
W E B S E RV I C E F O R 1 9
T H C E N T U RY

I R I S H P E R S O N A L N A M E M AT C H I N G

phattara wangrungarun

Dissertation 2014/15

Erasmus Mundus MSc in Dependable Software Systems
Department of Computer Science
Maynooth University, Maynooth

Head of Department Dr Adam Winstanley
Supervisor Dr Adam Winstanley

Phattara Wangrungarun: Web service for 19th century
Irish personal name matching, Dissertation 2014/15, © 2014/15

Dedicated to my dear parents and family.
For mom and dad who always know the best things for me.

A B S T R A C T

Before the first Irish civil registration on 1864, census materials were
mostly lost or incomplete. So genealogical research uses parish records
and also some ‘census substitute’ documents, such as land ownership
and tenancy records. However, some of these documents may not
contain enough information in identify individuals. Some of them
contains a name and address, whereas others might contain only a
name.

Record linkage is one method to gather scattered information among
many documents. It uses a person's name as a reference to link that
person's information between many documents. With patience, a more
complete information about that person can be obtained.

Therefore linking or matching a person's name is important in the
process. Unfortunately, in the 19

th century, in Ireland, there was no
standard spelling of names, handwriting could be difficult to read
and contractions or abbreviations were often used. The names with
the same pronunciation and for the same individual could be written
in many different ways. Moreover, names in the Irish language which
are equivalent to English names were used, for example, Irish version
of ‘Smith’ could be ‘Gowan’. A further complication is that historical
and genealogical research often requires large quantities of names to
be matched.

To handle these name variations, various solutions have been cre-
ated to find matching different names that refer to the same person.
However, for our extent knowledge, there is yet no public system
which encodes those solutions together and provides a service of
bulk name matching. Thus, we developed a web service system using
Ruby on Rails framework to achieve our goal. The system is initially
encoded with 4 matching algorithms, Levenshtein distance, soundex,
Irish soundex, and lookup table. We also present a web interface for
a client to use the system from the web browser. It is designed to be
simple and extensible from using inheritance.

The system performs matchings on large quantities of names in
a reasonable time. We test our system with 12,944 name matchings
and the result were completed in no more than half a minute (28,786

milliseconds, to be precise). However, the system consumes a large
amount of memory (around 373 megabytes). We believe that, with
proper optimisation, we would reduce the memory usage along with
a shortened processing time. Further matching algorithms could also
be implemented for names in other languages, so that it can handle a
broader domain of names.

iv

D E C L A R AT I O N

I declare that the dissertation report and code for “Web service for
19

th century Irish personal name matching” submitted for assessment
is my own work except where credit is explicitly given to others by
citation or acknowledgement. This work was accomplished during
the current academic year except where otherwise stated.

In submitting this project report to the Maynooth University, I hereby
give permission for it to be made available for use in accordance with
the regulations of the University Library. I also give permission for
the title and abstract to be published and for copies of the report
to be made and supplied at cost to any bona fide library or research
worker, and to be made available on the World Wide Web. In addition,
I retain the copyright to this work.

Phattara Wangrungarun,
June 8, 2015

A C K N O W L E D G E M E N T S

First of all, I would like to express my utmost gratitude to my su-
pervisor, Dr Adam Winstanley, for initiating this project and always
advise and suggest me. It is my pleasure to have a chance to work
on a web service project, which is one of my favourite field of work.
Thank you very much.

To my dear mom and dad and my family who always understand
and support me.

To all my dear friends and St. Pauls family, thanks a million for
helping me in many ways, it could have been very tough without
you guys.

To Patomporn Loungvara who always helps me survive my study,
years after years.

Many thanks to Andre Miede for a perfect LATEX thesis template, it
makes my life much more easier. Also thanks to Randall Munroe of
xkcd for inspirations of many figures in this work, and the IPython1

team for a lovely xkcd font.

And to Lulu who puts my mind at ease and encourages me on my
work. It is much more fun and relax working by your side.

1 https://github.com/ipython

vi

C O N T E N T S

i the background 1

1 introduction 2

1.1 Motivation . 2

1.2 Research Questions . 4

1.3 Objective and Aims . 4

1.4 Report Structure . 4

2 related work 6

2.1 Name matching . 6

2.1.1 Edit distance . 6

2.1.2 Soundex . 6

2.1.3 Lookup Table . 7

2.2 Web service . 7

2.3 Extensible framework . 8

ii the solution 9

3 name matching algorithms 10

3.1 Levenshtein distance . 10

3.2 Soundex . 11

3.3 Irish soundex . 14

3.4 Lookup table . 15

4 architecture 18

4.1 Initial idea . 18

4.2 Weighting matching algorithms 19

4.3 Actual system . 20

4.4 Thresholding the results 21

4.5 Data flow . 22

4.6 MVC . 22

4.7 Web Service . 24

4.8 Web Interface . 26

5 extending the system 29

5.1 Matching algorithms inheritance 29

5.2 Exporting a class method 31

5.3 Implementing new matching algorithms 33

iii the outcome 36

6 evaluation 37

6.1 Introducing standard name list 37

6.2 Test environment setup 39

6.3 Response speed . 40

6.4 Memory usage . 41

6.5 Dependability . 41

vii

contents viii

7 conclusion 43

7.1 Encountered problem . 43

7.1.1 Memoization . 43

7.1.2 find_in_batches 43

7.1.3 Replace RDBMS with NoSQL 44

7.2 Future works . 44

7.2.1 More phonetic algorithms 44

7.2.2 Inheritance for similar matching algorithms . . 44

7.2.3 Improve web interface result 45

bibliography 47

iv appendix 51

a how to deploy the system on ubuntu server 52

a.1 Root Login . 52

a.2 Create a new user . 52

a.3 Root Privileges . 53

a.4 Install rbenv . 53

a.5 Install Ruby . 54

a.6 Install Rails . 55

a.7 Install Javascript Runtime 55

a.8 Install PostgreSQL . 55

a.9 Create Database User . 56

a.10 Get the system code . 56

a.11 Configure Database Connection 56

a.12 Create Application Databases 57

a.13 Install Puma . 57

a.14 Configure Puma . 57

a.15 Create Puma Upstart Script 59

a.16 Install and Configure Nginx 60

a.17 Finish . 62

L I S T O F F I G U R E S

Figure 1 Ruby and Ruby on Rails 8

Figure 2 Base name ‘SMITH’ comparing to to-match name
‘SMEETH’. 18

Figure 3 One matching cycle. 20

Figure 4 Data flow from web service client and web in-
terface client. 23

Figure 5 Web interface with input forms. 27

Figure 6 Web interface results page. 28

Figure 7 MatchingAlgorithm inheritance. 29

Figure 8 Web interface with a standard name list option. 38

L I S T O F TA B L E S

Table 1 Soundex letter group. 11

Table 2 Matching algorithm weights. 19

Table 3 Service types and their inputs and results. . . 22

Table 4 Response speed for each matching algorithms. 40

Table 5 Memory usage for each matching algorithms. 41

ix

L I S T I N G S

Listing 1 Levenshtein distance implementation. 11

Listing 2 Soundex implementation. 12

Listing 3 Soundex grouping table implementation. . . . 13

Listing 4 Soundex similarity score implementation. . . . 14

Listing 5 Irish soundex implementation. 15

Listing 6 Lookup table implementation. 17

Listing 7 sample.json. 24

Listing 8 Result from sample.json. 25

Listing 9 Jbuilder template for generating JSON results. . 26

Listing 10 MatchingAlgorithm class. 30

Listing 11 LevenshteinDistance class. 31

Listing 12 LookupTable class. 31

Listing 13 Calling class method Soundex.soundex. 32

Listing 14 Soundex class. 32

Listing 15 IrishSoundex.soundex calls to Soundex.soundex. 33

Listing 16 IrishSoundex class. 33

Listing 17 matching_algorithm.rb. 34

Listing 18 Sample JSON with a standard name list option. 37

Listing 19 Results of matching base name ‘MONAHAN’
with a standard name list. 39

Listing 20 JSON setup for performance testing. 40

Listing 21 Soundex inheritance. 45

Listing 22 config/database.yml 56

Listing 23 Gemfile . 57

Listing 24 config/puma.rb 58

Listing 25 puma.conf . 59

Listing 26 /etc/puma.conf 60

Listing 27 /etc/nginx/sites-available/default 61

x

Part I

T H E B A C K G R O U N D

1
I N T R O D U C T I O N

This project contains some backgrounds which are not part of com-
puter science. Here we introduce adequate information in order to
introduce the area.

1.1 motivation

The first civil registration in Ireland was performed on 1864 [1]. Be-
fore that time census meterials were mostly lost or incomplete. So
genealogical research needs to rely on parish records and also some
‘census substitute’ documents, such as land ownership and tenancy
records1.

However, for these documents, each of them usually does not con-
tain enough information to identify individuals. Some of them con-
tains a name and address, whereas others might contain only a name.
In order to find missing information about one individual scattered
among many documents, Record linkage is one method used. “Record linkage is

used in historical
research, social
studies, marketing,
administration and
government as well
as in genealogy”
– Winstanley [2]
section 2.2

Record linkage uses a person's name as a referece to link that per-
son's information between many documents. Together with other co-
herant attributes to ensure the link is correct, a more complete infor-
mation about that person can be obtained.

In addition, this is not only just for one person in isolation. We can
find the relationship of the person to others that might be close to,
and apply the information to those people as well. For example, if we
know that there is a record that is believed to consist of people from
the same area in each page [3] (but no area or address is mentioned,
or some is missing in the page), and we can find one or more person's
addresses in that page by using record linkage. We might be able to
apply those addresses to all people in that page as well.

Therefore linking or matching a person's name is important in the
process. Unfortunately, in the 19

th century, in Ireland, there was no
standard spelling of most names, handwriting could be difficult to
read and contractions or abbreviations were often used. Many people
were not literate, so they asked literate people to write their names.
So even names with the same pronounciation and for the same indi-
vidual could be written in many different ways, depending on who
wrote them.

1 [2] section 1.1

2

1.1 motivation 3

In addition to the various ways of spelling one's name, people
from this time also often use names in the Irish language which
are equivalent to English names, for example, Irish version of ‘Smith’
could be ‘Gowan’. There are also some Irish prefixes like ‘O'’, ‘M'’,
‘Mac’, etc. When combined together this would result in ‘O'Gowan’
or ‘M'Gowen’, and so on.

An example list of possible equivalent Irish names of ‘Smith’ could
be as follow.

Smith, Smyth, Smythe, Smeeth, Going, Gowing, Maizurn,
McGhoon, MaGough, M'Ghoon, MacGivney, MacGivena,
M'Givena, MacGhoon, M'Evinie, McGivney, MacEvinie, Mc-
Givena, M'Givney, McEvinie, MacAvinue, M'Avinue, McAv-
inue, McCona, MaGowen, MaGowan, MaGovern, MaGe-
own, McGowan, McGoween, McGown, M'Cona, MeCowan,
MeGowan, MacGown, MacGoween, MacGowan, MacCona,
M'Gowan, M'Gowen, M'Gown, Ogowan, O'Gowan, Gowen,
Gowan, Gow, Goan

To explain why names may not be standardised, consider the fol-
lowing situation.

Patrick McFeelon was a tenent farmer in 1840 in County
Laois. His landlord kept a record of the rent paid and in
the rent roll recorded the name as P. Feelin. Patrick got
married in 1842 but was illiterate and signed his name
with an x. The minister entered the name in the regis-
ter as Patricius McFeelin. Patrick has several children. At
their baptisms, there surnames were recorded as variously
McFelin, McFeelon, Feelin and Feelon. His eldest son, also
called Patrick, could read and write. On a political petition
in 1860 he signed his name in Irish as Padraig Mac Feilian.
On his marriage however, he signed the register as Patrick
McFeelon. His eldest son was also called Patrick. He was
born after birth certificates were introduced in 1864. On
his birth certificate his father spelt the surname as Feelon.
Having a paper record of that spelling, he tended to use
the same spelling in subsequent documents.

Therefore, a historian or genealogist trying to trace the McFeelon
family would have to take into account all these name variations.

Also historic sources contain large quantities of names and match-
ing the names from these sources to link records is very time consum-
ing.

Various solutions have been created to find matching different names
that refer to the same person. However, for our extent knowledge,
there is yet no public system which encodes those solutions together

1.2 research questions 4

and provides a service of name matching. This project is to create one
system to achieve this.

1.2 research questions

From the motivation, we address our research questions as follow.

1. Can we provide a web service to match names, where matching
can be a complicated process because of the way people record
their names.

2. Can the web service act as a platform system for general names
or words matching system so that it can be extended to other
languages as well.

The first question derives directly from the motivation. The second
question is an enhancement for the system. It can be designed as
a more general purpose matching system rather than just specified
only for Irish names. Therefore it should be extensible for any further
matching algorithms to be developed in the future.

In addition to the web service, web interface is to be introduced
as well for the purpose of user friendly usage, individual usage, and
demonstration.

1.3 objective and aims

The objective of this project is to provide a web service that encodes
several of matching algorithms and produces matching results be-
tween two lists of names.

The project aims to be a part of a bigger system, such as geneal-
ogy research. These client systems, at some point, they might need
a service of a name matching on demand, so then they can use this
web service, providing their lists of name, algorithms be be used, and
threshold as inputs, and get matching results for their further usage.

We would start by focusing on Irish surname first. For any further
kind of names we would leave it for future works.

1.4 report structure

This report is separated into four parts, The Background, The Solu-
tion, and Appendix.

the background : Current part, states about background of this
project. Introduces the initial problem, also some historical sit-

1.4 report structure 5

uations and terms which are not resident to computer science.
Also related works that are involved in the project.

the solution : The implementation to solve the problem. Details
about algorithm, tools, language, frameworks, etc. which being
used in the project.

the outcome : Evaluation of its performance, conclusion of the out-
come of the project. encountered problems, and future works
for extending and improvements.

appendix : The ‘user manual’ of the project. Presents technical as-
pects, for example, how to use the web service in real world
situation, or how to create an environment to host this project.

2
R E L AT E D W O R K

From research questions on section 1.2, there are three aforemen-
tioned terms that will be core research fields of this project. These
fields are name matching, web service, and extensible platform.

2.1 name matching

There are many methods for matching names. This project encodes
various of them at the starting state.

2.1.1 Edit distance

Edit distance is a way of quantifying how dissimilar two
strings (e.g., words) are to one another by counting the
minimum number of operations required to transform one
string into the other. – Edit distance, Wikipedia [4]

An direct string operation way of comparing two string could work
with name matching too. One of the edit distance variant, Levenshtein
distance [5] is chosen to be implemented in this project.

2.1.2 Soundex

Soundex [6] encodes a name (or any string) into a 4 character code
which represents an essence of its sound as pronounced in English.
The idea is to encode letters with similar sound into the same group,
and ignore vowels (unless it is the first letter). For example, ‘Smith’ is
translated to S530, and ‘Simon’ is translated to S550.

Irish Soundex1 is a modified version of Soundex, aims to improve
capability of a traditional one upon Irish surnames. By applying rules
accroding to the langauage characteristics and make some adjustment
to distinguish names properly.

Both Soundex variants are also implemented in the project.

1 [2] Appendix 3.

6

2.2 web service 7

2.1.3 Lookup Table

In 1901, Robert Edwin Matheson, the assistant registrar-general in
Dublin, developed a name classification system [7] for an aid of regis-
ter indexing and searching. He used a report on surnames in Ireland
extracted from civil registers [8] in 1894 as a base of his system2.

He gathered information from registry offices, focusing on people
or members of close families. When these people made official regis-
ter records with the office, they might use different variant of their
surnames. For example, Mr. Green can be registered as dead by his
son using the name Huneen.

With these information, Matheson classified the surnames in Ire-
land into 2091 groups. For example, group 753 consists of these names.

Green, Greenan, Greenaway, Greene, Grene, Guerin, Houneen,
Huneen, MacAlasher, MacAlesher, MacGlashan, MacGlashin,
MacIllesher, M’Alasher, M’Alesher, McAlasher, McAlesher,
McGlashan, McGlashin, McIllesher, M’Glashan, M’Glashin,
M’Illesher, Oonin.

This classification also includes multiple mapping between names.
One name can belong to one or more group. For example, ‘Green’
belongs to groups 753, 754, 768, and 1350.

By using this classification information, we can construct a lookup
table for Irish names by having names in the same group hold the
same reference number.

2.2 web service

One convenient way to bring this service to public is to create a web
service. A web service is a tool or function that can be accessed by
other programs over the web (via http) [9]. A result from web service
is designed to be used by computer programs rather than humans.

There are many ways to implement web services. Two famous
ones are Simple Object Access Protocol (SOAP) and Representational State
Transfer (REST). Both has their own advantages [10]. We decided to
implement our service using REST due to its simplicity and scalabil-
ity [11][12].

At this initial state, data resulting from our web service is in JSON

[13] format. Since it is widely used in web development and becom-
ing more and more popular [14]. However, our service can be ex-
tended into any other format easily as well, such as traditional XML.

2 [2] section 2.3.

2.3 extensible framework 8

Figure 1: Ruby programming language (left)
and Ruby on Rails framework (right).

2.3 extensible framework

“Ruby is designed to
make programmers
happy.”
– Venners [15]

Our system is implemented in Ruby [16] programming language. Ruby
is a well-balanced language, it can be used as an traditional object-
oriented language [17] and also capable of performing functional pro-
gramming [18], thus making it very flexible and versatile.

The system sits on top of Ruby on Rails (or Rails, in short) [19]
framework. Rails is a mature and stable framework that has been in
web development for decades [20]. So it has a great support and a
large community bebind. A great choice for building a sustainable
system.

Rails is capable of both web service and web interface. By sharing
the same algorithm we could provide a service for both programs
(targeted by web service) and humans (targeted by web interface).

Part II

T H E S O L U T I O N

3
N A M E M AT C H I N G A L G O R I T H M S

This chapter describes the details how matching algorithms in the
project are implemented. Note that algorithms and codes listed here
are written in Ruby programming language, which is the main lan-
guage of the project.

We will start off by detailing bundled matching algorithms here.
Each matching algorithm calculates the similarity score between two
strings.

The score is ranging between 0.0 to 1.0, where 0.0 means two strings
are completely different and 1.0 means both are extactly matched.

Also note that string inputs here is in all in the uppercase format,
in order to prevent letter-case difference.

3.1 levenshtein distance

This algorithm measures the difference between two strings. It tells
the minimum number of opearations needed to change string to an-
other. These opeations are insertions, deletions, or substitutions. Con-
sider these following examples.

• SMITH→ SMYTH
the minimum operation to change is 1, which is to substitute ‘I’
to ‘Y’, therefore Levenshtein distance for these two strings is 1.

• GOWAN→MCGOWAN
2 insertions of ‘M’ and ‘C’ is required.

• SMITHE→ SMYTH
1 deletion of ‘E’ and 1 substitution of ‘I’ to ‘Y’ are required.

The implementation used in the project is done by Battley [21]1.
Once the distance is calculated, it will be compared to the length of
the longer string between the two (or if they are the same length, use
that length).

For example, Levenshtein distance between ‘SMYTH’ and ‘SMITHE’
is 2, compare 2 to length of the longer string, ‘SMITHE’, which is 6.
So the similarity score of these two strings are 6− (2/6) = 0.667.

The code of this algorithm is as in listing 1, note that @name and
@base_name.name are two strings to be matched.

1 levenshtein.rb

10

3.2 soundex 11

def cal_score

@value = Text::Levenshtein.distance(@name, @base_name.name)

size = [@name.size, @base_name.name.size].max

@score = ((size - @value).to_f / size)

end

Listing 1: Levenshtein distance implementation.

3.2 soundex

Soundex encodes a string into a 4 character code representing an
essence of its sound as pronounced in English. It operates in the fol-
lowing steps.

1. Take the first letter of a string.

2. Encode each remaining letters into a group following table 1.
Discards A, E, I, O, U, H, W, and Y

3. Remove two adjacent same characters.

4. If a group of a first letter is the same as the second letter, remove
the second letter.

5. Trim or pad with zeros as necessary, making the result 4 char-
acters long.

group letters

1 B, F, P, V

2 C, G, J, K, Q, S, X, Z

3 D, T

4 L

5 M, N

6 R

- A, E, I, O, U, H, W, Y

Table 1: Soundex letter group.

Let us follow these steps by step, consider we are going to encode
the string ‘PFISTTER’.

1. Take first letter of ‘PFISTTER’.
PFISTTER→ P

3.2 soundex 12

2. Encode remaining letter ‘FISTTER’.
PFISTTER→ P1-233-6→ P12336

3. Remove two adjacent same characters.
PFISTTER→ P12336→ P1236

4. P is also in group 1, so remove the second 1 letter.
PFISTTER→ P1236→ P236

5. P236 is 4 characters long, so no need to be trimmed or padded.
PFISTTER→ P1236→ P236

Therefore, soundex of ‘PFISTTER’ is P236.

The implementation of soundex (listing 2) in this project is adapted
from Winstanley's Irish soundex implementated in Visual Basic2. The
code is commented following the same aforementioned steps.

def self.soundex(name)

Take the first letter of a string.

result = name.first

Encode remaining letters.

name[1..name.length].split('').each do |n|

result = result + category(n).to_s

end

Remove two adjacent same characters.

result.gsub!(/([0-9])\1+/, '\1')

If category of 1st letter equals 2nd character, remove 2nd

character.

if result.size >= 2 && category(result[0]).to_s == result[1]

result.slice!(1)

end

Trim or pad with zeros as necessary.

result = if result.size == 4

result

elsif result.size > 4

result[0..3]

else

result.ljust(4, '0')

end

end

Listing 2: Soundex implementation.

The category function implements soundex grouping table (table
1) as in listing 3.

2 [2] Appendix 3.

3.2 soundex 13

def self.category(c)

if c.match(/[AEIOUHWY]/).present?

""

elsif c.match(/[BPFV]/).present?

1

elsif c.match(/[CSKGJQXZ]/).present?

2

elsif c.match(/[DT]/).present?

3

elsif c.match(/[L]/).present?

4

elsif c.match(/[MN]/).present?

5

elsif c.match(/[R]/).present?

6

else

""

end

end

Listing 3: Soundex grouping table implementation.

Now that we encode two strings to be matched in soundexes. We
then calculate the similarity score of these two soundexes using these
steps.

• Compare first characters of each soundex, if they are different,
similarity score is 0, otherwise move to next step.

• Compare the rest 3 digits by using Levenshtein distance (section
3.1) to calculate the distance between them.

For example, similarity score between ‘SMITH’ and ‘SPEED’, which
soundexes are S530 and S130 respectively, is 0.75 (1 substitution from
‘5’ to ‘1’, so 1 difference of length 4).

The code of this soundex similarity score is as in listing 4.

3.3 irish soundex 14

def soundex_distance_score(s1, s2)

if s1.first != s2.first

0 # Different category, so they suppose to be completely

different.

else

(s1.size - Text::Levenshtein.distance(s1, s2).to_f) / s1.size

end

end

Listing 4: Soundex similarity score implementation.

3.3 irish soundex

Irish soundex is another variant of traditional soundex. It determines
characteristics of Irish names and normalised them to modern names.
This algorithm also follows Winstanley's Irish soundex3.

Irish names might contain some prefix, e.g. ‘Mc’ or ‘O’, which
are obstructive to soundex result. These prefixes are to be discarded.
Moreover, there is no initial soft ‘C’ in Irish names, instead ‘K’ is used.
So the first letter ‘C’ is changed to ‘K’. It is implemented as in listing
5.

3 [2] Appendix 3.

3.4 lookup table 15

def self.soundex(name)

Change initial ST. to SAINT.

name = name.match(/^ST\./).present? ? "SAINT

#{name[3..name.length]}" : name

Discard Irish prefixes.

name = if name.match(/^O /).present?

name[1..name.length].gsub(' ', '')

elsif name.match(/^O'/).present?

name[2..name.length].gsub(' ', '')

elsif name.match(/^MC/).present?

name[2..name.length].gsub(' ', '')

elsif name.match(/^M'/).present?

name[2..name.length].gsub(' ', '')

elsif name.match(/^MAC/).present? && name != 'MAC'

name[3..name.length].gsub(' ', '')

else

name

end

Change initial C to K.

name = name.strip.gsub(/^C/, 'K')

Call to traditional soundex.

return {

:label => name,

:soundex => Soundex.soundex(name)

}

end

Listing 5: Irish soundex implementation.

Irish soundex algorithm in this project calls traditional soundex
described in section 3.2 to minimise repeated code. It also calculates
similarity score the same way soundex does, as in listing 4.

3.4 lookup table

Lookup table is constructed from Robert Edwin Matheson's classi-
fication of Irish names. All classification information is stored in a
Database, using PostgreSQL, which is a powerful, open source object-
relational database system [22].

Matheson classified the surnames in Ireland into 2091 groups. Each
group has one or more names, and on the other hand, each name
belongs to one or more group.

3.4 lookup table 16

In this section, we will consider the names as strings input. So the
term string will be used in consistent with previous sections.

For example, considering the string ‘ACHESON’, this string be-
longs to two groups, 4 and 42. So ‘ACHESON’ will have 2 records
in the database. One with reference to group 4 and another with ref-
erence to group 42.

Next, let us consider group 4 and 42.

4 → ACHESON, ACHISON, AITCHISON, ATCHESON,
ATCHIESON, ATCHISON, ATKINSON
42→ ACHESON, ARKESON, ATKINS, ATKINSON

By combining two groups together, these are all possible strings
that match ‘ACHESON’ according to Matheson's classification.

Now is the process to match two strings using Lookup table, sup-
pose two strings are ‘ACHESON’ and ‘ATKINS’.

1. Find references of ‘ACHESON’. We get references for group 4

and 42. Note the use of pluck method to select reference at-
tribute (ref) here4.

LookupTableRecord.where(:name => 'ACHESON').pluck(:ref)

=> [4, 42]

2. Find reference to matching string ‘ATKINS’ and also specify the
reference groups from step 1. If there is no match where method
will return empty array. present? method is used to check the
result if it is not empty5.

LookupTableRecord.where(:ref => [4, 42], :name =>

'ATKINS').present?

=> true

By specifying both matching string and references group, we
can ensure the matching name is also in the one of the same
reference group of the base name. In this case, we conclude that
there is a match between ‘ACHESON’ and ‘ATKINS’ via group
4 or 42 (or more specifically, 42, because ‘ATKINS’ belongs to
group 41 and 42).

4 Use pluck as a shortcut to select one or more attributes without loading a bunch of
records just to grab the attributes you want. http://api.rubyonrails.org/classes/
ActiveRecord/Calculations.html#method-i-pluck

5 http://api.rubyonrails.org/classes/Object.html#method-i-present-3F

http://api.rubyonrails.org/classes/ActiveRecord/Calculations.html#method-i-pluck
http://api.rubyonrails.org/classes/ActiveRecord/Calculations.html#method-i-pluck
http://api.rubyonrails.org/classes/Object.html#method-i-present-3F

3.4 lookup table 17

If a reference is found on both steps, similarity score for lookup table
of the two strings is 1.0. If the system fails to find any reference on
any step, consider a no match and the score is 0.0.

By following these steps, the implementation of lookup table is as
in lisiting 6.

def cal_score

Look for a reference for base name.

base = LookupTableRecord.where(:name => @base_name.name)

@score = if base.nil? # Could not find reference for base name,

no matches.

0

else

Find any reference that has 1) same name 2) same

reference.

base = base.map(&:ref)

refs = LookupTableRecord.where(:ref => base, :name =>

@name)

if refs.present?

@label = (base & refs.map(&:ref)).join(', ')

@value = "Matched"

1

else # Could not find reference for matching name, no

matches.

0

end

end

end

Listing 6: Lookup table implementation.

4
A R C H I T E C T U R E

Now that we already know how to match (by comparing and cal-
culating similarity score from section 3), we then proceed to a bigger
picture. This section describes how the architecture of overall system
is.

4.1 initial idea

Let us start by the basic idea of this project.

As mentioned in section 1.3, the objective of this project is to pro-
vide a web service that produces matching result between two lists of
names. As we see the word list here, that means our inputs are not
only a pair of names, but rather two lists. In real world use, this list
can be large, a hundred or thousand, depending on the client who
uses the system.

We will introduce two terms, base name and to-match name. Base
name acts as a base and will be matched against each to-match name in
their list, from start until the end, then proceed to the next base name,
match against the whole to-match name list again, and so on.

Figure 2: Base name ‘SMITH’ comparing to to-match name ‘SMEETH’.
Scores of each matching algorithms are presented in the bubble

above the arrow.

Figure 2 shows a snapshot of an attempt to match between base
name ‘SMITH’ against to-match name ‘SMEETH’. Similarity score for

18

4.2 weighting matching algorithms 19

each matching algorithms have been calculated. And by these scores,
we can calculate overall score for ‘SMITH’ and ‘SMEETH’.

So the next step is to match current base name, ‘SMITH’, against
next to-match name, ‘SMILEY’.

Once base name ‘SMITH’ completes all to-match name's in their list,
the system then process to the next base name, ‘SOMERS’, and start
over the matching process against the whole to-match name list again,
from start to the end.

4.2 weighting matching algorithms

We realised that, for matching names, each matching algorithms should
not be treated as all the same priority. For example, for Irish names, it
would be better if we favour Irish soundex over the traditional Soundex,
because it produces more accurate result.

By this idea we also implement weight for each matching algorithm.
We will suggest initial values, but also allow client to change these
values. Table 2 states these suggested initial weights.

matching algorithm weight

Levenshtein distance 1

Soundex 3

Irish soundex 6

Lookup table 10

Table 2: Matching algorithm weights.

By summarising products of each matching algorithm similarity
score and its weight, dividing by sum of all weight, we can obtain over-
all weighted score (OWS). This sentence can be represented by equation
1.

OWS =

n∑
i=1

(si ×wi)

n∑
i=1

wi

(1)

Where s and w are similarity score and weight of matching algo-
rithm i respectively. n is number of available matching algorithms.

This overall weighted score will represent each matching and all re-
sults will be sorted by this score. Usage and calculation of this weight-
ing will be described in more detail in the next section (4.3).

4.3 actual system 20

4.3 actual system

Following our basic idea from previous sections, we then design the
architecture of our system.

Suppose we have two inputs, list of base names of length b, and
list of to-match names of length t. We need to process the matching
for b× t times. We call this single matching between base name and
to-match name as matching cycle.

In this following figure 3 we once again show a snapshot of an
attempt to match between base name ‘SMITH’ against to-match name
‘SMEETH’. But now in a matching cycle style.

Figure 3: One matching cycle.

One matching cycle consists of 5 steps as shown in figure 3.

1. Processing current base name ‘SMITH’ and to-match name ‘SMEETH’

2. Proceed to matching algorithms.

4.4 thresholding the results 21

3. Each algorithm calculates its score indepedently.

a) Levenshtein distance between ‘SMITH’ and ‘SMEETH’ is 2

(1 substitution of I to E and 1 insertion of E). So similarity
score is (6− 2)÷ 6 = 0.667 where 6 comes from thelength
of the longer string, ‘SMEETH’.

Weight of this algorithm is 1.

∴ weighted score = 0.667× 1 = 0.667

b) Soundex of both ‘SMITH’ and ‘SMEETH’ are S530 so their
similarity score is 1.0.

Weight of this algorithm is 3.

∴ weighted score = 1.0× 3 = 3.0

c) Irish soundex of both ‘SMITH’ and ‘SMEETH’ are S530 so
their similarity score is 1.0.

Weight of this algorithm is 6.

∴ weighted score = 1.0× 6 = 6.0

d) References between ‘SMITH’ and ‘SMEETH’ is found in
the Lookup table via group 1897. so their similarity score is
1.0

Weight of this algorithm is 10.

∴ weighted score = 1.0× 10 = 10.0

4. Return all scores and then calculate overall weighted score for
‘SMITH’ and ‘SMEETH’. Sum of the scores is 0.667+ 3.0+ 6.0+
10.0 = 19.667. Sum of the weights is 1+ 3+ 6+ 10 = 20. There-
fore the overall weighted score is 19.667÷ 20 = 0.983.

5. Matching cycle for ‘SMITH’ and ‘SMEETH’ is finished with over-
all weighted score 0.983. Now the system will proceed to the next
to-match name ‘SMILEY’. Matching cycles for base name ‘SMITH’
will continue until the end of to-match name list. After that it will
start matching cycles for base name ‘SOMERS’ from the start of
to-match names, and so on.

Once all cycles are fully finished for every base names and to-match
names, we will get all overall weighted scores ready. So we can sort and
present in web interface (section 4.8), or return as a result in web
service (section 4.7).

4.4 thresholding the results

Suppose there are a thousand of to-match names, there could be many
irreverent results that are not likely to match each base name. For ex-
ample overall weighted scores of ‘SMITH’ and ‘CROMBIE’ is just 0.007.

4.5 data flow 22

Client may opt-out these irreverent results by specifying a floating
number threshold. Any to-match name with overall weighted scores lower
than threshold will be discarded from the result.

4.5 data flow

In the previous section we describe the essence of this project, how
we use matching algorithms to calculate score of similarity between
two strings. We know how to process the data. Now in order to make
the system becomes useable. We need to consider two more things.

• How to gather inputs from clients.

• How to present or return results to clients.

From research questions (section 1.2) we mentioned two ways to
communicate with clients, by web service and web interface.

Clients who use the system as a web service will send inputs di-
rectly without any medium in between, and will receive result back
in form of agreed format, e.g. JSON.

On the other hand, clients who use the system via web interface
will use a form in a web interface (web page) provided by the system
to provide inputs, and results will be presented in another page after
client submitted the form.

service type input source result format

Web service Web/mobile/desktop
application

JSON

Web interface Provided form Web page result

Table 3: Service types and their inputs and results.

In the next section (4.6) we will describe how we gather inputs and
provide results.

4.6 mvc

Our system is based on Ruby on Rails, which is a MVC1 framework.
We will use Rails architecture to encapsulate our system be these
following means.

view : where the form for web interface is implemented. It creates a
web page with inputs for use to fill in. Client can inputs names

1 Model-View-Controller [23]

4.6 mvc 23

manually, or upload a file containing names. He also can choose
whether to use any available matching algorithms.

Inputs from view are then passed to controller.

View is also responsible in displaying result to web interface
clients, and generating JSON result for web service clients.

controller : receives inputs from different sources, inputs from
form of web interface style, or direct input from clients using
web service style. Inputs will be pre-processed, such as separat-
ing lines from file input, removing white spaces, or converting
input to upper-case.

Once inputs are ready, controller then passes these inputs to
model, where our matching system lies in.

After inputs are processed, controller receives results back from
model, then controller will decide which kind of result it needs to
return from input source. It will then pass results to appropriate
view.

model : this is where we implement our whole matching system in.
Model constructs base names and to-match names from received
inputs, then invoke matching algorithms, as described in section
4.3. Model will pass results back to controller after finished.

Figure 4: Data flow from web service client and web interface client.

4.7 web service 24

4.7 web service

From figure 4, web service clients use the system by directly pass
inputs to the controller. Recalling from previous sessions, all possible
inputs to the system are as follow.

1. Base names – separated by new lines2.

2. To-match names – separated by new lines.

3. Matching algorithms – specify needed algorithm names along
with its weight (section 4.2).

4. Threshold (section 4.4).

5. Standard list – will be introduced in section 6.1. Specify true, t,
or 1 to use the standard list.

Currently a preferable format is JSON. In listing 7 shown a sample
JSON input for using web service, let us call this sample.json.

{

"base_names":"Smith",

"to_match_names":"Smythe\r\nO'Gowan",

"matching_algorithms":{

"1":{"name":"LookupTable", "weight":"10"},

"2":{"name":"LevenshteinDistance", "weight":"1"},

"3":{"name":"Soundex", "weight":"3"},

"4":{"name":"IrishSoundex", "weight":"6"}

},

"threshold":"0",

"standard_list":""

}

Listing 7: sample.json.

sample.json is an attempt to match between base name ‘SMITH’,
and to-match name ‘SMYTHE’ and ‘O'GOWAN’. Using 4 matching
algorithms, and threshold as 0. We will submit this sample.json input
to the system using cURL [24] in command line.

$ curl -H "Accept: application/json" -H "Content-type:

application/json" -X POST -d @sample.json

http://localhost:4001/match.json

2 Preferably \n or \r, see http://stackoverflow.com/questions/1761051/

difference-between-n-and-r.

http://stackoverflow.com/questions/1761051/difference-between-n-and-r
http://stackoverflow.com/questions/1761051/difference-between-n-and-r

4.7 web service 25

We use HTTP POST [25] to submit sample.json to the web service,
currently running locally, so the url using here is http://localhost:

4001/match.json. The formatted JSON result is shown in listing 8,
note that the result of matching between ‘SMITH’ and ‘O'GOWAN’
is truncated just for readability.

[

{

"base_name": "SMITH",

"to_match_names": [

{

"to_match_name": "SMYTHE",

"overall_weighted_score": 0.983,

"scores": [

{

"method": "LookupTable",

"value": "Matched",

"label": "1897",

"score": 1,

"weight": 10

},

{

"method": "LevenshteinDistance",

"value": 2,

"label": null,

"score": 0.667,

"weight": 1

},

{

"method": "Soundex",

"value": "S530 <=> S530",

"label": null,

"score": 1,

"weight": 3

},

{

"method": "IrishSoundex",

"value": "S530 <=> S530",

"label": "SMYTHE",

"score": 1,

"weight": 6

}

]

},

{

"to_match_name": "O'GOWAN",

"overall_weighted_score": 0.5,

...

Listing 8: Result from sample.json.

http://localhost:4001/match.json
http://localhost:4001/match.json

4.8 web interface 26

From the results, overall weighted score between ‘SMITH’ and ‘SMYTHE’
is 0.983, higher than ‘SMITH’ and ‘O'GOWAN’ (0.5), so the former is
sorted before the latter.

To generate these results in JSON, we use Jbuilder [26], a template
for generating JSON structures. The template we use is shown in
listing 9.

json.array! @matched_names do |matched_name|

json.base_name matched_name.name

json.to_match_names do

json.array! matched_name.to_match_names do |tmn|

json.to_match_name tmn.name

json.overall_weighted_score tmn.score

json.scores do

json.array! tmn.scores do |s|

json.method s.class.name

json.value s.value

json.label s.label

json.score s.score

json.weight s.weight

end

end

end

end

end

Listing 9: Jbuilder template for generating JSON results.

4.8 web interface

Our system provides a web interface with inputs form. All possible
inputs are equivalent to web service as follow.

1. Base names – clients can fill the names in input 1, separated by
new lines. alternatively, clients can also upload a file containing
names separated by new lines. if the web interface detects that
the file input is present, direct text input will be discarded.

2. To-match names – the same way of base name, using Input 2.

3. Matching algorithms – clients can choose available algorithms
from the list along with its weight using checkboxes. Uncheck
to opt-out any algorithms.

4. Threshold – clients can specify floating number threshold using
input box.

4.8 web interface 27

5. Standard list – will be introduced in section 6.1. clients can
check the checkbox to use the standard list.

Figure 5: Web interface with input forms.

Figure 5 is an attempt to match between base name ‘SMITH’ and
‘SPEED’, and to-match name ‘SMYTHE’ and ‘O'GOWAN’. Using 4

matching algorithms, and threshold as 0. After finish filling all inputs
client may press the blue ‘Submit’ button to begin matching.

4.8 web interface 28

Figure 6: Web interface results page.

Figure 6 shows the web interface result of this matching. There are
two base names and two to-match names, so the results are matchings of
total 2× 2 = 4 names. Each outer box is results of matching between
each base names, with the outer box there is an inner box containing
details of each to-match names.

From the results, overall weighted score (each green labelled box) be-
tween ‘SMITH’ and ‘SMYTHE’ is 0.983, higher than ‘SMITH’ and
‘O'GOWAN’ (0.5), so the former is sorted before the latter.

5
E X T E N D I N G T H E S Y S T E M

In this section we show how we design our system to be extensible in
terms of adding new matching algorithms, also using existing shared
methods, or sharing new methods.

5.1 matching algorithms inheritance

Figure 7: MatchingAlgorithm inheritance.

All matching algorithms (chapter 3) inherit the same superclass,
MatchingAlgorithm (shown in figure 7 and listing 10). They all use the
same class constructor (in Ruby, it is called the initialize method). To
create an instance of MatchingAlgorithm, current base name, to-match
name and weight are passed as parameters.

We use The Strategy Pattern1 as a design pattern. In MatchingAlgorithm

the cal_score method is declared and also meant to be overridden,
so every matching algorithm needs to override this method using
their own matching logic. Each matching algorithm class will call

1 [27], page 24

29

5.1 matching algorithms inheritance 30

cal_score to calculate its scores. cal_score is also private to be only
used within the subclasses themselves.

We also define soundex_distance_score method to be shared be-
tween soundex algorithms. Any further shared methods can be de-
clare here as well.

MatchingAlgorithm class is shown in listing 10.

class MatchingAlgorithm

WEIGHT = 1 # Default weight of every matching algorithm.

attr_accessor :name,

:base_name,

:value,

:label,

:score,

:weight,

:weighted_score

def initialize(params = {})

@name = params.fetch(:name)

@base_name = params.fetch(:base_name)

@weight = params.fetch(:weight)

cal_score

@score = @score.round(3)

@weighted_score = (@score * @weight).round(3)

end

private

def cal_score

raise NotImplementedError

end

def soundex_distance_score(s1, s2)

if s1.first != s2.first

0 # Different category, so they suppose to be completely

different

else

(s1.size - Text::Levenshtein.distance(s1, s2).to_f) /

s1.size

end

end

end

Listing 10: MatchingAlgorithm class.

5.2 exporting a class method 31

For example of a concrete matching algorithm, we have already
shown some cal_score overridings. For Levenshtein distance is as in
in listing 1. Here we will show whole LevenshteinDistance class,
which is a subclass of MatchingAlgorithm, as in listing 11.

class LevenshteinDistance < MatchingAlgorithm

private

def cal_score

@value = Text::Levenshtein.distance(@name, @base_name.name)

size = [@name.size, @base_name.name.size].max

@score = ((size - @value).to_f / size)

end

end

Listing 11: LevenshteinDistance class.

Also for Lookup table is as in listing 6. Here we will show whole
LookupTable class, which is another subclass of MatchingAlgorithm,
as in listing 11. Note that LookupTable overrides default weight, which
LevenshteinDistance does not.

class LookupTable < MatchingAlgorithm

WEIGHT = 10 # Overriding default weight.

private

def cal_score

...

end

end

Listing 12: LookupTable class.

5.2 exporting a class method

When we mentioned soundex implementation in listing 2, we intro-
duced self.soundex method instead of cal_score. Defining a method
with self. is to create a class method [28]. Class method can be called
directly without creating instance of the class, it is the same as static
method in Java. For example as in listing 13.

5.2 exporting a class method 32

[7] pry(main)> Soundex.soundex('SMITH')

=> "S530"

Listing 13: Calling class method Soundex.soundex.

By defining this method to be a class method, it can be reused in
other class as well. In listing 14 we will show whole Soundex class,
which is another subclass of MatchingAlgorithm.

class Soundex < MatchingAlgorithm

WEIGHT = 3

def self.soundex(name)

...

end

private

def self.category(c)

...

end

def cal_score

name_soundex = self.class.soundex(@name)

base_name_soundex = self.class.soundex(@base_name.name)

@value = "#{base_name_soundex} <=> #{name_soundex}"

@score = soundex_distance_score(name_soundex,

base_name_soundex)

end

end

Listing 14: Soundex class.

Note that we have already covered self.soundex and self.category

implementation in listing 2 and 3 respectively, so both are truncated
for readability. Here we focus on the cal_score overriding on Soundex

class. The use of self.class.soundex in cal_score refers to Soundex.soundex.
And soundex_distance_score is defined in MatchingAlgorithm.

As for Irish soundex, it also contains its own self.soundex class
method. But this self.soundex also calls Soundex.soundex to use origi-
nal soundex code, as in listing 15 (extracted from IrishSoundex.soundex

implementation, listing 5).

5.3 implementing new matching algorithms 33

Call to traditional soundex.

return {

:label => name,

:soundex => Soundex.soundex(name)

}

Listing 15: IrishSoundex.soundex calls to Soundex.soundex.

In listing 16 we will show whole IrishSoundex class, which is an-
other subclass of MatchingAlgorithm.

class IrishSoundex < MatchingAlgorithm

WEIGHT = 6

def self.soundex(name)

..

end

private

def cal_score

name_soundex = self.class.soundex(@name)

base_name_soundex = self.class.soundex(@base_name.name)

@value = "#{base_name_soundex[:soundex]} <=>

#{name_soundex[:soundex]}"

@label = name_soundex[:label]

@score = soundex_distance_score(name_soundex[:soundex],

base_name_soundex[:soundex])

end

end

Listing 16: IrishSoundex class.

Note that we have already covered self.soundex implementation
in listing 5, so it is truncated for readability. Here we focus on the
cal_score overriding on IrishSoundex class. The use of self.class.soundex
in cal_score refers to IrishSoundex.soundex. And soundex_distance_score

is defined in MatchingAlgorithm.

5.3 implementing new matching algorithms

Currently there are 4 matching algorithms derived from MatchingAlgorithm.

1. LevenshteinDistance

5.3 implementing new matching algorithms 34

2. Soundex

3. IrishSoundex

4. LookupTable

The implementations of all of these classes are within the same file
as their superclass, MatchingAlgorithm, the path is
app/models/matching_algorithm.rb. The structure of this file is shown
in listing 17.

class MatchingAlgorithm

..

end

class LevenshteinDistance < MatchingAlgorithm

..

end

class Soundex < MatchingAlgorithm

..

end

class IrishSoundex < MatchingAlgorithm

..

end

class LookupTable < MatchingAlgorithm

..

end

Listing 17: matching_algorithm.rb.

To add a new matching algorithm, suppose we were to implement
another soundex for Indian [29]. We would call this IndianSoundex.
Here is the list of steps to do so.

1. Modify the file app/models/matching_algorithm.rb where all
the matching algorithms are in. Append the class definition to
the file.

5.3 implementing new matching algorithms 35

..

class LookupTable < MatchingAlgorithm

..

end

class IndianSoundex < MatchingAlgorithm

private

def cal_score

To be implemented.

end

end

2. Override cal_score, fulfil the algorithm for Indian soundex.

3. You may create class method self.soundex to follow the same
pattern as Soundex and IrishSoundex, making it reusable too.

4. You may also use class method of soundex and Irish soundex by
calling to Soundex.soundex and IrishSoundex.soundex.

5. You may also use shared method soundex_distance_score to
calculate distance score like two other soundexes do.

You may consider adding more shared methods to MatchingAlgorithm

superclass if considered appropriate, i.e. many subclasses will use it.
On the other hand, if you need some method just inside the class,
consider create just private methods.

Part III

T H E O U T C O M E

6
E VA L U AT I O N

After finishing implementing our system, we began to evaluate it in
terms of performance of response speed and memory usage. To eval-
uate the system, we need a large amount of sample data, so here we
introduce the standard name list.

6.1 introducing standard name list

In subsection 2.1.3, we mentioned Robert Edwin Matheson, who de-
veloped a classification of Irish names. He classified the surnames in
Ireland into 2091 groups. Adam Winstanley’s work on this classifica-
tion [2] looked through these groups and came up with a total 12,944

names in this classification. We use all these names to build up our
lookup table (section 3.4).

We also decide to use all these records as a standard name list, for
example, a client may want to match the base name ‘MONAHAN’ for
all any possible matching to-match names. A client has an option to
choose to match ‘MONAHAN’ with all 12,944 names in our standard
list.

For web service clients, specify standard_list as true, t, or 1 to
use the standard list. For example in listing 18, note that to_match_names
is left blank and standard_list value is 1.

{

"base_names":"Monahan",

"to_match_names":"",

"matching_algorithms":{

"1":{"name":"LookupTable", "weight":"10"},

"2":{"name":"LevenshteinDistance", "weight":"1"},

"3":{"name":"Soundex", "weight":"3"},

"4":{"name":"IrishSoundex", "weight":"6"}

},

"threshold":"0",

"standard_list":"1"

}

Listing 18: Sample JSON with a standard name list option.

37

6.1 introducing standard name list 38

For web interface clients, check the “Use standard list” checkbox to
use the standard list, as shown in figure 8.

Figure 8: Web interface with a standard name list option.

Using a standard name list option generates many results. Clients
are allowed to specify a threshold (section 4.4) to discard irreverent
results.

In listing 19 is a result of matching between base name ‘MONA-
HAN’ and the standard name list, using threshold as 0.9. The results’
detailed scores are truncated for readability.

6.2 test environment setup 39

[

{

"base_name": "MONAHAN",

"to_match_names": [

{

"to_match_name": "MONAHAN",

"overall_weighted_score": 1,

..

},

{

"to_match_name": "MOYNAHAN",

"overall_weighted_score": 0.994,

..

},

{

"to_match_name": "MONOHAN",

"overall_weighted_score": 0.993,

..

},

{

"to_match_name": "MONEHAN",

"overall_weighted_score": 0.993,

..

},

{

"to_match_name": "MOYNIHAN",

"overall_weighted_score": 0.988,

..

},

{

"to_match_name": "MOYNAN",

"overall_weighted_score": 0.979,

..

}

]

}

]

Listing 19: Results of matching base name ‘MONAHAN’ with a standard
name list.

6.2 test environment setup

We run, test, and profile our system locally, using these following
environmental setup.

test machine : MacBook Pro (Retina, 13-inch, Mid 2014).

6.3 response speed 40

• Processor – 2.6 GHz Intel Core i5

• Memory – 8 GB 1600 MHz DDR3

• Hard disk – APPLE SSD SM0256F

ruby : 1.9.3p125 (2012-02-16 revision 34643) with GC-Patched MRI1.

ruby on rails : version 4.2.0.

database : PostgreSQL version 9.3.5.

profiling tools : rails-perftest [30] 0.0.6.

6.3 response speed

We test response speed of our system by matching base name ‘SMITH’
with the standard name list of total 12,944 names. Each matching
algorithm is tested separately first and then altogether at last.

Listing 20 is our JSON setup for response speed testing. Matching al-
gorithms are varies between each scenario and all use default weights.

{

"base_names":"Smith",

"to_match_names":"",

"matching_algorithms":{

..

},

"threshold":"0",

"standard_list":"1"

}

Listing 20: JSON setup for performance testing.

To conduct testing, we use rails-perftest [30] to run our test cases.
Table 4 shows the test result in response speed aspect.

matching algorithms response speed (ms)

Levenshtein distance 1,337

Soundex 2,024

Irish soundex 2,456

Lookup table 24,293

All 4 algorithms 28,786

Table 4: Response speed for each matching algorithms.

1 Installing GC-Patched MRI [30].

6.4 memory usage 41

From the results, Levenshtein distance is the fastest matching algo-
rithm because it has the simplest logic among the four. Soundex and
Irish soundex are second and third because they involve more string
converting logic, and Irish soundex has more steps. Lastly, lookup
table involves many database queries so that makes it much more
slower than the rest.

6.4 memory usage

We also test memory usage of our system by matching base name
‘SMITH’ with the standard name list of total 12,944 names. Each
matching algorithm is tested separately first and then altogether at
last.

Listing 20 is still our JSON setup for response speed testing. Match-
ing algorithms are varies between each scenario and all are using
default weights. Table 5 shows the test results regarding memory us-
age.

matching algorithms memory usage (bytes)

Levenshtein distance 48,518,621

Soundex 53,066,150

Irish soundex 69,534,598

Lookup table 244,302,744

All 4 algorithms 373,544,727

Table 5: Memory usage for each matching algorithms.

From the results, memory usage for each algorithm follows re-
sponse speed fashion. Levenshtein distance and two soundexes use
much less memory hungry compared to the lookup table.

6.5 dependability

We consider 5 software dependability attributes [31] of our system as
follow.

availability : The system is available 24x7 on a virtual private
server.

reliability : We ensure that the result from web service and web
interface are always exactly the same. From our evaluation the
system generates the results in a reasonable time. Memory con-
sumption is acceptable but also needs to be monitor further.

6.5 dependability 42

safety : Current state of the system does not consider on heavy secu-
rity aspect. We would leave this attribute for the future works.

integrity : We have a solid backup of the standard name list (sec-
tion 6.1) which can be regenerated anytime. In future work we
also consider a proper database backup solution.

maintainability : The system welcomes maintenance and exten-
sion as we describe in detail in chapter 5.

7
C O N C L U S I O N

We successfully developed an extensible web service system to match
names. The system is initially encoded with 4 matching algorithms,
Levenshtein distance, soundex, Irish soundex, and lookup table. We
also present a web interface for a client to use the system from the
web browser.

The system is designed to be extended with simple inheritance,
thus a developer can understand and develop further algorithm easily.
In early state simple design is enough to serve the purpose, so we
follow the Kiss principle [32].

However, we have encountered some problem, also there are still
much room for future works. We will describe these in the following
sections.

7.1 encountered problem

The major problem is that the current system takes too long to process
and also uses too much memory. It has not been properly optimised
in terms of performance. These following techniques might improve
our system furthermore.

7.1.1 Memoization

Memoization is the process of storing a computed value to avoid du-
plicated work by repetitive calls. While each algorithm calculats sim-
ilarity score, there might be many repetitive calculations or database
queries.

Ruby has a conditional assignment operator ||= [33] which is com-
monly used for memoization. By doing so, it can improve perfor-
mance of the system and reduce the number of database calls [34],
thus shorten response time and lower memory usage.

7.1.2 find_in_batches

Matching large amount of name causes high memory consumption
and may lead to out of memory situlation, especially in environment
which memory are crucial and expensive such as on a remote server.

43

7.2 future works 44

Rails provides find_in_batches which operates an array in batches,
thus greatly reducing memory consumption [35]. We can apply the
same principle to our base name and to-match name, also to the con-
troller (section 4.6).

7.1.3 Replace RDBMS with NoSQL

Current database system (section 6.2) is a Relational database man-
agement system (RDBMS) [36] and the system relies on traditional
database queries. By replacing this with high speed NoSQL database
such as Redis [37], which is one of the fastest NoSQL [38], we can
obtain better performance while using lookup table algorithm.

7.2 future works

Our system can be further enhanced in many mays. Here are sample
ideas for upcoming features of the system.

7.2.1 More phonetic algorithms

A phonetic algorithm [39] indexes words by their pronunciation. Soundex
is one of them. We can implement more matching algorithms based
on them. For example, Kolner Phonetik [40] is similar to soundex
and works well on German words. Daitch-Mokotoff soundex [41] is
an improved soundex working well to match surnames of Slavic and
Germanic origin.

7.2.2 Inheritance for similar matching algorithms

Currently all matching algorithms inherit MatchingAlgorithm class.
In future, if there are many similar ones or can be categorised in
the same group, we can create another level of inheritance so they
can share common methods. For example, consider the soundex case,
with Kolner Phonetik and Daitch-Mokotoff soundex we can create
inheritance with Soundex class as in listing 21.

7.2 future works 45

class Soundex < MatchingAlgorithm

WEIGHT = 3

def self.soundex(name)

..

end

private

def self.category(c)

..

end

def cal_score

..

end

Moved from MatchingAlgorithm class to be more specific to

soundexes.

def soundex_distance_score(s1, s2)

..

end

end

class IrishSoundex < Soundex

..

end

class KolnerPhonetik < Soundex

..

end

class DaitchMokotoffSoundex < Soundex

..

end

Listing 21: Soundex inheritance.

7.2.3 Improve web interface result

Current web interface result is as in figure 6, just a list of boxes de-
tailed with matching algorithm scores. When it comes to large num-
ber of inputs, thousands of boxes will be generated and could over-
whelm both browser and client themselves.

We can improve result display by implement a visualised graph
base on the results, there are many libraries [42] that are capable if

7.2 future works 46

generating interactive graph. d3js is another well option for starting
from scratch.

B I B L I O G R A P H Y

[1] welfare.ie. History of Registration in Ireland. 2015. URL https://

www.welfare.ie/en/downloads/GRO-History.pdf. accessed May
8

th, 2015.

[2] Adam Winstanley. Identifying People on the Morpeth Roll. July
2014. Postgraduate Diploma in Genealogical, Palaeographic &
Heraldic Studies 2013-14.

[3] Christopher Ridgway. The Morpeth Roll: Ireland identified in 1841.
2013.

[4] Wikipedia. Edit distance. 2015. URL http://en.wikipedia.org/

wiki/Edit_distance. accessed May 4
th, 2015.

[5] Wikipedia. Levenshtein distance. 2015. URL http://en.

wikipedia.org/wiki/Levenshtein_distance. accessed May 4
th,

2015.

[6] National Archives and Records Administration. The Soundex
Indexing System. May 2007. URL http://www.archives.gov/

research/census/soundex.html. accessed May 4
th, 2015.

[7] Robert Edwin Matheson. Varieties and synonymes of surnames
and christian names in Ireland. 1901. URL https://archive.org/

details/varietiessynony00math. accessed May 4
th, 2015.

[8] Robert Edwin Matheson. Special report on surnames in Ireland.
1894. URL https://archive.org/details/cu31924029805540.
accessed May 4

th, 2015.

[9] Vincent Ramdhanie. What is a ‘web service’ in plain English? Oc-
tober 2008. URL http://stackoverflow.com/a/226159/459794.
accessed May 5

th, 2015.

[10] The Java EE 6 Tutorial. Types of Web Services. 2013. URL http:

//docs.oracle.com/javaee/6/tutorial/doc/giqsx.html. ac-
cessed May 5

th, 2015.

[11] John Mueller. Understanding SOAP and REST Basics.
January 2013. URL http://blog.smartbear.com/apis/

understanding-soap-and-rest-basics/. accessed May 5
th,

2015.

[12] Steve Francia. REST Vs SOAP, The Difference Between Soap And
Rest. January 2010. URL http://spf13.com/post/soap-vs-rest.
accessed May 5

th, 2015.

47

https://www.welfare.ie/en/downloads/GRO-History.pdf
https://www.welfare.ie/en/downloads/GRO-History.pdf
http://en.wikipedia.org/wiki/Edit_distance
http://en.wikipedia.org/wiki/Edit_distance
http://en.wikipedia.org/wiki/Levenshtein_distance
http://en.wikipedia.org/wiki/Levenshtein_distance
http://www.archives.gov/research/census/soundex.html
http://www.archives.gov/research/census/soundex.html
https://archive.org/details/varietiessynony00math
https://archive.org/details/varietiessynony00math
https://archive.org/details/cu31924029805540
http://stackoverflow.com/a/226159/459794
http://docs.oracle.com/javaee/6/tutorial/doc/giqsx.html
http://docs.oracle.com/javaee/6/tutorial/doc/giqsx.html
http://blog.smartbear.com/apis/understanding-soap-and-rest-basics/
http://blog.smartbear.com/apis/understanding-soap-and-rest-basics/
http://spf13.com/post/soap-vs-rest

bibliography 48

[13] Introducing JSON. json.org. 2015. URL http://www.json.org.
accessed May 5

th, 2015.

[14] Hussain Fakhruddin. JSON or XML – Which Data Format Is Better
For Developers? April 2015. URL http://teks.co.in/site/blog/

json-or-xml-which-data-format-is-better-for-developers/.
accessed May 5

th, 2015.

[15] Bill Venners. The Philosophy of Ruby. September 2003. URL http:

//www.artima.com/intv/rubyP.html. accessed May 6
th, 2015.

[16] ruby lang.org. Ruby, a programmer’s best friend. 2015. URL https:

//www.ruby-lang.org/en/. accessed May 6
th, 2015.

[17] tutorialspoint.com. Object Oriented Ruby. 2015. URL http://

www.tutorialspoint.com/ruby/ruby_object_oriented.htm. ac-
cessed May 6

th, 2015.

[18] ruby lang.org. About Ruby. 2015. URL https://www.ruby-lang.

org/en/about/. accessed May 6
th, 2015.

[19] rubyonrails.org. Web development that doesn’t hurt. 2015. URL
http://rubyonrails.org. accessed May 6

th, 2015.

[20] Kresimir Bojcic. What are the Benefits of Ruby on
Rails? After Two Decades of Programming, I Use Rails.
2013. URL http://www.toptal.com/ruby-on-rails/

after-two-decades-of-programming-i-use-rails. accessed
May 6

th, 2015.

[21] Paul Battley. Text, Collection of text algorithms. 2015. URL https:

//github.com/threedaymonk/text. accessed May 9
th, 2015.

[22] postgresql.org. PostgreSQL. 2015. URL http://www.postgresql.

org. accessed May 11
th, 2015.

[23] Wikipedia. Model-view-controller. 2015. URL http://en.

wikipedia.org/wiki/Model-view-controller. accessed May
13

th, 2015.

[24] curl.haxx.se. cURL, a command line tool and library for transferring
data with URL syntax. 2015. URL http://curl.haxx.se. accessed
May 22

nd, 2015.

[25] Wikipedia. POST (HTTP). 2015. URL http://en.wikipedia.

org/wiki/POST_(HTTP). accessed May 22
nd, 2015.

[26] Rails. Jbuilder. 2015. URL https://github.com/rails/jbuilder.
accessed May 22

nd, 2015.

[27] Elisabeth Freeman, Eric Freeman, Bert Bates, and Kathy Sierra.
Head First Design Patterns. 2004.

http://www.json.org
http://teks.co.in/site/blog/json-or-xml-which-data-format-is-better-for-developers/
http://teks.co.in/site/blog/json-or-xml-which-data-format-is-better-for-developers/
http://www.artima.com/intv/rubyP.html
http://www.artima.com/intv/rubyP.html
https://www.ruby-lang.org/en/
https://www.ruby-lang.org/en/
http://www.tutorialspoint.com/ruby/ruby_object_oriented.htm
http://www.tutorialspoint.com/ruby/ruby_object_oriented.htm
https://www.ruby-lang.org/en/about/
https://www.ruby-lang.org/en/about/
http://rubyonrails.org
http://www.toptal.com/ruby-on-rails/after-two-decades-of-programming-i-use-rails
http://www.toptal.com/ruby-on-rails/after-two-decades-of-programming-i-use-rails
https://github.com/threedaymonk/text
https://github.com/threedaymonk/text
http://www.postgresql.org
http://www.postgresql.org
http://en.wikipedia.org/wiki/Model-view-controller
http://en.wikipedia.org/wiki/Model-view-controller
http://curl.haxx.se
http://en.wikipedia.org/wiki/POST_(HTTP)
http://en.wikipedia.org/wiki/POST_(HTTP)
https://github.com/rails/jbuilder

bibliography 49

[28] railstips.org. Class and Instance Methods in Ruby. May
2009. URL http://www.railstips.org/blog/archives/2009/

05/11/class-and-instance-methods-in-ruby/. accessed May
26

th, 2015.

[29] Santhosh Thottingal. Phonetic Comparison Algorithm for Indian
Languages. July 2009. URL http://thottingal.in/blog/2009/

07/26/indicsoundex/. accessed May 26
th, 2015.

[30] Ruby on Rails. rails-perftest – Performance Testing Rails Applica-
tions. 2015. URL https://github.com/rails/rails-perftest.
accessed May 27

th, 2015.

[31] Algirdas Avizienis, Jean-Claude Laprie, Brian Randell, and Carl
Landwehr. Basic Concepts and Taxonomy of Dependable and Se-
cure Computing. January-March 2014. URL http://www.nasa.

gov/pdf/636745main_day_3-algirdas_avizienis.pdf. accessed
June 6

th, 2015.

[32] apache.org. The Kiss Principle. 2015. URL https://people.

apache.org/~fhanik/kiss.html. accessed May 28
th, 2015.

[33] Peter Cooper. What Ruby’s ||= (Double Pipe / Or Equals) Re-
ally Does. October 2011. URL http://www.rubyinside.com/

what-rubys-double-pipe-or-equals-really-does-5488.html.
accessed May 29

th, 2015.

[34] Gavin Miller. The Basics of Ruby Memoization.
November 2013. URL http://gavinmiller.io/2013/

basics-of-ruby-memoization. accessed May 29
th, 2015.

[35] Arne Hartherz. Use find_in_batches to process many
records without tearing down the server. 2011. URL
http://makandracards.com/makandra/1181-use-find_in_

batches-to-process-many-records-without-tearing-down-the-server.
accessed May 29

th, 2015.

[36] Wikipedia. Relational database management system. 2015.
URL http://en.wikipedia.org/wiki/Relational_database_

management_system. accessed May 29
th, 2015.

[37] redis.io. Redis. 2015. URL http://redis.io. accessed May 29
th,

2015.

[38] Conor Branagan and Patrick Crosby. Understand-
ing the Top 5 Redis Performance Metrics. 2013. URL
https://www.datadoghq.com/wp-content/uploads/2013/09/

Understanding-the-Top-5-Redis-Performance-Metrics.pdf.
accessed May 29

th, 2015.

http://www.railstips.org/blog/archives/2009/05/11/class-and-instance-methods-in-ruby/
http://www.railstips.org/blog/archives/2009/05/11/class-and-instance-methods-in-ruby/
http://thottingal.in/blog/2009/07/26/indicsoundex/
http://thottingal.in/blog/2009/07/26/indicsoundex/
https://github.com/rails/rails-perftest
http://www.nasa.gov/pdf/636745main_day_3-algirdas_avizienis.pdf
http://www.nasa.gov/pdf/636745main_day_3-algirdas_avizienis.pdf
https://people.apache.org/~fhanik/kiss.html
https://people.apache.org/~fhanik/kiss.html
http://www.rubyinside.com/what-rubys-double-pipe-or-equals-really-does-5488.html
http://www.rubyinside.com/what-rubys-double-pipe-or-equals-really-does-5488.html
http://gavinmiller.io/2013/basics-of-ruby-memoization
http://gavinmiller.io/2013/basics-of-ruby-memoization
http://makandracards.com/makandra/1181-use-find_in_batches-to-process-many-records-without-tearing-down-the-server
http://makandracards.com/makandra/1181-use-find_in_batches-to-process-many-records-without-tearing-down-the-server
http://en.wikipedia.org/wiki/Relational_database_management_system
http://en.wikipedia.org/wiki/Relational_database_management_system
http://redis.io
https://www.datadoghq.com/wp-content/uploads/2013/09/Understanding-the-Top-5-Redis-Performance-Metrics.pdf
https://www.datadoghq.com/wp-content/uploads/2013/09/Understanding-the-Top-5-Redis-Performance-Metrics.pdf

bibliography 50

[39] Wikipedia. Phonetic algorithm. 2015. URL http://en.wikipedia.

org/wiki/Phonetic_algorithm. accessed May 29
th, 2015.

[40] Wikipedia. Kolner Phonetik. 2015. URL http://de.wikipedia.

org/wiki/Kolner_Phonetik. accessed May 29
th, 2015.

[41] Wikipedia. Daitch-Mokotoff soundex. 2015. URL http://en.

wikipedia.org/wiki/Daitch-Mokotoff_Soundex. accessed May
29

th, 2015.

[42] Phattara Wangrungarun. Chart / Graph. 2015. URL https:

//delicious.com/phatograph/Chart%20%2F%20Graph. accessed
May 29

th, 2015.

[43] Wikipedia. Virtual private server. 2015. URL http://en.

wikipedia.org/wiki/Virtual_private_server. accessed June
2

nd, 2015.

[44] Justin Ellingwood and Mitchell Anicas. New
Ubuntu 14.04 Server Checklist. 2014. URL https:

//www.digitalocean.com/community/tutorial_series/

new-ubuntu-14-04-server-checklist. accessed June 2
nd,

2015.

[45] Mitchell Anicas. How To Deploy a Rails App with
Puma and Nginx on Ubuntu 14.04. April 2015. URL
https://www.digitalocean.com/community/tutorials/

how-to-deploy-a-rails-app-with-puma-and-nginx-on-ubuntu-14-04.
accessed June 2

nd, 2015.

http://en.wikipedia.org/wiki/Phonetic_algorithm
http://en.wikipedia.org/wiki/Phonetic_algorithm
http://de.wikipedia.org/wiki/Kolner_Phonetik
http://de.wikipedia.org/wiki/Kolner_Phonetik
http://en.wikipedia.org/wiki/Daitch-Mokotoff_Soundex
http://en.wikipedia.org/wiki/Daitch-Mokotoff_Soundex
https://delicious.com/phatograph/Chart%20%2F%20Graph
https://delicious.com/phatograph/Chart%20%2F%20Graph
http://en.wikipedia.org/wiki/Virtual_private_server
http://en.wikipedia.org/wiki/Virtual_private_server
https://www.digitalocean.com/community/tutorial_series/new-ubuntu-14-04-server-checklist
https://www.digitalocean.com/community/tutorial_series/new-ubuntu-14-04-server-checklist
https://www.digitalocean.com/community/tutorial_series/new-ubuntu-14-04-server-checklist
https://www.digitalocean.com/community/tutorials/how-to-deploy-a-rails-app-with-puma-and-nginx-on-ubuntu-14-04
https://www.digitalocean.com/community/tutorials/how-to-deploy-a-rails-app-with-puma-and-nginx-on-ubuntu-14-04

Part IV

A P P E N D I X

A
H O W T O D E P L O Y T H E S Y S T E M O N U B U N T U
S E RV E R

Here is the list of steps we performed to deploy the system on one
rental VPS1 from Digital Ocean2. The sample machine was Ubuntu
14.04 x64, but these setup steps should work on any recent Ubutu
build as well.

This machine was setup from scratch, from creating a deployment
user, up to installing PostgreSQL, Ruby, and Ruby on Rails. We're
using the following machine specifications.

• Ubuntu 14.04 x64

• 1 core processor

• 512MB Ram

• 20GB SSD Disk

Most of these steps and wordings are taken directly from Digital
Ocean's tutorials [44] [45]. The setup steps are as follow.

a.1 root login

From your local machine, use ssh to connect to the remote server.
As for sample code from now, we will use local$ when referring to
running a code from local machine, and remote$ when referring to
running a code from remote machine.

local$ ssh root@SERVER_IP_ADDRESS

Substitute SERVER_IP_ADDRESS with your IP address or hostname.

a.2 create a new user

Root access is not recommend since it has very powerful privileges.
We will create a new user for deployment and other day-to-day work.

1 Virtual private server [43]
2 https://www.digitalocean.com

52

bibliography 53

remote$ adduser demo

Substitute demo with your prefer new user name. You will be asked
a few questions, starting with the account password and fill in any of
the additional information if you would like.

a.3 root privileges

Now, we have a new user account with regular account privileges.
However, we may sometimes need to do administrative tasks.

To add these privileges to our new user, we need to add the new
user to the sudo group. By default, on Ubuntu 14.04, users who be-
long to the sudo group are allowed to use the sudo command.

As root, run this command to add your new user to the sudo group
(substitute demo with your new user).

remote$ gpasswd -a demo sudo

Now you can log out and log in again with your newly created
user.

local$ ssh demo@SERVER_IP_ADDRESS

a.4 install rbenv

We will install rbenv, which we will use to install and manage our
Ruby installation. First, update apt-get.

remote$ sudo apt-get update

Then install the rbenv and Ruby dependencies with apt-get.

bibliography 54

remote$ sudo apt-get install git-core curl zlib1g-dev

build-essential libssl-dev libreadline-dev libyaml-dev

libsqlite3-dev sqlite3 libxml2-dev libxslt1-dev

libcurl4-openssl-dev python-software-properties libffi-dev

Now we are ready to install rbenv by running these commands.

remote$ cd

remote$ git clone git://github.com/sstephenson/rbenv.git .rbenv

remote$ echo 'export PATH="$HOME/.rbenv/bin:$PATH"' >>

~/.bash_profile

remote$ echo 'eval "$(rbenv init -)"' >> ~/.bash_profile

remote$ exec $SHELL

remote$ git clone git://github.com/sstephenson/ruby-build.git

~/.rbenv/plugins/ruby-build

remote$ echo 'export

PATH="$HOME/.rbenv/plugins/ruby-build/bin:$PATH"' >>

~/.bash_profile

remote$ exec $SHELL

This installs rbenv into your home directory, and sets the appro-
priate environment variables that will allow rbenv to work over any
machine-installed Ruby.

Next is to use rbenv to install Ruby.

a.5 install ruby

We will install the latest version of this time, Ruby 2.2.1.

remote$ rbenv install -v 2.2.1

remote$ rbenv global 2.2.1

The global sub-command sets the default version of Ruby that all
of your shells will use.

We will also need to install the bundler gem to manage Rails de-
pendencies.

bibliography 55

remote$ gem install bundler

Now that Ruby is installed, next is to install Rails.

a.6 install rails

Install Rails 4.2.0 with this command.

remote$ gem install rails -v 4.2.0

a.7 install javascript runtime

A few Rails features, such as the Asset Pipeline, depend on a Javascript
runtime. We will install Node.js to cover this functionality.

Add the Node.js PPA to apt-get, then update apt-get and install
the Node.js package.

remote$ sudo add-apt-repository ppa:chris-lea/node.js

remote$ sudo apt-get update

remote$ sudo apt-get install nodejs

a.8 install postgresql

Next is the database. We will install PostgreSQL and its development
libraries.

remote$ sudo apt-get install postgresql postgresql-contrib

libpq-dev

bibliography 56

a.9 create database user

Create a PostgreSQL superuser user with this command (substitute
the pguser with your own username).

remote$ sudo -u postgres createuser -s pguser

Now that we have the language (Ruby), framework (Rails), depen-
dencies manager (bundler), and database (PostgreSQL), we are ready
to setup our system.

a.10 get the system code

The system code is stored at git.cs.nuim.ie/repos/desem/dmsc1407,
we will get the code by using git.

remote$ cd

remote$ git clone ssh://git.cs.nuim.ie/repos/desem/dmsc1407

remote$ cd dmsc1407

a.11 configure database connection

Open the system database configuration file.

remote$ vim config/database.yml

Under the default section, find the line that says pool: 5 and add
the following lines under it (replace the pguser and pguser_password

parts with your PostgreSQL user and password).

host: localhost

username: pguser

password: pguser_password

Listing 22: config/database.yml

git.cs.nuim.ie/repos/desem/dmsc1407

bibliography 57

Save and exit.

a.12 create application databases

Create development and test databases by using this rake command.

remote$ rake db:create

a.13 install puma

Puma is an application server that enables your Rails application to
process requests concurrently.

First we need to install the Puma gem, in case the system does not
already have it.

remote$ vim Gemfile

At the end of the file, add the Puma gem with this line.

gem 'puma'

Listing 23: Gemfile

Save and exit. To install Puma, and any outstanding dependencies,
run Bundler.

remote$ bundle

Puma is now installed, but we need to configure it.

a.14 configure puma

Before configuring Puma, you should look up the number of CPU
cores your server has. You can easily to that with this command.

bibliography 58

remote$ grep -c processor /proc/cpuinfo

Now, let's add our Puma configuration to config/puma.rb.

remote$ vim config/puma.rb

Use this Puma configuration.

Change to match your CPU core count

workers 1

Min and Max threads per worker

threads 1, 6

app_dir = File.expand_path("../..", __FILE__)

shared_dir = "#{app_dir}/shared"

Default to production

rails_env = ENV['RAILS_ENV'] || "production"

environment rails_env

Set up socket location

bind "unix://#{shared_dir}/sockets/puma.sock"

Logging

stdout_redirect "#{shared_dir}/log/puma.stdout.log",

"#{shared_dir}/log/puma.stderr.log", true

Set master PID and state locations

pidfile "#{shared_dir}/pids/puma.pid"

state_path "#{shared_dir}/pids/puma.state"

activate_control_app

on_worker_boot do

require "active_record"

ActiveRecord::Base.connection.disconnect! rescue

ActiveRecord::ConnectionNotEstablished

ActiveRecord::Base.establish_connection(

YAML.load_file("#{app_dir}/config/database.yml")[rails_env])

end

Listing 24: config/puma.rb

bibliography 59

Change the number of workers to the number of CPU cores of your
server. Then save and exit.

Now create the directories that were referred to in the configuration
file.

remote$ mkdir -p shared/pids shared/sockets shared/log

a.15 create puma upstart script

Create an Upstart init script so we can easily start and stop Puma
using sudo start and sudo stop commands. and ensure that it will
automatically start on boot.

Download the Jungle Upstart tool from the Puma GitHub reposi-
tory to your home directory.

remote$ cd ~

remote$ wget https://raw.githubusercontent.com/puma/puma/master/

tools/jungle/upstart/puma-manager.conf

remote$ wget https://raw.githubusercontent.com/puma/puma/master/

tools/jungle/upstart/puma.conf

Now open the downloaded puma.conf file, so we can configure the
Puma deployment user.

remote$ vim puma.conf

Look for the two lines that specify setuid and setgid, and replace
apps with the name of your deployment user and group. For example,
if your deployment user is called demo, the lines should look like this.

setuid demo

setgid demo

Listing 25: puma.conf

Save and exit. Now copy the scripts to the Upstart services direc-
tory:

bibliography 60

remote$ sudo cp puma.conf puma-manager.conf /etc/init

The puma-manager.conf script references /etc/puma.conf for the
applications that it should manage. Let’s create and edit that file now.

remote$ sudo vim /etc/puma.conf

Each line in this file should be the path to an application that you
want puma-manager to manage. So we add the path to the system.

/home/demo/dmsc1407

Listing 26: /etc/puma.conf

Save and exit. Now the system is configured to start at boot time,
through Upstart. This means that the system will start even after your
server is rebooted.

To start all of your managed Puma apps now, run this command.

remote$ sudo start puma-manager

Now the system is running under Puma, and it's listening on the
shared/sockets/puma.sock socket. Before the system will be accessi-
ble to an outside user, we must set up the Nginx reverse proxy.

a.16 install and configure nginx

As Puma is not designed to be accessed by outside users directly,
we will use Nginx as a reverse proxy that will buffer requests and
responses between outside users and the system.

Install Nginx using apt-get.

remote$ sudo apt-get install nginx

bibliography 61

Now open the default server block.

remote$ sudo vim /etc/nginx/sites-available/default

Replace the contents of the file with the following code block. Be
sure to replace the the demo and dmsc1407 parts with your username
and the system path.

upstream app {

Path to Puma SOCK file, as defined previously

server unix:/home/demo/dmsc1407/shared/sockets/puma.sock

fail_timeout=0;

}

server {

listen 80;

server_name localhost;

root /home/demo/dmsc1407/public;

try_files $uri/index.html $uri @app;

location @app {

proxy_pass http://app;

proxy_set_header X-Forwarded-For $proxy_add_x_forwarded_for;

proxy_set_header Host $http_host;

proxy_redirect off;

}

error_page 500 502 503 504 /500.html;

client_max_body_size 4G;

keepalive_timeout 10;

}

Listing 27: /etc/nginx/sites-available/default

Save and exit. This configures Nginx as a reverse proxy, so HTTP
requests get forwarded to the Puma application server via a Unix
socket.

Restart Nginx to put the changes into effect.

remote$ sudo service nginx restart

bibliography 62

a.17 finish

You have deployed the production environment of the system using
Nginx and Puma. Now the system is accessible via your server's pub-
lic IP address or domain name.

	Dedication
	Abstract
	Declaration
	Acknowledgements
	Contents
	List of Figures
	List of Tables
	Listings

	The Background
	1 Introduction
	1.1 Motivation
	1.2 Research Questions
	1.3 Objective and Aims
	1.4 Report Structure

	2 Related Work
	2.1 Name matching
	2.1.1 Edit distance
	2.1.2 Soundex
	2.1.3 Lookup Table

	2.2 Web service
	2.3 Extensible framework

	The Solution
	3 Name matching algorithms
	3.1 Levenshtein distance
	3.2 Soundex
	3.3 Irish soundex
	3.4 Lookup table

	4 Architecture
	4.1 Initial idea
	4.2 Weighting matching algorithms
	4.3 Actual system
	4.4 Thresholding the results
	4.5 Data flow
	4.6 MVC
	4.7 Web Service
	4.8 Web Interface

	5 Extending the system
	5.1 Matching algorithms inheritance
	5.2 Exporting a class method
	5.3 Implementing new matching algorithms

	The Outcome
	6 Evaluation
	6.1 Introducing standard name list
	6.2 Test environment setup
	6.3 Response speed
	6.4 Memory usage
	6.5 Dependability

	7 Conclusion
	7.1 Encountered problem
	7.1.1 Memoization
	7.1.2 find_in_batches
	7.1.3 Replace RDBMS with NoSQL

	7.2 Future works
	7.2.1 More phonetic algorithms
	7.2.2 Inheritance for similar matching algorithms
	7.2.3 Improve web interface result

	Bibliography

	Appendix
	A How to deploy the system on Ubuntu server
	A.1 Root Login
	A.2 Create a new user
	A.3 Root Privileges
	A.4 Install rbenv
	A.5 Install Ruby
	A.6 Install Rails
	A.7 Install Javascript Runtime
	A.8 Install PostgreSQL
	A.9 Create Database User
	A.10 Get the system code
	A.11 Configure Database Connection
	A.12 Create Application Databases
	A.13 Install Puma
	A.14 Configure Puma
	A.15 Create Puma Upstart Script
	A.16 Install and Configure Nginx
	A.17 Finish

