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Abstract

In this thesis, after introducing the basics of Markov chains and mathematically analysing and
proving the clustering properties of the eigenvector corresponding to a complex eigenvalue
close to 1+0i , we develop several applications of Markov chains in transportation networks.
We model bike sharing systems, bus networks, and multi-modal public transportation net-
works using Markov chains. The validation of the models is done by using real data from
Boston and London for the bike sharing systems and the multi-modal public transportation
networks respectively. We validate the Markov chain models that we developed for the
bus network by using some data that we extracted from SUMO [69] (Simulator of Urban
MObility). After successfully validating the models, we extract some important quantities
of the Markov chains. These quantities provide useful information about the networks that
help to improve the network for different purposes. Since some real data is used to validate
our models, we need to know how trustworthy our result is. Therefore, we then define a set
of indicators to extract the quality of data. The output of each indicator is a value between
zero and one. If the value is close to one, it means that the quality of the data is high and
we can trust the data and the result. The indicators are tested on some data from London
highways. At the end a framework for the real time trading of budgeted emission rights
between a fleet of participating vehicles is presented. The trading problem is formulated as an
optimization problem and is solved by different algorithms. The results of some simulations
are represented to compare the speed of convergence of the algorithms.
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Chapter 1

Introduction

1.1 Traffic modelling

Traffic modeling is an area that has recently been growing in fields such as applied math-
ematics, networking and transportation engineering. Most of the traffic models have been
based on postulated mathematical descriptions. Unfortunately it is hard to verify such models
experimentally. These days, huge amounts of data can be extracted from mobile phones,
GPS devices, and from connected cars. Therefore, an alternative description of mobility
patterns has been provided. We shall see examples of this in the main body of the thesis.
The main objective of traditional traffic theory is to understand the traffic speed, flow, and
density. These quantities should be known for an efficient dimensioning of the transport
infrastructure. This information can be helpful to resolve traffic problems. These models are
mainly used to develop simulation tools in oder to help traffic designers. Different aspects of
traffic modeling include (i) Trip modeling from Origin-Destination matrices; (ii) modeling
of individual vehicle paths; (iii) driver modeling, and (iv) macroscopic flow modeling and
abstractions. In the context of ITS applications – many other aspects have to be studied.
This includes modeling the interaction between individual vehicles, and with infrastructure,
and the ability to model closed loop behavioural aspects. There are many surveys on this
topic – we shall not repeat these here; the interested reader may refer to [39], [12], [38], and
[45]. While we shall use traditional models and simulators to validate our hypothesis as we
proceed, we shall take a very different approach to these traditional methods. Namely, we
shall assume the existence of large scale GPS/SCATS/Mobile phone data sets, and represent
these data sets at a macroscopic level using stochastic, in particular, Markovian, techniques.
As we shall see, a large variety of ITS systems and networks can be modelled in this manner
with a minimum of mathematical and structural assumptions.
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1.2 Markov chain models

Most of the previous work involves a microscopic description of mobility. This is good from
the point of view of an individual, but often, cities require a macroscopic description. Much
of the original work in this thesis takes this viewpoint. In order to develop our macroscopic
approach, we wish to take advantage of all the information gathered from instrumenting
vehices for V2V and V2I communication. One key feature in modelling is that the models
should not only model traffic flows and road dynamics but also that they should be constructed
from real data obtained from the road network which is gained in real time. The ability to
use vehicles as sensors to harvest information in real time suggests the possibility to deploy
new tools to model road networks. One useful tool is that of Markov Chains. Markov chains
can easily be built from real data and they are fast and effective simulation tools [32].

1.3 Collaborative mobility

The whole area of traffic modelling, which is the main focus of this thesis, benefits enor-
mously from the vast amounts of data becoming available as a result of advances in the field
of collaborative mobility. In particular, this body of data allows for more data-driven models
to be constructed and validated than was possible before. Collaborative mobility is rapidly
becoming one of the main growth areas in fields such as applied mathematics, operations
research, networking and transportation engineering. Due to advances both in technology
and in applications based on this technology, collaborative mobility is currently not only
driving new research, but also new propositions for cities.

Roughly speaking, collaborative mobility has motivated research into technologies that
underpin this new field, and into new services that make use of the capabilities arising from
inter-vehicular communications. In this latter category, much focus has been on safety appli-
cations, with some more recent attention on environmental applications. The benefits from
connected cars and from collaborative mobility are clear to see. For example, active safety
applications such as accident prevention applications will clearly benefit from communication
between the vehicles. Further, by collecting traffic status data from a wider area, not only
the traffic flow could be improved for road users, but also travel times and emissions from
vehicles could be reduced [45].
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The concept of vehicle to vehicle (V2V) or vehicle to infrastructure (V2I) communication
seems to be straightforward, but designing such systems is technically and economically
challenging. Some of the challenges are well known and are described in [45]. These include:

• the fact that V2V and V2I communications present scenarios with unfavourable char-
acteristics for developing wireless communications;

• that the fair and efficient use of the available bandwidth of the wireless channel is a
difficult task in a totally decentralized network;

• that the challenges of a decentralized self organizing network are particularly stressed
by moving vehicles;

• and that applications require a balance between security and privacy needs.

From an economic point of view, the main challenges have been quantifying the cost benefit
relationship of V2V and V2I communication, and developing and installing the infrastructure
required to support Intelligent Transportation Systems (ITS). Despite these challenges, ITS
is now fast becoming a reality and is spawning a host of new services and innovation. We
now briefly review some of the historical progress in this area.

1.3.1 History and projects

The history of the use of radio for vehicle to roadside and vehicle to vehicle communication
is strongly connected to the evolution of ITS. Surprisingly, even though there is much current
interest in this topic, work has been going on in this general area for many decades, and
many excellent surveys on this topic now exist [45, 109]. We shall not repeat this here, but
rather give a very brief summary on some of the most high profile works (following closely
[45]). Surprisingly, as was described in [45], the basic concepts of roadway automation
which is communication and control techniques to make road traffic safe, efficient, and
environmentally friendly, were exhibited by General Motors in 1939 [116] [72]. Since then
dedicated ITS systems have been the subject of research and development efforts around the
world for some time. Specific examples in the USA include an Electronic Route Guidance
System (ERGS) which was proposed in [107] in 1970; in Japan, the Comprehensive Auto-
mobile Traffic Control System (CACS) project was carried out by the Agency of Industrial
Science and Technology of the Ministry of International Trade and Industry (MITI) from
1973 to 1979. More recently, in Europe, the topic of ITS has been heavily promoted by
the EU with specific programmes including the PROMETHEUS (Program for European
Traffic with Highest Efficiency and Unprecedented Safety) programme, and the Green Car
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programme [18]. The former of these programmes focussed on vehicle safety, whereas
the Green Car programme is concerned principally with ECO mobility - particularly in the
context of electric and plug-in-hybrid vehicles. Some other programmes of note include
the California Partners for Advanced Transit and Highways (PATH) programme in which
platooning was a primary focus. Another recent driver of interest in ITS has come from the
area of cooperative driver assistance systems [46]. Some recent specific projects in Europe
on such systems include the Cartalk and FleetNet projects [35], both of which investigated
technologies and applications for cooperative driver assistance. Examples of similar projects
in the US include Cooperative Intersection Collision Avoidance System (CICAS) project;
see [81] [78].
In Europe, many recent projects have considered ITS technologies and applications. Exam-
ples of other large historical projects include, COOPERS, CVIS, PReVENT, SAFESPOT,
DRIVE C2X and TEAM. For example, the project COOPERS (2006-2010) focused on
telematics applications for cooperative traffic management; CVIS (2006-2010) mainly fo-
cused on development and testing of vehicle to infrastructure communication; SAFESPOT
aims to design cooperative systems for road safety based on vehicle to vehicle and vehicle
to infrastructure communication; and PReVENT (2006-2008) was about development of
preventive safety applications and technologies. See [45] for a description of these projects.
Two more recent projects that have been very high profile in Europe include DRIVE C2X
and TEAM. DRIVE C2X (http://www.drive-c2x.eu/project) is very much concerned with
the technologies, testing and technologies underpinning ITS, whereas TEAM is very much
applications focussed. Of particular relevance to the work in this thesis is the project TEAM
and the work presented here is part of the TEAM project. The goal of this project is to
optimize facets of traffic networks. TEAM is a large European project. FIAT, BMW, NOKIA,
VOLVO, INTEL, and NEC are some of the industrial companies involved in TEAM. Some
of the research in TEAM has been done by National University of Ireland Maynooth, TU
Berlin, and Fraunhofer FOKUS.

As the interested reader is no doubt aware, many papers and surveys have been completed
on this topic; see [109] for example. We shall not repeat this here. However, we shall mention
some of the main application areas to benefit from ITS developments, and innovations in
collaborative mobility.

1.3.2 Applications

To-date applications of V2V technologies can be classified as follows [61]:
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(1) Road safety applications;

(2) Traffic efficiency and management applications;

(3) Infotainment applications.

(4) Pollution control and environment

As the reader is no doubt aware, road safety applications are intended to reduce the
rate of traffic accidents. In spite of the fact that the vehicles are more advanced in terms
of safety devices like anti-lock brakes and airbags, the number of fatalities on the roads is
still too large. It seems that the combination of human behaviour (drivers) and the increased
functionality of vehicles brings about risky driving leading to many accidents worldwide.
A good overview of such applications can be found in [117], [10], [29], [60], [108], [22].
Most of the accidents in road vehicles occur at intersections and result in head-on, rear-
end and lateral vehicle collisions. The basic idea in road safety applications is to transfer
information between the vehicles and the road side units to alert drivers of problems (such
as ice, potholes, congestion, or other accidents) so that evasive action can be undertaken
either by the driver or by an active safety system. Currently, active safety systems rely on
real-time feedback from sensors in vehicles or located in dedicated roadside infrastructure.
By increasing the accuracy positioning and the technology of communication between the
vehicles, cooperative driving applications can introduce anticipatory behaviour within safety
systems; see [37], [98] and [95]. In particular, anticipatory systems can discourage the drivers
from entering dangerous situations. There are many other advantages in communication-
enabled cooperative applications. A non-comprehensive list includes the enforcement of
(possibly varying) speed limits, sharing travel times to improve the accuracy of forecasts in
car navigators, safer implementation of some car manoeuvers to mitigate the risk of collisions,
such as communication aided intersection approaching or lane changing. The interested
reader is referred to [61], [10], [108], [29], [22], [125], [126] to see projects/programmes
that develop such ideas. Examples of systems that already exist include the following.

(1) Intersection collision warning systems

(2) Lane change assistance systems

(3) Overtaking vehicle warning systems

(4) Head on collision warning systems.

(5) Emergency vehicle warning:
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(6) Emergency electronic brake lights

7) Collision risk warning

There are many others. Another area to benefit greatly from ITS applications is the area
of traffic management. Traffic efficiency and management applications mainly focus on
improving the vehicle traffic flow. Often, such applications use ITS technologies to provide
updated local information and maps to vehicle fleets. According to [29] and [61] two main
groups of applications in this space are speed management and cooperative navigation.
Other novel applications of the traffic framework suggested in [19] are discussed in [18],
[109], [111], [32], [31], [110], and [20]. In these references, they apply the framework of
[19] to model traffic induced pollution and to model the consumption of battery power in
electric vehicles. Both TEAM and the project GREEN TRANSPORTATION NETWORKS
(www.smarttransport.ucd.ie) are focussed on such issues and show how pollution may be
managed through emissions sharing between vehicles based on V2V. Finally, infotainment
applications have also benefitted greatly from ITS technologies. These include global internet
services. Applications developed using in-car internet services and connectivity include
in-car TV, internet, email and fleet management and insurance services [10], [29], [22], [21]

1.4 Markov chains applications

During last decade Markov chains are becoming more appealing in many applications because
of their capabilities. In many applications the statistical properties of Markov chains are
important and in some applications the randomness is useful. A theoretical property which
is useful in some applications is the existence of stationary distribution, which will be later
explained in this thesis. Markov chains are particularly suited to big-data (large data sets that
traditional data processing applications are not enough to deal with) applications, as found in
transport, for several reasons:

• (i) Microscopic behaviour is embedded into the chain through aggregation; namely, in
the form of probabilities. These probabilities are easily measured or calculated (turning
probabilities, bus occupancies, bike pickup and delivery data) without need for large
data processing or storage capabilities;

• (ii) Many of the key properties (e.g., Perron eigenvectors and Mean First Passage Time
matrices) of a Markov chain can be calculated in a recursive fashion using simple
update formula [70]. The suitability of Markov chains for big-data application is
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discussed, for example, in the context of Google’s PageRank algorithm [71]. Well-
established and robust algorithms are available to handle data-sets of the size of
thousands, if not millions, of web-pages that might contain the relevant information
pertaining the user’s query. Some examples at this regard are given in the remainder of
the section;

• (iii) Many of the properties of the chain correspond to real quantities of interest to
network designers. We shall have more to say on this in the next sections;

• (iv) The suitability of Markov chains for capturing and modelling complex dynamics
is discussed and justified, among others, in [109] and [36].

An innovative data-driven framework for transport which was based on the mathematical
theory underlying the well-known Google’s PageRank algorithm has recently been proposed
in [19] to describe urban vehicular traffic. In that reference, graph theory and Markov chain
ideas were used to reveal non-trivial patterns of urban mobility and to support transportation
experts with practical tools to solve a number of mobility applications. The contribution in
[19] is to propose a new paradigm for modelling road network dynamics. The authors in
[19] use Markov chains to explore properties of road networks. These include: identifying
the sensitive links in the network; measuring how connected the network actually is (graph
connectivity, sub-communities); the design of networks that are in some sense maximally
mixing; and the ability to predict the consequences of a situation like if a link fails due to
road works or any unexpected event like an accident. Such information cannot be extracted
easily from conventional simulators. The work of [19] was well received by the transport
community giving rise to further research along the same lines, see [18],[111], [130], [1], [4]
and [89].

In [4] it has been shown that the approach used in [19] still works when the scale of
the network is enlarged and more variables are added to the roads. Different lengths, speed
limits, amount of lanes and priority regulations all play a part in everyday road networks and
they are taken into account in [4]. The network considered in [4] to validate the approach of
[19] is ’De Uithof’ which is a district in the city of Utrecht in Netherlands, see Figure 1.1.
The result shows that the idea of [19] is useful for a more complicated and bigger network.

The fact that huge amount of taxi cabs are equipped with GPS can be considered as a
great potential to investigate the dynamic of the city through the mobile sensors, but the bias
or sufficiency of this data for city wide traffic modeling could be an issue which should be
taken into account. However, a recent research [105] shows that GPS traces of taxis can be
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 Fig. 1.1 De Utihoft in Google maps
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used to approximate traffic patterns in a city-scale road network in a proper way. Several
researches, for example [106] [133] [77] [132], have been done by using GPS traces. Some
people used Markov chains as their tools to use GPS traces. For example in [54] it is shown
that it is possible to predict the path between two points in the road network accurately by
using a Markov chain approach. Then they conclude that this prediction can be used for
traffic simulation. In some research such as [129] and [122] vehicle trajectories in urban road
networks have been predicted. According to [19], Markov chains are strong mathematical
tools that have some other properties that can be used to model citywide traffic dynamics.
In [88] they propose a method to construct a time-dependent and scalable Markov chain
from GPS traces. They implemented the framework based on a released data set of taxi
cabs in Beijing from Microsoft Research Asia [132]. The proposed conceptual framework
of [88] is represented in Fugure 1.2. In their approach, a Markov chain is constructed
periodically in coexistence with a continuous data stream, emitted from taxi cabs as a part
of the everyday life in a city. It can also be seen that a Markov chain is used for different
segments of road network, different time periods, and different time resolutions depending on
the frequency rate of GPS traces. Then, several properties of each constructed Markov chain
like community detection, time-dependent expected travel times, real time path planning and
road network engineering can be calculated. This kind of information is not easy to achieve
directly from data. These result can be helpful in planning interventions in the urban network.
They extract the expected car density in the network, they identify the critical road segments,
they detect spatiotemporal communities and they measure some other important information.

1.4.1 Open questions

Although a lot of work has already been done in the area of using Markov chain techniques
in transportation networks, there are still plenty of problems to consider in this field.

Markov chains have already been used to model road networks, they have also been
applied in emission control. One of the problems to solve is to use the Markov chains to
model public transport networks and bike sharing networks. In Chapters 2 and 3 of this
thesis, we explain how to build transition matrices of Markov chains for bus networks and
bike sharing networks.

The bigger question is to use Markov chains to model multi-modal networks. It can
be a network of buses, tube, people, etc. The Markov chain model should be able to
handle different types of transport at the same time because the reality is that people may
take different types of public transportation in their journey. In Chapter 3 we propose a
multi-modal transportation model which is validated by real data.
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Fig. 1.2 A conceptual framework for Markovian modelling of traffic flow in coexistence with
urban data streams. This figure is taken from [88]

Finally, tools for assesing data quality and new tools to analyze Markov chains, arising
from Markov chains in transportation, are urgently needed.

1.4.2 A final comment

In our approach we use SUMO (Simulator of Urban MObility) which is a free open source
traffic simulator and has been available since 2001 [69]. SUMO is able to simulate road
vehicles, public transport and even pedestrians. It has strong supporting tools that makes
it possible to handle tasks like route finding, visualization, emission calculation, extracting
data, etc.

1.5 Contribution and publications

Apart from chapters 1 and 6 which are the introduction and the conclusion of the thesis my
main contributions throughout the rest of the thesis are listed in the following paragraph.

In chapter 2 using Markov chain techniques to model bike network was my idea. In
chapter 3, my main contribution was using the model for a multi-modal transportation
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network but I did some simulations in the other parts like the SUMO simulation to extract the
data for the bus network. In chapter 4, my main contribution was to use the bootstrap method
to extract the quality of traffic data and in chapter 5, speeding up the rate of convergence by
getting more information from the center was my idea.

I list below the conference and journal papers arising from the work of this thesis
and Table 1.1 lists some of the major notational and terminological conventions adopted
throughout the thesis.

1. Conference papers

(a) M. Faizrahnemoon, F. Alesiani, L. Matias, "A Scenario-Oriented approach for
Noise detection on Traffic Flow data", 18th IEEE International Conference on
Intelligent Transportation Systems (ITSC), 2015.

(b) M. Faizrahnemoon, A. Schlote, E. Crisostomi, and R. Shorten,"A Markov Chain
based model for a bike sharing system", International Conference on Connected
Vehicles and Expo(ICCVE), 2015.

(c) M. Faizrahnemoon, A. Schlote, E. Crisostomi, and R. Shorten, "A Google-like
model for public transport", International Conference on Connected Vehicles and
Expo(ICCVE), 2013.

(d) F. Häusler, M. Faizrahnemoon, E. Crisostomi, A. Schlote, I. Radusch, and R.
Shorten, "A framework for real-time emissions trading in large-scale vehicle
fleets", 9th ITS European Congress, 2013 (winner of the best scientific paper
award).

2. Journal papers

(a) M. Faizrahnemoon, A. Schlote, L. Maggi, E. Crisostomi, and R. Shorten, "A big-
data model for multi-modal public transportation with application to macroscopic
control and optimisation", International Journal of Control, 2015.

(b) F. Häusler, M. Faizrahnemoon, E. Crisostomi, A. Schlote, I. Radusch, and R.
Shorten, "A framework for real-time emissions trading in large-scale vehicle
fleets", IET Intelligent Transport Systems,vol. 9, Issue. 3, pp. 275-284, 2015.
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Notation meaning
MFPT Mean First Passage Time

mi j entries of the means first passage time matrix
MC Markov Chain
P transition probablity matrix
Pi, j blocks of matrix P
Pi j entries of matrix P
π Perron eigenvector
K Kemeny constant

ITS Intelligent Transportation System
ρ spectral radius

α + iβ complex eigenvalue
X + iY complex eigenvector

Table 1.1 Table of the main abbrevations and notations in the thesis



Chapter 2

Bike-sharing: An example of Markov
modelling with constant density



Abstract

The first objective idea of this Chapter is to provide the basic notions of Markov chains.
The basic definitions can be found in classic books such as [84] and [96] and their properties
can be found in classic references like [71] and [62]. The second objective is to prove
clustering properties of the second eigenvector of the transition matrix. We extend the proof
in [19] to the case in which there exists a complex eigenvalue. This part of the work was
done when I was visiting Professor Stephen Kirkland at the University of Manitoba. It is
a joint work with him, Jane Breen, Emanuele Crisostomi, and Robert Shorten. The third
objective of this Chapter is to explain how Markov chains can be used in practice to model a
transportation network. The main references of this part are [19] [88] [4]. Finally, the last
part of the chapter describes a practical application of the previously described approach. In
particular, we propose a Markov chain based metodology to model a bike-sharing system.
The approach is particularly attractive for this specific application, given that, differently
from the prior applications, the total number of vehicles (i.e., bikes) is now constant in
the whole mobility network. The proposed methodology is validated on real data from the
bike-sharing system is Boston, USA, and an application of the model is illustrated. This
work is a joint work with Emanuele Crisostomi, Arieh Schlote and Robert Shorten and has
been presented at the ICCVE Conference 2015.

2.1 Basics of Markov chains

Throughout this thesis only discrete time, finite state, homogeneous Markov chains are
considered. In this situation, a Markov chain is a discrete time stochastic process xk, k ∈ N
and characterized by the equation

p(xk+1 = Sik+1|xk = Sik , ...,x0 = Si0) =

p(xk+1 = Sik+1 |xk = Sik) ∀k ≥ 0,
(2.1)
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A Markov chain with n states is completely described by the n×n transition probability
matrix P, whose entry Pi j denotes the probability of passing from state Si to state S j in
exactly one step. P is a row-stochastic non-negative matrix, as the elements in each row are
probabilities and they sum up to 1[84].

2.1.1 Markov chains and graph theory

A graph is a set of nodes (corresponding to the states of the Markov chain) that can be
connected by edges or arcs. We will only consider directed arcs in our approach. To be more
accurate let us consider a finite set of n nodes, then for each pair i, j = 1, ...,n an edge from
node i to node j indicates that it is possible to make a direct transition from state i to state j
in the Markov chain. The case i = j is called a self-loop arc of the graph.

It is possible to give a weight to each arc that corresponds for example to the cost of
using that edge. If the aggregate cost of all outgoing arcs of each node is normed to 1 then
the costs can be interpreted as the probabilities of using the corresponding arcs to go from
the node which is the origin of the arc to the node which is the destination of the arc.

There is a strong link between Markov chains with finite state space and graphs that
makes the interpretation of the Markov chain concept easier. States of the chain can be
associated with nodes of the graph and non-zero probabilities of transition between the two
states Si and S j in the chain can be associated with the directed edge (i, j) which is the edge
between the corresponding nodes with the given probability as a weight, see Figure 2.1 for
example. Therefore, graphs can be analysed using methods for Markov chains.

              

Fig. 2.1 An example of a transition matrix and its corresponding graph.

An important property of a graph is connectivity. A directed graph is called strongly
connected if starting from any node of the graph it is possible to reach any other node of the
graph by following the arcs. Strong connectivity holds if and only if the transition matrix
of the Markov chain corresponding to the graph is irreducible. Throughout this part of the
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thesis we shall assume that all considered Markov chain transition matrices are irreducible.
This allows us to apply the Perron-Frobenius theorem, see for example [53] and [71]:

• The spectral radius of P is 1;

• 1 also belongs to the spectrum of P, and it is called the Perron root;

• The Perron root has an algebraic multiplicity of 1;

• The left-hand Perron eigenvector π is the unique vector defined by πTP= πT , such
that every single entry of π is strictly positive and ∥π∥1 = 1. Except for positive
multiples of π there are no other non-negative left eigenvectors for P.

One of the main properties of irreducible Markov chains, that will be used and explained
later in chapters 3 and 4 of this thesis, is that the i′th component πi of the vector π represents
the long-run fraction of time that the chain will be in state Si. The row vector πT is also
called the stationary distribution vector of the Markov chain.

2.1.2 Mean first passage times and the Kemeny constant

The mean first passage time and the Kemeny constant are two quantities of Markov chains
which are related to random walks on the graph corresponding to the transition matrix of the
Markov chain. A random walk on a graph is a discrete time stochastic process S(k), k ≥ 0.
The state space of the random walk is the nodes of the graph. Starting in an initial node,
the random walk in every time step follows one of the edges leading out of the node it is
currently in, where each arc is chosen randomly according to the probability of that edge. If
S(0) = i, it means that the walk starts from node i, then the first time that the walk reaches
node j is called the first passage time from i to j and it can be computed as

min
k≥0

{k : S(k) = j}, (2.2)

The expected value of the first passage time is called the mean first passage time. The
mean first passage time from node i to node j will be shown as mi j in this thesis and can be
computed as

mi j = Pi j + ∑
k ̸= j

Pik(1+mk j) = 1+ ∑
k ̸= j

Pikmk j. (2.3)

The formula in (2.3) indicates that with probability Pi j it takes exactly one step to go
from i to j and for k ̸= j the first step takes the random walk from node i to node k from
which it takes an expected time of mk j to reach node j.
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One way of computing the mean first passage time arises from the study of the group
inverse of a matrix. A transition matrix P with 1 as a simple eigenvalue gives rise to a singular
matrix III−P (where the identity matrix III has appropriate dimensions) which is known to have
a group inverse (III −P)#. The group inverse is the unique matrix such that (III −P)(III −P)# =

(III −P)#(III −P), (III −P)(III −P)#(III −P) = (III −P), and (III −P)#(III −P)(III −P)# = (III −P)#.
More properties of group inverses and their applications to Markov chains can be found in
[82]. The group inverse (III −P)# contains important information on the Markov chain and
it will be often used in this thesis. For this reason, it is convenient to denote this matrix as
Q#. The mean first passage time (MFPT) mi j from the state Si to the state S j denotes the
expected number of steps to arrive at destination S j when the origin is Si, and the expectation
is averaged over all possible paths following a random walk from Si to S j. If we denote by
q#

i j the i j entry of the matrix Q#, then the mean first passage time can be computed as

mi j =
q#

j j −q#
i j

π j
i, j = 1, ...,n, i ̸= j. (2.4)

The diagonal entries of the mean first passage time matrix are mii =
1
πi

.
If the random walk starts from node i to destination j which is chosen randomly according

to the stationary distribution of the Markov chain, π , we can compute the expected number
of steps to reach the destination, Kemeny constant, according to the following formula

K =
n

∑
j=1

mi jπ j (2.5)

where the right-hand side is independent of the choice of the origin state Si. This is a very
important well known result from [62]. An interpretation of this result is that the expected
time to get from an initial state Si to a destination state S j (selected randomly according to
the stationary distribution π) does not depend on the starting point Si [27]. Therefore, the
Kemeny constant is an intrinsic measure of a Markov chain and it can be interpreted as the
expected duration of an average trip. The Kemeny constant can be viewed as an efficiency
indicator for a network.

If the transition matrix P has eigenvalues λ1 = 1,λ2, ...,λn, then another way of computing
K is [74]

K =
n

∑
j=2

1
1−λ j

. (2.6)

As can be seen from Equation (2.6), K is only related to the particular matrix P. The value of
K is not too large if the eigenvalues λ2,...,λn are weel-separated from 1 and it increases if at
least one eigenvalue is close to 1.
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2.2 Clustering properties of the second eigenvector

In [19], the authors give broader meaning than just the spectrum of the matrix to the term
spectral analysis for directed graphs and use the group inverse of the transition matrix of
the Markov chain in their approach. The group inverse captures important information on
the Markov chain, see [83]. For example, the mean first passage time, mi j, which is the
expected number of steps to arrive at destination state S j from state Si, is computed by using
the group inverse according to the formula (2.4) which is also represented in [17]. In [19]
the authors use the formulation of the Kemeny constant, which is an intrinsic measure of a
Markov chain, in [74] to show that when the eigenvalues of the transition matrix approach to
1, the Kemeny constant increases. It should be noticed that in [19], no assumption is put on
the transition matrix to ensure real eigenvalues (like what they did in [75] or in [16]). The
following theorem and its proof are represented in [19]:

Theorem 1. Let P be an irreducible stochastic matrix and suppose that λ ∈ R is an eigen-
value of P. Let v =

[
vT

1 − vT
2 000T ]T be a corresponding λ eigenvector (with v1 > 0 and

v2 > 0) and let us partition the matrix P conformally as

 P1,1 P1,2 P1,3

P2,1 P2,2 P2,3

P3,1 P3,2 P3,3

 and label

the subsets of the partition as S1, S2 and S0 respectively. Then:

1. ρ (P1,1), ρ (P2,2)≥ λ .

2. There are subsets S̃1 ⊆ S1, S̃2 ⊆ S2, and positive vectors w̃T
1 , w̃T

2 with supports on S̃1, S̃2

respectively such that w̃T
1 111= w̃T

2 111= 1 and ∑i∈S̃1
w̃1 (i)∑ j/∈S̃1

Pi, j = 1−ρ (P1,1)≤ 1−λ

and ∑i∈S̃2
w̃2 (i)∑ j/∈S̃2

Pi, j = 1−ρ (P2,2)≤ 1−λ .

3. For any j ∈ S̃2, ∑i∈S̃1
w̃1 (i)mi j ≥ 1

1−ρ (P1,1)
≥ 1

1−λ
and for any j ∈ S̃1, ∑i∈S̃2

w̃2 (i)mi j ≥
1

1−ρ (P2,2)
≥ 1

1−λ
, where mi j are elements of the mean first passage matrix.

In the previous theorem the third partition can be empty without affecting the validity of
the theorem; 000 and 111 are column vectors of zeros and ones of appropriate dimensions; ρ (A)
indicates the spectral radius of matrix A; the support of a vector is the set of coordinates on
which the vector is nonzero.
The theorem shows how an eigenvector corresponding to an eigenvalue close to 1 can be
used to detect nearly disconnected groups of states in a Markov chain. The clustering idea is



2.2 Clustering properties of the second eigenvector 19

formalised through parts 2 and 3 of the theorem in terms of small probabilities of going from
one part of the graph to the other, and with high mean first passage times.

Proof. 1. We have P1,1v1 = λv1 +P12v2. Let zT be a Perron vector for P1,1. Then
ρ (P1,1)zT v1 = zTP1,1v1 = λ zT v1+zTP1,2v2 ≥ λ zT v1. The inequality follows because
all terms are positive. Therefore, comparing the first and last term of the chain of
inequalities, we obtain ρ (P1,1)≥ λ . An analogous argument applies for ρ (P2,2).

2. Let wT
1 be a left Perron vector for P1,1, normalised so that wT

1 111 = 1. Partition S1 as
S̃1 ∪ S̄1, where S̃1 is the support of wT

1 , and denote the corresponding subvector of wT
1

by w̃T
1 . Let wT

2 , w̃T
2 , S̃2 and S̄2 denote the analogous quantities for P2,2. Let us write P

in partitioned form as
PS̃1S̃1

PS̃1S̄1
PS̃1S̃2

PS̃1S̄2
PS̃1S0

PS̄1S̃1
PS̄1S̄1

PS̄1S̃2
PS̄1S̄2

PS̄1S0

PS̃2S̃1
PS̃2S̄1

PS̃2S̃2
PS̃2S̄2

PS̃2S0

PS̄2S̃1
PS̄2S̄1

PS̄2S̃2
PS̄2S̄2

PS̄2S0

PS0S̃1
PS0S̄1

PS0S̃2
PS0S̄2

PS0S0

 . (2.7)

We have

1 = w̃T
1 PS̃1S̃1

111+ w̃T
1 PS̃1S̄1

111+ w̃T
1 PS̃1S̃2

111+ w̃T
1 PS̃1S̄2

111+ w̃T
1 PS̃1S0

111 =

= ρ (P11)+ w̃T
1 PS̃1S̄1

111+ w̃T
1 PS̃1S̃2

111+ w̃T
1 PS̃1S̄2

111+ w̃T
1 PS̃1S0

111

so that 1−λ ≥ 1−ρ (P11) = w̃T
1 PS̃1S̄1

111+ w̃T
1 PS̃1S̃2

111+ w̃T
1 PS̃1S̄2

111+ w̃T
1 PS̃1S0

111 and the
desired inequality follows. An analogous argument applies to (P2,2).

3. Fix j ∈ S̃2 and let P( j) be formed from P by deleting its jth row and column. Then for
any i ∈ S̃1 we have

mi j = eeeT
i
(
III −P( j)

)−1111 ≥ eeeT
i

(
III −PS̃1S̃1

)−1
111.

The last inequality follows as PS̃1S̃1
is a submatrix of P( j). Hence, ∑i∈S̃1

w̃1 (i)mi j ≥

w̃T
1

(
III −PS̃1S̃1

)−1
111 = 1

1−ρ (P1,1)
≥ 1

1−λ
. A similar argument establishes the de-

sired inequality for j ∈ S̃1.
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The argument given in [15] is valid only if the second largest eigenvalue is real. However,
in some circumstances the second eigenvalue is complex. In Chapter 3 of this thesis we
face this situation ,see section 3.2.1. Figure 3.5 represents the mean first passage time and
the second largest modulus eigenvector of the transition matrix of the graph represented in
Figure 3.2. It is obvious that the clusters are identifed by both the mean first passage time
and the second largest eigenvector. From Figure 3.5b we can see that the values of the entries
of the second eigenvector are complex and they are capable of representing the clusters of
the graph. Based on our knowledge clustering properties of the eigenvectors corresponding
to the complex eigenvalues close to one have never been investigated before. Our motivation
now is to study this case.

We have a theorem which finds bounds for the spectral radius of the diagonal blocks
of the transition matrix whose eigenvalue is complex. Then according to part 3 of theorem
(1), it is possible to identify the clusters. This means that we prove that: if P is a row
stochastic matrix, and there exist eigenvalues with magnitude close to 1, and which have
small imaginary parts, then the eigenvectors associated with these eigenvalues reveal clusters
in the network. loosely understand a cluster to be a set of nodes from which it is unlikely to
go to other sets of nodes of the graph.

We found it more understandable for the reader to start by giving a summary proof of
this result, and then conclude with a formal theorem stating the above result.

Outline proof of Theorem 2 (following page 23) :
Suppose P is a stochastic irreducible matrix with an eigenvalue λ = α + iβ whose

corresponding eigenvector is X + iY . Therefore, We have

P(X + iY ) = (α + iβ )(X + iY ) (2.8)

We separate the real part and imaginary part and multiply them by scalars s and t as
follows:

s(PX) = s(αX −βY ) (2.9)

t(PY ) = t(βX +αY ) (2.10)

We sum the equations (2.9) and (2.10) to get the linear combination as:

P(sX + tY ) = (αs+ tβ )X +(αt −β s)Y (2.11)
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Different cases of s and t will be considered through the proof.

s = 1, t = 0 (2.12a)

s = 1, t > 0 (2.12b)

s = 1, t < 0 (2.12c)

s = 0, t = 1 (2.12d)

s > 0, t = 1 (2.12e)

s < 0, t = 1 (2.12f)

1) In (2.12a) we assume that s = 1 and t = 0 then equation (2.11) is:

PX = αX −βY (2.13)

We partition equation (2.13) as (assuming that S1, S2 and S3 denote the index sets of the
partition): P1,1 P1,2 P1,3

P2,1 P2,2 P2,3

P3,1 P3,2 P3,3


X1

X2

X3

= α

X1

X2

X3

−β

Y1

Y2

Y3

 (2.14)

In which X1 > 0, X2 < 0, and X3 = 0, First row of the matrix equation (2.14) is:

P1,1X1 +P1,2X2 +P1,3X3 = αX1 −βY1 (2.15)

since P1,2X2 < 0 and P1,3X3 = 0 we have

P1,1X1 ≥ αX1 −βY1 > 0 (2.16)

Here we should note that it is vital to further discussion on these clusters that we assume
that

αX1( j)−βY1( j)> 0 (2.17)
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We consider (2.17) as a hypotheses to be satisfied in order to state the result of the lower
bounds. Although (2.19) technically still holds in case this hypotheses do not, it is worthless
to us, since the spectral radius is always nonnegative.

Inequality (2.16) leads us to

P1,11 ≥ min
j

αX1( j)−βY1( j)
X1( j)

1 (2.18)

where 1 is a vector of ones. According to Theorem 8.3.2 in [53], from (2.18), we conclude
that

ρ(P1,1)≥ min
j

αX1( j)−βY1( j)
X1( j)

(2.19)

Similarly we can show that

ρ(P2,2)≥ min
j

αX2( j)−βY2( j)
X2( j)

(2.20)

Equations (2.19) and (2.20) give us bounds for ρ(P1,1) and ρ(P2,2).
If α is close to 1 and β is close to 0, then the lower bounds in (2.19) and (2.20) are close

to 1, indicating that the vertices indexed by S1 and S2 display some clustering behaviour
in the Markov chain represented by P because according to the theorem 1 when the lower
bounds for ρ(P1,1) and ρ(P2,2) are close to 1, the probability of traveling between digonal
block P1,1 and P2,2 is very low which means that the vertices indexed by S1 and S2 are
clusters.

2) Now according to (2.12b) we assume s = 1 and t > 0, according to equation (2.11) we
have

P(X + tY ) = (α + tβ )X +(αt −β )Y (2.21)

Now we use the same partitiong of the matrix P that we used in (2.14)P1,1 P1,2 P1,3

P2,1 P2,2 P2,3

P3,1 P3,2 P3,3


X1 + tY1

X2 + tY2

X3 + tY3

= (α + tβ )

X1

X2

X3

− (αt −β )

Y1

Y2

Y3

 (2.22)

Here, we want to partition the vector X + tY to positive, negative and zero parts (like
what we did in (2.14))

If Y1 > 0, (since X1 > 0) then X1 + tY1 > 0.

If Y1 < 0, then t should be 0 < t < min
j:Y1( j)<0

−X1( j)
Y1( j)

to satisfy X1 + tY1 > 0.
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we partition X3 and Y3 as follows:

X3,1 = 0 Y3,1 > 0 (2.23)

X3,2 = 0 Y3,2 < 0 (2.24)

X3,3 = 0 Y3,3 = 0 (2.25)

We update the partitioning as :P̃1,1 P̃1,2 P̃1,3

P̃2,1 P̃2,2 P̃2,3

P̃3,1 P̃3,2 P̃3,3


X̃1 + tỸ1

X̃2 + tỸ2

X̃3 + tỸ3

= (α + tβ )

X̃1

X̃2

X̃3

− (αt −β )

Ỹ1

Ỹ2

Ỹ3

 (2.26)

in which X̃1 + tỸ1 > 0, X̃2 + tỸ2 < 0, and X̃3 + tỸ3 = 0 and[
X1

X3,1

]
= X̃1

[
Y1

Y3,1

]
= Ỹ1 (2.27)

where X1 > 0, X3,1 = 0, and Y3,1 > 0[
X2

X3,2

]
= X̃2

[
Y2

Y3,2

]
= Ỹ2 (2.28)

X3,3 = X̃3 Y3,3 = Ỹ3 (2.29)

where X2 < 0, X3,2 = 0, and Y3,2 > 0.
We should note that this repartitioning is simply allowing the option of including some

extra vertices in the clusters S1 and S2 by including indices corresponding to positive entries
of Y3 to S1, and indices corresponding to negative entries of Y3 to S2. In fact S1 ⊆ S̃1 and
S2 ⊆ S̃2 (assuming that S̃1, S̃2, S̃3 are the index sets of the partitioning in (2.26)). Interpreting
in terms of potential clustering behaviour, we are simply allowing the possible addition of
more nodes into our existing set to potentially get our hand on a more accurate cluster.

Proceeding as before, the first row of the matrix equation (2.26) leads us to

P̃1,1(X̃1 + tỸ1)≥ α(X̃1 + tỸ1)+β (tX̃1 − Ỹ1)> 0. (2.30)

As we already explained for (2.17), we need to ensure that the right hand side of (2.30)
is positive in order for our conclusions to be worthwhile. If S1 = S̃1, then the positivity of



2.2 Clustering properties of the second eigenvector 24

αX1 −βY1 is enough to ensure the positivity of the right hand side of (2.30), but if S1 is a
proper subset of S̃1, the case that X̃1 = 0 and Ỹ1 > 0 is considered, we must have t > β

α
.

From equation (2.30) we have

P̃1,11 ≥ min
j
(α +β (

X̃1( j)+ tỸ1( j)
X̃1( j)+ tỸ1( j)

)).1 (2.31)

According to the Theorem 8.3.2 in [53]

ρ(P̃1,1)≥ min
j
(α +β (

tX̃1( j)+ Ỹ1( j)
X̃1( j)+ tỸ1( j)

)). (2.32)

In order to optimize the lower bound we should maximize the function X̃1( j)+tỸ1( j)
X̃1( j)+tỸ1( j) over

t. Since it is an increasing function of t, we reach the maximum by taking the limit as t

approaches its higher value, which can be either tM = min
j:Y1( j)<0

−X1( j)
Y1( j)

(if Y1 < 0) or infinity

(in case that Y1 > 0).
Two cases may happen when t approches tM:

• Case 1

∃ j s.t. X̃1( j)+ tMỸ1( j) ̸= 0. (2.33)

In this case since the function is increasing the maximum happens at tM so

ρ(P̃1,1)≥ min
j
(α +β (

tMX̃1( j)− Ỹ1( j)
X̃1( j)+ tMỸ1( j)

)) (2.34)

so we have a bound for ρ .

• Case 2

∀ j X̃1( j)+ tMỸ1( j) = 0. (2.35)

If equation (2.35) happens, it means that no node is moved from S3 to S1 because
X3,1 + tMY3,1 cannot be zero according to (2.23). Therefore, the partitioning and the bound
are the same as (2.22) and (2.19).

From (2.35), we have

∀ j Ỹ1( j) =
−1
tM

X̃1( j) (2.36)



2.2 Clustering properties of the second eigenvector 25

therefore

Ỹ1 =
−1
tM

X̃1 (2.37)

which is representing the linear dependence between the vectors X̃1 and Ỹ1. We can easily
add another condition that the vectors X̃1 and Ỹ1 should be linearly independent to avoid this
situation.

If t goes to infinity then

ρ(P̃1,1)≥ min
j
(α +β

X̃1( j)
Ỹ1( j)

) (2.38)

With the same procedure for the second diagonal block we have

ρ(P̃2,2)≥ min
j
(α +β (

tMX̃2( j)− Ỹ2( j)
X̃2( j)+ tMỸ2( j)

)) (2.39)

ρ(P̃2,2)≥ min
j
(α +β

X̃2( j)
Ỹ2( j)

) (2.40)

We analysed the first two cases (2.12a) and (2.12b) in detail. By taking the same
procedure for (2.12c), (2.12d), (2.12e), and (2.12f), we reach the bounds that we mention in
the following theorem:

Theorem 2. Let P be an irreducible stochastic matrix. Suppose that λ = α + iβ is an
eigenvalue of P and let X + iY be the corresponding right eigenvector where X ,Y ∈ Rn. we
partition the matrix P in six different ways, the ways that we partition was explained in the
proof. For i = 1,2,3, let Si, S̃i, S̄i, S̈i, ˜̈Si, and ¯̈Si be the index sets described in the proof.
Let Xi, Yi, X̃i, Ỹi, X̄i, Ȳi, Ẍi, Ÿi, ˜̈Xi, ˜̈Yi, ¯̈Xi, and ¯̈Yi be the subvectors of X and Y corresponding
to the index sets, and let Pi,i, P̃i,i, P̄i,i, P̈i,i, ˜̈Pi,i, and ¯̈Pi,i be the principal submatrices of P
corresponding to the index sets. Assume that Xi and Yi, X̃i and Ỹi, X̄i and Ȳi, Ẍi andŸi, ˜̈Xi and
˜̈Yi, ¯̈Xi and ¯̈Yi are linearly independent for i = 1,2. Then:

1. If αX1 −βY1 > 0 then ρ(A1,1)≥ α −β min j

{
Ỹ1( j)
X̃1( j)

}
.

2. If αX2 −βY2 < 0 then ρ(A2,2)≥ α −β min j

{
Ỹ2( j)
X̃2( j)

}
.

3. If αX̃1 −βỸ1 > 0 then ρ(Ã1,1)≥ α −β min j

{
t̃ X̃1( j)−Ỹ1( j)
X̃1( j)+tỸ1( j)

}
.

where t > 0 and is bounded above by
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minỸ1( j)<0

{
−X̃1( j)
Ỹ1( j)

}
and minỸ2( j)>0

{
−X̃2( j)
Ỹ2( j)

}
if Ỹ1 > 0 and Ỹ2 < 0 then ρ(Ã1,1)≥ α +β min j

{
X̃1( j)
Ỹ1( j)

}
.

4. If αX̃2 −βỸ2 < 0 then ρ(Ã2,2)≥ α +β min j

{
t̃ X̃2( j)−Ỹ2( j)
X̃2( j)+tỸ2( j)

}
.

where t > 0 and is bounded above by

minỸ1( j)<0

{
−X̃1( j)
Ỹ1( j)

}
and minỸ2( j)>0

{
−X̃2( j)
Ỹ2( j)

}
if Ỹ1 > 0 and Ỹ2 < 0 then ρ(Ã2,2)≥ α +β min j

{
X̃2( j)
Ỹ2( j)

}
.

5. If αX̄1 −βȲ1 > 0 then ρ(Ā1,1)≥ α −β min j

{
Ȳ1( j)
X̄1( j)

}
.

6. If αX̄2 −βȲ2 > 0 then ρ(Ā2,2)≥ α −β min j

{
Ȳ2( j)
X̄2( j)

}
.

7. If αŸ1 +β Ẍ1 > 0 then ρ(Ä1,1)≥ α +β min j

{
Ẍ1( j)
Ÿ1( j)

}
.

8. If αŸ2 +β Ẍ2 < 0 then ρ(Ä2,2)≥ α +β min j

{
Ẍ2( j)
Ÿ2( j)

}
.

9. If α
˜̈Y1 +β

˜̈X1 > 0 then ρ( ˜̈A1,1)≥ α +β min j

{
˜̈X1( j)
˜̈Y1( j)

}
.

10. If α
˜̈Y2 +β

˜̈X2 > 0 then ρ( ˜̈A2,2)≥ α +β min j

{
˜̈X2( j)
˜̈Y2( j)

}
.

11. If α
¯̈Y1 +β

¯̈X1 > 0 then ρ( ¯̈A1,1)≥ α +β min j

{
¯̈X1( j)−s ¯̈Y1( j)
s ¯̈X1( j)+ ¯̈Y1( j)

}
.

where s < 0 and is bounded below by

min ¯̈X1( j)>0

{
− ¯̈Y1( j)

¯̈X1( j)

}
and min ¯̈X2( j)<0

{
− ¯̈Y2( j)

¯̈X2( j)

}
if ¯̈X1 < 0 and ¯̈X2 > 0 then ρ( ¯̈A1,1)≥ α −β min j

{
¯̈Y1( j)
¯̈X1( j)

}
.

12. If α
¯̈Y2 +β

¯̈X2 < 0 then ρ( ¯̈A2,2)≥ α +β min j

{
¯̈X2( j)−s ¯̈Y2( j)
s ¯̈X2( j)+ ¯̈Y2( j)

}
.

where s < 0 and is bounded below by

min ¯̈X1( j)>0

{
− ¯̈Y1( j)

¯̈X1( j)

}
and min ¯̈X2( j)>0

{
− ¯̈Y2( j)

¯̈Y2( j)

}
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if ¯̈X1 > 0 and ¯̈X2 > 0 then ρ( ¯̈A2,2)≥ α −β min j

{
¯̈Y2( j)
¯̈X2( j)

}
.

Example:In the next chapter we have an example of a transition matrix with complex
eigenvalues and eigenvectors, see Figure 3.5. The complex eigenvalues is 0.9989+0.0005i.
It is obvious that its real part is close to 1 and its imaginary part is close to zero. In Figure 3.5
the entries of the corresponding eigenvector are represented and it can be seen that they are
revealing clusters of the network. The index sets are S1 = {1,2, ...,11}, S2 = {12,13, ...,17}
and S3 is empty. It should be mentioned that all the entries of the vector αX1 −βY1 are
greater than zero in this case.

If we assume that α is very close to 1 and β is very close to 0, then these lower bounds
of spectral radius lead us to the clustering properties in an analogous manner as in Theorem
1 [19].

2.3 Markov chains in transportation

2.3.1 Markov chains and big data

To gain insight into fast recalculation of Markov chain quantities for changed data, regard
the following theorem from [70] addressing row updates to Markov chain transition matrices
and their effect on the stationary distributions.

Theorem 3. Let P and P̃ be irreducible n×n Markov chain transition matrices that satisfy
the relationship P̃−P=−eiδ

⊤, where ei is a vector of zeros of length n with a 1 in the i’th
position and δ ∈ Rn. Let π and π̃ be the respective left Perron eigenvectors of P and P̃. Let
Q = (III −P) and let Q# be its group inverse. Then

π̃
⊤ = π

⊤− ε
⊤, (2.41)

where ε⊤ = πi
1+δ⊤Q#ei

δ⊤Q#. Further, with 111 ∈ Rn being the vector of all ones,

(III − P̃)# = Q# +111ε
⊤(Q# − ε⊤Q#ei

πi
III)− Q#eiε

⊤

πi
. (2.42)

The above theorem allows us to explicitly compute the stationary distribution of a Markov
chain after updating a single row using the original stationary distribution and the group
inverse of (III −P). It also allows us to directly compute the group inverse of the updated
Markov chain and this theorem can thus be used iteratively to obtain updated stationary
distributions for arbitrary changes in the transition matrix by means of describing them as
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consecutive row updates. In some situations even simpler formulas can be obtained. For
example, the following theorem was proved in [111].

Theorem 4. Let P and P̃ be irreducible n×n Markov chain transition matrices such that P̃ is
obtained from P by multiplying the i′th diagonal entry with a factor wi > 0 for each i= 1 . . . ,n
and scaling the off diagonal entries in each row so that their ratios remain constant. Let π

and π̃ be the respective left Perron eigenvectors of P and P̃. Then

π̃ = κWπ, (2.43)

where W = diag(w1, . . . ,wn) and κ = 1
∥Wπ∥1

is a scaling factor that ensures that the entries
of π̃ sum to 1.

This property is particularly useful for our model. It will be shown later in the next
chapter that changing the diagonal entries corresponds to changing the public transport
service frequency.

2.3.2 Markov chains and road networks

It is easy and straightforward to build a connection between a road network and a Markov
chain if a city map is interpreted as a directed graph, where nodes and edges of the graph
correspond to junctions of the road and connections between the roads respectively. In the
literature related to urban networks, this representation is sometimes called primal, see [100].
On the other hand, in the dual representation streets correspond to nodes and junctions to
edges. In Figures 2.2 and 2.3, the examples of the primal and dual graphs used in [19]
are represented. It is easy to see that the network of Figure 2.2 is designed to represent a
city with two main communities connected through a junction, which is called junction D in
Figure 2.2.

In the work of [51] which was published in the late eighties, the use of graph theory
to analyse urban networks was proposed. After that the idea was further developed in the
later works [49, 50]. An important achievement of applying graph theory in urban networks
was the establishment of correlation between the topological accessibility of streets and
urban properties like pedestrian and vehicular flows, human way-finding, microeconomic
vitality and social liveability, see [49] for example. The topology of the urban network can
mathematically be analysed by finding the degree of the nodes of the corresponding graph,
the characteristic path lengths and clustering coefficients. More recently, algorithms like
Google’s PageRank, have also been used to analyse the topology of urban networks, see [57],
[59], and [58]. All approaches exploit well-established mathematical tools borrowed from
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Fig. 2.2 An example of Primal network used in [19]

 

Fig. 2.3 The dual network of Figure 2.2 which is used in [19]
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graph theory, but the starting point is still a simple plain urban map (or its dual representation)
which usually does not have any quantitative data that are important and required to evaluate
traffic. This means that some important variables like speed limits, street lengths, junction
turning probabilities, numbers of lanes, presence of traffic lights and priority rules are
neglected in their approaches. In [19] they propose a data-driven model with the strong
mathematical background of Markov chain theory, that also takes into account all the previous
quantitative parameters, which are important and clearly affect traffic flows.

Their main step in [19] to pass from a road network to a Markov chain is to build the
transition matrix of the Markov chain. The transition matrix can be obtained after gathering
the average travel times and junction turning probablitites. When they have the travel times
of all the roads while they are normalized such that the smallest travel time is 1, then diagonal
entries of the transition matrix can be obtained as

Pii =
tti −1

tti
i = 1, ...,n (2.44)

In which tti is the average travel time for road i. The proof of (2.44) can be found in [19].
The off-diagonal entries of the transition matrix are

Pi j = (1−Pii) · t pi j, i ̸= j (2.45)

in which pi j is the turning probablity of going from road i to road j.
One of the important achievements of the work in [19] is that they validated their model

after building the transition matrix. After that, they extract some information of the network
that is not easy to extract without Markov chains. Markov chain model identifies critical links
for example, by using the mean first passage times and the Kemeny constant they quantify
the efficiency of the network etc, see Table 2.1.

2.3.3 Markov chains and Emission

The main idea of the work in [18] is to use the same framework as [19] to model pollutants.
This goal is achieved by replacing time in the Markov chain described earlier, see (2.44) and
(2.45), by a unit of pollutant (such as benzene or NOx). In the framework used in [18], a car
is moving in the same road network, and changes or remains in the same state when a unit of
pollutant is released. The main difference between the Markov chain in [19] and the chain in
[18] is the way that they obtain the diagonal entries of the transition matrices. In fact their
emission model in [18] is totally determined by a transition matrix whose diagonal terms
indicate the number of units of pollution a fleet of vehicles releases along a road section. The
off-diagonal entries of the transition matrix somehow indicate the following road section
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Property Meaning Suggested applications
Perron eigenvector Congested roads in the network Traffic balancing
Second eigenvector (a) Rate of convergence to stationary

distribution, (b) If real, presence of
weakly-connected sub-communities

Second eigenvalue In case (b) it associates nodes to sub-
communities

Reveal hidden sub-
communities

Mean first passage times Average travel time from origin to
destination

(Non conventional) rout-
ing algorithms

Kemeny constant Average travel time in the network Identification of impor-
tant (critical) roads

Perron eigenvector (primal) Congested junctions in the network Timing of traffic lights
Table 2.1 Interpretation of Markov chain quantities in the road network and candidate uses
for traffic mitigation and control, see [19].

chosen by a unit of pollution. The emission factors are computed from some functions of
type of vehicle, type of pollution of interest and the average speed of vehicle, the parameters
of the formula is taken from [6]. They compute the diagonal entries of the Markov chain by
the following formula

Pj j =
f j.l j −1

f j.l j
(2.46)

in which f j is the emission factor of section j and l j is the length of section j of the road.
After building the transition matrix, they extract some quantities of Markov chain such

as the Perron eigenvector, the mean first passage times and the Kemeny constant and they
interpret these quantities in the emission framework, see Table 2.2. Apart from the quantities
mentioned in Table 2.2, some other quantities such as density of emissions along each road,
emissions along each road and total emissions are obtained. They demonstrate the efficacy
of the proposed approach by means of some examples.

2.4 Bike sharing

Bike sharing schemes are now available as a mean of transportation in most cities around the
world as described among other in [34, 87, 104, 114]; see for example Vélib’ in Paris, Bicing
in Barcelona, Capital Bikeshare in Washington, D.C. and Forever Bicycle in Shanghai. A
good overview can be gained from [24] and references therein. They are not only seen as
an integral component in the public transportation networks for alleviating congestion and
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Markov chain quantity Green interpretation
Left-hand Perron eigenvector This vector has as many entries as the number of

road segments. Each entry represents the long
run fraction of emissions that a fleet of vehicles
will emit along the corresponding road segment.
It can be used as an indicator of pollution peaks.

Mean first passage emissions This is a square matrix with as many rows as
the number of the road segments. The entry i j
represents the expected quantity of emissions
that a vehicle releases to go from i to j. The
average is with respect to all possible paths from
i to j.

Kemeny constant This number is the average number of emissions
released in a random route. It is an indicator of
pollution in the entire network.

Table 2.2 interpretation of Markov chain quantities in the emission framework in [18].

obesity problems, see [33, 73, 86, 90], but also as a fundamental tool for combating urban
pollution, see [9, 102, 103]. They are also being suggested as a step towards solving the last
mile problem1 in intelligent transportation systems, see [101]. See also [115] for an overview
over IT based bike sharing schemes in North America and [56] on a simulation study on the
related field of electric bike sharing.

Given such a recent diffusion, there is also an interest in developing optimal ways of
managing this mean of transportation, bike-sharing systems. In fact, as pointed out in [87],
most bike-sharing systems have to rely on public fundings from municipalities or other
public sources, since customer fees are not enough to match the capital costs plus the annual
operational costs. Accordingly, there is a strong interest in devising smart ways of reducing
operational costs, e.g., to minimise the costs of operating staffed trucks for manual relocation
of bicycles in order to balance the difference between supply and demand at various stations
(see [99]); or to maximise the revenues obtained by using the bikes for advertising.

Our interest in this chapter is to develop a model to capture the macroscopic aggregated
properties of the bike-sharing system. From this perspective, we are mainly interested in
answering high-level questions that pertain the identification of the main flows in the bike
network, or how important are some bike stations with respect to others. Our ultimate goal is
finally to support bike-sharing managers in implementing planning and control actions aiming

1see C. MacKechnie, The Last Mile Problem at url http://publictransport.about.com/od/Transit_
Planning/a/The-Last-Mile-Problem.htm.

http://publictransport.about.com/od/Transit_Planning/a/The-Last-Mile-Problem.htm
http://publictransport.about.com/od/Transit_Planning/a/The-Last-Mile-Problem.htm
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at improving the efficiency of the bike network, in a proactive manner (i.e., anticipating
the expected outcome of a strategic change in the bike network). The overall problem is
particularly challenging if one intends to embed in the model the big quantity of data that
become available in quasi real-time from a bike network. As an example, in this chapter we
use data collected from the bike-sharing network in Boston, USA2.

For this purpose, we have used the previously described Markov chain based framework
from [19]. They employed graph theory and Markov chain ideas to reveal some non-trivial
patterns of urban mobility. In thier approach the density was not constant as the vehicles
are constantly leaving and entering the network while in our bike sharing system, the total
number of bikes is constant because the bikes are either moving or parked in a station.

The objectives of this chapter are two-fold: (i) first, we explain how the original Markov
chain approach of [19] can be adapted to the particular application of interest here, i.e., the
bike-sharing network; (ii) second, we show some preliminary results that have been obtained
by adopting the proposed modelling framework.

In this chapter, section 2.5 explains how we build a Markov-chain transition matrix from
bike trips data, and motivates why Markov chains are expected to be useful to handle big-data
analyses. Section 2.6 shortly describes the used database of data and validates the transition
matrix built on such data. Section 2.6.1 shows clustering results obtained using the second
eigenvector of the transition matrix, and provides an interpretation of the result in terms of
the bike network.

2.5 A Markov-chain model for a bike-sharing system

In our model of a bike-sharing network, we assume that the i′th bike station is associated
with two states: state BSi refers to a bike that is currently parked at the i′th Bike Station; state
T Bi refers to a bike that is Travelling from the i′th Bike station to any other destination. Thus,
at every time step (in our simulation, one second), a bike staying in the BSi state can either
remain in the same state, or move to state T Bi (i.e., if somebody picks the bike to reach his
destination). Similarly, a bike staying in the T Bi state can either remain in the same state
(i.e., if it keeps travelling because the destination has not been reached yet) or can move to
another state corresponding to any bike station BS j, where the j′th bike station corresponds
to the destination. Note that j can be equal to i (i.e., some users may pick up a bike at the
i′th bike station, and then return the bike to the same place after having completed their own
business). Also, note that it is not possible to pass directly from state BSi to BS j if i ̸= j or

2http://hubwaydatachallenge.org/

http://hubwaydatachallenge.org/
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from state T Bi to T B j if i ̸= j. Our model is exemplified in the graph shown in Figure 2.4.

Fig. 2.4 Graph modelling a bike-sharing network. States BSi’s are only connected to them-
selves or to states T Bi’s (black solid connections). States T Bi’s are connected to themselves
and to every single state BS (red dashed connections).

According to the previous discussion, the transition matrix of the Markov chain has size
2N ×2N where N is the number of bike stations, and it is very sparse (i.e., all but two entries
for the states BSi are equal to zero, ∀i = 1, ...,N, and n−1 entries are equal to zero for the
states T Bi, ∀i = 1, ...,N). Then, the diagonal entries pertaining the BS states should be built
proportional to the average time spent (parked) at a given bike station (i.e., by denoting such
time with t pi, then the entry should be (t pi −1)/t pi as explained in the Appendix 2 in [19]),
while the other non-zero entry of the same row is easily determined by enforcing the row
to be stochastic (i.e., sum equal to 1). The diagonal entries pertaining the T Bi states are
similarly computed proportionally to the average length of trips starting from the i′th bike
station. The other entries in the same row are chosen proportionally to the frequency with
which a given bike station is chosen as a destination for a trip starting from the i′th bike
station, and scaled in order to make the row stochastic as well. Thus, the transition matrix
can be built only if average parking times, average trip durations and a full list of trips are
available. However, note that such a requirement is typically fulfilled, since such data are
available anyway for other purposes as well, e.g., typically, GPS-like sensors are mounted on
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bikes to prevent people from stealing them; bike stations are monitored to choose optimal
relocation strategies to avoid bike stations to remain empty; and finally information about
the trips are available for pricing purposes. In particular, such data were publicly available
for the city of Boston, USA, and in the next Section we explain how we built the transition
matrix for that specific use case. The next subsection collects some known results to motivate
the adoption of Markov chains for big-data applications.

2.6 Boston data: validation

The data used in this work involve about 70000 bike trips occurring between July 28 and
September 21 in the year 2011. Overall, 53 bike stations and 569 bikes were effectively used
in the period under exam. The transition matrix was built upon such available data, and thus
corresponds to average values in the examined time range. The transition matrix has size
106×106 and, consistently with the discussion in Section 2.5, not more than 2N+(N+1) ·N
non-zero entries (actually, there are even less non-zero entries, namely, 2654, due to the fact
that in the period under exam some particular pairs of origin-destination were never chosen
by the users).

All the information required to build the Markov chain transition matrix can be extracted
from the list of trips: in particular, every trip stores the ID of the bike, the time at which
the bike is taken, the bike station of origin, the time at which the bike is delivered back and
the bike station of destination. Other information was also available, such as whether the
user was a registered or a casual customer (i.e., without a membership to the bike-sharing
service); the zip code of the user; the birth year of the user and the gender. Note that all of
such information can be used to deliver particular services (e.g., advertising), but have not
been used in this work and their analysis will be left for a future work.

Remark 1 : One might expect that the destination of one trip should coincide with the
origin of the next trip (of the same bike). This is true unless the bike gets relocated to another
bike station, some time during the two successive trips (e.g., because there is a shortage of
bikes at one bike station). Accordingly, in the list of trips from the available data, most of the
times the two stations coincide, but in some cases there is a discrepancy. We assumed that
every discrepancy was due to relocations, and did not consider such inconsistent trips when
computing parking times (because the time of relocation was not available, and thus it could
not be established how long the bike had been parked before relocation, or after relocation
before being used again).
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Remark 2 : Note that the available data only reveal a part of the true story. For instance,
some users might have wanted to use a bike to take a specific trip but did not find any
available bike at the origin bike station; or some users might have wanted to choose a specific
destination but found that it was already full of bikes. We do not have information of such
(somewhat) unsatisfied customers, but note that they might introduce some noise in the data
(i.e., due to unavailability of bikes, they might choose a different starting point than the
desired one; or due to full bike stations, they might choose a different destination point than
the desired one).

Figure 2.5 shows in blue the Perron eigenvector of the Markov chain transition matrix
built according to the procedure described in Section 2.5. The entries of the Perron eigen-
vector correspond to the long-run fraction of time that a bike spends in the corresponding
state, i.e., either parked at the i′th bike station, or on a trip starting from the i′th bike station.
Figure 2.5 also compares the Perron eigenvector with the same information extracted from
the same data (and shown in red). As can be noticed from the figure, the two densities are
very close, and discrepancies are due to the fact that the real data correspond to a possible
realisation of the Markov chain transition matrix given a specific initial distribution of bikes.
Another interesting information that can be extracted from the figure is that it is more likely
for a bike to be parked at a station than being busy and travelling between the stations.

2.6.1 Clustering

As illustrated in reference [19] in a different context, the advantage of aggregating data in a
Markov chain, is that some quantities that can be easily computed in the context of Markov
chains have an insightful interpretation in terms of the original data that in some cases can
not be easily extracted in other ways. As an example, the “second eigenvector” (i.e., the
eigenvector associated with the second eigenvalue of largest module, if real) is known to have
clustering properties (see Appendix of the reference [19]). To obtain a meaningful interpreta-
tion of clusters in the bike network, we only considered the flows of bikes neglecting the times
spent parked in the station, and the time spent travelling along a trip. Thus, we considered
the submatrix of the original one whose states would correspond to T Bi, and renormalised its
rows to have a unitary sum. Then, the second eigenvector of the matrix is shown in Figure 2.6.

The interpretation of clusters is that people most likely travel within a single cluster,
and more rarely travel from one cluster to the other cluster. The possible membership to
one cluster rather than to another one is given by the sign of the corresponding entry of
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Fig. 2.5 Comparison between the Perron eigenvector of the Markov chain transition matrix
(in red) and the same information extracted from the trip data (in blue).

Fig. 2.6 Second eigenvector of the submatrix corresponding to the trips of vehicles.



2.6 Boston data: validation 38

the second eigenvector, and Figure 2.7 shows the positive and the negative entries of the
second eigenvector with a different colour (the figure is taken from Google Map, using
the information of the latitude and longitude of each single bike station, available from the
data-set). The interesting property of the so-obtained clusters is that they do not exploit any
geographical information about the position of the bike stations, but they only exploit the
knowledge of the typical trips made by the customers, and thus, of the typical choice of
origin-destination pairs.

Fig. 2.7 Positive and negative entries of the second eigenvector do seem to provide a natural
geographical characterisation of the bike stations in Boston.

As shown in the figure, the clusters do seem to provide a correct information, as the
locations are in fact consistently situated in two geographically separated regions.

Remark 3 : In principle, it could occur that different clusters arise at different times of the
day. In this case, we further computed the second eigenvector taking into account only the
trips occurring in the morning, those in the afternoon, and still we obtained the same results.
This suggests that in this specific application clusters appear not to be time-varying.

The knowledge of the clusters can be used for a number of applications: since most trips
occur within a cluster, and more rarely from one cluster to another cluster, the number of
bikes within a cluster should be constant most of the time. Accordingly, one could plan two
separate trucks performing relocation actions in the two clusters. Also, since there are two
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(quite) separate flows of trips within the two clusters, two advertising campaigns could be
conducted in parallel in the two areas.

2.7 Conclusion

In this chapter we introduced the Markov chain and we saw its properties in transportation
networks. We also defined some of the quantities of Markov chain and interpreted them in
transportation networks. After that, this chapter proposed a new Markov chain based model
to describe the functioning of a bike-sharing network. The model required two states for
each bike station (i.e., one to take into account the bikes parked at the bike station, and one
to consider all trips starting from that given bike station). We used real data from the Boston
bike-sharing network to build our Markov chain transition matrix, and to validate the model
with respect to the data. In the next chapter we shall see how Markov chain can be used to
model a multi-modal network and how its properties can control the transportation network
properties.



Chapter 3

Macroscopic multi-modal transportation



Abstract

The contribution of this chapter is to develop a Markov chain based approach to model
multi-modal transportation networks. A realistic test-case using multi-modal data from the
city of London is given to further support the ability of the proposed methodology to handle
big quantities of data. Apart from the validation of the model, some issues regarding the
efficiency of the network and some other applications are described. This work is a joint
work with Arieh Schlote, Lorenzo Maggi, Emanuele Crisostomi, and Robert Shorten and has
been accepted to be published in International Journal of Control, see [32]. Some parts of it
were presented in the International Conference on Connected Vehicles and Expo (ICCVE)
2014 [31].

3.1 Introduction

The objectives of this chapter are twofold: (i) first, we want to illustrate how the approach of
[19] can be adapted to analyse a multi-modal public transport network. For the purpose of
clarity, we illustrate our approach using a bus network in a small area of Dublin as an initial
example throughout the chapter. We later show how the same strategy can be applied to a
general multi-modal transportation network, through a more realistic example in the city
of London; (ii) second, we want to show how the proposed model can be used to leverage
appropriate control actions to improve the performance of a multi-modal transportation
network.

Section 3.3 of this chapter validates the model using the mobility simulator SUMO
(Simulator of Urban MObility) [69], which is well-known in the transportation community,
and shows that the results from the Markov chain approach are consistent with those obtained
via simulation. The same result is obtained when the model is validated over some data
related from bus and Tube data from the transportation network of London in Section 3.4.
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Section 3.5 describes how the developed big-data model can be used as a platform to deliver
control actions to improve the quality of the public transportation service.

3.2 Models of transport networks

We now describe how to fill the entries of the Markov chain transition matrix to model a
transportation network. For the sake of clarity, we shall use an example from the small area
of Dublin shown in Figure 3.1. The blue icons in Figure 3.1 correspond to bus stops. We can
depict them as in the graph in Figure 3.2 where consecutive bus stops are connected through
an edge yielding 17 nodes connected by 21 edges.

Fig. 3.1 Area of Dublin city centre used for analysis and simulations.
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Fig. 3.2 Graph of the bus network.

3.2.1 Waiting graph

A Markov chain transition matrix corresponding to the graph shown in Figure 3.2 can easily
be constructed from collected data according to the procedure outlined below:
(i) Each diagonal entry Pii of the transition matrix is computed as Pii = (ti − 1)/ti, where
ti > 1 is the average time that people spend at the i′th bus stop waiting for the bus, so that the
expected time before leaving the i′th state equals the average waiting time. The waiting time
ti can be expressed in any unit of measurement, for instance in seconds, in which case a step
of the Markov chain corresponds to one second.
(ii) The value of each off-diagonal entry Pi j of the transition matrix is proportional to the
proportion of passengers that travel from the bus stop i to bus stop j as the next bus stop.
This implies that if bus stops i and j are not directly connected (e.g., bus stops 1 and 7 in
Figure 3.2), then Pi j = 0.
(iii) We add an extra state to denote the people that leave the bus network, and we call
this the ’idle state’ and denote it by Sn+1. Accordingly, entry Pi,n+1 takes into account the
proportion of people who leave the network after having reached bus stop i; similarly, entry
Pn+1,i denotes the proportion of travellers who start their journey from the i′th bus stop;
finally, we set the diagonal entry as Pn+1,n+1 = (tn+1 −1)/tn+1, where tn+1 corresponds to
the inter-arrival time of passengers in the bus network.
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(iv) We first set the diagonal entries of the transition matrix P as previously described. Then,
we scale the off-diagonal entries in order to make matrix P row-stochastic.

The transition matrix constructed this way has the useful property that its Perron eigen-
vector corresponds exactly to the density of people at bus stops waiting for buses. This is
analogous to what had been previously found in [19] in the case of vehicular density, and is
validated through SUMO simulations in Section 3.3. The density of people at bus stops is
computed by averaging the mean waiting times at bus stops weighted with the number of
people waiting on average (i.e., if we have on average 3 people waiting for on average 10
minutes at bus stop A, and we have one person waiting for 30 minutes at bus stop B, then we
have equal densities of people at the two bus stops).

The previous transition matrix can be built by collecting waiting times at bus stops (for
the diagonal entries), and by checking how many passengers are on each bus (to build the
off-diagonal entries and the entries of the idle state). However, we have not considered
travel times so far. This information can be neglected if, for example, one is interested in
making waiting times uniform all over the city. In other applications they have to be taken
into account, as will be explained in Section 3.5. The next section illustrates how a transition
matrix can be built to take travel times into account. To make a distinction, we will refer to
the “waiting graph” (or “waiting transition matrix”) when referring to the graph considered
in this section, while the graph in the next section will be denoted as the “travel graph” (or
“travel transition matrix”).

3.2.2 Travel graph

Let us consider a new graph whose nodes are given by the existing direct connections
between two consecutive bus stops, and the edges are given by the possibility to pass from
one connection to a second connection. For instance, in the example of Figure 3.2, the new
graph is shown in Figure 3.3. Accordingly, note that the new nodes in Figure 3.3 correspond
to the edges in the previous Figure 3.2. This graph is sometimes denoted as the dual of the
previous one [100].

A Markov chain transition matrix corresponding to the graph shown in Figure 3.3 can be
easily constructed from collected data, according to the procedure outlined below. We shall
denote such a second travel transition matrix as P(t) for clarity.
(i) Each diagonal entry of the transition matrix P(t)

ii is computed again as P(t)
ii = (ti −1)/ti

where now ti is the average time that people spend along the i′th bus connection, computed
as the sum of the time spent waiting for the bus and the time to actually travel until the next
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Fig. 3.3 Dual graph of the bus network shown in Figure 3.2.

bus stop.
(ii) The value of each off-diagonal entry P(t)

i j of the transition matrix is proportional to the
proportion of passengers that directly travel from the bus connection i to the bus connection j.
This implies that if two bus connections i and j are not directly connected (e.g., connections
1 and 7, as can be seen from Figures 3.2 and 3.3), then P(t)

i j = 0.
(iii) We add an extra state to denote the people that leave the bus network. As before we call
this the ’idle state’ and denote it by Sn+1. Accordingly, entry P(t)

i,n+1 takes into account the
proportion of people whose last travel in the bus network was connection i, and then they
leave the network; similarly, entry P(t)

n+1,i denotes the proportion of travellers who start their

journey form the i′th bus connection; finally, we set P(t)
n+1,n+1 = (tn+1 −1)/tn+1, where tn+1

corresponds to the inter-arrival time of passengers in the bus network.
(iv) We first set the diagonal entries of the transition matrix P(t) as previously described.
Then, we scale the off-diagonal entries in order to make matrix P row-stochastic.

The transition matrix constructed according to the previous procedure has the useful property
that its Perron eigenvector corresponds exactly to the density of people along each bus
connection. Such a density takes into account both people waiting for taking a given bus
connection, and people currently travelling on that bus. Such a result is confirmed from
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experimental results in Section 3.3. Note that this second transition matrix requires the same
information of the waiting transition matrix, plus the information of the average travel times
between (all pairs of) two consecutive bus stops.

Comment : We make the assumption that in a transportation network it is possible to
get from every possible node to any other possible node. This implies for instance that from
a particular bus stop, one can get to any other bus stop with an appropriate sequence of buses.
Such an assumption is realistic and holds for most transportation networks, and allows us to
obtain strongly connected graphs, and thus irreducible transition matrices [71].

3.2.3 Multimodality

One of the the main advantages of the Markov chain model is that it can accommodate
different means of transport without introducing significant changes to the proposed theory.
In particular, we do not have to know a priori if a given node in the graph is associated with a
bus stop, rather than with a train station or a metro stop. Clearly, if one can take advantage
of different transport modes, then the density of people at bus stops can be balanced by
supporting the bus network with another means of transportation (e.g., taxis) instead of
simply increasing the frequency of buses; analogously, accessibility to a critical destination
(hospitals) can be realized by supporting the network with a dedicated service of shuttle
buses. We shall have more to say on such issues in Section 3.5.

3.3 Validation

3.3.1 Simulation

We validate our approach simulating the bus network in the small area of Dublin city centre
shown in Figure 3.1. For simplicity we focus on buses only; as explained above other modes
of transport can be incorporated into the graph easily.

The bus network consists of 17 bus stops, 21 connections between the bus stops, and 4
bus lines, and the corresponding waiting and travel graphs were given in Figures 3.2 and
3.3. We use SUMO, a popular open source traffic simulation software [69], to simulate the
bus network and extract the data required to build the corresponding Markov chain, and to
compare the simulations results with those obtained through the Markov chain approach. In
our simulation, we assume that a sensor is installed at each bus stop to collect information
regarding the time of the day at which every single bus stops at that bus stop to collect
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passengers. Such information can also be collected from GPS enabled mobile phones. We
assume that people start their journey at a random bus stop, chosen with equal probability,
according to a Poisson process with expected inter-arrival time of 2 minutes. We made this
choice as Poisson processes are well established to model bursty traffic. We choose the final
destination of the passenger in a uniform fashion in a first simulation (i.e., every node is
equally likely to be the final destination), or according to a different probability distribution
in a second simulation, as it will be explained later. If more than one sequence of buses can
be used to get to the destination, we assume that the passenger minimizes the number of
required buses, or, in case of a tie, minimizes the number of bus stops, and in case of further
tie, the passenger would simply take the first bus.

3.3.2 Perron eigenvector

As previously explained, the Perron eigenvector of the waiting transition matrix corresponds
to the long-run fraction of time that a person spends in a given state. Thus, we computed the
Perron eigenvector, deleted its last entry (corresponding to the time spent in the idle state,
i.e., not at a bus stop, which was not interesting in this case), and renormalised the remaining
entries so that they would sum to 1. Note that this vector corresponds to the density of people
waiting at each bus stop. We computed the same quantity from the SUMO simulation, and
the two densities are shown in Figure 3.4.a. Similarly, we repeated the same procedure in
the travel graph, in which case we obtain a density of people that is proportional to the time
that people spend for a given connection (waiting for the bus to arrive, plus travelling on
the bus) and results are given in Figure 3.4.b. As can be seen from the two figures, the two
densities are clearly the same in both cases.

Comment : Note that the Perron eigenvector corresponds exactly to the density of peo-
ple at bus stops as we have assumed that there is no noise in the sensors. In practice, if there
is some noise in the measurements of the sensors (e.g., some people getting on the bus are
not counted), then there will be a difference between the real density of people and the Perron
eigenvector.

3.3.3 Clusters of the multimodal network

A useful information regarding flows of bus passengers involves the analysis of frequent
patterns and the identification of clusters. Here we define a cluster as a set of bus stops from
which people unlikely travel towards other sets of bus stops. To clarify our point of view,
using the bus network example in Figure 3.2, we say that three clusters exist if, for instance,
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Fig. 3.4 The densities of people at bus stops (a), and at bus connections (b) computed from
the Perron eigenvector of the Markov chain are the same of those computed in SUMO.

Entry Value Entry Value Entry Value Entry Value Entry Value
(1,1) 0.9879 (1,2) 0.0041 (1,15) 0.0069 (1,18) 0.0011 (2,2) 0.9676
(2,3) 0.0262 (2,18) 0.0063 (3,3) 0.9646 (3,4) 0.0268 (3,18) 0.0085
(4,4) 0.9732 (4,5) 0.0218 (4,18) 0.005 (5,5) 0.9652 (5,6) 0.0262

(5,18) 0.0085 (6,1) 0.0218 (6,6) 0.9764 (6,18) 0.0018 (7,6) 0.0207
(7,7) 0.9686 (7,8) 0.0069 (7,18) 0.0039 (8,8) 0.9779 (8,9) 0.0160

(8,18) 0.0061 (9,9) 0.9697 (9,10) 0.0204 (9,18) 0.0098 (10,10) 0.9822
(10,11) 0.0163 (10,18) 0.0015 (11,7) 0.0657 (11,11) 0.9241 (11,18) 0.0101
(12,10) 0.0097 (12,12) 0.9856 (12,17) 0.0032 (12,18) 0.0015 (13,12) 0.0129
(13,13) 0.9802 (13,18) 0.0068 (14,13) 0.0128 (14,14) 0.9819 (14,18) 0.0053
(15,12) 0.0098 (15,14) 0.0028 (15,15) 0.9857 (15,18) 0.0017 (16,15) 0.0145
(16,16) 0.9801 (16,18) 0.0052 (17,16) 0.0142 (17,17) 0.9785 (17,18) 0.0072
(18,1) 0.0083 (18,2) 0.0090 (18,3) 0.0085 (18,4) 0.0089 (18,5) 0.0075
(18,6) 0.0117 (18,7) 0.0083 (18,8) 0.0089 (18,9) 0.0081 (18,10) 0.0068

(18,11) 0.0071 (18,12) 0.0078 (18,13) 0.0089 (18,14) 0.0099 (18,15) 0.0059
(18,16) 0.0088 (18,17) 0.0086 (18,18) 0.008570

Table 3.1 This table represents the non-zero entries of the transition matrix of the graph in
Figure 3.2. These values are rounded by Matlab. It should be noted that the matrix includes
the idle state so it has 18 rows and 18 columns while the graph has 17 nodes. The perron
eigenvector of this matrix is represented in Figure 3.4.a.
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people mainly travel within the three sets of nodes having the same colour (i.e., within nodes
1 to 6, 7 to 11 and 12 to 17) and more rarely travel from one set of nodes to another set of
nodes. This could happen if, for instance, we assume that each set of nodes belongs to a
given neighbourhood that contains everything that the people need (e.g., shopping centres,
cinemas, hospital, swimming pool), and more rarely people have the necessity to travel to
another set of nodes.

If clusters exist, then the MFPTs should be very low among nodes belonging to the same
clusters, and high if the origin and the destination belong to two different clusters. This
simply follows from the fact that random walks are more likely to occur within the same set
than from one set to another one. Also, if clusters exist, it should be possible to identify them
using the second eigenvector. To simulate such a situation, we assumed that 90% (which
is huge percentage) of the people would indeed choose their destination among one of the
nodes belonging to the same cluster of origin.
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Fig. 3.5 The MFPT matrix and (especially) the second eigenvector are useful in identifying
clusters. MFPTs are low among nodes belonging to the same clusters (a); similarly entries of
the second eigenvector do identify what bus stops belong to what cluster (b).

As can be seen from Figure 3.5.a, mean first passage times are indeed low (blue colour)
among nodes belonging to the same cluster, and are higher (brighter colours) among nodes
belonging to different clusters. Analogously, Figure 3.5.b shows the entries of the second
(complex) eigenvector in a complex plane, and nodes belonging to the same cluster (shown
with the same colours of those used in Figure 3.2) are clearly separated in the complex plane.

Comment : While it is very simple to compute the second eigenvector and check the
(possible) presence of clusters in passengers’ flows, it is not straightforward to obtain the
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Entry Value Entry Value Entry Value Entry Value Entry Value
(1,1) 0.9774 (1,2) 0.0160 (1,15) 0.0018 (1,18) 0.0047 (2,2) 0.9702
(2,3) 0.0227 (2,18) 0.0072 (3,3) 0.9706 (3,4) 0.0232 (3,18) 0.0062
(4,4) 0.9754 (4,5) 0.0185 (4,18) 0.0062 (5,5) 0.9692 (5,6) 0.0216

(5,18) 0.0092 (6,1) 0.0159 (6,6) 0.9792 (6,18) 0.005 (7,6) 0.0038
(7,7) 0.9711 (7,8) 0.0174 (7,18) 0.0077 (8,8) 0.9763 (8,9) 0.0171

(8,18) 0.0066 (9,9) 0.9680 (9,10) 0.0212 (9,18) 0.0108 (10,10) 0.9664
(10,11) 0.0245 (10,18) 0.0091 (11,7) 0.0323 (11,11) 0.9581 (11,18) 0.0097
(12,10) 0.0022 (12,12) 0.9821 (12,17) 0.0120 (12,18) 0.0037 (13,12) 0.0127
(13,13) 0.9824 (13,18) 0.0048 (14,13) 0.0107 (14,14) 0.9833 (14,18) 0.0060
(15,12) 0.0050 (15,14) 0.0052 (15,15) 0.9862 (15,18) 0.0036 (16,15) 0.0187
(16,16) 0.9752 (16,18) 0.0061 (17,16) 0.0202 (17,17) 0.9726 (17,18) 0.0072
(18,1) 0.0084 (18,2) 0.0089 (18,3) 0.0092 (18,4) 0.0094 (18,5) 0.0077
(18,6) 0.0116 (18,7) 0.0083 (18,8) 0.0091 (18,9) 0.0080 (18,10) 0.0070

(18,11) 0.0073 (18,12) 0.0077 (18,13) 0.0088 (18,14) 0.0098 (18,15) 0.0059
(18,16) 0.0088 (18,17) 0.0087 (18,18) 0.8555

Table 3.2 This table represents the non-zero entries of the transition matrix of the graph in
Figure 3.2. These values are rounded by Matlab. It should be noted that the matrix includes
the idle state so it has 18 rows and 18 columns while the graph has 17 nodes. The eigenvector
corresponding the second largest modulus eigenvalue of this matrix is represented in Figure
3.5. The second largest eigenvalue of this matrix is complex and is equal to 0.9989+0.0005i.
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same information in another way, either from simulation results or even from collecting real
data.

3.4 Big-data example

The objective of this section is to further validate the proposed methodology in a more
realistic transportation network, consisting of 28 stops belonging to two tube lines and two
bus lines of London, namely, Bakerloo Metro, Victoria Metro, Bus 13 and Bus 390. In
particular, the chosen graph is shown in Figure 3.6.
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Fig. 3.6 Subgraph of London transportation network, consisting of two bus lines and two
tube lines, used for a more realistic validation of the proposed methodology.

Note that we added some “walking edges” to connect bus stops with tube stops, and
vice versa, to take into account the passengers that take a connection between the two
different means of transportation, indicated with dashed lines in Figure 3.6. We then assumed
that people would appear at bus/tube stations according to a Poisson process whose average
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Table 3.3 Average number of people entering and exiting tube/bus stops in London in
weekdays (data of year 2012). In Italic, the bus stops.

Node Stop Entries Exits Node Stop Entries Exits

1 Tufnell park station 316 196 15 Piccadilly circus/Regent street 48 440

2 Camden road/Breckrock road 279 142 16 Waterloo/Waterloo East 139941 146314

3 King’s cross/st Pancras International station 328 235 17 Baker Street 45141 43559

4 King’s cross/st Pancras International Station 122769 120873 18 Baker Street 282 666

5 Eusten 56039 57197 19 Paddington 70505 72237

6 Eusten 131 341 20 Stone Bridge Park 4092 3929

7 Warren Street 28841 29195 21 Firchly road Station 132 736

8 Orchard street/Selfridge 722 625 22 Swiss Cottage Cheese 348 256

9 Notting Hill gate/Palace Garden Terrace 352 896 23 Green Park 51766 58893

10 Marble arch Station 359 372 24 Victoria 126275 130050

11 Oxford 119401 130658 25 Brixton 39375 36606

12 Oxford 359 517 26 Dorset Square 313 116

13 Oxford 215 514 27 Seven Sisters 21758 19300

14 Piccadilly circus/Regent street 59135 59279 28 Black Horse road 11956 10879

frequency of arrival was chosen consistently with the data provided by TFL1, and summarised
in Table 3.3. Similarly, the destination of the passengers was chosen proportionally to the
exit data reported in Table 3.3. We then used a multi-modal journey planner to compute the
shortest path (in terms of travel time) from origin to destination, with the only constraint
that the path had to be fully contained in the map considered in Figure 3.6. We consider a
period of two hours, namely, between 8 a.m. and 10 a.m., which according to data from TFL
corresponds to a traffic of about 90000 people on average (i.e., 10 % of the total) among the
considered bus/tube stops. As shown in Figure 3.7, we still have that the Markov chain well
encapsulates the information related to the density of people at bus/tube stops, as, similarly
to before, we are assuming that the sensors measuring people information are noiseless. Note
that from Figure 3.7 we have a large number of people that spend a significant amount of
time at stop 11. This is due to the fact that, for our choice of the subgraph of the London
transportation network, stop 11 is the only stop that is common between the two chosen tube
lines. Stop 11 is also connected with both the two bus lines (stops 12 and 13) via a short
walk.

Finally, we show in Figure 3.8 the second eigenvector of the waiting graph, which makes a
clear distinction between the stops of the tube network (red asterisks in figure), corresponding

1https://www.tfl.gov.uk/

https://www.tfl.gov.uk/
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Fig. 3.7 Data from the simulation match data from the Markov chain model.

to the positive entries of the second (real) eigenvector and those of the bus network (blue
dots in figure), corresponding to the negative entries of the eigenvector. This distinction is
due to the fact that most of the trips consist of taking a single means of transportation, while
more rarely a second different means of transportation is taken, thus it is possible to identify
two main clusters of stops.
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Fig. 3.8 The entries of the second (real) eigenvector distinguish tube stops (positive red
circles) and bus stops (negative blue squares).
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3.5 Markov chain based control applications to improve
the public transportation network

The question as to how to measure a good network is a somewhat controversial topic. There
are two basic stakeholders in the city. The first is the user of the transport network; he or she
wants a good quality of service always (fast, clean, reliable service). On the other hand, the
municipality is much more interested in aggregated average behaviour. Cities are concerned
with issues such as:
(i) On average, how easy it is to travel from one part of the city to another?
(ii) On average, are certain spots accessible in an equitable manner from other parts of the
city?
(iii) On average, are the travel times small between certain bus-stops?
(iv) Is it possible to identify emerging clusters in the bus network?
In the remainder of this section we focus on such issues and show how the proposed big-data
model can be used as a platform to identify and implement practical control actions to
improve the performance of the transportation network.

3.5.1 Node maintenance and control in the transportation network

The Kemeny constant is known to be a global indicator of the efficiency of a network [19, 88].
For instance, it can be used to evaluate the critical nodes of a transportation network. Typi-
cally, this can be done by picking out a node from the transportation network, and checking
the efficiency of the residual network. This procedure can be carried out for all the nodes,
and comparing the Kemeny constants obtained removing every single node. Those giving
rise to highest Kemeny constants suggest that the removed nodes were indeed critical, as the
residual network becomes less efficient.

The information on the most critical nodes of a mobility network is useful to implement a
number of control actions:

• Maintenance - Special care should be devoted to maintain critical nodes always
working properly, as a failure would greatly affect the efficiency of the remaining
transportation network;

• Road works - When planning road works, one should be aware that temporarily
disconnecting a critical node from the network would generally increase travelling
times;
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• Strengthening critical nodes - The public transportation network planner might want
to strengthen critical nodes with redundant mobility services to improve their efficiency
and their robustness.

To show the validity of the approach, we follow such a procedure for the usual bus
network shown in Figure 3.2. We made the assumption that all the waiting times were the
same at each bus stop, otherwise the Kemeny constant might give the obvious solution that
the most efficient network is obtained by removing the least efficient node. In this way,
the efficiency of the network is only given by its topology and by people’s bus patterns.
Accordingly, Figure 3.9 shows that the most critical bus stops of the bus networks are the
bus stops from which people are allowed to change the bus. While such a solution could be
easily expected from the simple bus network considered here by visual inspection, in realistic
multi-modal transportation network the identification of critical nodes is not equally trivial.
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Fig. 3.9 The Kemeny constant shows that the most critical bus stops are 1, 6, 7, 10, 11, 12
and 15, i.e., those from which it is possible to change bus line.
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3.5.2 Fair access control to critical areas

It is clear that in any functioning city some critical spots like hospitals should be easily
accessible for all citizens. That is, they should be well-connected to all the neighbourhoods
of the city, and accessible from any origin point. One way to ensure that hospitals are
well-connected is to balance the average travel times from any point to the hospital, for in-
stance making average travel times proportional to the distance (in meters) from the hospital;
alternatively, one could use graph theory to increase the connectivity of the stops close to
the hospital in a transportation network. As MFPTs are a way to take into account both
average travel times (as they are an increasing function of average travel times) and also
the topology of the network (a poorly connected network gives rise to high MFPTs and to a
higher Kemeny constant as shown in the previous section), here we suggest that MFPTs can
be used as an indicator of accessibility to some given areas.
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Fig. 3.10 In this example, the MFPTs to the hospital (a) are compared to the distances to
the hospital (b). We say that the hospital is fairly connected if the two vectors have the
same (normalised) values. We later try to improve the fairness of bus stops 5, 7 and 12 by
supporting the bus network with two new lines of specific shuttle buses, obtaining a fairer
result (c).

To give a practical example of how to control and ensure a fair accessibility to a critical
key spot in the city, let us assume that node 16 in Figure 3.2 corresponds to the bus stop close
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to the only hospital in the area. Figure 3.10.(a) then compares the 16′th column of the MFPT
matrix (MFPTs from any other bus stop to bus stop 16) with (b) the distance (in meters)
from any bus stop to the 16′th bus stop (the same scale was used for comparison purposes).
Comparing the two figures, one can easily note that bus stops 5, 7 and 12 are those that are
not well-connected to the hospital (i.e., MFPTs are high despite the path being relatively
short). We now assume that the public transportation planner wishes to implement a control
action to increase the fairness of connectivity to the hospital. The previously mentioned
MFPT data can be used to predict that a fair access to the hospital can be achieved if, for
instance, two fast shuttle-buses are added, one along the loop 2−5−16−2 and another one
along the loop 7−16−12−7. The new primal graph is now shown in Figure 3.11.
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Fig. 3.11 The new transportation network where the bus network is further supported by two
new shuttle-buses lines (shown with red dashed lines) to improve the connectivity of the
hospital.

Correspondingly, we have that the accessibility of bus stops 5, 7 and 12 has increased, as
predicted by the MFPT analysis, as shown in Figure 3.10.(c).

3.5.3 Balanced control of waiting and travel times

Another concern of network transport planners is to ensure that the travel time between stops
is fairly distributed between destinations. This ensures, on average, a fair QoS delivered to
network participants. Clearly, achieving fairness requires to control that the average waiting
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times are the same at each bus stop. More realistically, one could balance aggregated waiting
times (i.e., one takes into account how many people take the bus, and accordingly waiting
times should be smaller where more people take the bus, and larger where fewer people
take the bus). This last control objective exactly corresponds to balancing the entries of the
Perron eigenvector of the waiting transition matrix. Also, one could expect that doubling
the frequency of a bus at the i′th bus stop should imply that average waiting times at the i′th
bus stop should be halved as well, and this is exactly what happens to the i′th entry of the
Perron eigenvector. Accordingly, the entries of the Perron eigenvector automatically give to
the mobility planner the expected optimal relative frequency of buses to achieve perfectly
balanced aggregated waiting times.

We now give an example of this by trying to improve the balance of the bus network
shown in Figure 3.4.a. As can be noticed from the figure, entries 1, 6, 10, 12 and 15 were
the largest entries of the Perron eigenvector. Accordingly, we now double the frequency
of the bus line serving stations (1-15-12-10-11-7-6), and the new, more balanced, Perron
eigenvector is shown in Figure 3.12. Note that since a single bus line serves more stations, it
is obviously impossible to arbitrarily control the frequency with which single bus stops are
served (unless we assume that single buses can be used for point-to-point connections).
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Fig. 3.12 After the control action (i.e., doubling the frequency of the bus line 1-15-12-10-11-
7-6), the densities of people at bus stops are better balanced.

Also notice that more bus lines might serve the same bus stops (e.g., bus stop 1). Accord-
ingly, changing the frequency of a single bus line only affects a subset of the people waiting
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for the bus at bus stop 1.

In some cases, the network planner might be interested in obtaining another specific distribu-
tion of waiting times, for instance to take into account queues of people at bus stops, but in
such a way that a given threshold of waiting time is never exceeded. In fact, the bus network
would not be efficient if in some circumstances a small number of people would have to wait
an unacceptablly long time for the bus. In such cases, it is not obvious what the optimal
frequency of buses and the optimal network topology are to achieve a target density of people
at bus stops. However, some Markov chain tools are available for finding such results. For
example one of these tools is load balancing for Markov chains which is discussed in [64].

3.5.4 Clustering, services and advertising control

As a final control application of our model we now consider the identification of clusters in
the network. Recall, clusters are a function of networks, bus routes, population movement,
and demographic information. By filtering the population appropriately, information can be
extracted from the population about the behaviour of demographic groups. This information
can be used to provision bus services, or as part of targeted advertising campaigns. Here the
basic idea is to control the adequate spread of information in the network among a particular
group. Clearly, clusters are important in this context and should be targeted by advertisers
to ensure rapid information dissemination. Similarly, critical nodes can be use as part of
targeted health campaigns (flu vaccination).

Section 2.6 provided a justification for the use of the second eigenvector to identify clusters
in a transport network, and we recall here that clusters do not only depend on the topology
of the network, but also on how people do use the transport network (e.g., how often they
travel from one area to other areas). The information of clusters can be conveniently used for
a number of control applications, and referring to network planning and city management,
they can be also used

• to design transport routes within clusters, and to minimize the use of transport resources
to connect the clusters. Clusters would correspond to sub-cities within the whole city
(e.g., neighbourhoods);

• when planning the construction of new facilities, one could focus on what facilities are
missing in what neighbourhoods (e.g., if one plans to open a new pharmacy, it could
be convenient to check if one cluster is missing a pharmacy);
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• finally, the same information regarding clusters could be given to some interested
service providers as a means to link clusters (e.g., taxi companies, car rental companies,
adverstising companies, etc.).

3.6 Conclusion

In this chapter a Markov chain approach was developed to model multi-modal transport
networks. According to the network two graphs were designed, so Markov chain transition
matrices were constructed corresponding these graphs. Some information collected from
the transport network like waiting times of people at the stations, travel times between
the stations, the number of people entering and leaving stations etc) was used to build the
transition matrix of our model. The model was then validated using the mobility simulator
SUMO, and some data available from the multi-modal transportation network in London.
Then, some applications of effcient network control like identifying the critical stations, fair
access control to critical area and balanced control of waiting and travel times were outlined
to demonstrate the potentials of the proposed model. Future work will further investigate the
described applications, and extend the model to incorporate data over multiple time-scales.
In the next chapter we investigate the quality of the data to be able to know how trustworthy
the data is.



Chapter 4

An algorithm for extracting quality of
traffic data



Abstract

In this chapter, a set of indicators are defined to extract the quality of traffic data to
support the provision of a high level transport service in Intelligent Transportation Systems.
Bootstrap, fuzzy techniques, and the fundamental diagram are used to define the indicators
to be able to evaluate different aspects of traffic data. This is a joint work with Francesco
Alesiani and the patent is filed in NEC Laboratories Europe in Heidelberg. This work de-
scribed here has been presented at the 18th IEEE Conference on Intelligent Transportation
Systems (ITSC) 2015.

4.1 Introduction

In Chapters 2 and 3 of this thesis, we have been using real data from Boston and London to
validate our models and propose some applications. The importance of the quality of the data
should not be ignored in the transportation research. Intelligent Transportation Systems (ITS)
are daily used to optimize transportation in the cities and highways with respect to various
criteria based on data measured by sensors. Managing and controlling the transportation
systems is only possible with reliable data. Nowadays technologies allow for very accurate
measurements, but errors are unavoidable since there are multiple sources, e.g. human
configuration errors, communication outages, electromechanical failures, external factors,
local environmental conditions to cite a few. The quality of data should be known by the
users because they need to know how reliable their data and consequently their interpretations
are. The purpose of this research is to extract the quality of the traffic data. We present here a
set of techniques that are integrated to build up an overall traffic quality indicator. Figure 4.1
presents the overall overview of the proposed approach.

In order to distinguish any mistake of a loop system which is a system that saves
traffic data, to check the detection accuracy, and to deal with sensitivity of detector card,
an independent source is required as a baseline data to be able to compare with the loop
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Fig. 4.1 The Indicators structure which is able to verify the traffic data against different
hypotheses

detection system output. This comparison is an evaluation of the loop system. In [76], a
development of a prototype system as the independent source is presented to achieve these
goals.

A constrained nonlinear optimization approach is presented in [124] to identify the errors
and modify loop detector data. The objective function and the constraints are defined such
that the result follows the vehicle conservation principle.

A method that detects erroneous data samples of single-loop detector data is proposed
in [15]. The algorithm used in this approach detects erroneous single-loop detectors from
their volume and occupancy measurement. Decisions are made based on time series of many
samples, not on a single sample, and an overall statistics of the measured day is reported
based on four type of errors, namely zero-occupancy, zero-flow, steady-occupancy and
randomness. The work also proposes a method for data imputation based on neighbor loop
measurements. The model which is defining the relationship between neighboring loops is
linear, and linear regression is used to estimate the value of missing or erroneous samples.

Many techniques have been developed that assign a single value for a missing data. These
methods provide simple and fast estimates but the results produced might be biased. A
multiple imputation method is designed in [93] which provides multiples estimates for a
missing value by simulating multiple draws from a population.
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Two spatial approaches are presented in [131] to detect the errors of loop detector data.
The relationship between individual detector flows and station flows is built based on linear
regression in the first method. The second method uses Kernel regression, see [91], to
incorporate lane use percentages.

Practices for addressing traffic data quality are reviewed in [123]. Three types of user
communities, real time traffic data collection, historical traffic data collection and other
industries such as geospatial data sharing are considered.

In [80], the practice in the quality of traffic data extracted by Intelligent Transportation
System is viewed from the perspective of both operations and planning personel which uses
data for real time and not time intensive applications respectively. Quality issues, causes of
the poor quality and possible solutions for low quality of traffic data are also discussed.

The white paper, [85], describes approaches that improve data quality through quality
control. Contracting methods, standards and training for data collection are included in
[85]. Data sharing between agencies and states, and traffic data detection methods are also
considered.

The project described in [127] considers how such data can be best sorted and managed
to accommodate multiple users. A method for quantifying data reliability is described and
some techniques are proposed for imputing missing data. A general reliability index is
defined which is indicating the consistency of each data measurement with fundamental
traffic relations, historical data, and upstream/downstream measurements. The reliability
index is an integer between zero and ten and it is obtained based on Continuous set theory
which is developed by Lotfi Zadeh; see [134].

In [3] the authors proposed different schemes to verify the reliability of the messages
sent over the Traffic Message Channel (TMC) by comparing it with infrastructure based data
or with floating car data (FCD). The methods proposed are not aimed at assessing the quality
of the single system alone, but by comparison with some reference system, either the traffic
estimation derived by fix measures or by probe vehicles.

4.2 Problem definition

Nowadays Intelligent Transportation Systems are widely used to improve the performance of
the transport system and increase the safety. The accuracy and reliability of the information
affects the transport systems. Intelligent Transportation systems have evolved from single
manned systems in which the system is closely managed; see Figure 4.2, to open market
systems in which the information is exchanged by different users; see Figure 4.3. In both
cases the data should be evaluated to be able to provide a reliable system. Generally the
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quality aspect of the data may change depending on the user requirements. Data quality can
be evaluated based on different criteria (such as accuracy or completeness) because users
may have multiple expectations.

Fig. 4.2 Single operated system

Fig. 4.3 Open System, Multiple actors acting in a Data Market System

Typical criteria are considered at the design of a road traffic measuring system and for
its nominal behavior. Some quality criteria are evaluated only using some reference system
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either in a closed testing facility or performing dedicated onsite campaigns. During operation
the sensor or some part of the whole system may not function at the nominal levels. For
this reason other online technology should be developed. Manual checks of the status of
the sensor is a typical approach but is lengthy and costly. Further it does not scale with the
size of the system and further prevents the use of more advanced ITS systems. In modern
ITS systems, accuracy is increasingly important and performance of the system is directly
connected to the provided quality. An indication of the reliability of the provided data is
crucial in this case. Having recognized this requirement, this work addresses the online
computation of the Confidence or Reliability Quality indicators of the provided data based
on some consistency or rate of variance tests.

Data quality for ITS systems can be measured with respect to different aspects. These
inclued the following:

• Accuracy: This concerns how close the current measure is to the real underlaying
physical phenomenon;

• Completeness: This describes the presence of missing data;

• Validity: Validity is the period of measurement or validity of the provided data;

• Timeliness: It is the delay introduced between the physical phenomenon and the
availability of the data;

• Coverage: This is the spatial availability of the data or the portion of the road that is
monitored;

• Accessibility: It is the level at which the data is made available;

Existing online indicators include the check of some unrealistic conditions. For example,
at a certain time step, the flow and the occupancy can have huge values and one of them
cannot rule most of them out. During a day most detectors represent more or less the same
pattern that shows high flow and occupancy in rush hours and low flow and occupancy at
night. Most loops have this pattern as output but some loops behave very differently for
example they show zero flow but high value of occupancy for several hours. It is obvious
that these values are incorrect. Four types of these abnormal behaviour that are mentioned in
[15] are:

• Non zero measure with zero occupancy;

• Non zero flow with zero density;
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• Samples with high occupancy, especially with non zero flow;

• Entropy of the density;

More basic indicators are defined in [124]. These indicators measure:

• The delay in the provision of the data (online latency variation);

• The actual available sample over the expected (online availability).

4.3 Proposed solution

In this section different indicators with different purposes are defined to determine the quality
of the data. The range of the quality indicators is [0,1]. High and low value of the indicators
represent high and low quality of the data respectively. In the first part, a single section (500
meter of road) is under consideration and the second part is about evaluating the data of a
corridor (two or more sections).

Traffic measures are collected per road section. xs(i,d) represents the traffic measure
on section s on time instant i on day d. The measured traffic quantity can be: q: traffic
flow, ρ: vehicle density, v: speed or tt: travel time. Some of the proposed methods can be
applied to some of these measures, while others use relationships among traffic quantities.
µs(i) = 1

Nd
∑

Nd
d=1 xs(i,d) is the mean with respect to the days of the same type. The single

sample is also indicated as Xi = xs(i,d).
The bootstrap is a powerful method for quantifying the quality of estimators, (see [28]

for a description of the technique), and is applied as the statistical tool to derive quality
indicators. The basic idea of this method is to infer statistical properties about a population
by re-sampling the sample data. If a statistical model of the data is not available and normal
theory is not applicable, it is not possible to evaluate the statistical error of the sample
against the underlying population. Bootstrap then uses sub-sampling of the data to generate
the reference distribution of the underlying population. For this reason bootstrap has been
applied in social related studies, since a detailed model of human behavior is not available.

4.3.1 Single section

Three indicators are developed in this section to quantify the quality of the data of a single
section. The first and the second indicators extract the quality of the data at a single time
step and during a time interval along the days respectively. The third indicator measures the
consistency inside a time window around the original data.
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Indicator of single time step

The indicator of the data of time step i is defined based on the mean and standard deviation,
µib and σib, which are extracted by implementing the bootstrap on the data of the time step i
along the days; see Figure 4.4. The indicator is then built as

IA =
µbi

µbi +σbi
(4.1)

Fig. 4.4 The quality indicator of data of time step i along the days is defined based on the
output of bootstrap.

It is clear that when the mean of the data is more accurate, then σib has a lower value.
Therefore, IA is closer to 1 and it is representing a higher quality of the data.

This indicator cannot determine the low quality of data when there is a constant error
in everyday data of the time step i, so the indicator of a time interval data, that shows low
quality when there is such an error, is defined in the next section.

Indicator of time interval

Before defining the quality indicator of a time interval data, it is required to know how fast
the data is changing. Formula (4.2) is defined to indicate the rate of fluctuation of the means
of the data in a time interval, indicated by µi, µi+1, ..., µi+k in Figure 4.5.

F =
µbµ

µbµ +σbµ

(4.2)
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µbµ and σbµ are the mean and the standard deviation extracted by bootstrap when the
inputs are the means of the data of basic time steps in the interval(µi, µi+1, ..., µi+k); see
Figure 4.5.

When the data changes more rapidly, σbµ has a higher value. Therefore, the fluctuation
value decreases. Fast change in the data can be related to a measurement error or to a physical
phenomenon. These two cases must be distinguished to be able to quantify the quality of the
data. We propose to build the mask either based on the history of the section or even from
some reference section that sees similar traffic. In general the distribution of the mask is not
symmetric.

In order to find the estimated not symmetric distribution, see equation (4.3), the standard
deviations of the left and the right side, σL and σR, of the mean of the means of the fluctuation
values extracted by bootstrap, µM, are estimated.

Fig. 4.5 The rate of fluctuation of the means of the data in a time interval. Implementing
bootstrap is arbitrary.

f (x) =


1√

2πσL
e
−(x−µM)2

2σ2
L , x < µM

1√
2πσR

e
−(x−µM)2

2σ2
R , x ≥ µM

(4.3)

The asymmetric distribution is estimated using a function that computes density estimate
by implementing a Kernel smoothing method [7] on the histogram of the mask. σL and σR

are the values of the variable that equal e−
1
2 the maximum value of the estimated distribution.
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Finally the quality indicator is a probability function and it is defined as

IB(F) =


2
∫ F
−∞

1√
2πσL

e
−(x−µM)2

2σ2
L dx, F < µM

2
∫+∞

F
1√

2πσR
e
−(x−µM)2

2σ2
R dx, F ≥ µM

(4.4)

which is the probability of the sample F to be compatible with the distribution of the mask.

Indicator of time window consistency

The indicator IC(xi) evaluates the consistency of the data xi within a time window and is
defined as

IC(x) = 2Pr(X ≤ x) = 2
∫ x

−∞

1√
2πσW

e
−(X−µW )2

2σ2
W dX (4.5)

in which µW and σW are the outputs of bootstrap when the input is the data of the window
excluding the data under consideration; see Figure 4.6. Since the distribution of data is
symmetric, the estimated normal distribution is used to define the indicator in (4.5).

Fig. 4.6 Quality indicator of time window consistency
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4.3.2 Corridor

In this section, analysis of data quality is based on the observation of two or more different
sections. The indicator exploits the similarity of the measure between sections and it monitors
abnormal variations of statistically relevant quantities. The indicator is defined using fuzzy
sets based on the information derived from the correlation of two sections.

The correlation between sections S1 and S2 is calculated based on the following formula.

CS1,S2 =
∑

n
i=1(zi − z)(yi − y)

∑
n
i=1(zi − z)2 ∑

n
i=1(yi − y)2 (4.6)

in which zi = xS1(i,d) and yi = xS2(i− τ,d) are the vectors of data, for sections S1 and
S2 respectively, of day d at time step i, while z = 1

n ∑
n
i=1 zi and y = 1

n ∑
n
i=1 yi. The time delay

between the data of the two sections is τ and n is the length of the vectors.

Fig. 4.7 CMax, αMax, AMax and τMax are the information, obtained from the correlation
between two sections, useful to find the quality of the data.

From the correlation function, see Figure 4.7, it is possible to identify some parameters.
These include:

1. the maximum correlation value CMax;

2. the angle of the maximum correlation αMax;

3. the area of the maximum correlation AMax;
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4. the delay, τMax, at which the maximum correlation happens.

Based on these parameters, some fuzzy sets and a fuzzy logic system are defined and the
indicator is generated. τMax can be used to infer the delay when the data of the two sections
is reliable.

Fuzzy system indicator

The fuzzy logic systems are defined by a set of fuzzy membership functions for the inputs
and outputs and a set of rules to extract outputs from the inputs. The rules can be changed
depending on the requirements and the criteria of the final indicator. In other words, the
user may change the membership functions or the rules of the Fuzzy systems based on the
aspect of the data that he is considering ( for example here we are simply using triangular
membership functions, but the user may want to have another type of function based on
the application that he has). The quality indicator, which has a value in [0 1], is extracted
from the intermediate outputs of three fuzzy systems. The structure of the fuzzy systems is
depicted in Figure 4.8.

Fuzzy system A has output indicators of a single day, ID, and the average of some days,
e.g. a week, IM. As input, CMax, cos(αMax), and AMax are used. Each of them has three
membership function of type A, as depicted in Figure 4.9.

The output of the fuzzy system B, IE , determines if the quality of a specific day is higher
or lower than the quality of the average of the data of a week. The inputs of this fuzzy system
are the differences of the correlation information between the considered day and the average
values: ∆CMax, ∆cos(αMax), and ∆AMax. The input ∆CMax and ∆αMax have membership
functions of type B; see Figure 4.10, and ∆AMax has a membership function of type C; see
Figure 4.11. The membership functions of the outputs of both fuzzy systems A and B are of
type A. The range of the outputs is [0 1].

The fuzzy system C is proposed to integrate the output of the other fuzzy systems: 1) the
indicator associated with the historical data; 2) the current data or 3) the difference between
the current and the previous ones. The output of the last fuzzy system is the final indicator of
the quality of the two sections, IG. All the inputs and the output of this fuzzy system have the
membership function of type A.
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Fig. 4.8 The outputs of the fuzzy systems A and B are the inputs of the fuzzy system C which
extracts the quality.

Fig. 4.9 Membership function type A.

Fig. 4.10 Membership function type B,
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Fig. 4.11 Membership function type C.

Input 1 Input 2 Input 3 Output
|CM,d| AM,d cos(αM,d) ID
|CM,m| AM,m cos(αM,m) IM
∆|C| ∆A ∆cos(α) IE

1 1 1 1
2 2 2 2
3 3 3 3
1 3 3 3
2 3 3 3
3 1 1 1
2 1 1 1
3 2 1 3
3 1 2 3
3 3 1 3

Table 4.1 Rules of the fuzzy systems A and B

Input 1 Input 2 Input3 Output
IE ID IM IG
2 1 1 1
2 2 2 2
2 3 3 3
3 2 1 3
3 1 1 3
3 2 2 3
1 3 3 2
1 1 3 1
1 1 2 1
3 3 1 3

Table 4.2 Rules of the fuzzy systems C



4.4 Simulation and Analysis 75

4.4 Simulation and Analysis

The proposed indicators are studied using highway traffic data. The data was confidential,
so here we can only mention that the area of study is a road stretch including 4 lanes. The
length of each section is 500 meters. Data is available for each minute of each lane for each
day of the week excluding the weekend. Before extracting the quality of the data using the
quality indicators defined, the data is aggregated at road level for two directions. The data
has also been preprocessed by afinite impulse response (FIR) filter of l = 10. The formula
used to smooth the data is

1
(∑i+l

j=i a j)+1

i+l

∑
j=i

a jx j (4.7)

where a j = 1 if x j is valid data and 0 otherwise. In the following sections the single
indicators are shown graphically, in order to comparing the quality indicators in different
traffic measurement conditions.

It should be mentioned that in this section we are not using the data of the same section.
The quality of the data of different sections are represented here because as we said we
define a set of indicators and each indicator has its own capabilities to show deficiencies of
different aspects of data. In order to show the power of indictors for different aspects we
picked appropriate section for the indictors to show the quality of data.

4.4.1 Single section quality indicator

Let us first focus on the single section quality indicators. Two sections of different quality
level are used to show the capability of the indicators in describing the quality of the data.

One time step

Figure 4.12 shows the quality of the data of a time step along the days of one week according
to the indicator (4.4) for the flow data of two different sections. One section has more invalid
values.The indicator shows that the data of the section with more invalid data has lower
quality compared to the other section.

Adding constant artificial error to the data of a few minutes but not for everyday of the
week shows that the quality of the data decreases; see Figure 4.13. The problem is that
adding the constant artificial error to the data of the whole week does not affect the quality
extracted by the indicator (4.4) because it is extracting the quality of one minute independent
from the other minutes. Therefore, the constant noise added to the data of a specific minute
for the whole week is not recognizable by indicator (4.4); see Figure 4.13.
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Fig. 4.12 Quality of each minute data along the days for two different sections. The number
of negative values is the number of not valid data. Therefore, the negative values are not
represented and not ised to plot the flow here.

Fig. 4.13 The first column shows the flow with no artificial error and its quality based on
the indicator IA, the second column shows the flow with artificial constant error added not
to the all days of the week. The indicator plot shows that the error is recognized by the
indicator of a single minute data, IA. In the third column, a constant artificial error is added to
everyday data of the week. It can be seen that the indicator of a single minute is not capable
of recognizing this error because the indicator has the same plot as in the first column.
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Time interval

Figure 4.14 shows that the fluctuation rate, computed every 20 minutes, decreases when a
constant error is present for all days or is present in only one day. The typical flow variations
due to the night low traffic condition has also an effect on the fluctuation, but this is not
related to low quality in the data.

Fig. 4.14 The fluctuation value decreases when there is artificial error either in everyday data
or not everyday data. Moreover, sharp change of flow which happens because of normal
phenomenon cause decrease in the fluctuation rate.

In order to distinguish between normal traffic conditions and the effects due to external
factors, a mask is constructed according to the history of other sections. In our test we
used 5 other sections. The mask, generated by the average of the fluctuation values of some
reference sections, and the quality indicator IB of two different sections is represented in
Figure 4.17.

The histogram of the mask for the 30th time interval and its density function, whose
range is in [0 1] and is useful to estimate the σL and σR, are shown in Figures 4.15 and 4.16.

Window

In Figure 4.19 the quality indicator (4.5) of the data is plotted. The indicator is computed on
the third day of the week, while the other days of the week are used to create the reference.
On the analysis only week days are considered. From Figure 4.19 it is possible to notice
that when the flow of the considered day deviates from the week average, the consistency
indicator decreases.
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Fig. 4.15 Histogram of the means extracted by bootstrap implemented on the fluctuation
values of the five sections for the 30th time interval. It is obvious that the distribution is not
symmetric.

Fig. 4.16 The density function of the histogram represented in Figure 4.15 with range in [0
1]. The stars are the points with second coordinates equal to e

−1
2 .
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Fig. 4.17 The probability indicator, IB, of a section with erroneous measurements. In some
time interval of this section the fluctuation indicator is under the mask, due to a lower quality.
The quality indicator is also representing low quality in those time intervals.
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Fig. 4.18 The probability indicator, IB, for a normal section. The fluctuation value of the flow
for normal section is closer to the mask, since the quality is high.
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Fig. 4.19 Window consistency indicator for a critical day. The indicator decreases when flow
of the day is substantially different from the average flow of the window.

4.4.2 Corridor

In Figure 4.20, an example of correlation function between two consecutive sections is
presented. The vector of the data of the first section consists of one hour data, 10:00 am-
11:00 am, and the time delay between two sections is assumed to be between [−10,10]
minutes. The correlation is computed either within the same day or between the week
averages.

As described in the previous sections, the input to the Fuzzy Systems are:|CMax|, AMax

and cos(αMax) The values of the inputs can be between [0,1], [0,20], and [−1,0] respectively,
since the angle of the peak of the correlation cannot be less than 90 degrees (and of course not
more than 180 degrees). The inputs of the fuzzy system B are |CMax,d|− |CMax,m|, AMax,d −
AMax,m and cos(αMax,d)− cos(αMax,m). The ranges in this case are [−1,1], [−20,20], and
[−2,2]. The fuzzy system C uses the outputs of the other two systems as described in section
4.3.2.

Figure 4.21 shows the three indicators extracted from the three fuzzy systems. The figure
on the top represents the indicator of the day (ID) and the indicator of the mean of one week
data (IM), they are outputs of fuzzy system A, see Figures 4.8, 4.9 and Table 4.1. It can be
seen that in some parts the quality of the data of the day in greater than the quality of the
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Fig. 4.20 The correlation of two sections in a row for one day data and the average data of a
week.

average data of the week, and in some parts it is less. It can also be seen that in some parts
they are closer to each other compare to the other parts. Based on these observations fuzzy
system B is defined. The second figure in the middle is the indicator of comparison (IE)
which determines if the quality of the day is greater or less than the quality of the average data
of the week. It is based on Fuzzy system B, see Figures 4.8, 4.10 and Table 4.1. According
to this Figure we can see that when the value of ID is greater (or less) than the value of IM,
then the value of IE is greater (or lower) than 0.5 which means that when the quality of the
data of the day under consideration is greater (or less) than the quality of the average data of
the week, then the quality indicator IE has greater (or less) value than 0.5. The final indicator
(IG) is defined based on the Fuzzy system C, see Figures 4.8, 4.11 and Table 4.2. This Fuzzy
system is defined to make sure that all the indicators are used. In other words if IE is showing
high quality which means that teh quality of the data of teh day is higher than the average
data of the week, this is not enought to say that the quality of the data of this day is good,
because may be both IM and ID are representing bad quality. Therefore, if IM, ID and IE are
representing high quality then IG also represenst high quality (for IG value greater than 0.5
mean high quality).
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Fig. 4.21 The outputs of the fuzzy systems A, B and C are plotted.



Chapter 5

A framework for real-time emissions
trading in large scale vehicle fleets



Abstract

In this chapter a framework for the real-time trading of budgeted emission rights between
a fleet of participating vehicles is presented. The trading problem is formulated as a util-
ity maximisation and as a utility fairness problem. The problem is solved in real time in
centralised, decentralized, distributed and hybrid manners. It is a joint work with Florian
Häusler, Emanuele Crisostomi, Arieh Schlote, Ilja Radusch, and Robert Shorten and was
published in [47]. This work won the best scientific paper award of the ITS conference 2013
in Dublin [48]. The content of this chapter follows closely [67] but goes beyond this work by
developing algorithms that have faster convergence rates. Our (Faizrahnemoon and Shorten)
main contributions in this chapter have been the design of algorithms with higher speed
of convergence in section 5.4, and running their corresponding simulations (Figures 5.2
and 5.3). Florian Häusler, (with Schlote and Shorten) formulated the constraints given in
Section 5.2, applied ideas from Stanojevic to the emissions trading problem, and completed
the simulations from Berlin.

5.1 Introduction

In the research that has been done on smart-cities [52, 55], collaborative mobility is becoming
one of the main topics in relation to transportation networks. Since the road networks in
cities are often inefficient and new technology continues to emerge, it is expected that the
provision of products related to smart mobility will increase over the next decade [30, 128]

Collaborative mobility is not a new topic in transportation research. For example, the
notion of V2X is related to the transport telematic [13]. Researchers have been working on
transport telematics but the impact of the research has been limited because the technology is
not sufficiently advanced. Apart from technological limitations, the strict guidelines from
regulatory bodies can also prevent collaborative mobility growing as an area of research.
In general there are four main factors in transport related regulations: vehicular safety;
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greenhouse gas emissions; and the quality of air in our cities. They are all important
considerations. Congestion is very unpleasant and it is a major problem related to economic
growth [26]. Car-related safety is an issue for people in cars as well as other road users
[97].Transportation accounts for 20% of green house gas emissions, whose control is currently
an important issue for the European Union. However, perhaps the most important reason to
consider this issue is that the internal combustion engine (ICE) is harmful for human health
[42]. By-products of the ICE include: CO; NOx; SO; ozone; benzene; PM10; and PM25

Some governments have been trying to address the problem of air-quality control. In
some cities certain vehicles are banned from densely populated areas. Another method
which is used to control the air-quality to define speed limits according to the pollution peaks
[2].Shifting mobility away from dirty modes of transportation and encouraging the adaptation
of bike sharing systems are two strategies suggested to tackle the traffic-related air pollution
problem [14, 23]. Another related method is via multimodality to simultaneously increase the
efficiencies of different transport modes [5].We already discussed the bike sharing systems
and multimodal transportation networks in Chapters 2 and 3. An alternative focus is on
developing automated driving systems that can take the sometimes erratic and wasteful
human behaviour out of the picture [40].

In [113] the aggregate effect of vehicles in a geographic region has been considered. Here
we extend their approach and introduce a method to incorporate fairness into the problem. In
our approach, individual utility functions are assigned to the vehicles and all the vehicles
experience the same utility from the system. Moreover, we optimize a vehicle fleet’s emission
without considering their geographical positions. It is assumed that a fleet operator wants to
control the aggregate effect of a group of vehicles (e.g. pollution) such that the total sum
of the utility functions is maximized. Many problems in intelligent transoprtation systems
(ITS) can be formulated in such a fashion. Companies like DHL, Schenker or UPS are good
examples because they are usually asked to monitor and control their fleets in regard to their
ecological impact. Such companies can provide information about the emissions of a single
trip [25]. The problem is constrained in a number of ways. Customers may want the shipping
to be done within a limited time. Sometimes there is speed limit along the route meaning
that the total pollution must be less than a certain amount. Advances in V2X technologies,
communications and in distributed optimisation, allow us to implement such a system in real
time without requiring a significant amount of centralised processing, and also to respond to
changing levels of vehicle density. The demand for such algorithms is likely to increase as
equipment manufacturers and cities are asked to provide information about the environmental
impact of products during their lifecycle [41] (and for municipalities, information on air
quality). Furthemore, the customers of such companies may pay more for a higher quality
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of service. This will allow vehicles to borrow emissions from each other to maintain an
allowable overall level of emissions [43].In this chapter, we describe a number of algorithms
that can be utilised for this purpose.

In summary, our main objective in this chapter is to describe a method that can regulate
the aggregate effect (e.g. pollution) of a fleet of vehicles, so that the utility (benefit) to the
vehicle owners is at all times maximised. In the particular application examples considered,
we study a fleet of hybrid vehicles that has a total budget of CO2 that they can emit. Thus,
we are aiming to control the aggregate emission of CO2 . Clearly, there are many possible
ways to achieve this, and this non-uniqueness creates an opportunity to regulate and optimise
simultaneously [67, 112, 120, 121]. The present setting offers the chance of not only
regulating, say, aggregate CO2 , but also of doing this in a way that allows another objective
(e.g. maximisation of QoS, minimisation of CO or PM production) to be achieved at the
same time.

We specifically: (i) formulate the emissions problem mathematically; (ii) discuss the
communication con- straints of the problem; (iii) present algorithms to solve the utility
maximization and utility fairness problems; and (iv) present some simulations. Our work
follows closely [67] but goes beyond this work by developing algorithms that have much
faster convergence rates. The rest of the chapter is structured as follows. In Section 5.2,
we shall discuss the typical constraints that arise in cooperative mobility settings. These
constraints guide the type of algorithms that can be deployed in such environments. In
Section 5.3, we formally state our problem and in Section 5.4, we will discuss algorithms
for solving utility maximisation problems in vehicular environments. Simulation results are
presented in Section 5.5, where we also develop the case study given in [113] to include
utility fairness constraints.

5.2 Background

We consider fleets of plug-in hybrid vehicles that can use two engines to achieve the goal of
controlling the pollution, Di. In this context, we study the following optimisation problem

max
N

∑
i=1

fi(Di) (5.1)

subject to the constraint that

N

∑
i=1

Di =C (5.2)



5.2 Background 88

Where the scalars Di are mapped to some utility scalars by the functions fi(Di). As we
already said, many problems in ITS map to this scenario. In our context, C is a pollution
budget assigned to a group of vehicles, Di is the pollution budget assigned to vehicle i
and fi(Di) is the benefit of the ith vehicle using the allocation Di. Different techniques are
available to deal with such problems and many of them have already been applied in other
application domains [119]. Under reasonable assumptions on the fi, it is possible to deploy
centralised optimization methods; however, problems that arise in the context of ITS present
several specific challenges. We now summarise some of the basic issues considering the
specific ITS context.

1. Non-homogeneous levels of vehicle participation: ITS problems typically involve
varying levels of vehicle participation as vehicles leave and join the system defining
the optimisation problem.

Algorithms deployed to solve the maximisation problem must also respect constraints
arising from the communication limitations of the ITS system.

2. Scale: ITS problems often involve a large-scale level of participation. Optimisation
problems involving very-large graphs are considered among the most challenging in
the field of operations research [44].

3. V2I unicast: In contrast to unicast I2 V, communicating in the other direction is
technically straightforward to implement. A standard cellular communication network
is required and the communication effort increases linearly with the number of vehicles.

4. I2V unicast: Direct (IP) communication from the centre (e.g. a fleet management
back-office) to individual users over cellular networks cannot be implemented easily
today. The main reason for this is network address translation (NAT) traversal problems.
Current technologies for NAT traversal need extra infrastructure and communication
protocols or control over network infrastructure.

5. Infrastructure-to-vehicle (I2V) broadcast: This scenario is probably the most common
and well-established communication link in the present context. Vehicles listen to a
broadcast from a central node. The technologies needed to implement I2V broadcasts
are currently available in most vehicles and a feature of broadcasting is that the total
communication effort scales well and independently of the number of vehicles in the
fleet.
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6. Computation: This is a fundamental issue. Is it possible for the central infrastructure to
solve large-scale optimisation problems and communicate bidirectionally with vehicles
at relatively high sampling rates.

7. Asymmetric and symmetric Vehicle-to-vehicle (V2V): V2V communication using IEEE
802.11p technology is currently in the process of standardisation but has not yet been
deployed. V2V communication can be symmetric and asymmetric. In the symmetric
case, vehicle i communicates with vehicle j if and only if j can communicate with i.

Another issue that arises in ITS applications is the need to solve large-scale optimi-
sation algorithms. For example, it may not always be possible or desirable to solve
optimisation problems in a centralised manner.

Finally, ITS applications give rise to several important performance constraints, includ-
ing the following:

8. Speed of convergence: Algorithms should converge to the optimal solution in a reason-
ably short time.

9. Robustness to failure and uncertainty: Optimization algorithms should be robust with
respect to failures in the system. Also, it should be noted that in many situations, utility
functions are not known exactly.

10. Scalability: Deployed algorithms need to function satisfactorily irrespective of the
level of vehicle participation.

Given the above considerations, the question now arises as to the type of solution
which is suitable for ITS applications. Roughly speaking, three choices are available
to us:

1. Fully centralised solutions: involve solving the optimisation problem defined in (5.1)
and (5.2) centrally. In order to solve the optimization problem by using such solution
we need perfect knowledge of the fi(Di), bi-directional communication between the
infrastructure and all vehicles, and computational ability of the centralized node.
Advantages of the centralised approach include speed of convergence (instantaneous)
and that there is no V2V communication requirement. Disadvantages of this approach
include sensitivity to node failure, sensitivity of solutions to noise and uncertainty, and
the feasibility of centralised approaches in large-scale environments

2. Fully decentralised solutions: involve solving the optimisation problem defined in
(5.1) and (5.2) using local computation and communication only.In this approach it is
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required to have V2V communication. The advantages of this method are that there is
no need for centralized optimization step, the ability to deal with uncertainty in the
fi(Di), and the robustness with respect to node failures. Disadvantages include the
very-slow convergence rates – especially in large-scale applications

3. Hybrid solutions: involve using a small amount of information from the center in order
to increase the rate of convergence of the decentralised algorithm and to mitigate some
of the constraints of the ITS environment. In the next section, we will present two
hybrid algorithms.

5.3 Problem statement and assumptions

We have a network of N nodes (vehicles). Individual utility functions fi(Di) are assigned
to the vehicles. There is a constraint ∑

N
i=1 =C and the goal is to find an allocation Di that

solves max∑
N
i=1 fi(Di) subject to ∑

N
i=1 Di =C.

Comment: In some applications, we may be interested in solving a minimisation problem.

Assumptions

The following assumptions appear to be a reasonable reflection of current and near future
state of the art in ITS systems, and suggest a hybrid solution whereby the optimisation is
solved using decentralised computation with aid of limited signaling from the centre.

In order to solve the problem we assume that

• The utility functions fi(Di) are concave because we are maximizing the objective
function. If the optimization problem is minimizing the sum of the utuility functions
(e.g. minimizing the pollution), then the assumption is that the utility functions are
convex. The exact nature of the utility functions may not be known but the vehicles
are aware of the value of fi(Di) at each time step. In some cases, for example, the
utility fairness case, the utility functions are increasing (decreasing) when the problem
is maximizing (minimizing) the sum of the utility functions.

• There exists at least one feasible solution which is also optimal.

• All vehicles can communicate directly (or indirectly through a measurement) with a
centralised infrastructure.

• The centralised infrastructure broadcast information to the vehicles but does not
communicate directly with individual vehicles.
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5.3.1 Solution

We can solve the optimization problem given by equations (5.1) and (5.2) using the classical
technique of Lagrange multipliers. Let H(D1, . . . ,Dn, l) be the Lagrangian associated with
the problem, that is

H(D1, ...,Dn,λ ) =
N

∑
i=1

fi(Di)−λ (
N

∑
i=1

Di −C). (5.3)

The optimal solution of the problem is the allocation D∗
i such that λ ∗ =

∂ fi(D∗
i )

∂Di
,∀i =

1, ...,N , subject to the linear constraint being satisfied. Two hybrid approaches can be used
to solve the maximization problem. First, the maximisation problem can be solved using a
combination of feedback and local on-vehicle computational power. Namely, by regulating
the outputs of the vehicle functions in such a way that they follow the λ , which is broadcast
from a centralised infrastructure. Therefore, the task of the central infrastructure is to find
the value of multiplier λ so that the utility maximization problem can be solved. We will see
that this can be solved by embedding the multiplier as part of a feedback loop as is done in
subgradient methods. This approach does not need any V2V or I2V unicast capabilities or
any centralized computation. It is even able to deal with uncertainty in the utility functions.
A disadvantage of the approach is that it is not robust to failure of the centralised node and
selecting the control gains can be an issue. The second approach is based on the fact that
optimality is also achieved when each of the vehicles achieves consensus of the values of
the functions gi(Di) =

∂ fi(Di)
∂Di

. This observation was first exploited in [119] in the context of
symmetric communication graphs, and later extended to the asymmetric case in [65], and to
the case where the outputs of the vehicle are adjusted as part of a feedback loop. Advantages
of these approaches are that no I2V unicast capabilities are required, and the techniques
can deal with uncertainty in the utility functions. In addition no centralised computation is
required, and the technique is robust with respect to node failure.

5.4 Algorithms

5.4.1 Algorithm 1. Feedback control and local computation

Algorithm 1 uses an integral control to asymptotically find the Lagrange multiplier λ ∗. The
centralised infrastructure then updates iteratively according to

λ̄ (k+1) = λ̄ (k)−µ(C−
N

∑
i=1

Di(k)) (5.4)
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where we have assumed that the centralised infrastructure either receives communication
of the Di(k) from each vehicle, or measures it. Each node (vehicle) receives a broadcast of
λ̄ (k) and updates its utility (implicitly) according to

Di(k+1) = Di(k)−βi

(
λ̄ (k)− ∂ fi(Di(k))

∂Di(k)

)
. (5.5)

Roughly speaking, this corresponds to a classic subgradient method from optimisation
theory, see [8, 92] and the gains can be selected using methods from nonlinear control theory.
The convergence of the algorithm, and the choice of the model parameters is beyond the scope
of this thesis. The convergence argument and choice of gains follows from standard systems
theory ideas [63, 118, 119]. Note that Algorithm 1 is a variant on a standard optimisation
algorithm, the dual subgradient descent algorithm, where we replaced the primal optimisation
step with a second ascend type update.

5.4.2 Algorithm 2. Implicit consensus with input

We have previously noted that it was shown in [119] that utility maximization problems
may be formulated as consensus problems where all agents achieve the same value of the
derivative gi(Di) =

∂ fi(Di)
∂Di

of their utility functions. This solution is interesting because it
can be realised in a fully decentralised manner, but consensus based solutions usually require
symmetric communication graphs, to guarantee that ∑

N
i=1 Di(k) = C for all k, and might

suffer from other convergence related issues. Some of these issues are addressed in [65], in
which a basic feedback error signal, C−∑

N
i=1 Di(k), from the infrastructure is used to yield a

modified integral control of the following form

Di(k+1) = Di(k)+ ε ∑
j∈Ni

(
gi(Di(k))−g j(D j(k))

)
+ γ

(
C−

N

∑
q=1

Dq(k)
)

(5.6)

in which Ni is the set of nodes that send information to node i. Note that if node i has Ni

neighbors that can send information to node i, then (5.6) can be rewritten as

Di(k+1) = Di(k)+ ε

(
Ni ·gi(Di(k))− ∑

j∈Ni

g j(D j(k))
)
+ γ

(
C−

N

∑
q=1

Dq(k)
)

(5.7)
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Thus, by denoting εi = ε ·Ni , the problem can be stated in a consensus-like form, as

Di(k+1) = Di(k)+ εi

(
gi(Di(k))−

1
Ni

∑
j∈Ni

g j(D j(k))
)
+ γ

(
C−

N

∑
q=1

Dq(k)
)

(5.8)

where j ranges over all neighbours of i. Roughly speaking, the first term of the update
(5.8) is used to achieve a consensus around the optimal value, while the second term ensures
that the global equality constraint is satisfied.

The stability and convergence properties of Algorithm 2, and the choice of γ and ε

can again be determined using ideas from systems theory (see [66]). However, a proper
discussion of this issue is again beyond the scope of this thesis. It is important to note that
Algorithm 2 requires V2V communication, and has slow rate of convergence [67].

Comment: It should be noticed that the sign of the parameter ε in (5.6) - (5.8) depends
on the choice of the functions g. The sign will be positive if functions g are decreasing, and
negative if functions g are increasing. Note that different policies can be implemented by
replacing functions gi(Di) =

∂ fi(Di)
∂Di

in (5.8) with other appropriate functions. For example,
if we use gi(Di) = fi(Di) instead of the partial derivatives, a utility fairness policy will be
implemented. A discussion on the properties of the candidate functions gi is beyond the
purposes of this thesis, but conditions on the functions gi and a related discussion can be
found in [65, 119].

5.4.3 Some details of Algorithm 3

Modified algorithm: My main contribution in this chapter is to modify Algorithm 2 to speed
up convergence. In the modified algorithm, which is denoted as Algorithm 3, the vehicles
communicate the maximum and minimum values of ∂ fi(Di(k))

∂Di(k)
to the central infrastructure

at each time step. These values are then broadcast to all nodes who then augment their
neighborhood information to encorporate the new values. In the simulations it will be shown
that the rate of convergence of the modified algorithm increases compared to Algorithm 2. In
the next paragraph we give a plausibility argument of why this occurs.

We will see in the simulations that when the center broadcasts the maximum and the
minimum values of the second term in (5.8) to the nodes, convergence to implicit consensus
occurs at a much faster rate.. It is well known that in undirected graphs, the second smallest
eigenvalue of the graph Laplacian, also called algebraic connectivity, quantifies the speed of
convergence of consensus algorithms, see for instance [94]. Also, it is well known that in
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this case the algebraic connectivity of a new graph G2, a(G2), obtained from adding a new
edge to graph G1 is characterised by

a(G1)≤ a(G2)≤ a(G1)+2 (5.9)

where v and w are two nodes of the graph G, can be used to state that increasing the out-
degree d0 of some nodes of the graph (as in practice occurs when the algorithm is modified
to circulate the minimum and the maximum values) does also increase (or at least, does not
decrease) an upper bound of the algebraic connectivity of the graph.

Finally, we also mention that similar strategies to improve the convergence of network
consensus algorithms in directed graphs were also devised in [11], where the authors claim
that having as many as possible vertices with the maximum out-degree of n1, and having the
in-degree of each vertex around m/n, where m is the number of edges and n that of nodes,
can improve the convergence speed.

5.5 Simulations

5.5.1 Algorithm 1: Utility minimisation

In our first simulation we assume that there is a total budget of CO2 and we have a fleet of 20
hybrid vehicles that are not allowed to emit more than the budget. The objective here is to
minimize the total quantity of emitted PM. Furthermore, as in [65], we assume that vehicles
can regulate the quantity of emissions by deciding which fraction of the desired speed is
supplied by the ICE or by the electric motor. This is consistent with a power split hybrid
vehicle. In our simulations, we compute emissions using a simple ‘average speed model’,
and data taken from [6] set in an urban setting where vehicle speeds vary between 10 and
50 Km/h. Then, according to the data from [6] (vehicle code R019, corresponding to petrol
LDV s with an ICE equivalent of class EURO4, data can be found on page 164 and 106 for
CO2 and PM, respectively), one can approximate the relationship between PM and CO2 as

PM(CO2) = 50CO2
2 −19CO2 +6.4 (5.10)

where PM is expressed in mg/km and CO2 in kg/km, which is a good approximation
for speeds included between 10 and 50 km/h. This leads to the optimisation problem min

∑
N
i=1 fi(CO(i)

2 ) subject to ∑
N
i=1CO(i)

2 =C, where C is the overall CO2 budget allocated to the
fleet of vehicles, and CO(i)

2 is the amount of CO2 allocated to the ith vehicle. Note that this
problem is equivalent to the one described by equations (5.1) and (5.2) which has already
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been discussed in the previous sections. We assume that the vehicles have slightly different
parameters, due to characteristics specific of the particular vehicle (e.g. brand, age), and we
use the parameter values γ = 0.1 and ε = 0.01. Figure 5.1 shows how the CO2 budget is
shared among the fleet of vehicles in order to minimise PM emissions, using Algorithm 1.

Fig. 5.1 Here, Figure 5.1.a. shows how the CO2 budget is shared among the fleet of vehicles
in order to minimise PM emissions. At the same time, the CO2 budget is asymptotically
respected as shown in Figure 5.1.b.

5.5.2 Utility fairness

In the first simulation the goal was to minimize the production of PM while the total amount
of CO2 was the same as the budget. However, in some circumstances such a solution is unfair
and it is desired to have equal amount of pollution for all the vehicles. In the next simulation
the idea is to make the vehicles produce the same amount of PM while the total CO2 that
they emit should be equal to the budget. Such a solution is obviously not an optimal solution
for the environment because more PM can be produced compare to the previous solution but
it is a fair solution for the vehicles.

We now compare the three algorithms discussed in Section 5.4. We assume that the utility
function of node i is given by a function of the form fi = αilogDi, which is increasing and
concave. The idea of choosing the logarithm as the utility function is motivated by dispatch
type problems where economic utility is an increasing function of allocated emissions. In the
first iteration it is assumed that gi(Di(k)) = fi(Di(k)).

In figure 5.2 the performances of Algorithm 1 (Figure 5.2.b.), Algorithm 2 (Figure
5.2.c.) and Algorithm 3 (Figure 5.2.d.) are compared. Our simulation example has 41
vehicles, and the communication graph is shown in Figure 5.2.a. The parameters ε and γ

of (5.6) in the distributed algorithms are chosen as 0.002 and 0.0024 respectively. In the
case of the centralised algorithm, µ in (5.4) is chosen as 0.01, while βi of (5.5) is chosen
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Fig. 5.2 CO2 budget is shared in such a way to equalise the production of PM. In b, the
infrastructure communicates the value of λ (k) as explained in Algorithm 1, and the vehicles
do not communicate among themselves; in c the infrastructure only communicates the
produced CO2, and vehicles can communicate only with the neighbouring vehicles, in d
vehicles further receive some more information from the infrastructure as explained in
Algorithm 3. Note that this last opportunity algorithm improves the time of convergence of
the hybrid algorithm with respect to c.
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Fig. 5.3 Time evolution of the pollution of some of the vehicles is depicted in the case we are
interested in equalising the derivatives of the utility functions
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equal to 0.02. We further assume that the budget C is initially equally divided between the
vehicles. In the shown example, we assume that vehicles are able to communicate along the
roads, while buildings do not allow vehicles travelling along different roads to communicate
with each other. Note the increased convergence speed in Figure 5.2.d over that in Figure
5.2.c. However, making all vehicles produce the same amount of pollution might not be
itself a fair choice in some circumstances. For instance, it is reasonable to allocate a larger
pollution budget to vehicles that have to travel longer distances. In this case, we take a
different fairness approach, and choose gi(Di) =

∂ fi(Di)
∂Di

, as discussed in Section 3.2 and 4.2.
Accordingly, Figure 5.3 compares again Algorithms 1, 2 and 3 in Figures 5.3.a., 5.3.b. and
5.3.c., respectively. The multipliers ε and γ of (5.4), (5.5) and (5.6) are the same of Figure
5.2.

5.5.3 Utility fairness: a case study

We now present a more realistic application of the utility fairness paradigm. The case study
here is an extension of a previous work within the so-called TwinLIN initiative [113]. In
order to control the CO pollution in urban areas, the TwinLIN work implemented a central
control approach. The idea was to maintain the control variable below, or close to, a desired
level and the approach was forcing hybrid vehicles to travel either in electric or ICE mode.
The objective was achieved by assuming that the infrastructure could broadcast a probability
pev to all vehicles. This probability was then used locally by the vehicles, and possibly
modified to achieve other objectives at the same time, to decide whether they should travel in
electric or ICE mode.

By extending the Twinlin framework we now implement the utiltiy fairness strategy and
we use SUMO with its HBEFA-emission model and TRACI interface [68], to test our idea.
Figure 5.4 shows an arbitrary area of Berlin that we simulate by SUMO. We divided this
area into nine equivalent rectangular zones of the same size (in a 3 × 3 grid).

Then we apply a simplified version of Algorithm 2 to all these sub-areas. We assume
that in each sub-area there is a central infrastructure that broadcasts the feedback error signal
C −∑

N
i=1 Di(k) in order to keep the level of CO2 equal to the budget. At the same time,

each vehicle in the sub-area uses the error signal to further adjust the proportion of speed
generated from the ICE in order to minimise the overall quantity of emitted CO, according to
the algorithm the (5.8). SUMO simulation results are given in Figure 5.5, which shows the
level of CO2 in each sub-zone of the Berlin area of interest, and in Figure 5.6 which shows
the normalised CO produced by vehicles belonging to 5 different classes of vehicles (with
ICEs equivalent to EURO 1 to 5 vehicles). We approximately have the same level of CO2 in
each sub-zone of Berlin and each vehicle produces the same amount of CO.
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Fig. 5.4 Road network imported from OpenStreetMap [79], area around Rosenthaler Platz in
Berlin, Germany
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Fig. 5.5 Vehicles belonging to different classes produce the same quantity of CO.
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Fig. 5.6 Level of CO2 is maintained equal to the CO2 budget in each sub-zone of the Berlin
area of interest.



Chapter 6

Conclusion and future work

6.1 Conclusion

We began such thesis by describing the basic idea of Markov chains and defining some
quantities as the mean first passage time and the Kemeny constant. These quantities are
helpful to extract useful information about the network.

Then a theorem from [19] that reveals the clustering properties of the eigenvector that
is associated with the eigenvalue of second largest modulus of the transition matrix of a
Markov chain is provided. In the theorem in [19]it is necssary to assume that the eigenvalue
is real. Therefore, we extended the theorem to the case that the eigenvalue is complex, and
proved that the eigenvector corresponding to the complex eigenvalue can reveal clusters
of the network. To be more specific, we provided a theorem which says that when the
transition matrix has an eigenvalue whose real part and imaginary part are close to one and
zero respectively, the eigenvector corresponding to that eigenvalue reveals clusters of the
network.

Some applications of Markov chains in transportation networks were described. For
example we said how Markov chains have been used to model road networks, how they have
been used in emission applications, and how suitable and useful they have been in big- data
applications. In this thesis we used Markov chains to model different transportation networks
(bike sharing systems, bus networks, and multi-modal transportation systems). We started by
modeling the bike sharing systems and explained how to build the transition matrix of the
Markov chain. Then we validated our model by using some real data of the bike network
in Boston. We represented the clusters of the bike network identified by the eigenvector
corresponding the eigenvalue of the second largest modulus.

We also used Markov chains to model a bus network. We designed two graphs (waiting
graph and travel graph) for the bus network and we modelled the bus network in two different
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ways based on these graphs. In order to validate the Markov chain models, we simulated a
small part of Dublin city centre to extract data (we used SUMO as the tool). We validated
the Markov chain models by the data extracted by SUMO and extracted some quantities of
the Markov chains. These quantities provide useful information. For example, bus stops with
high density of people waiting for a bus, and the clusters of the bus network were identified.
In the Markov chain, we faced the situation in which the eigenvalue of the second largest
modulus was complex and we showed that the corresponding eigenvector was able to identify
the clusters of the network (the theory was mathematically proved before).

In order to extend our approach, we used the idea of Markov chains to model a multi-
modal transportation network, not just bike or just bus network, We used the same techniques
(as we used to model the bus network) to model the multi-modal network. We successfully
validated the models by using some real data from London. We introduced some Markov
chain based control applications to improve the network. For example, having access to
a critical area (like a hospital) should be reasonable such that the travel time should be
proportional to the distance. Balanced control of the waiting time at the stations and travel
time, and some clustering applications are other applications that we considered.

Since we used real data from Boston and London to validate our bike network and our
multi-modal network models, we need to know how trustworthy the data is. For this purpose,
we defined several indicators (for a single time step, a time step interval, single section of the
road, a corridor of the road etc) to determine the quality of data. The indicators are defined
such that they give us a value between zero and one. If the value is close to one, it means that
the quality of the data is high and if the value is close to zero, it means that the quality is
low. We tested these indicators on some data from London highways and we represented the
quality of the flow.

At the end we presented a framework for real time trading of emission rights between a
fleet of vehicles. Two solutions were discussed. The first one assumes, that a central instance
(e.g. the back-office of the fleet operator) broadcasts a simple information to listening
vehicles. The vehicles use this value as an input target value, which guides their behavior.
The second solution assumes additional V2V communication. It exploits the idea of (fully
decentralised) consensus of utility derivatives - thus implementing an optimal utility for the
fleet - with additional information given from the infrastructure to meet the global constraint.
We extended this idea with one more message exchanged between vehicles and infrastructure,
A framework for optimal real-time emissions trading in large scale vehicle fleets which
incorporates the maximum and minimum values of the utility derivatives to speed up the
convergence.
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6.2 Future work

Future work will involve extending the applications of Markov chains, mathematical proofs,
and the quality indicators.

We believe our result about clustering properties of the eigenvector corresponding to a
complex eigenvalue can be further investigated and developed in the future. For example
we can identify the nodes in different clusters, but identifying all the nodes of each cluster
and also identifying all the clusters in the network need more investigation. Moreover, our
complex eigenvalue is assumed to be a specific one which is very close to the 1+0i. We
need to know how close the eigenvalue should be to 1+0i. In other words if the imaginary
part of the eigenvalue becomes bigger and bigger, does the corresponding eigenvector still
reveal clustering properties?

The bike sharing systems application can be extended by relocating the bikes during the
day (and night) to avoid unpleasant situations. For example if a user goes to a station to get a
bike, the station should not be empty or if a user goes to a station to park a bike the station
should not be full. The solution can be an optimized route for the truck that relocates the
bikes.

In our applications we identified the nodes with high density of people waiting for a bus
or tube. One way to improve the network in the future can be increasing the frequency of the
buses or the tubes for those stops. Optimal frequency and optimal route for the tubes and
buses must be found such that the density of people decreases in those stops. Another way to
improve the network can be integrating taxis in the bus network or in the multi-modal public
transport network. Taxis can help the public transportation network by being available in the
areas that people must wait long at the stations. One of the applications that can be enhanced
is the accessibility of a critical area. In this thesis we added a few connections to the network
to have reasonable accessibility to the critical area. This solution can be further investigated
to find a new network which is optimized in the sense of accessibility to a specific area.

Clustering properties of the eigenvector corresponding the eigenvalue of the second
largest modulus can create applications for the future work. When a graph has clusters, it
is nearly decoupled. One can consider a converse problem. Sometimes a graph may be too
connected and problems in one part may spread too quickly to the other parts of the network.
Therefore, the challenge is designing networks where the spread of information is controlled.

The quality indicators that we defined in Chapter 4 are able to identify that the quality of
data is low which means that there is an error or a problem in the data. However, they are not
able to identify the reason (which can be a problem with the sensor , or an accident in the
road, or a real phenomena like storm or rain). The suggestion for future work is to define
indicators that are able to identify the reason of low quality data.
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Future work will also involve quantifying the rate of convergence of both methods in
Chapter 5 and mathematically proving that the method that we proposed in which we have
extra information from the centre in addition to the V2V communication is faster convergent.
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