1 Structure
Yacon is developed completely in Java, using Eclipse as the IDE. To max-
imise compatibility with Daikon, the same version of the language, Java 7,
is selected.

The final product of Yacon is a number of Java classes, packaged as
two Java .jar files, one with dependencies included1 and one without. It
is intended to be run from a command line. See appendix C for build and
execution instructions.

The Java classes we implemented are divided into the following pack-
ages:

1. me.arkorwan.yacon.extractor – for the classes responsible for the
extraction phase. Each of the recovery strategies are put into its own
package, which is a sub-package of this one.

2. me.arkorwan.yacon.translator – for the classes responsible for the
translation phase.

3. me.arkorwan.yacon.model – for the common data models shared
between both phases.

1Daikon is also a dependency but it is expected to be installed locally, so it is included
in none of the .jar files.

36

4. me.arkorwan.utils – for generic utility classes not specific to the
purposes of Yacon.

The only exception is the class daikon.Yacon. This is the main class,
containing the entry point of the program. Since the tool is intended to
be used from the command line, in the same fashion as all other tools in
the Daikon system, the user has to type in the fully qualified name of the
main class to start execution. We decided that using a short, simple name
would be more convenient for the users.

The rest of this chapter explores the implementation of models classes,
the extraction phase, and the translation phase, in this order. After that
we also present the test coverage of Yacon and the problems we have faced
during implementation.

4.2 Data Models
The representation of information necessary to the workflow of Yacon cen-
tred around the concept of program points, which is already covered in
section 3.4.1. See figure 4.1 for the class diagram of the model classes.

The functions and purposes of each class are provided in the following
paragraphs from the ground up, starting from classes with no dependency
on other models classes, until the class representing program points is
reached.

DomainType (not present in the class diagram) This class encapsulates
the types that can be used as the domain for equivalence partitioning,
which are all Java types, including the primitives.

JavaExpression (not present in the class diagram) This class represents
mapping functions that transform values from one type to another. A
JavaExpression consists of an input type, an output type, and a String
that must be a valid Java expression that takes an input variable named
‘$value’ and evaluates to the output type. The expression is validated
by using a ScriptEvaluator, from the Janino library2, to build a return
statement from the String ‘return <expression body>;’.

We also extended the expression syntax to support another special key-
word, $func, as an ‘escape’ mechanism to represent parts of the expression
that will not be validated. This is useful for expressions that references

2http://docs.codehaus.org/display/JANINO/Home

37

http://docs.codehaus.org/display/JANINO/Home

Figure 4.1: Model classes diagram

other methods of variables unknown to the validator. We rearrange the
expressions to be validated so that the validator sees these escaped expres-
sions as method arguments of unknown values. The syntax for this escape
expression is

$func:<type>{<escaped expression>}

This can be used in the predicate part of an EQClass declaration, or
the transformation part of an IntervalClasses declaration (see page 87).

IntervalBoundary This class represents a single boundary between two
interval-based equivalent classes. A boundary is described by a value and

38

the type of the boundary, which can be either closed-on-left or closed-on-
right. For a closed-on-left boundary, the interval to its left is closed at the
given value – in other words, the given value belongs to the interval on its
‘left’ side, which means the value is the maximum of the interval. By the
same logic, if the boundary is closed-on-right, then the given value is the
minimum of the interval on the ‘right’ side. Note that the left-right notion
refers to the direction of the closed interval relative to the position of the
boundary.

EQClassRep This abstract type describes all kinds of equivalence classes
representation. The subclass PredicateEQClassRep uses a JavaExpres-
sion (with return type always fixed to boolean) as builder predicates
describing equivalence classes. IntervalEQClassesRep uses a list of In-
tervalBoundary objects to describe the interval-based equivalence classes,
and ComplementEQClassRep uses a reference to all other equivalence classes
belonging to the same partition to describe the complementary equivalence
classes.

PartitionInfo This represents a partition – a collection of equivalence
classes, with a name and a type associated with the partition.

PartitionedDomain An instance of this class is an application of parti-
tions to a domain, such as a method argument, a method return value, or
a field. The object is composed from a name (variable name in the cases
of method arguments and fields), the type of the domain, and a list of
partitions to be applied.

ProgramPoint This is an abstract class that represents all types of pro-
gram points. Recall that there are 4 of them, a) method entry, b) method
exit, c) instance program point (for instance variables), and d) static pro-
gram point (for class variables). Every program point has common at-
tributes – its name and its declaring class – the class in which the field
or method described by the program point is declared, and also a list of
PartitionedDomains.

For our purposes, there are no distinctions between a method entry and
a method exit, so the two types are combined, with the class MethodPro-
gramPoint – a direct subclass of ProgramPoint – as their representative.
This class defines more attributes to capture information necessary for
identifying a Java method, i.e the name, arguments, and return type of

39

the method. Also defined here is the dependency of a method program
point on field variables.

The abstract class ClassLevelProgramPoint – the other direct sub-
class of ProgramPoint – represents the instance and static program points
combined.

ProgramPointCollection This is simply a collection of ProgramPoints,
with a method to extract all relevant partitions. It also offers a way to
traverse the program points in a well-ordering manner. This feature is
implemented using the visitor pattern [24]. Clients can extend the abstract
class ProgramPointCollection.Visitor to receive callbacks when each
type of program point is visited, or the enclosing class is changing (leaving
the enclosing class and entering a new one). This will be explained in more
detailed when it is used in the extraction phase.

4.3 Extractor
The purpose of the extractor is to produce a partitioning file. A recovery
strategy is selected and executed to obtain necessary information to create
a partitioning file. We implemented the two strategies that were discussed
in the design phase, and also a mechanism that allows users to create their
own recovery strategies.

Once the extractor starts, it selects a recovery strategy based on a
configuration value. All strategies are subclass of the abstract type Re-
coveryStrategy. The strategy object is then instantiated and executed,
resulting in an instance of ProgramPointCollection. It would then be
passed on to a PartitioningFileWriter, which writes the information
down to a file in the partitioning file format, completing the process. Par-
titioningFileWriter is an abstract class, and currently there is only
one concrete implementation – SimplePartitioningFileWriter – which
writes all relevant partitions and program points using machine-generated
name for the partitions and fully qualified names for all references to Java
types.

Next we discuss implementation details of the two recovery strategies.

4.3.1 Boundary Value Recovery Strategy
This strategy assumes that testers use the boundary value analysis testing
technique. The procedure will be explained in two steps, as laid out in the
design phase:

40

1. Execute Chicory.

2. Analyse Chicory result for adjacent pairs of values.

Step 1: Running Chicory

This step is simply an execution of Chicory from within a Java program.
Chicory has to be run as an external process because of a technical lim-
itation3. The class JavaProcessRunner is created to facilitate execution
of external Java programs in a different process. Internally it utilises the
built-in class java.lang.ProcessBuilder to do the task. To use this
class, client code needs to submit a runner class – an implementation of
the interface JavaProcessRunner.JavaRunnable, which declares a single
method, run, that receives a list of String as its argument. An instance of
the given runner class will be created at runtime via reflection, and it is
required that the runner can be instantiated using the empty constructor.

In this case, the runner class is ChicoryRunner, which simply relays
the arguments to the main method of daikon.Chicory. After execution,
the resulting trace data will be written to an archived trace file with the
given file name.

Step 2: Reading Trace Data and Finding Adjacent Pairs

It is recommended to use method daikon.FileIO.read_data_trace_files
to read the trace file [2]. The method receives a list of trace files, and a
processor, which must be a subclass of daikon.FileIO.Processor. Note
that references to trace files has to be in file URI format (‘file://’ follows
by full path to the file), for the reason given in section 4.6.5.

Our implementation of processor is the class TraceCollector. It scans
through all samples and grouped them by program points. It then applies
a filter to select domain variables to analyse. All the following conditions
have to be met in order for a domain variable to be selected:

• The domain belongs to a class whose name matches a pattern of
classes we want to observe. The pattern is defined by the configurable
value boundary_values.patterns.

• There is an adjacency predicate that can process the type of this do-
main variable. The predicates for Java’s primitive types (boolean,

3See section 4.6.4 for details.

41

byte, short, int, long, float, double) and their wrapper counter-
parts are provided by default. To analyse any other types, custom
adjacency predicates are needed.

For each selected domain variable, all its values found in the trace are
collected into a sorted list, and each pair of consecutive values in the list
is examined. If the pair is not equal (according to the equality predicate),
but adjacent (according to the adjacency predicate), then it is identified as
a possible boundary.

Depending on the way the test suite is written, this algorithm can
produce too many false positives. This has the effects of reduced quality of
resulting partitioning information, as well as slowing down the process. One
way to decrease the number of false positives is to apply the experimental
technique we called second-order boundaries. It keeps track of the adjacency
detection result as a list. If there exist a run of successful detection, we
only keep the first and the last of the run. This is actually an application of
the boundary value analysis technique on the boundaries themselves, hence
the name ‘second-order boundaries’. This is optional and can be turned
on/off using the configuration boundary_values.second_order_trigger.

Each of the remaining pairs of adjacent values is identified as a bound-
ary. If there is at least one boundary detected for a domain variable, then
we create a PartitionInfo with an IntervalEQClassesRep to encapsulate
this partition. The PartitionInfo is then attached to the ProgramPoint
object representing this particular program point.

At the end of the process, all instances of PartitionInfo are collected
into a PartitionInfoCollection, which is the final result of the strategy.

Providing custom adjacency predicates. We have stated that if users
want to apply this strategy on types other than the numeric primitive
types, the adjacency predicates for those types have to be provided. To
do that for an arbitrary type T , users have to create a subclass of the
abstract type AdjacencyPredicate<U>, and the type parameter U must
be assignable from T – that is, any instance of T can be cast to U .
An AdjacencyPredicate<U> must implement the method compareTo, to
compare two objects as follows:

• If the two objects are equal, then return 0.

• If the two objects are different, but are close enough to be considered
‘almost equal’ – that is, if the equality predicate should be true, then
return 1 (if this object is greater) or -1 (if the specified object is
greater).

42

• If the two objects are adjacent – that is, if the adjacency predicate
should be true, then return 2 (if this object is greater) or -2 (if the
specified object is greater).

• Otherwise, return any integer greater than 2 if this object is greater,
or any integer less than -2 if the specified object is greater.

To let the strategy know of the existent of any custom AdjacencyPred-
icates, users can specify the name of the AdjacencyPredicate class, and
the name of the class to which this predicate can be applied, in the con-
figuration value boundary_values.adj_predicates.

4.3.2 Test Suite Invariants Recovery Strategy
Test suite invariants recovery strategy assumes that if a program expression
in a test suite is called several times with different parameters, then those
parameters should belong to the same equivalence class. As concluded in
the design phase, the first thing we need to do is to find a way to observe
program points at those line of codes, by either creating a completely new
front end, or extending the default Java front end Chicory to support this
kind of program points.

However, our actual implementation went in a different route. We left
the Chicory tool unmodified, and applied the changes to the test suites
instead. The idea is that, since Chicory can only observe method entries
and exits, then if we transform every program expression we want to
observe into a proxy method, while preserving the flow of the program,
then Chicory can be used as is. We call this the process of proxification.

We divided the procedure into the following steps:

1. Proxify the test suite.

2. Compile the proxified test suite.

3. Run Chicory and Daikon using the proxified test suite.

4. Collect the result.

We will go through each of these steps in detail.

Step 1: Test Suite Proxification

There are two main options when trying to modify existing Java code –
to do it at source code level, or at bytecode level. For our purpose it

43

is preferable to modify the source code, since we want to preserve the
intention of the code writer, which could be lost during compilation, by
means of compiler optimisation. We chose Spoon [48] as the library to
assist this task. The main reason we selected Spoon is the ability to easily
insert code snippet as a Java String into the abstract syntax tree (AST)
data structure generated from parsing a Java source file.

Given a Java source file, Spoon builds and traverses the AST of the
source file. It provides a callback method that is invoked every time a
specified type of AST node is being traversed. We can override the method
to modify the AST. At the end of the traversal, the AST is written as a
new source file.

For our purposes, we observe two types of AST nodes, one for method
invocation, the other for field assignment. The nodes are filtered for invo-
cations or assignments on the classes we want to analyse, then passed on
to the class MethodProxifier to do the proxification.

Proxy method placeholder class. For every AST node that Method-
Proxifier receives, it attempts to create a new proxy method for the node,
and replace the original invocation by an invocation of the new method.
All proxy methods are put into a static nested class of the original class,
named ẎȧċȯṅProxifier. Notice that the class name contains characters
Ẏ, ȧ, ċ, ȯ, and ṅ, which are not in the Basic Latin unicode block i.e. the
ASCII characters. This is because we wanted the name to be as unique
as possible, so that we could instruct Chicory to observe only the classes
with this name, using the option --ppt-select-pattern. With a unique
name like this, the chance of spending time observing unwanted program
points would be very low.

The structure of this proxifier class is presented hereafter. Notice there
are two fields defined, ẏȧċȯṅTarget and ẏȧċȯṅInstance, whose names also
contain unicode characters to reduce the chance of accidental duplication.
Their purposes will be discussed shortly after.

1 public static class ẎȧċȯṅProxifier {
2 Object ẏȧċȯṅTarget;
3 static ẎȧċȯṅProxifier ẏȧċȯṅInstance = new

ẎȧċȯṅProxifier();
4
5 static ẎȧċȯṅProxifier proxify(Object o) {
6 ẏȧċȯṅInstanceẏȧċȯṅ.Target = o;
7 return ẏȧċȯṅInstance;
8 }
9

44

10 ... //proxy methods
11 }

Proxy method signature. We want to preserve all the information of
the original invocations within the proxy methods, in order to be able to
refer back to the original. Our implementation transforms the names of
the methods and their parameters, simplifies the access modifiers, but tries
to keep everything else the same.

We broke down the components of a method signature, and describe
each of them translated into the proxy method.

• Access modifier. Since the only place a proxy method will be
accessed from is its original enclosing class, which is obviously in
the same package, so this component is always set to default, for
simplicity.

• Static modifier. This is the keyword static that declares the
method as a class method when present, or an instance method when
absent. Static modifier is present in a proxy method if and only if it
is also present in the original method.

• Return type. This is can be a Java type, or void if the method
does not return any values. The return type of a proxy method is
the same as its original method.

• Method name. The name of proxy method is required to be
unique for each occurrence of the original invocation/assignment in
the source code, because if the same method is invoked at different
places in the test suite, then we want to observe them separately. We
also need the encode the declaring class name into the proxy method
name, resulting in the following form:

m‿<original name>‿<declaring class>‿<unique id>

The letter m at the beginning signifies that the origin of this proxy
method is a method invocation, not a field assignment. <declar-
ing class> is the fully qualified name of the class that declares the
method, with all occurrences of the period character (‘.’) replaced by
‘¤’. This is because periods are not allowed in a valid Java method
name. <unique id> is a unique identifier for each invocation. We
use the position of the original invocation within the source file as
this identifier.

45

• Method parameters. Parameters of a proxy method have the same
types and order as the original method. We also want the name of
each parameter to be the same, but for technical implementation
reasons, it will be more efficient when forming PartitionInfoCol-
lection from Daikon result if we know the index of any parameter
just from its name, otherwise we would have to look up and compare
from the actual method implementation. Therefore, we use a scheme
that embeds the index of every parameter into its name – a method
parameter arg at index i becomes Γarg$iℲ. The enclosing characters
‘Γ’ and ‘Ⅎ’ are used to establish the beginning and the end of an
argument value.
Note that parameters names are only available when compile using
-g option to retain debug information. This is the same requirement
that Daikon puts on its subject program.

• Exceptions. Checked exceptions are a part of method signature. It
tells what kind of non-runtime exceptions might be thrown from the
method. Proxy methods copy the exact same exceptions from their
original methods.

• Generics type parameters. A method can declare its own generic
type parameters as part of its signature. For example, the method
<T> int length(List<T> list) has a reference to type parameter
T. This is a complex subject that will be discussed along with other
aspects of generic types in section 4.6.2.

As an example, if the following method, declared in class foo.Bar, is
invoked at position 42 in a test class:

public static String f(int n, double[] d) throws
EOFExpcetion , FileNotFoundException { ... }

It would produce a proxy method with the following signature:
static String m‿f‿foo¤Bar‿42(int Γn$0Ⅎ

, double[] Γd$1Ⅎ throws EOFException ,
FileNotFoundException { ... }

As for field assignment, the signature follows a similar set of rules, with
a few differences:

• The name of the method uses prefix ‘f’ to indicate instance field
assignment, or ‘sf’ to indicate static field assignment.

46

• There is always exactly one parameter. Its type is the same as the
field type. Its name is the name of the field, enclose by the characters
‘Γ’ and ‘Ⅎ’, without the index indicator ‘$<id>’.

• The return type is the same as the type of the field. This might be
surprising to some readers, since field assignment is used to set a new
value to a field, as oppose to getting the current one. However, it is
also valid to use the value on the right-hand-side of the assignment
as part of larger expression. This is might be frequently seen in loop
construct, for example:

1 while((this.line = reader.readLine()) != null
){ ... }

2

The expression this.line = reader.readLine() is a valid field
assignment that is also used as part of the null checking. If the
assignment is replaced by a void method, then the result would not
be a valid program. Instead, the replacing method must return a
value of the same type as this.line.

As an example, a public static field s of type String, declared in
class foo.Bar, and has an assignment at position 64 in a test class, would
produce a proxy method with the following signature:

static String sf‿s‿foo¤Bar‿64(int ΓsℲ) { ... }

Proxy method body and the replacement invocation. The task of
proxy methods consists of relaying the arguments to the right method (or
assigning the right value), and relaying the result back to the caller.

For static methods, this is very simple. We can just forward the argu-
ment to the original method directly. The body of a proxy method gener-
ated from static int Foo.f(int n) would be simply return Foo.f(n);
(Omit the keyword ‘return’ for void methods.) On the caller side,
the invocation Foo.f(123) would be replaced by ẎȧċȯṅProxifier.<proxy
method name>(123).

Similarly, the content of proxy methods for static fields would be of
the form return(<class>.<fieldname>=<argument>;) The replacement
on the caller side takes exactly the same form as in the case of static
methods.

It is a little more complicated in the case of instance members. While
we can directly refer to the target class in static case, which is known

47

at compile time, for instance members we need a reference to the target
instance. This is accomplished by the following process:

• On the caller side we have an invocation of method f on object o
with arguments args.

• A replacement invocation is built, starting by calling the static method
ẎȧċȯṅProxifier.proxify(o), putting the target object o in as the
argument. This will set the value of the ẏȧċȯṅTarget field to the
target object.

• proxify returns a singleton instance of the class ẎȧċȯṅProxifier.
We can use this instance to further call the proxy method generated
from f , supplying args as the arguments. This is the replacement
invocation.

For the content of the proxy methods, start with the target object,
which we know is assigned to ẏȧċȯṅTarget. Because the type of this
field is plain Object, a cast back to the original type is needed. Then
we can progress to the same steps as when processing static members, by
forwarding the arguments to the original method, assigning field values,
and relaying return values.

For example, the invocation o.g(123) on method int Foo.g(int n)
would produces ẎȧċȯṅProxifier.proxify(o).g(123) on the caller side,
and return ((Foo) ẏȧċȯṅTarget).g(<argument>); on the proxy side.

The proxification process as described here works successfully for most
cases. The process becomes more complicated when generics are involved,
with one problem remains unsolved. The issue is described in detail in
sections 4.6.2 and 4.6.3.

Step 2: Compilation

The proxification process produces a set of manipulated source files. This
step is simply to compile them into binaries. We used the built-in type
javax.tools.JavaCompiler for this task. The generated source files are
put into a specific folder, so we search that folder for all files with ‘.java’
extension and pass them to the compiler. The compiler option -g is
also set, in order to retain debug information necessary for Daikon. The
resulting classes are put into another folder, which we will call the proxified
binaries folder.

48

Step 3: Running Chicory and Daikon

This step executes Chicory and Daikon using the proxified classes from the
previous step. Users can specify the arguments to pass to Daikon in the
configuration file.

Chicory and Daikon have to be executed as a separate process4. As
in the boundary value recovery strategy, the class JavaProcessRunner can
be used to facilitate running external Java process. The runner class for
this strategy is (DaikonRunner. Its task is to execute Chicory and Daikon
in on-line mode, focusing only on program points whose name contain the
name of the proxy class ‘ẎȧċȯṅProxifier’. We specifies the command line
option ‘–format java’ to tell Daikon to generate the resulting invariants
using Java format, as is required by the partitioning file format.

While Daikon has an option to write the result as a file, we found
that the option does not work well in conjunction with the on-line mode,
so the option is not specified. By doing this, Daikon will use its default
behaviours, which is to write the result to the standard output. We can
then capture the result by redirecting the standard output to a file, by
redefining Java’s System.out as a java.io.PrintWriter.

For Chicory and Daikon to be able to run successfully, the classpaths
given to them have to be set up in the right way, especially the one
containing proxified classes. Since these classes are compiled twice – before
and after the proxification process, there will be two versions of the binaries
for them. (Unless the proxified binaries folder is set up to be at the
same location as the original, in which case the proxified binaries will
replace the original.) The program sets up the classpaths by always putting
the proxified folder in front of all other classpaths. Since the classloader
searches for class binaries from each specified classpath in the order of
appearance [47], this setup ensures that the proxified folder has precedent
over the original.

Step 4: Daikon Result Collection

This step reads from the file generated from the previous step, and parse
it into a ProgramPointCollection, using class InvariantCollector and
its concrete subclasses – ClassLevelInvariantCollector to handle class-
level invariants (static and instance), and MethodInvariantCollector to
handle method-level invariants. The parser filters out some of the excessive
invariants and program points, such as those concerning properties of the

4see section 4.6.4 for the reasons.

49

auxiliary class ẎȧċȯṅProxifier itself, or the invariants that Daikon could
not format into a Java expression.

For clarity, in this part we use the term ‘invocation point’ to refer to
program points on proxy methods, and reserve the term ‘program point’
itself to refer to program points on the subject program. In this sense, one
program point can encompass any number of invocation points, while an
invocation point is always associated with a single program point.

When the parser scans the input file and encounters an invocation
point, it can infer the associated program point from the information we
embedded into the name of the invocation point. A new instance of In-
variantCollector subclass, which internally holds a reference to a Pro-
gramPoint object, is created for every new program point. The parser
then passes on the invariants on each invocation point to the associated
InvariantCollector, which keeps track of the invariants, as well as the
number of times each unique invariant occurs.

At the end of the execution, the occurrence of each invariant is exam-
ined. If it is equal to the number of invocation points belongs to that
InvariantCollector, it means the invariant is universally true for all in-
vocation points, which is not interesting since we want to find splitting
conditions. Therefore, these universally true invariants are discarded.

For the rest, we try to extract variables from the invariant, by looking
for substrings that are enclosed by the characters ‘Γ’ and ‘Ⅎ’. Since we
want to build predicate-base equivalence classes from these invariants, and
every equivalence class must be tied to a single domain, therefore we are
only interested in the invariants where the number of variables is exactly
1. If an invariant has no references to variables, then there is no domain.
If there are more than one variables, then it might be an invariant over
relationship between multiple domains, which is not expressible in the
partitioning file format.

Invariants that survive the above process are grouped by the variable,
and built into PredicateEQClass objects under a PartitionInfo. A Com-
plementEQClassRep is also automatically added into any PartitionInfo
containing more than 1 equivalence classes. The PartitionInfos are then
added to ProgramPoints. All the ProgramPoints are then collected into a
ProgramPointCollection, which is the end result of the whole strategy.

4.3.3 User-Defined Strategies
In addition to using the two strategies we implemented, users can opt to
create their own strategy. This can be done by the following steps:

50

1. Creating a subclass of the abstract type RecoveryStrategy and im-
plement the abstract method execute(), which returns an object of
type ProgramPointCollection. The subclass must provide either a
public empty constructor, or a public constructor that receives a sin-
gle argument – a configuration object (an instance of com.typesafe.
config.Config), or both. Note that the classes BoundaryValueS-
trategy and JavaSuiteInvariantStrategy, which are the imple-
mentation of our two strategies, also follow this same pattern, and
can be used as reference.

2. Compile the subclass. Typesafe’s config library and Yacon need to
be accessible in the classpath for the compilation to be successful.

3. Set the configuration value yacon.extraction.strategy.class to
the fully qualified name of this RecovertStrategy subclass. If the
strategy has configurations, then put them into the main configura-
tion file, and set the value of yacon.extraction.strategy.name to
the top-level name of the strategy configuration.

As a minimal working example, consider the following class EmptyS-
trategy.

1 import me.arkorwan.yacon.extractor.RecoveryStrategy;
2 import me.arkorwan.yacon.model.

ProgramPointCollection;
3
4 public class EmptyStrategy extends RecoveryStrategy

{
5
6 @Override
7 public ProgramPointCollection execute() {
8 System.out.println("Hello, world!");
9 return new ProgramPointCollection();
10 }
11
12 }

This strategy does nothing but printing ‘Hello, world!’ to the standard
output, then returns an empty ProgramPointCollection. It does not
implement any explicit constructors, which means the default constructor
public EmptyStrategy() is automatically provided.

Suppose we also have the following configuration file named exam-
ple.conf:

51

1 yacon : {
2 extraction : {
3 strategy : {
4 class : EmptyStrategy
5 }
6 output_file : example.ycnp
7 }
8 }

After compile the class and make sure it is in accessible from Java
classpath, then the following command would produce the text ‘Hello,
world!’ to the standard output:

java daikon.Yacon extract example.conf

See appendix C for detailed description of the configuration file and
how to execute Yacon from command line.

4.4 Translator
The sole responsibility of the translator is to convert a file from the parti-
tioning file format into a splitter info file. We identified 2 subtasks. Firstly,
the input file has to be parsed into data models, and secondly, the models
are transformed and printed to text output. The main class of the transla-
tor is the class PartitionTranslator, which contains two static methods
for each subtask.

Parsing
Parsing starts by creating an instance of YaconStatementEmitter, which is
an iterator that reads the given partitioning file and sequentially produces
a statement upon request, until the end of file is reached. It basically
produces the statement in a line-by-line fashion, with 2 exceptions:

1. Comment lines (lines that has ‘#’ as the first non-space character)
are ignored.

2. Consecutive empty lines (lines that contain no non-space character)
are treated as a single empty line.

The class YaconStatement represents statements. Its singleton sub-
classes EmptyStatement and FinishedStatement represent empty lines and
the end of file, respectively.

52

The YaconStatements are not directly processed by the main translator
class. Instead, PartitionExtractor itself only inspects the current state-
ment and assigns the appropriate processor to handle the next section. The
processors are subclasses of the abstract class SectionProcessor, which
repeatedly processes the next input statements until either an EmptyState-
ment or a FinishedStatement is encountered. There are 3 such subclasses,
one for each of the IMPORTS, PARTITION, and CLASS sections.

• ImportsSectionProcessor consumes the IMPORTS section, and stores
the type aliases to be used further as a mapping from Strings to Do-
mainTypes.

• PartitionSectionProcessor processes PARTITION sections, each
section is parsed and stored as an instance of PartitionInfo class
containing one or more EQClassReps, for later references by CLASS
sections.

• ClassSectionProcessor processes CLASS sections, each section pro-
duces a collection of ProgramPoint instances, with appropriate rela-
tion to PartitionInfos.

Printing Splitter Info
At the end of the parsing process, all the information will be collected
as a list of ProgramPoints. A splitter info file can then be produced by
iterating though all the equivalence classes (EQClassReps) in each program
point, and convert the information into condition expressions, by using the
method getSpinfoFormat(), which each of the subclasses of EQClassRep
implements differently.

For example, consider a PartitionInfo based on this partition, bound
to a variable x:

1 PARTITION SimplePartition: int
2 EQClass $value == 0
3 EQClass $value < 10 && $value >= 1
4 ComplementClass

There are 3 EQClassReps in this partition. Their getSpinfoFormat()
method would produce the following strings, respectively:

• x == 0

• x < 10 && x >= 1

• !((x == 0) || (x < 10 && x >= 1))

53

4.5 Testing
There is a comprehensive set of test cases for most of the code, imple-
mented using the test framework TestNG [7]. They were developed along
with the product code itself. The build process is set up in a way that
all the test cases have to be passed in order to create a successful build.
While this cannot ensure correctness of Yacon, it can improve confidence
level we have on the solution implementation.

We used EclEmma to measure code coverage, to make sure that the
code is tested thoroughly, resulting in the following statistics:

Coverage Metric Total Covered % coverage
Instructions 8,482 6,862 80.9%
Lines 1,971 1,608 81.6%
Branches 788 507 64.3%
Methods 327 263 80.4%
Types 62 56 90.3%
Cyclomatic complexity 724 444 61.3%

4.6 Challenges and Issues
This section details a number of technical challenges and issues we have
encountered over the course of development.

4.6.1 Handling Multi-Catch Clauses with Spoon
We selected Spoon to assist the task of source code manipulation, a part
of test suite invariants recovery strategy. It serves out purposes very well.
But we did find a big obstacle during development.

We were using version 3.0 of Spoon when a defect was discovered –
the generated sources failed to resolve fully qualified names of the types
in Java 7’s multi-catch clause. For example, instead of writing catch
(java.io.EOFException | java.io.FileNotFoundException e), it pro-
duces catch (EOFException | FileNotFoundException e). And since
the configuration of Spoon was set up to use no import statement, the
files containing multi-catches failed to be compiled. A natural solution to
this problem is to upgrade Spoon the latest released version (3.1 at the
time). But the problem still persisted.

Another approach to solve the problem is to configure Spoon to always
use import statements. This solution was able to fix the issue, but another

54

issue arose in its place: Spoon tried to import the generated nested class
ẎȧċȯṅProxifier into its enclosing class – which is both unnecessary and
illegal. The source files still failed to be compiled.

We then looked at the code repository5 and found that the multi-
catch issue has been reported and fixed, but not released yet. So we
tried to upgrade the library to several commits on the main branch of the
repository. The latest commit at the time already made a lot of changes
to the API that are not backward-compatible, so that our working client
code failed. On the other hand, the commit that fixed this particular issue
contained a failed test case that prevented the library to be successfully
built. After some trials and errors, we finally found a particular commit6

that worked for our purposes.

4.6.2 Proxification of generic type parameters
The proxification process as described in section 4.3.2 works correctly, as
long as generics type parameters are not involved. Methods containing
references to type parameters introduce difficulties to our process. We
have stated that the proxification process tries to create proxy methods
that mimic their origins as close as possible. Ideally we would like to
apply this principle to type parameters as well, by also using generics
for the proxy methods. To do that, we need the information of typed
parameters in detail. However, because of type erasure7, we could not find
a way to obtain all the needed information reliably.

To demonstrate the problem, consider the following singletonList
generic method, defined in class G.

1 public static <T extends Number> List<T>
singletonList(T item)

And suppose the method is invoked like this:
1 List<Integer> list = G.singletonList(1);

This method receives an instance of any object type that is a subclass
of java.lang.Number, and returns a list parameterized to that type. Ap-
plying the proxification process on this method, we would like to generate
a proxy method like the following:

1 static <T extends Number> List<T>
m‿singletonList‿G‿42(T Γitem$0Ⅎ
) {

5https://github.com/INRIA/spoon
6commit 13bc4becb2603f7558fc454c28cfb8b2c0344766
7See https://docs.oracle.com/javase/tutorial/java/generics/erasure.html

55

https://github.com/INRIA/spoon
https://docs.oracle.com/javase/tutorial/java/generics/erasure.html

2 return G.singletonList(Γitem$0Ⅎ);
3 }

But because we do not have the information of generic type T, it is not
possible to use the parameter type T, nor the return type List<T>. They
must be replaced by some other non-generic types.

For an arbitrary type parameter T1 , we need a type T2 that satisfies
the following conditions:

1. The actual argument can be assigned to type T2.

2. Instances of type T2 can be assigned to type T1.

This means any types in the whole type hierarchy from the argument
type up to T1 can be used. In our implementation, the argument type
is tried first. This covers most of the cases, for it trivially satisfies both
conditions. The only case this tactic fails is when the argument is null,
which means the argument type is undefined. When that happens, we
try to fall back on the type of the parameter as stated in the method
signature. This fall-back mechanism is not guaranteed to succeed since the
second condition could be violated. For the singletonList example, the
type of the parameter is T extends Number, which becomes Number after
type erasure. Since Number cannot be assigned to Integer, the second
condition is violated, and the generated code will fail to compile.

To work around the issue, users are advised not to use null directly as
method arguments. Instead, refer to a variable or method with the desired
type and has null as its value. We provide a utility class me.arkorwan.
testng.utils.Null that contains a single static generic method value()
for this purpose. To continue with the singletonList example, instead of
writing

1 List<Integer> list = G.singletonList(null);

users are encouraged to substitute null with a call to the Null class, as
follows:

1 List<Integer> list = G.singletonList(Null.<Integer>
value());

In the case of return type, we simply use the result type of the original
invocation. This is not always the same as the return type of the original
method, when the return type references type parameters. In our example,
while the original method singletonList returns a value of type List<T
extends Number> (which becomes List<Number> after type erasure), the
result type of the invocation G.singletonList(1) is a List<Integer>.

56

Applying the above tactic to the example, the actual proxy method
produce by our process is:

1 static List<Integer> m‿singletonList‿G‿42(int
Γitem$0Ⅎ
) {

2 return G.singletonList(Γitem$0Ⅎ);
3 }

As for the effect of generics on field assignment, we simply resolve
the generic field type to concrete type, and use the result as both the
parameter type and return type of the proxy method. As an example, for
the following generic field:

1 public class Foo<T>{
2 T field;
3 }

with this assignment:
1 Foo<Integer> f = new Foo<>();
2 f.field = 1;

our process would produce the following proxy method:
1 Integer f‿field‿Foo‿42(Integer ΓfieldℲ) {
2 return ((Foo) ẏȧċȯṅTarget).singletonList(ΓfieldℲ);
3 }

There is one limitation that we have found, concerning the combination
of generics and exceptions.

4.6.3 Proxification process limitation on combination
of generics and exceptions

There is one issue remain unresolved from the proxification process, con-
cerning exceptions and generics. According to the Java specification, all
subclasses of java.lang.Throwable cannot be generic [29, p. 186], so an
expression like throws CustomException<T> is not allowed. However, there
is still a way to refers to type parameter in the throws clause. Consider
the following example:

static <E extends Exception > void f(E e) throws E {
throw e;

}

This is a valid construct. The method simply throws the exception
it receives. Also recall that checked exceptions need to be either caught

57

or re-thrown, otherwise the compilation would failed. Suppose the above
method is invoked with an exception subclass, and is handled by a catch
clause, as in the following:

try {
f(new EOFException());

} catch(EOFException e) {
}

When this method is proxified, the process tries generating a throws
clause to mirror the original method. Current implementation uses reflec-
tion to extract this information from the actual method implementation,
so the throws clause of the proxy method will be ‘throws Exception’.
The problem is that, once the invocation is replaced by the a call to the
proxy method, the existing catch clause only catches the more specific ex-
ception subclass, so from the compiler’s point of view there can be ‘leaked’
exceptions. Therefore the proxified code would fail to compile.

To solve this problem, the proxification process must be able to infer
the correct exception type. This is impossible from the method invocation
alone, so we need to search the enclosing scope for the correct catch or
throws clause. Since this solution is a difficult process, and the problem
only occurs for a very specific case, we decided to leave this as a known
limitation for the time being.

4.6.4 Running Chicory from within a Java Program
Both of the recovery strategies we implemented rely on running the tool
Chicory, the Daikon front-end for Java. Like all of Daikon various tools,
it is intended to be used from a command-line interface. However, to fit
the recovery strategies within the extraction framework, Chicory needs to
be run from within a Java program. This should be a trivial task, that
is, it could be accomplished by calling the main() method of the class
daikon.Chicory. Then we could execute Chicory from within a Java pro-
gram, supplying appropriate command line arguments and JVM properties,
then either interpreting the resulting trace file or pass the information on
to Daikon tool.

However, unlike some other tools in the Daikon ecosystem, Chicory
is not designed to be run from other programs. The problem is that it
always makes a call to System.exit(), which terminates the running JVM.
Therefore, if Yacon directly calls the main method of Chicory, then when
Chicory finishes, Yacon will terminate as well. Because in most cases the
program terminates successfully, meaning that there is no error message

58

being produced, it was quite difficult to detect the problem.
Once we knew the root cause, we identified two possible solutions:

1. PreventSystem.exit() from terminating the JVM.

2. Run Chicory as an external process.

The first solution can be implemented by using a SecurityManager
to detect a call to System.exit(), then throw an exception, to prevent
the JVM from termination [54]. While this solution works quite well,
we considered it as a hack, since it uses the bad practice of throwing
Exceptions in a non-exceptional case. Moreover, we are not certain if there
are any consequences of exploiting the SecurityManager in this way.

The second solution, in contrast, is more straightforward. Java already
has several built-in mechanisms of dealing with external processes, such as
the class java.lang.Runtime or java.lang.ProcessBuilder. So this is
the solution we chose, using the ProcessBuilder class.

4.6.5 Reading Trace File Produced by Chicory in the
Correct Encoding

Once again, both recovery strategies require reading trace information pro-
duced by Chicory. In the case of boundary value recovery strategy, the
traces are needed to be read and processed by our tool, while in the case
of test suite invariants recovery strategy, the traces are to be passed on to
the tool Daikon.

In our development process we first focused on the second case, where
we need to passed the trace information to Daikon. Normally Chicory
produces a result trace into a file, which can be passed directly as an
argument to Daikon. There exists an alternative, which is to specify the
command line option --daikon or --daikon-online to instruct Chicory
to run Daikon automatically. The difference for these 2 options is that, the
first one is just a convenient way to run Chicory and Daikon consecutively,
while in the second one the two tools are being run concurrently, with
trace data being communicated incrementally via a socket, therefore does
not involve writing or reading trace files.

We first attempted to use the option --daikon since it would be more
convenient than running two tools by ourselves, and the online option is
unnecessary. However, it was quickly found that the resulting invariants
from this process are partially garbled, also known as ‘mojibake’ [51], as
shown in figure 4.2. This is most likely a text encoding problem, when a
string of characters are converted into bytes using one encoding, and then

59

Foo$áº�È§Ä�È¯á¹�Proxifier.mâ�¿gâ�¿Fooâ�¿1423(int
):::ENTER
Foo$áº�È§Ä�È¯á¹�Proxifier.instance.target !=

null
n == 2147483647

(a) read trace data from file

Foo$ẎȧċȯṅProxifier.m‿g‿Foo‿1423(int):::ENTER
Foo$ẎȧċȯṅProxifier.instance.target != null
n == 2147483647

(b) receive trace data from Chicory

Figure 4.2: Comparison of Daikon outputs from difference input sources

converted back to characters using a different encoding. We examined
the trace file produced by Chicory and found that the output encoding is
correct, therefore the defect must lie within the input reading of Daikon.
Usually this would not be a big problem since most programs use only
characters in ASCII range for class and method names. However, we
deliberately used the uncommon Unicode characters Ẏ, ȧ, ċ, ȯ, ṅ, ‿, ¤, Γ
and Ⅎ in the source code transformation phase of the strategy. Therefore,
while this approach works well in most circumstances, it becomes a big
obstacle for our purposes.

We deduced that changing the method from running the --daikon
option to separately running Chicory and Daikon would also suffer from
the same problem, since it is essentially the same process. So instead
we tried the other approach, using the command line option --daikon-
online. As expect, because the process does not need reading data from
the trace file, the mojibake does not occur, and we continued development
of the strategy using this approach.

However, the problem itself was not solved, just evaded for the time.
So when we turned our focus to the boundary value recovery strategy,
the problem resurfaced. Since this strategy requires only trace data and
not invariants, reading the trace file is inevitable. Fortunately, this is not
as critical as in the other strategy, for the chance of encountering the
problem is much lower since no Unicode characters are injected into the
subject program. However, it would still be better to be able to avoid the
problem completely.

60

1415 // Open the reader stream
1416 if (raw_filename.equals("-")) {
1417 // "-" means read from the standard input stream
1418 Reader file_reader = new InputStreamReader(System.

in, "ISO-8859-1");
1419 reader = new LineNumberReader(file_reader);
1420 }
1421 else if (raw_filename.equals("+")) { //socket comm

with Chicory
1422 InputStream chicoryInput = connectToChicory();
1423 InputStreamReader chicReader = new

InputStreamReader(chicoryInput);
1424 reader = new LineNumberReader(chicReader);
1425 } else if (is_url) {
1426 URL url = new URL (raw_filename);
1427 InputStream stream = url.openStream();
1428 if (raw_filename.endsWith (".gz")) {
1429 GZIPInputStream gzip_stream = new

GZIPInputStream (stream);
1430 reader = new LineNumberReader (new

InputStreamReader (gzip_stream));
1431 } else {
1432 reader = new LineNumberReader (new

InputStreamReader (stream));
1433 }
1434 } else {
1435 reader = UtilMDE.lineNumberFileReader(raw_filename

);
1436 }

Figure 4.3: Part of Daikon’s class daikon.FileIO responsible for reading
trace files

61

Daikon follows its own recommendation of using the method FileIO.
read_data_trace_files to read trace data, and this is indeed the source
of the mojibake problem. We discovered the part of the source code
that is responsible – the construction of the reader object is in the class
daikon.FileIO, shown in figure 4.38. It can be seen that there are mainly
4 sources of input.

1. The standard input. In this case the encoding is specifically set to
ISO-8859-1 or Latin-1. (line 1418)

2. From Chicory. In this case the encoding is not explicitly stated.
The reader is constructed using the constructor InputStreamReader
(InputStream) (line 1423), which ‘[c]reates an InputStreamReader
that uses the default charset’, as stated in its documentation9.

3. From a URL. This case is similar to the previous one – the reader is
construct using the same constructor. (lines 1430 and 1432).

4. From a simple file. In this case the construction is deferred to a
library call UtilMDE. (line 1435)

From our earlier tests we knew that case 2 succeeded, while case 4
failed, for unicode input. Because cases 2 and 3 construct the input reader
in the same way, it is expected that the encoding problem should not
happen in case 3. To make a reference to a file as a URL, one can simply
use the file URI scheme [6] in the form file://<file absolute path>.
We tried this solution and found that it succeeds as expected.

4.7 Summary
The implementation of Yacon, the prototype solution to the research ques-
tion of using equivalence partitioning to assist dynamic invariants detec-
tion, was described in detail in this chapter. We introduced the data model
classes, and the implementation of the extraction and translation phases of
Yacon. Test coverage statistics of the solution was also provided. During
development a number of issues came up. In the last section we recorded
the problems and how they were solved, or why they remain unsolved.

8Source code and line numbers are from Daikon version 5.2.2
9http://docs.oracle.com/javase/7/docs/api/java/io/InputStreamReader.

html

62

http://docs.oracle.com/javase/7/docs/api/java/io/InputStreamReader.html
http://docs.oracle.com/javase/7/docs/api/java/io/InputStreamReader.html

5
Evaluation

Yacon was developed as a tool to help answering our research question of
‘how can equivalence partitioning assist dynamic detection of conditional
invariants?’ In this chapter we evaluate Yacon for its effectiveness as a
solution to the research question. Also evaluated is the performance, in
terms of execution time of the solution.

5.1 Effectiveness Evaluation
5.1.1 Experimental Setup
The process for effectiveness measurement is as the following outline:

1. Select a number of programs for evaluation. (Section 5.1.2)

2. Create a test suite for each program, aiming to achieve full branch
and statement coverage, ensuring that all possible branches of each
decision point and all statements are executed. We will refer to these
test suites as the ‘full coverage test suites’.

3. Create a partitioning file for each program manually. These files serve
as the expected result of the extraction phase of Yacon.

4. Run Yacon to produce the intermediate partitioning file and the re-
sulting splitter file for each program and each extraction strategy.
This step is performed once using the full coverage test suites we
wrote ourselves in step 2, and another using the test code from the
textbook (we will refer to them as ‘textbook test suites’), if available.

63

5. Compare how close the generated partitioning files are to the refer-
ence file. (Section 5.1.3)

6. For each pair of program and test suite, run Daikon with and without
the help of Yacon, resulting in different sets of generated invariants.
Evaluate each invariant for its a) correctness, b) usefulness, and
c) significance. Use the result to calculate the effectiveness of Yacon.
(Section 5.1.4)

See appendix D for the details of evaluation environment and configu-
rations.

5.1.2 Program Selection
In total, 7 programs taken from programming textbooks are used for eval-
uation:

• StackAr and QueueAr from [58]

• BinaryHeap and BinarySearchTree from [59]

• Earthquake from [37]

• ComputeTax from [43]

• Insurance from [10]

The first two programs, StackAr and QueueAr, are included with stan-
dard Daikon releases. Prior work on Daikon often relied on them as bench-
mark programs, including work on conditional invariants [19,21]. Together
with BinaryHeap and BinarySearchTree, they are examples of recursive
data structures, which naturally include conditional invariants, for they
need to process the base case and the recursive case differently [21]. The
textbooks also provide small demonstration programs that can be used as
test suite.

The last three programs are selected because they have suitable struc-
ture for equivalence partitioning testing technique – that is, they contain
code that process data in the same domains in different ways depending
on values. Earthquake is the simplest among the three programs, with the
output conditionally depends on only a single input domain, while Com-
puteTax and Insurance depend on more than one inputs. Unlike the data
structure programs, there are no test suites provided for these.

64

5.1.3 Recovery Strategy Effectiveness
For each pair of sample program and test suite, we have written a reference
partitioning file, and we have generated 2 partitioning files using Yacon,
one for each recovery strategy. In this section we evaluate the effectiveness
of these strategies.

5.1.3.1 Metrics

Comparison of partitioning is a common problem in the area of data clus-
ter analysis. A clustering is analogous to a partitioning, and a cluster is an
equivalence class. There are a number of traditional metrics of comparing
clusters in the literature [44], but most of them are designed to measure dis-
tance between disjoint clusters, equivalent to non-overlapping partitioning.
Since Yacon allows for overlaps, we instead used the best match algorithm
from [27], which is more suitable for overlapping clusterings.

The best-matched distance d between two clusterings C1 and C2 is
defined as:

d(C1, C2) =
n∑

i=1
min

j=1..m
δ(Si, S ′

j) +
m∑

j=1
min
i=1..n

δ(S ′
j, Si)

where C1 consists of n clusters S1..Sn and C2 consists of m clusters S ′
1..S

′
m.

The difference function δ(Si, Sj) computes difference between any two clus-
ters, and must be defined in order for the definition of best-matched dis-
tance to be complete. In [27], two choices of this difference function are
given, one is the number of moves necessary to convert one cluster to an-
other, and the other is based on the concept of entropy from information
theory. In both approaches, the size of clusters is a major component in
the computation. However, we are more interested in the structure of the
partitioning than the size, so we defined the difference function using only
the relationship between clusters, as follows:

δ(Si, Sj) =


0, if Si = Sj

ws, if Si ⊂ Sj or Sj ⊂ Si

1, otherwise
where 0 < ws < 1.

In simple terms, the function evaluates to 0 if the two clusters are
perfect match, ws if there is a hierarchical relationship between them, and
1 if there is not.

Using this definition of difference function, the best-matched distance
is 0 for two identical clusterings, and n + m for two maximally different

65

clusterings with n and m clusters respectively. We can further define
the normalised best-matched distance dnormal by dividing the best-matched
distance by n + m, so that the result will always be a number between 0
and 1 inclusive, a form more suitable for comparison.

For the evaluation of our generated partitioning files, we measure the
normalised best-matched distance for each of the domains present in the
reference partitioning, using 0.5 as the value of ws. If a partitioning
is missing from the generated file, we use the domain itself as the only
equivalence class. Notice that in this case, the best-matched distance will
always be ws. This means that the value 0.5 can serve as the threshold
that separates good and bad partitionings – a good one should have its
distance less than 0.5.

We further define the recovery effectiveness of a partitioning as fol-
lows:

effectiveness = 1 − 2 · (average best-matched distance of all domains)

The effectiveness ranges from −1 to 1. A perfect match has the effec-
tiveness of 1, empty partitioning has the effectiveness of 0, and maximally
mismatched partitioning has the effectiveness of -1.

5.1.3.2 Experimental Results

We measure the recovery effectiveness of the boundary value strategy, the
test suite invariants strategy, and the combination of them (the combined
partitioning consists of the union of equivalence classes in the same domain
from both strategies).

The results for full coverage test suites and textbook test suites are
presented in figures 5.1 and 5.2, respectively.

It can be seen that, for the full coverage suites:

• There is no dominant strategy – out of 7 sample programs, boundary
value generates better result for 3 of them, and test suite invariants
is better for the rest. In 3 instances (Earthquake, BinaryHeap and
BinarySearchTree), one strategy produced some results while the
other failed completely.

• The combination of the two strategies created the best result most
of the time (6 out of 7).

Overall, the combined strategy is effective to varying degrees for the
manually-written suites, with the values ranging from 0.05 to 1.0. In
contrast, the result for textbook test suites are poor: effectiveness of all

66

Figure 5.1: Recovery effectiveness for full coverage test suites

Recovery effectiveness
Program Boundary Value Suite Invariants Combined
StackAr 0.0 0.0 0.0
QueueAr 0.0 0.0 0.0
BinaryHeap 0.0 0.0 0.0
BinarySearchTree 0.0 0.0 0.0

Figure 5.2: Recovery effectiveness for textbook test suites

the strategies executed on all 4 programs are measured as 0.0, meaning that
they are ineffective for these test suites. We found 2 possible explanations
for this performance:

1. The 4 data structure programs are not well-suited for equivalence
partitioning technique. This is supported by the fact that the ef-
fectiveness for these 4 programs are also lower than the other 3 on
the manually-written test suites. The conditional processing for these
programs mostly depends on properties of underlying data storage
rather than the input/output domains themselves. And while the
partitioning file format supports conditions that depend on other
domains outside of the input/output, current implementation of re-
covery strategies is not able to produce this kind of conditions yet.

67

2. In our opinion, the textbooks ‘test suites’ are not test suites in the
traditional software testing sense. Their main purpose is to demon-
strate usage of the data structures in various different situations,
rather than to find program defects or ensure correctness of the pro-
gram. With this different mindset, our assumption that equivalence
partitioning is usually used when writing test suites might be invalid
for these cases.

To prove these claims we need more data, which could be obtained from
applying the evaluation process on other programs suitable for equivalence
partitioning with ‘traditional test suites’.

5.1.4 Invariants Detection Effectiveness
In this section we measured the effectiveness of Yacon as a solution, to see
if it can assist Daikon on invariants detection.

For each subject program and test suite, Daikon was run three times
with different inputs, producing three sets of invariants:

• Baseline - the invariants produced by Daikon without assistance of
any splitter files.

• Actual - the invariants produced by Daikon with the two splitter files
generated by Yacon, one file from each recovery strategy.

• Reference - the invariants produced by Daikon with the splitter file
generated from running Yacon on the reference partitioning. This
represents the potential of the idea of using domain partitioning to
assist invariants discovery, regardless of the effectiveness of recovery
strategies used.

5.1.4.1 Metrics

To measure the effectiveness of a set of invariants, each invariant is man-
ually examined for their correctness, usefulness, and relevance, defined as
follows:

• Correctness: an invariant is correct if it is always true. Incorrect
invariants are a symptom of overfitting – they are true for all the
present data, but not for some of the absent ones. They can be
eliminated by adding counterexamples to the test cases.

68

• Usefulness: an invariant is useful if it helps programmers, testers,
or any other parties in some ways.1

• Relevance: an invariant is relevant if it can demonstrate a unique
characteristic or objective of the program.

These definitions are inherently subjective. Therefore we developed the
following guidelines to make the judgements as objective and consistent as
possible:

• A useful invariant is required to be correct.

• A relevant invariant is required to be useful.

• An invariant is relevant if it meets our pre-determined expectation.

• For any two equivalent invariants, only one of them can be relevant.

• A correct invariant that can be implied by another non-equivalent
invariant is useful but not relevant.

• An invariant that is obviously true (for example, x = x, or x > 0 →
x > 1) is not useful.

• An invariant that relates properties that should not be relate (for
example, relationship between the array size and the content of the
array) , even when correct, is not useful.

• A conditional invariant whose condition clause is always true (for
example, (x = 0 ∨ x ̸= 0) → y > 0) is not useful.

The following metrics are then defined for a set of invariants:

• Correctness – the ratio of correct invariants by reported invariants.

• Usefulness – the ratio of useful invariants by reported invariants.

• Precision – the ratio of relevant invariants by reported invariants.
This is a well-known metric in the field of information retrieval [11].

• Recall – the ratio of relevant invariants by expected invariants. An-
other well-known metric from information retrieval.

1This definition is close to relevance, as defined by Ernst in [20].

69

Out of these 4 metrics, the most important for our situation is recall,
since the purpose of Yacon is to help recover invariants missing from normal
Daikon execution – in other words, we want to improve the recall value. So
we will use recall as the main indicator of invariants detection effectiveness,
while the other metrics serve as indicators of how the effect this process
might have created to the quality of generated invariants.

5.1.4.2 Experimental Results

We measure the correctness, usefulness, precision, and recall of each set of
invariants generated from Daikon. Note that some of the sample programs
produced invariant sets too large for our manual assessment. We instead
limit our analysis of these sample programs to only a subset of invariants
associated with a selected method. The subjects for analysis and their size,
in terms of number of methods and number of instructions2 are presented
in the following table:

Program Size Selected Size
Program lines methods Selected Methods lines methods
Earthquake 46 1 (all)
ComputeTax 244 1 (all)
Insurance 45 1 (all)
StackAr 117 9 (all)
QueueAr 122 9 enqueue (Object) 26 1
BinaryHeap 247 12 percolateDown

(int)
56 1

BinarySearchTree 245 16 find (T, Bina-
ryNode<T>)

25 1

We counted the number of reported invariants, then measured the cor-
rectness, usefulness, precision, and recall of each set of invariants. The
results are presented in the tables in figures 5.3 to 5.7.

We made the following observations from the results:

• The Yacon and Reference invariant sets are almost always larger than
the Baseline set. This means our solution is successful in creating
more candidates.

2As reported by the code coverage tool eclEmma.

70

Reported Invariants
Program Baseline Yacon Reference

full coverage test suites
Earthquake 1 15 15
ComputeTax 22 206 151
Insurance 2 84 54
StackAr 140 269 311
QueueAr 26 109 199
BinaryHeap 20 91 61
BinarySearchTree 4 11 18

textbook test suites
StackAr 97 123 205
QueueAr 24 24 156
BinaryHeap 30 88 88
BinarySearchTree 9 18 23

Figure 5.3: Number of reported invariants of Baseline, Yacon, and Refer-
ence test sets

Correctness
Program Baseline Yacon Reference

full coverage test suites
Earthquake 100.00% 100.00% 100.00%
ComputeTax 100.00% 91.75% 98.68%
Insurance 100.00% 63.10% 68.52%
StackAr 57.86% 55.02% 56.59%
QueueAr 80.77% 45.87% 59.80%
BinaryHeap 75.00% 76.92% 83.61%
BinarySearchTree 100.00% 100.00% 88.89%

textbook test suites
StackAr 68.04% 73.98% 63.41%
QueueAr 83.33% 83.33% 73.08%
BinaryHeap 60.00% 82.95% 75.00%
BinarySearchTree 66.67% 72.22% 78.26%

Figure 5.4: Correctness comparison of Baseline, Yacon, and Reference test
sets

71

Usefulness
Program Baseline Yacon Reference

full coverage test suites
Earthquake 100.00% 100.00% 100.00%
ComputeTax 81.82% 58.25% 56.95%
Insurance 50.00% 39.29% 40.74%
StackAr 57.14% 41.64% 54.66%
QueueAr 80.77% 33.03% 37.19%
BinaryHeap 75.00% 72.53% 72.13%
BinarySearchTree 100.00% 45.45% 61.11%

textbook test suites
StackAr 65.98% 66.67% 55.61%
QueueAr 83.33% 83.33% 42.31%
BinaryHeap 46.67% 67.05% 59.09%
BinarySearchTree 66.67% 33.33% 56.52%

Figure 5.5: Usefulness comparison of Baseline, Yacon, and Reference test
sets

Precision
Program Baseline Yacon Reference

full coverage test suites
Earthquake 0.00% 46.67% 46.67%
ComputeTax 13.64% 1.46% 1.99%
Insurance 0.00% 17.86% 27.78%
StackAr 26.43% 14.13% 12.22%
QueueAr 19.23% 4.59% 3.02%
BinaryHeap 30.00% 6.59% 9.84%
BinarySearchTree 50.00% 18.18% 16.67%

textbook test suites
StackAr 28.87% 22.76% 14.63%
QueueAr 20.83% 20.83% 3.85%
BinaryHeap 23.33% 7.95% 7.95%
BinarySearchTree 22.22% 11.11% 13.04%

Figure 5.6: Precision comparison of Baseline, Yacon, and Reference test
sets

72

Recall
Program Baseline Yacon Reference

full coverage test suites
Earthquake 0.00% 100.00% 100.00%
ComputeTax 11.11% 11.11% 11.11%
Insurance 0.00% 62.50% 62.50%
StackAr 97.37% 100.00% 100.00%
QueueAr 62.50% 62.50% 75.00%
BinaryHeap 60.00% 60.00% 60.00%
BinarySearchTree 50.00% 50.00% 75.00%

textbook test suites
StackAr 73.68% 73.68% 78.95%
QueueAr 62.50% 62.50% 75.00%
BinaryHeap 70.00% 70.00% 70.00%
BinarySearchTree 50.00% 50.00% 75.00%

Figure 5.7: Recall comparison of Baseline, Yacon, and Reference test sets

• Let R(S) represents the recall metric of an invariant set S. It
can be seen that, for the same program/test suite, R(Baseline) ≤
R(Yacon) ≤ R(Reference). This means our solution always pro-
duces at least as good recall as the baseline. In the worst cases,
R(Baseline) = R(Yacon) = R(Reference) – which means the help of
splitter files failed to discovered more relevant invariants, but nothing
is missing. In the best cases, all the relevant invariants are discovered
by our recovery strategies.

• We inspected each of the additional recovered invariants found by the
Reference set but not the Baseline, and found that all of them are
conditional invariants, as expected.

• The Reference invariant sets successfully produced better recall than
the baseline for 8 out of 11 cases. The Yacon sets performed worse,
successfully producing better result for only 3 out of 11 cases. This
seems to suggest that the equivalence partitioning approach can be
useful, but our current recovery strategies are still inadequate.

• Correctness, usefulness, and precision of Yacon and Reference invari-
ant sets are worse comparing to the Baseline set. This suggests that,
by putting more candidates in order to uncover relevant invariants,

73

we also let in even more irrelevant invariants, thus worsening these
metrics. For precision and recall, it has been proved that trying to
improve one metric will inherently worsen the other [11]. So this is
an expected trade-off.

Figure 5.8: Trends of correctness, usefulness, precision, and recall, by
number of reported invariants

To better visualise this relationship between recall and the other three
metrics as we had speculated, we created a scatter plot relating each
metric to number of reported invariants, with quadratic trend lines.
(Figure 5.8). The graph shows how each recall improves with more
invariants, while the other metrics worsens.

5.1.5 Correlation between Effectiveness of Recovery
Strategy and Invariants Detection

One of our interpretation of the results in the previous section states that
the equivalence partitioning approach has potential to be successful, but
current implementation of the extraction phase is not able to realise that
potential yet. In other words, better partitioning should lead to better
invariant detection. This hypothesis is tested in this section.

We evaluated partitioning by measuring its recovery effectiveness (page
66). For evaluation of invariant detection, we utilised the discovered fact
that recall of Yacon invariant set is always between those of Baseline set

74

and Reference set (page 73). to define the detection improvement coefficient,
as follows:

improvement coefficient = R(Yacon) − R(Baseline)
R(Reference) − R(Baseline)

where R(S) represents the recall metric of an invariant set S. Note that
if R(Reference) = R(Baseline), which is true in our evaluation for 3 out of
11 cases, then the improvement coefficient becomes 0

0 – an indeterminate
form. This is sensible to us since in this case there is no way to tell how
much improvement the Yacon invariant set has over the baseline. Therefore
we left them out of this analysis. For the other cases, we created a scatter
plot correlating the detection improvement coefficient with the recovery
effectiveness of the combined strategy, resulting in figure 5.9.

Figure 5.9: Correlation between improvement coefficient and recovery ef-
fectiveness

The correlation coefficient between these two variables is measured to
be 0.8175, indicating strong positive correlation, seemingly confirming our
hypothesis. What we did not expect is the strong polarity of the improve-
ment coefficient – it is either 0 or 1, implying that the Yacon invariant
set either achieves full improvement or not improving at all. There seems
to be a tipping point on the recovery effectiveness, at around 0.15 - 0.20.
We expected to see a more linear relationship, with the improvement coef-
ficient gradually rises as the recovery effectiveness increases. Upon further
analysis, we believe this is a symptom of small sample sizes. For half of the
cases, the Reference invariant set managed to improve recall by discovering

75

exactly 1 more relevant invariant, effectively limiting the possibility of im-
provement coefficient to be either 0 or 1, as we have seen. Because of this
small sample size, we conclude that, while there is an evidence suggesting
that better partitioning indeed leads to better invariant detection, it needs
more experimental evidence on larger sample size for this hypothesis to be
conclusive.

5.2 Performance Evaluation
Using the same settings and evaluation process as in the effectiveness eval-
uation, we also measured the execution time of Yacon, to assess the cost
of our solution in terms of time resource.

For each pair of sample program and test suite we executed the effec-
tiveness evaluation process 5 times, and measured the runtime of each step
in the process. We are interested the execution time of Yacon test set in
comparison with baseline test set.

The Yacon test set takes of the following steps:

1. Run Yacon extraction using test suite invariants recovery strategy.

2. Run Yacon translation on the partitioning generated by test suite
invariants recovery strategy.

3. Run Yacon extraction using boundary Value recovery strategy. This
step includes running Chicory as part of the strategy.

4. Run Yacon translation on the partitioning generated by boundary
value recovery strategy.

5. Run Daikon.

The baseline test set takes of the following steps:

1. Run Chicory.

2. Run Daikon.

Notice that we optimised the Yacon process by reusing Chicory trace
database for both boundary value extraction and Daikon.

76

5.2.1 Experimental Results
Figures 5.10 and 5.11 show the comparison of average runtime for each
test set.

Figure 5.12 shows the average runtime of all programs and test suites,
with details on how much time was spent in each phase. Note that transla-
tion and extraction of the same recovery strategy are grouped together, and
Chicory is excluded from the runtime of boundary value recovery strategy.

Figure 5.10: Runtime comparison for full coverage test suites

We made the following observations:
• Yacon test sets run about 1.5-5 times slower than the baseline sets.

On average the ratio is about 3.25.

• Total runtime of the Yacon test set is dominated by running Daikon
and Chicory with splitter files, rather than the time spent in produc-
ing those files.

• There is no difference in the runtime of Chicory.

• Daikon runs almost twice slower in the Yacon test set. This can be
attributed to the time it needs to process splitter files.

• Test suite invariants strategy takes more time than boundary value
strategy, running almost 3 times slower. This is an effect of the opti-
misation of reusing Chicory trace database. Without the optimisation
the runtime of both strategies would be very close.

77

Figure 5.11: Runtime comparison for textbook test suites

Figure 5.12: Runtime distribution

It can be concluded that our attempt to improve Daikon, by giving
it more splitting conditions to process, resulted in 1.5-5 times the slower
runtime. This emphasises the importance of generating good partitioning,
since a useless splitting condition would slow down the process unnecessar-
ily.

78

5.3 Threats to Validity
This section identifies the threats to the validity of our evaluation.

Small sample size. The evaluation was done on 7 textbook programs
and 11 test suites. These small sizes of samples reduce the confidence level
of our result from statistical point of view.

Small and unrealistic sample programs. All our sample programs are
taken from textbooks. They are considered small and unrealistic, compared
with the industrial standard. This makes it difficult to generalise our result
to larger, more realistic programs usually found in the industry.

Subjectivity of invariants assessment. The assessment of correctness,
usefulness, and relevance of generated invariants were done manually using
our own judgement. Despite our best efforts to make the assessment as
objective and consistent as possible, this process is inherently subjective,
and different assessor could produce different results.

Selection bias. 3 of 7 sample programs are selected because their char-
acteristics fit our expectation of good candidates for our solution. This
possible over-representation of good candidates could make our evaluation
more biased toward good results.

Test suite construction bias. We created the full coverage test suites
ourselves. Since at the time we wrote these tests we already knew exactly
how our solution operates. This could make the test suites we developed
becoming unnatural, specially tuned to work for our solution.

5.4 Summary
We have presented the evaluation of Yacon, for its ability to answer the
research question. We found that the idea of using equivalence partitioning
to assist discovery of invariants has potential to be successful, as shown by
the increasing invariants detection effectiveness (section 5.1.4). However,
the two recovery strategies we devised, namely test suite invariants strategy
and boundary value strategy, can only raise the effectiveness in 3 out of
11 test cases, leaving much room for improvement (section 5.1.3). We
also found that Yacon has an effect on the overall quality of detected

79

invariants, reducing the level of correctness, usefulness, and precision, as
well as increasing the runtime by a factor of 1.5 to 5 (section 5.2). Lastly,
we identified a number of threats to the validity of our study.

80

6
Conclusion

In this last chapter we draw our conclusions, identifying contributions being
made and suggesting possible future work related to this project.

6.1 Results and Contribution
The motivation of this work is to combine together the two approaches to
ensure software dependability – testing and formal verification, using one
to assist the other. We ended up with a research question that focuses
on the area of dynamic invariant detection. It asks how a software testing
technique of equivalence partitioning could assist detecting a special kind
of invariants – the conditional ones.

We answered the research question by designing and developing Yacon,
a prototype solution that works with a mature dynamic invariant detection
tool Daikon. In the process we also created a file format called ‘partitioning
file’ that can represent partitions information of Java programs. Yacon
works by first creating these partitioning files from a given test suite, then
translating them to a format Daikon can process.

We introduced two strategies to create partitioning files from test suites.
One is to look for the existence of boundary values, the other is to look for
reuse of function call in the test code. We argued how these are possible
indicators of domain partitioning.

Upon evaluating the prototype solution, we found that there is po-
tential in the concept of using partitioning information to uncover more
conditional invariants. We also conceded that the two strategies we created
have not fulfil that potential yet, as they only work in limited condition
at best. Also learned is the effect of attempting to discover more relevant

81

invariants – the overall quality of generated invariants worsens and Daikon
takes longer time to process.

In conclusion, our contribution consists of:

• A new approach to help detecting conditional invariants, by using
information from equivalence partitioning in test suites.

• Two partitions recovery strategies - the boundary value strategy and
the test suite invariants strategy.

• Yacon, a prototype implementation of the approach.

While our implementation admittedly left much to be desired, we be-
lieve this work has addressed the research question and motivation, by
showing that it is possible to use information from test suites to assist
conditional invariant detection.

6.2 Future Work
In retrospect, this project was much more complicated than we initially
expected. We imagined converting form partitioning information into split-
ting conditions a straightforward process. In reality, the complexity of the
solution and the evaluation has led us to explore a number of concepts
unfamiliar to us, such as source code manipulation. So it was a good
learning experience.

On the other hand, we also recognised a number of areas that could
have been done better. Here we suggest some future work that could
improve this work.

6.2.1 Automatic/Objective Assessment of Yacon
A couple of the threats to validity of this work are related to the assess-
ment of each invariant – it was done manually using our own judgement.
One drawback of this approach is that it introduces subjectivity to the
evaluation; another is that it limits the size of the sample programs, since
using manual approach we could not assess too many invariants. A more
objective and/or automatic assessment of generated invariants would help
improve the validity of this work immensely (or invalidate it).

82

6.2.2 New Recovery Strategies
As stated previously, our two recovery strategies only perform well in lim-
ited circumstances. This leaves room for other possible recovery strategies
to fill. A mechanism to add more recovery strategies to Yacon is already
implemented (see section 4.3.3) to support future attempt to explore this
direction.

6.2.3 Comparative Assessment of Yacon against Other
Splitting Policies

As described in section 2.3, there are a number of existing approaches to
help Daikon detect conditional invariants, collectively known as splitting
policies. Yacon falls into this same category. It is therefore possible to
compare the effectiveness of Yacon against these other policies to see which
would perform better in which circumstances.

6.2.4 Adapting Yacon to Different Tools
Daikon is not the only tool in the field of conditional invariants detection.
It is possible to adapt the idea of Yacon to other tools, such as those
introduced in section 2.2. One might attempt to create a bridge to adapt
Yacon result, either from the intermediate partitioning file or the splitter
files, to work with these other tools.

83

Appendices

84

A
Mathematics Notions

These definitions and notations are used throughout this document.

A.1 Equivalence Relation, Equivalence Class,
and Partition

For the following definitions, S is an arbitrary set and EQ is a binary
relation on S.

Definition A.1. EQ is an equivalence relation on S, if it has all the
following properties:

1. Reflexivity: ∀a ∈ S, (a, a) ∈ EQ.

2. Symmetry: ∀a, b ∈ S, (a, b) ∈ EQ ⇒ (b, a) ∈ EQ, and

3. Transitivity: ∀a, b, c ∈ S, (a, b) ∈ EQ ∧ (b, c) ∈ EQ ⇒ (a, c) ∈ EQ.

Definition A.2. The equivalence class of a, where a is a member of S,
denoted by [a]EQ, is the subclass of S that contains all members that are
equivalent to a. Formally, [a]EQ = {x ∈ S : (a, x) ∈ EQ}.

Definition A.3. A partition of S is a set of disjoint nonempty subsets
of S, where the union of all these subsets is S itself.

Theorem 1. Given an equivalence relation EQ on S, then the set of equiv-
alence classes of EQ is a partition of S. Conversely, given a partition of S,
there exists an equivalence relation that has each member of the partition as
its equivalence classes.

See also, [53].

85

A.2 Intervals
An interval is a set of numbers between two fixed numbers called endpoints.
The endpoints might or might not be included in the interval. In this
document, the following terms an notations are used to classify different
types of intervals between a and b:

• Open interval, denoted (a, b) - both endpoints are not in the interval.

• Closed interval, denoted [a, b] - both endpoints are in the interval.

• Left-open, right-closed interval, denoted (a, b] - the maximum end-
point is in the interval, but the minimum is not.

• Left-closed, right-open interval, denoted [a, b) - the minimum end-
point is in the interval, but the maximum is not.

86

B
Partitioning File Format Syntax

The syntax of the partitioning file format can be described by a formal
grammar. These conventions are used:

• [x] denotes zero or one occurrences of x

• x* denotes zero or more occurrences of x

• Terminals (strings that are not changed by the grammar rules) are
enclosed with a pair of single quotes.

IMPORTS Section

⟨partitioning⟩ ::= ⟨newline⟩* [⟨imp-section⟩] (⟨newline⟩* ⟨par-section⟩)*
(⟨newline⟩* ⟨class-section⟩)* ⟨newline⟩*

IMPORTS Section

⟨imp-section⟩ ::= ⟨imp-declaration⟩ ⟨assignment⟩* ⟨newline⟩

⟨imp-declaration⟩ ::= ’IMPORTS’ ⟨newline⟩

⟨assignment⟩ ::= ⟨alias⟩ ’=’ ⟨fully qualified class name⟩ ⟨newline⟩

PARTITION Section

⟨par-section⟩ ::= ⟨par-declaration⟩ ⟨eq-class⟩* ⟨newline⟩

⟨par-declaration⟩ ::= ’PARTITION’ ⟨name⟩ ’:’ ⟨domain type⟩ ⟨newline⟩

87

⟨eq-class⟩ ::= (⟨predicate-class⟩ | ⟨interval-classes⟩ | ⟨complement-class⟩
) ⟨newline⟩

⟨predicate-class⟩ ::= ’EQClass’ ⟨predicate⟩

⟨interval-classes⟩ ::= ’IntervalClasses’ [’Func’ ’[’ ⟨transform⟩ ’]’ ’:’ ⟨domain type⟩]
⟨interval-mode⟩ ’(’ ⟨interval⟩ (’,’ ⟨interval⟩)* ’)’

⟨interval-mode⟩ ::= ’Minima’ | ’Maxima’ | ’Mixed’

⟨complement-class⟩ = ’ComplementClass’

CLASS Section

⟨class-section⟩ ::= ⟨class-declaration⟩ ⟨class-ppt⟩* ⟨method-ppt⟩* ⟨newline⟩

⟨class-declaration⟩ ::= ’CLASS’ ⟨domain type⟩ ⟨newline⟩

⟨class-ppt⟩ ::= ⟨field-declaration⟩

⟨method-ppt⟩ ::= ⟨method-declaration⟩ [⟨dependencies⟩]

⟨method-declaration⟩ ::= ’METHOD’ ⟨method name⟩ ’(’ ⟨argument-list⟩ ’)’
’:’ ⟨return-type⟩ ⟨newline⟩

⟨return type⟩ ::= ’void’ | ⟨partition-type⟩

⟨dependencies⟩ ::= ’DEPENDS’ ⟨newline⟩ ⟨field-declaration⟩*

⟨argument-list⟩ ::= ϵ | ⟨argument⟩ (’,’ ⟨argument⟩)*

⟨argument⟩ ::= ⟨arg name⟩ ’:’ ⟨partition-type⟩

⟨field-declaration⟩ ::= (’STATIC’ | ’INSTANCE’) ⟨field name⟩ ’:’ ⟨partition-type⟩
⟨newline⟩

⟨partition-type⟩ ::= ⟨domain type⟩ [’{’ ⟨partition name⟩ (’,’ ⟨partition name⟩)*
’}’]

88

C
Building and Running Yacon

C.1 Building Yacon form Sources
First, ensure that the build machine meets the following criteria:

• It has Apache Maven installed. We use version 3.2.5 in our tests, but
older versions should work too.

• Daikon (version ≥ 5.2.0) must be set up properly, with the variable
DAIKONDIR pointing to Daikon’s root directory.

To build Yacon form sources:

1. Open the command line interface and navigate to the project root
folder – the folder containing pom.xml.

2. Since Yacon is using a custom, non-released version of the Spoon
library, it needs to be installed locally. To do this, type in the
following command:

mvn install:install-file -Dfile=lib/spoon-core-4.0-
SNAPSHOT-jar-with-dependencies.jar
-DpomFile=lib/spoon-pom.xml

Note that subsequent build attempts on the same build machine can
skip this step.

3. Build the package using the following command:

89

mvn package -Ddaikon.dir=$DAIKONDIR

This compiles the source files, runs TestNG test suite, and packages
the solution into 2 jar files, one with all the dependencies and one
without. Note that Daikon itself, despite being a dependency, is
assumed to be installed separately and not included in any of the jar
files.

C.2 Running Yacon
Yacon is intended to be used from the command line interface, similar to
all tools shipped with Daikon. The command to execute the solution takes
the following form:

java daikon.Yacon <action> <configuration> [overrides...]

Also specify Java options, such as classpaths, as necessary.
<action> refers to the mode of execution, which can be ‘extract’ for

the extraction process, or ‘translate’ for the translation process.
<configuration> is a reference to the main configuration file.
Users can also override values provided by the configuration file, by

specifying any number of <configuration key>=<value> as subsequent
arguments.

C.3 Configuration
For the configuration files for Yacon, we use the HOCON format and
library, developed by Typesafe Inc [57]. HOCON is a superset of JSON
that is more flexible, and is claimed to be more convenient for human users
to edit, making it more suitable for configuration file.

HOCON configurations are basically a number of nested key-value pairs.
All the configuration values for Yacon are listed as follows:

1. General configuration:

• yacon.extraction.output_file (String) Output partitioning
file of the extraction phase.

• yacon.extraction.strategy.name (String) Name of the ex-
traction strategy. This value is used as the top-level name for

90

the strategy-specific configurations – so it must be ‘boundary_-
values’ for boundary value recovery Strategy, and ‘suite_invari-
ants’ for test suite invariants recovery strategy.

• yacon.extraction.strategy.class (String) Fully qualified name
of a custom extraction strategy. It is ignored if any of the two
built-in strategies are used.

• yacon.translation.input_file (String) Input partitioning file
of the translation phase.

• yacon.translation.output_file (String) Output splitter info
file of the translation phase.

2. Configuration for boundary value recovery strategy:

• boundary_values.chicory_args (String) Arguments to be passed
to Chicory.

• boundary_values.trace_name (String) Name (without exten-
sion) of the trace file produced by Chicory.

• boundary_values.adj_predicates (Object array) List of pred-
icate objects. A predicate object has two subkeys: predicate_-
class – the fully qualified name of the AdjacencyPredicate
subclass, and target_type – name of the type on which this
predicate is applied.

• boundary_values.patterns (String array) Target classes to be
analysed by the strategy, in glob-like wildcard format.

• boundary_values.second_order_trigger (integer) If the num-
ber of possible boundaries detected is not lesser than this con-
figuration value, then the second-order boundaries mechanism is
applied. Use negative value to turn this off completely.

• boundary_values.floating_point_tolerance.equality (dou-
ble) the equality tolerance ϵ0. This is a constant rather than the
originally designed function.

• boundary_values.floating_point_tolerance.adjacent (dou-
ble) the adjacency tolerance ϵ1. This is a constant rather than
the originally designed function.

3. Configuration for test suite invariants recovery strategy:

• suite_invariants.source_folders (String array) List of source
folders containing Java source files to be analysed.

91

• suite_invariants.source_patterns (String array) Java source
files to be analysed, in glob-like wildcard format.

• suite_invariants.target_folder (String) Folder to store the
proxified source files.

• suite_invariants.target_patterns (String array) Target classes
to be analysed by the strategy, in glob-like wildcard format.

• suite_invariants.binary_folder (String) Folder to store the
compiled proxified classes.

• suite_invariants.daikon_args (String) Arguments to be passed
to Chicory/Daikon.

• suite_invariants.daikon_output_filename (String) Name of
the output Splitter info file.

92

D
Evaluation Details

D.1 Environment
All the evaluation in chapter 5 was done on the following environment:

Machine Type MacBook Pro
Operating System OS X Yosemite 10.10.3
Processors Intel Core i5 2.5 GHz
Memory 8 GB 1600 MHz DDR3
Java Runtime version OpenJDK 1.7.0-internal
Daikon version 5.2.2 (April 2015)
Simplify version 1.5.4

D.2 Configuration Values for Yacon and Daikon
Aside from the ones necessary to control Yacon and Daikon to execute the
right programs, the following configurations were used during evaluation.

Yacon configuration
• boundary_values.second_order_trigger = 8

• boundary_values.floating_point_tolerance.equality = 0.0001

• boundary_values.floating_point_tolerance.adjacent = 0.01

93

Daikon command-line options
• --no_text_output – to suppress printing invariants output to the

screen.

• --suppress_redundant – to use the automated solver Simplify to
suppress redundant invariants. This is use in conjunction with Java
property -Dsimplify.path=wine <path to Simplify executable>. 1

Daikon configuration
• daikon.split.PptSplitter.disable_splitting = false

• daikon.split.PptSplitter.dummy_invariant_level = 2

1There is no Simplify executable for the architecture of our evaluation machine (Intel
MacBook). We had to use Wine, an emulation system that makes it possible to run
Windows executables on OS X system, to run the Simplify build for Windows.

94

Bibliography

[1] ISO/IEC/IEEE 29119 Software Testing Standard. http://www.
softwaretestingstandard.org/, September 2014. [Online; accessed
13-February-2015].

[2] The Daikon Invariant Detector Developer Manual, 5.2.0 edition, March
2015.

[3] The Daikon Invariant Detector User Manual, 5.2.0 edition, March 2015.

[4] Kent Beck. Test-driven development: by example. Addison-Wesley
Professional, 2003.

[5] Béatrice Bérard, Michel Bidoit, Alain Finkel, François Laroussinie,
Antoine Petit, Laure Petrucci, and Philippe Schnoebelen. Systems
and software verification: model-checking techniques and tools. Springer
Publishing Company, Incorporated, 2010.

[6] Tim Berners-Lee, Larry Masinter, Mark McCahill, et al. Uniform
resource locators (URL). 1994.

[7] Cédric Beust and Hani Suleiman. Next Generation Java Testing:
TestNG and Advanced Concepts. Pearson Education, 2007.

[8] Marat Boshernitsan, Roongko Doong, and Alberto Savoia. From
daikon to agitator: lessons and challenges in building a commercial
tool for developer testing. In Proceedings of the 2006 international sym-
posium on Software testing and analysis, pages 169–180. ACM, 2006.

95

http://www.softwaretestingstandard.org/
http://www.softwaretestingstandard.org/

[9] Jonathan P Bowen, Kirill Bogdanov, John A Clark, Mark Harman,
Robert M Hierons, and Paul Krause. Fortest: Formal methods and
testing. In Computer Software and Applications Conference, 2002.
COMPSAC 2002. Proceedings. 26th Annual International, pages 91–
101. IEEE, 2002.

[10] Stephen Brown, Joe Timoney, Tom Lysaght, and Deshi Ye. Software
testing principles and practice, 2012.

[11] Michael K. Buckland and Fredric C. Gey. The relationship between
recall and precision. JASIS, 45(1):12–19, 1994.

[12] John N Buxton and Brian Randell. Software Engineering Techniques:
Report on a Conference Sponsored by the NATO Science Committee.
NATO Science Committee; available from Scientific Affairs Division,
NATO, 1970.

[13] Capgemini, Sogeti, and HP. World quality report 2014-2015. http:
//www.capgemini.com/resources/world-quality-report-2014-15,
October 2014. [Online; accessed 10-February-2015].

[14] Edmund M Clarke and Jeannette M Wing. Formal methods: State
of the art and future directions. ACM Computing Surveys (CSUR),
28(4):626–643, 1996.

[15] Rick D Craig and Stefan P Jaskiel. Systematic software testing. Artech
House, 2002.

[16] Christoph Csallner, Nikolai Tillmann, and Yannis Smaragdakis. Dysy:
Dynamic symbolic execution for invariant inference. In Proceedings of
the 30th international conference on Software engineering, pages 281–
290. ACM, 2008.

[17] Bruce Dawson. Comparing floating point numbers, 2008. [Online;
accessed 10-April-2015].

[18] Nii Dodoo. Selecting predicates for conditional invariant detection us-
ing cluster analysis. Master’s thesis, Massachusetts Institute of Tech-
nology, 2002.

[19] Nii Dodoo, Lee Lin, and Michael D Ernst. Selecting, refining, and
evaluating predicates for program analysis. Technical Report MIT-
LCS-TR-914, Massachusetts Institute of Technology, Laboratory for
Computer Science, Cambridge, MA, 2003.

96

http://www.capgemini.com/resources/world-quality-report-2014-15
http://www.capgemini.com/resources/world-quality-report-2014-15

[20] Michael D Ernst. Dynamically discovering likely program invariants.
PhD thesis, University of Washington, 2000.

[21] Michael D Ernst, William G Griswold, Yoshio Kataoka, and David
Notkin. Dynamically discovering program invariants involving collec-
tions. Technical Report UW-CSE-99-11-02, University of Washington,
2000.

[22] Michael D Ernst, Jeff H Perkins, Philip J Guo, Stephen McCamant,
Carlos Pacheco, Matthew S Tschantz, and Chen Xiao. The daikon
system for dynamic detection of likely invariants. Science of Computer
Programming, 69(1):35–45, 2007.

[23] Hani Fouladgar, Behrouz Minaei-Bidgoli, and Hamid Parvin. On pos-
sibility of conditional invariant detection. In Knowlege-Based and Intel-
ligent Information and Engineering Systems, pages 214–224. Springer,
2011.

[24] Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides.
Design patterns: elements of reusable object-oriented software. Pearson
Education, 1994.

[25] Marie-Claude Gaudel. Testing can be formal, too. TAPSOFT’95:
Theory and Practice of Software Development, pages 82–96, 1995.

[26] Marie-Claude Gaudel. Formal methods and testing: Hypotheses, and
correctness approximations. In FM 2005: Formal Methods, pages 2–8.
Springer, 2005.

[27] Mark K Goldberg, Mykola Hayvanovych, and Malik Magdon-Ismail.
Measuring similarity between sets of overlapping clusters. In Social-
com/passat, pages 303–308, 2010.

[28] John B. Goodenough and Susan L. Gerhart. Toward a theory of test
data selection. Software Engineering, IEEE Transactions on, (2):156–
173, 1975.

[29] James Gosling, Bill Joy, Guy L. Steele, Jr., Gilad Bracha, and Alex
Buckley. The Java Language Specification, Java SE 7 Edition. Addison-
Wesley Professional, 1st edition, 2013.

[30] Dorothy Graham, Erik Van Veenendaal, Isabel Evans, and Rex Black.
Foundations of software testing: ISTQB certification. Course Technol-
ogy Cengage Learning, 2008.

97

[31] Peter Haberl, Andreas Spillner, Karin Vosseberg, and Mario Winter.
Survey 2011:» software test in practice «. Translation of Umfrage,
2011.

[32] Dick Hamlet and Ross Taylor. Partition testing does not inspire confi-
dence. In Software Testing, Verification, and Analysis, 1988., Proceed-
ings of the Second Workshop on, pages 206–215. IEEE, 1988.

[33] Sudheendra Hangal, Naveen Chandra, Sridhar Narayanan, and
Sandeep Chakravorty. Iodine: a tool to automatically infer dynamic
invariants for hardware designs. In Proceedings of the 42nd annual
Design Automation Conference, pages 775–778. ACM, 2005.

[34] Sudheendra Hangal and Monica S Lam. Tracking down software bugs
using automatic anomaly detection. In Proceedings of the 24th in-
ternational conference on Software engineering, pages 291–301. ACM,
2002.

[35] Anne Mette Jonassen Hass. Guide to advanced software testing. Artech
House, 2008.

[36] Robert M Hierons, Kirill Bogdanov, Jonathan P Bowen, Rance Cleave-
land, John Derrick, Jeremy Dick, Marian Gheorghe, Mark Harman,
Kalpesh Kapoor, Paul Krause, et al. Using formal specifications to
support testing. ACM Computing Surveys (CSUR), 41(2):9, 2009.

[37] Cay S Horstmann. Java Concepts: Compatible with Java 5, 6 and 7.
John Wiley & Sons, 6th edition, 2009.

[38] Paul C Jorgensen. Software testing: a craftsman’s approach. CRC
press, 2nd edition, 2002.

[39] Cem Kaner, James Bach, and Bret Pettichord. Lessons Learned in
Software Testing: A Context-Driven Approach. John Wiley &
Sons, 2002.

[40] James C King. Symbolic execution and program testing. Communi-
cations of the ACM, 19(7):385–394, 1976.

[41] Joseph R Kiniry and Daniel M Zimmerman. Secret ninja formal meth-
ods. In FM 2008: Formal Methods, pages 214–228. Springer, 2008.

[42] Nancy G Leveson and Clark S Turner. An investigation of the Therac-
25 accidents. Computer, 26(7), 1993.

98

[43] Y Daniel Liang. Introduction to Java Programming - Comprehensive
Version. Pearson, 6th edition, 2007.

[44] Marina Meilă. Comparing clusterings—an information based distance.
Journal of Multivariate Analysis, 98(5):873–895, 2007.

[45] Gerard Meszaros. xUnit test patterns: Refactoring test code. Pearson
Education, 2007.

[46] Glenford J Myers, Corey Sandler, and Tom Badgett. The art of soft-
ware testing. John Wiley & Sons, 3rd edition, 2011.

[47] Oracle. Setting the class path. http://docs.oracle.com/javase/
7/docs/technotes/tools/windows/classpath.html, 2014. [Online;
accessed 21-April-2015].

[48] Renaud Pawlak, Martin Monperrus, Nicolas Petitprez, Carlos Noguera,
and Lionel Seinturier. Spoon v2: Large scale source code analysis and
transformation for java. Technical Report hal-01078532, 2014.

[49] Matthew Phillips. Knight shows how to lose $440 million in
30 minutes. http://www.bloomberg.com/bw/articles/2012-08-
02/knight-shows-how-to-lose-440-million-in-30-minutes, Au-
gust 2012. [Online; accessed 10-February-2015].

[50] ISWB Prasetya, Jurriaan Hage, and Alexander Elyasov. Using sub-
cases to improve log-based oracles inference. Technical Report UU-
CS-2012-012, Department of Information and Computing Sciences,
Utrecht University, Utrecht, The Netherlands, September 2012.

[51] Mark Ravina. Computing in japanese. 1992.

[52] Stuart C Reid. An empirical analysis of equivalence partitioning,
boundary value analysis and random testing. In Software Metrics Sym-
posium, 1997. Proceedings., Fourth International, pages 64–73. IEEE,
1997.

[53] Kenneth Rosen. Discrete Mathematics and Its Applications. McGraw-
Hill, 7th edition, 2011.

[54] David Shay. Disabling System.exit() (in Java). http://jroller.com/
ethdsy/entry/disabling_system_exit, November 2006. [Online; ac-
cessed 8-April-2015].

[55] BCS SIGIST. Standard for software component testing. 3, 2001.

99

http://docs.oracle.com/javase/7/docs/technotes/tools/windows/classpath.html
http://docs.oracle.com/javase/7/docs/technotes/tools/windows/classpath.html
http://www.bloomberg.com/bw/articles/2012-08-02/knight-shows-how-to-lose-440-million-in-30-minutes
http://www.bloomberg.com/bw/articles/2012-08-02/knight-shows-how-to-lose-440-million-in-30-minutes
http://jroller.com/ethdsy/entry/disabling_system_exit
http://jroller.com/ethdsy/entry/disabling_system_exit

[56] Petar Tahchiev, Felipe Leme, Vincent Massol, and Gary Gregory. JU-
nit in action. Manning Publications Co., 2nd edition, 2010.

[57] Typesafe. HOCON (Human-Optimized Config Object Nota-
tion). https://github.com/typesafehub/config/blob/master/
HOCON.md, 2015. [Online; accessed 23-April-2015].

[58] Mark Allen Weiss. Data structures and algorithm analysis in Java.
Addison-Wesley Longman Publishing Co., Inc., 1998.

[59] Mark Allen Weiss. Data structures and problem solving using Java.
Addison-Wesley Longman Publishing Co., Inc., 4th edition, 2009.

[60] Dan Zuras, Mike Cowlishaw, Alex Aiken, Matthew Applegate, David
Bailey, Steve Bass, Dileep Bhandarkar, Mahesh Bhat, David Bindel,
Sylvie Boldo, et al. Ieee standard for floating-point arithmetic. IEEE
Std 754-2008, pages 1–70, 2008.

100

https://github.com/typesafehub/config/blob/master/HOCON.md
https://github.com/typesafehub/config/blob/master/HOCON.md

	Introduction
	Background
	Motivation
	Problem Statement
	Aims and Objectives
	Outline
	Summary

	Related Work
	Equivalence Partitioning and Related Testing Techniques
	Testing Techniques and Test Selection Hypothesis
	Domain-Based Testing
	Equivalence Partitioning
	Boundary Value Analysis

	Dynamic Invariant Detection
	Daikon
	Agitator
	DIDUCE
	DySy
	IODINE

	Conditional Invariant Detection
	Summary

	Solution Design
	High-Level Design
	Extraction Phase
	Partitioning Information
	Recovery Strategies

	The Partitioning File Format
	Structure
	IMPORTS section
	PARTITION section
	CLASS section
	Example File

	Translation Phase
	Splitter Files
	Translation From Partitioning Files to Splitter Files

	Summary

	Implementation
	Structure
	Data Models
	Extractor
	Boundary Value Recovery Strategy
	Test Suite Invariants Recovery Strategy
	User-Defined Strategies

	Translator
	Testing
	Challenges and Issues
	Handling Multi-Catch Clauses with Spoon
	Proxification of generic type parameters
	Proxification process limitation on combination of generics and exceptions
	Running Chicory from within a Java Program
	Reading Trace File Produced by Chicory in the Correct Encoding

	Summary

	Evaluation
	Effectiveness Evaluation
	Experimental Setup
	Program Selection
	Recovery Strategy Effectiveness
	Invariants Detection Effectiveness
	Correlation between Effectiveness of Recovery Strategy and Invariants Detection

	Performance Evaluation
	Experimental Results

	Threats to Validity
	Summary

	Conclusion
	Results and Contribution
	Future Work
	Automatic/Objective Assessment of Yacon
	New Recovery Strategies
	Comparative Assessment of Yacon against Other Splitting Policies
	Adapting Yacon to Different Tools

	Appendices
	Mathematics Notions
	Equivalence Relation, Equivalence Class, and Partition
	Intervals

	Partitioning File Format Syntax
	Building and Running Yacon
	Building Yacon form Sources
	Running Yacon
	Configuration

	Evaluation Details
	Environment
	Configuration Values for Yacon and Daikon

