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ABSTRACT

There are several characteristics of stem cells that make them unique in

comparison with other mammalian cells. First, they exist as unspecialized cells

lacking tissue-specific characteristics and they maintain this undifferentiated

phenotype until exposed to appropriate signals. Second, they have the capacity

for extensive self-renewal. Third, under the influence of local biological signals

they can differentiate into specialized cells with a phenotype fully distinct from

that of the precursor. Mesenchymal stem cells in the bone marrow apparently

conform to this definition. These cells, as their name implies, are the precursors of

cells of mesenchymal lineage, including cartilage, bone, fat, muscle, and tendon.

They are easily isolated from bone marrow and adipose tissue and from several

other sources. At this point we have an incomplete understanding of the regulation

of differentiation, commitment, and plasticity of the mesenchymal cell population

isolated from marrow. We can identify several of the signals that activate the cells

to differentiate along specific cell pathways and we can describe the phenotype of

the fully differentiated cells, but we understand little of the intermediate steps. In

addition, we know nothing about the reversibility of these pathways or the ability

of differentiated cells to revert to a stem cell phenotype. Nor do we understand

transdifferentiation or the ability of cells to differentiate horizontally from one

lineage to another. Furthermore, there is little clarity surrounding the niche, or

tissue-specific microenvironment, in which the cells reside. Despite the lack of

understanding of these cells and their natural history, it is clear that they have

therapeutic potential in a broad variety of clinical applications. There are many

disease targets for which mesenchymal stem cell therapy is being assessed in both

preclinical and clinical studies. This article assesses our current understanding of

the natural history of mesenchymal cell populations in marrow and other tissues,
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their control, proliferation, and differentiation, and attempts to assess accurately

the status of their therapeutic evaluation in different diseases.

KEYWORDS:Mesenchymal stem cells, transplantation, cell therapy, tissue

engineering, wound repair

Mesenchymal stem cells (MSCs) were first

isolated from rat bone marrow by Friedenstein and

coworkers.1 They described the isolation and ex-

pansion in culture of adherent fibroblastic cells and

their differentiation to osteocytes. They noted the

appearance of colonies of cells in culture and de-

duced that each colony was derived from a single

precursor, or colony-forming unit. The term col-

ony-forming unit–fibroblastic (CFU-F) is often

used in this context. Friedenstein’s work has re-

ceived somewhat less attention than it deserved, and

it was some time before the magnitude of his

contribution was realized. Now, however, we fully

acknowledge the debt we owe and appreciate his

insight into progenitor cell populations in bone

marrow. Over the past decade there has been an

explosion of information that has added to our

understanding of stem cell biology. In many

ways it was possible to learn from the efforts

of hematopoietic stem cell (HSC) biologists

two decades earlier, especially in the technical and

experimental approaches used. However, at this

point MSCs are still less well understood than

HSCs and in some ways these cells have not been

fully defined.

MSCs reside within the stromal compart-

ment of bone marrow. They have the capacity to

differentiate into cells of connective tissue lineages,

including bone, fat, cartilage, and muscle. They also

provide the stromal support system for hematopoi-

esis. Although they represent a very small fraction of

the total population of nucleated cells in marrow,

they can be isolated and expanded with high effi-

ciency and induced to differentiate under well-

defined culture conditions. These cells have gener-

ated a great deal of interest because of their poten-

tial use in regenerative medicine. Although the

therapeutic testing of these cells has progressed

well, there are still many questions to be addressed

concerning the role of endogenous populations of

stem cells in the adult and the function of various

stem cell niches. In addition, there are several

aspects of the implanted cell-host interaction that

need to be addressed as we attempt to understand

the mechanisms underlying these therapies. Of

particular importance are the host immune response

to implanted cells, homing mechanisms that dir-

ect these cells to a site of injury, and their differ-

entiation under the influence of host-derived

signals. This article describes the characteristics of

MSCs and provides some examples of clinical ap-

proaches in MSC therapy that are being evaluated.

ISOLATION AND EXPANSION OF

MESENCHYMAL STEM CELLS

MSCs represent about 0.0001% of the total pop-

ulation of nucleated cells in marrow. Despite their

rarity, they can be isolated and expanded with

efficiency and induced to differentiate to multiple

lineages under defined culture conditions. They are

generally isolated from an aspirate of bone marrow

harvested from the superior iliac crest of the pelvis

in humans. In larger animals2–5 marrow is often

obtained from the same site, and in rodents it is

generally harvested from the mid-diaphysis of the

tibia or femur. Although they represent a minor

fraction of the total nucleated cell population in

marrow, MSCs can be plated and enriched using

standard cell culture techniques. Frequently, the

whole marrow sample is subjected to fractionation

on a density gradient solution such as Percoll, after

which the cells are plated at a density of about

1.6� 105 cells/cm2. Cells are generally cultured in
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basal medium such as Dulbecco’s modified Eagle’s

medium (high glucose) in the presence of 10% fetal

bovine serum.6 One of the technical challenges

regarding the isolation and culture expansion of

human MSCs (and those of other species) is this

dependence on fetal bovine serum. This has a more

serious element because it is also batch specific. This

means that certain batches of sera give better results

than others. Little is known about the detailed

composition of positive sera, but a serum screen is

often recommended. Because the large-scale culture

of cells depends on the availability of suitable

batches of sera, this is a strategic impediment in

the commercialization of stem cell therapy. The

second major obstacle in the use of MSCs for

human therapy arises because of the risk of disease

transmission, such as transmission of the variant

form of Creutzfeldt-Jakob disease.

Because of these problems, several investiga-

tors have looked at alternatives to bovine serum for

MSC expansion. Lennon et al7 reported on the

development of a serum-free medium for rat MSCs,

but little advance has been made in the development

of a serum-free medium for human cells. An alter-

native approach in the clinical delivery of cells has

been the use of autologous patient serum. A study

performed by Stute et al8 indicated that the addition

of 10% autologous serum allowed the expansion and

osteogenic activation of bone marrow–derived

MSCs in a manner that was comparable with fetal

bovine serum. This is an encouraging result, and

this question will certainly be studied by others. In

the meantime, the issue of serum-free media con-

ditions for the preparation of cells for human use is

one that will continue to affect the development of

clinically acceptable protocols.

MSCs in culture have a fibroblastic morphol-

ogy and adhere to the tissue culture substrate

(Fig. 1). In fact, their adherent nature serves as a

functional definition of phenotype. Primary cultures

are maintained for 12 to 16 days, during which time

the HSC population is depleted. The addition of

growth factor supplements such as fibroblast growth

factor-2 (FGF-2) to primary cultures of human

MSCs was reported by Martin et al9 to lead to an

enhanced osteogenic potential. Although this effect

was not observed with murine MSCs,10 the addi-

tion of FGF-2 is associated with the selection of

cells with increased telomere length.11

Phinney et al10 reported substantial variation

in the yield and level of expression of alkaline

phosphatase in MSCs prepared from different

strains of inbred mice. They also noted the persis-

tence of CD45þ and CD11bþ pre–B cell progen-

itors and granulocytic and monocytic precursors in

these cultures. Nonetheless, a fraction of these

adherent cells represented true MSCs, as shown

by osteogenic and adipogenic activity. These obser-

vations led to the development of useful methods

involving CD34/CD45/CD11b immunodepletion

to generate purified MSC preparations.12

Further characterization of the conditions

required for culturing progenitor cells from murine

and rat bone marrow was performed by Jiang et al.13

These authors found that murine, but not human,

cells required leukemia inhibitory factor (LIF) for

expansion. Further, they reported that rat cells

required epidermal growth factor (EGF) and pla-

telet-derived growth factor-BB (PDGF-BB) in

addition to LIF, conditions similar to those re-

quired for embryonic stem cells. The cells, referred

to as multipotent adult progenitor cells (MAPCs),

were found to have the capacity to differentiate into

cells with mesodermal, neuroectodermal, and endo-

dermal characteristics in vitro and, when injected

into an early blastocyst, gave rise to most somatic

cell types. These observations indicated that the

plasticity of cell populations in the marrow is greater

than previously understood. In an attempt to under-

stand the effect of different culture protocols on cell

phenotype, Lodie et al14 performed a systematic

comparison of cells isolated from human marrow

and cultured in either 10% FBS, 0.5% FBS supple-

mented with FGF-2, or 2% FBS supplemented

with EGF and PDGF-BB. These authors reported

little functional difference between the cells isolated

by any protocol, in terms of surface marker expres-

sion and differentiation potential. Taken together,

these results illustrate the complexity of subpopu-

lations of bone marrow cells, the need to evaluate
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Figure 1 Undifferentiated mesenchymal stem

cells grown in monolayer culture (A) and after

differentiation along the osteogenic (B), adipogenic

(C), and chondrogenic pathways (D and E). Cell

differentiation in these cultures was observed fol-

lowing staining with von Kossa (B), Nile red O (C),

and Safranin O (D) and by immunostaining with an

antibody specific for type II collagen (E). From Barry

and Murphy.15
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isolation techniques with care, and the need to

identify new cell-specific markers.

DIFFERENTIATION

The differentiation of MSCs into bone, cartilage,

and fat has been well described. Osteogenic differ-

entiation occurs when cells are cultured in a mono-

layer in the presence of b-glycerol-phosphate,
ascorbic acid-2-phosphate, dexamethasone, and

fetal bovine serum (Fig. 1B). Differentiation is

accompanied by an alteration in morphology, upre-

gulation of alkaline phosphatase activity, and the

elaboration of a mineralized extracellular matrix.

The ideal culture environment for the induc-

tion of chondrogenesis of MSCs consists of a three-

dimensional culture format, serum-free medium,

and the presence of a member of the transforming

growth factor-b (TGF-b) superfamily (Fig. 1D–E).

Under these conditions, the cells undergo a rapid

and dramatic morphological change and begin to

express several cartilage-specific extracellular matrix

components. This is accompanied by a rapid accu-

mulation of glycosaminoglycan. TGF-b1, b2, and
b3 have the ability to induce this response, and

TGF-b2 and b3 are more effective than b1 in

promoting chondrogenesis.16 This may relate to

the abundance of these isoforms in bone and

their role in fracture callus formation and wound

healing.

MSCs cultured in monolayer in the presence

of isobutylmethylxanthine become adipocytes with

the production of large lipid-filled vacuoles

(Fig. 1C). Adipogenic differentiation of MSCs is

induced by the nuclear receptor and transcription

factor, peroxisome proliferator-activated receptor-g
(PPAR-g), as well as fatty acid synthetase. Both

interleukin-1 and tumor necrosis factor-a suppress

adipogenesis, and this is mediated through nuclear

factor-�B (NF-�B) activated by the TAK1/TAB1/

NF-�B induction kinase cascade.17 The effect of

inhibition by these cytokines is to direct differ-

entiation toward osteogenesis.

Differentiation toward a myoblast pheno-

type, induced by 5-azacytidine, was reported by

Taylor and Jones for embryonic and adult cells18

and by Wakitani et al for rat stromal cells.19

Phinney et al found that exposure of mouse

MSCs to amphotericin B, but not 5-azacytidine,

resulted in the formation of multinucleated fibers

resembling myotubes.10 There are other examples of

in vivo differentiation associated with therapeutic

delivery. Gussoni et al20 showed that murine

MSCs, injected into the quadriceps muscle of mdx

mice, expressed dystrophin in association with the

muscle fiber sarcolemma, and they pointed toward a

potential therapy for muscular dystrophy. Toma

et al21 injected b-galactosidase–expressing human

MSCs into the left ventricle of CB17 SCID/beige

adult mice and found the labeled cells dispersed

throughout the myocardium and expressing desmin,

cardiac-specific troponin T, a-actinin and phospho-
lamban, all indicative of differentiation of the en-

grafted cells to a mature myocardial phenotype.

Induction of mouse, and human MSCs along

the neurogenic pathway has been described.22–27

Treatment of MSCs with isobutylmethylxanthine

and dibutyryl cyclic AMP induced expression of

early markers of neuronal differentiation,26 as did

EGF or brain-derived neurotrophic factor (BDNF)

in a neuronal growth medium.25 Transdifferentia-

tion of mouse marrow stromal-derived mature

osteoblasts and the stromal cells themselves to a

neural phenotype was achieved by treatment with

5-azacytidine in the presence of nerve growth

factor, BDNF, and neurotrophin-3.27 Treatment

of rat cells with dimethyl sulfoxide/butylated hy-

droxyanisole in the presence of basic FGF and

PDGF was also successful in inducing a neural

phenotype.22,23

THERAPEUTIC APPLICATIONS OF

MESENCHYMAL STEM CELLS

Stem cell therapy involves the transplantation of

autologous or allogeneic stem cells into patients,
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through either local delivery or systemic infusion.

There is a precedent in HSC transplantation, which

has been used for some years in the treatment of

leukemia and other cancers.28 Some striking exam-

ples of the therapeutic use of marrow-derived

MSCs have been reported. These address a broad

spectrum of indications, including cardiovascular

repair, treatment of lung fibrosis, spinal cord injury,

and bone and cartilage repair. Orlic et al29 showed

that locally delivered bone marrow cells can gen-

erate de novo myocardium, indicating that stem cell

therapy can be useful in treating coronary artery

disease. Stamm et al30 demonstrated the practical

utility of this approach in a study involving the

delivery of bone marrow cells into the infarct zone

in patients following myocardial infarction. The

result of this treatment was a dramatic improvement

in global heart function. Deb et al31 have also shown

engraftment of bone marrow–derived cardiomyo-

cytes in the adult heart following bone marrow

transplantation. Saito et al32 demonstrated that

MSCs are tolerated in a xenogeneic environment

while retaining their ability to be recruited to the

injured myocardium and undergo differentiation to

a cardiac phenotype.

MSCs have also been shown by Ortiz et al12

to engraft at high levels in lung tissue following

exposure to bleomycin and to offer protection

against bleomycin-induced lung injury, including

inflammation and collagen deposition. These ob-

servations have broad implications in the area of

lung disease associated with environmental damage.

Stem cells with the ability to differentiate

into neurons, astrocytes, and oligodendrocytes have

been isolated from rat spinal cord,33 and implanta-

tion of neural stem cells in an adult rat model of

spinal cord injury resulted in long-term functional

improvement.34 Embryonic stem cells are capable of

forming dopamine neurons in an animal model of

Parkinson’s disease.35 The ability of bone marrow–

derived stem cells to differentiate into neural line-

ages in vitro and after transplantation in both mice

and rats has been evaluated by Sanchez-Ramos,24

leading to the conclusion that they may be useful

in the treatment of stroke, traumatic injury, and

Parkinson’s disease. Furthermore, it was demon-

strated by Mezey et al that adult human bone mar-

row cells can enter the brain and generate neurons

after transplantation.36 These and other equally

dramatic observations underlie much of the current

excitement and optimism about the use of stem cell

therapy in the treatment of neuronal injury.

In the area of orthopedic medicine there are

also many examples of applications involving local

delivery of marrow stem cells. These include spine

fusion,37 the repair of segmental bone defects,38 and

craniotomy defects.39 Similar approaches have

also been described for the repair of focal defects

in articular cartilage.40,41 In an animal model of

osteoarthritis (OA) involving injury to the menis-

cus, delivery of stem cells by intra-articular injection

resulted in engraftment of those cells on the me-

niscus, fat pad, and synovium with regeneration

of meniscal tissue and protection of the cartilage.5

The chondroprotective effects seen in these

studies apparently derive from the regenerated me-

niscus because there is no evidence of direct engraft-

ment of the implanted cells on the fibrillated

cartilage.

There is accumulating evidence of the hypo-

immunogenic nature of MSCs, and this has broad

implications in terms of allogeneic therapy or the

delivery to a recipient of cells derived from an

unmatched donor. There are several reports describ-

ing the clinical use of allogeneic donor–mismatched

cells with little evidence of host immune rejection or

graft-versus-host disease (GVHD). For example,

allogeneic bone marrow transplantation in children

with osteogenesis imperfecta resulted in engraft-

ment of donor-derived MSCs and an increase in

new bone formation.42 Infusion of allogeneic MSCs

into patients with Hurler’s syndrome or metachro-

matic leukodystrophy showed no evidence of allor-

eactive T cells and no incidence of GVHD.43

Engraftment of allogeneic MSCs has also been

demonstrated in a patient with severe idiopathic

aplastic anemia with improvement of marrow stro-

mal function.44 Tables 1 and 2 summarize in vivo

studies involving preclinical or clinical evaluation of

MSC therapy in several disease targets.
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STEM CELL EXHAUSTION

IN DISEASE

It is interesting to consider that certain degenerative

conditions, where there is progressive tissue damage

and an inability to repair, may be due to the fact that

stem cell populations are depleted or functionally

altered. This has been considered in the case of OA,

a disease of the joints in which there is progressive

and irreversible loss of cartilage, with changes also

Table 1 Testing of Mesenchymal Stem Cell Therapy (MSC) in Animal Models of Disease

Indication

Animal Model/Route

of Delivery MSC Source Result Reference

Myocardial infarction Mouse/direct injection Lin�c-kitþ bone marrow

cells

De novo myocardium 29

Myocardial infarction Immunocompetent Lewis

rats/IV injection I week

before infarction

C57B1/6 mouse MSCs Donor-derived

cardiomyocytes and

angiogenesis

32

Muscular dystrophy mdx mouse/IV injection Normal mouse

muscle-derived MSCs

Partial restoration of

dystrophin expression

in affected muscle

20

Lung fibrosis Bleomycin (BLM)-sensitive

C57BL/6 mouse/ IV injection

BLM-resistant BALB/c

mouse

Reduced inflammation

and collagen deposition

12

Spine fusion Canine bone marrow–derived

cells/cancellous bone matrix

Autologous Improved bone grafting 37

Segmental bone

defects

Athymic rat/ceramic carrier

Canine/ceramic carrier

Human MSCs

Autologous MSCs

Enhanced bone formation

and improved biomechanics

45

Canine/ceramic carrier Allogeneic MSCs Enhanced bone formation 46

Enhanced bone formation 47

Craniotomy defect Immunocompromised

mouse/gelatin sponge

Alloplastic transgenic mouse

marrow stromal cells

> 99% repair within 2 weeks 39

Tendon defect Rabbit/contracted collagen

gel

Autologous MSCs Improved tendon biomechanics,

structure, and function

48

Meniscus Caprine/intra-articular injection Autologous MSCs Enhanced tissue formation

and reduced osteoarthritis

5

From Barry and Murphy.59

Table 2 Clinical Evaluation of Mesenchymal Stem Cells (MSCs)

Indication

Source/Route

of Delivery Result Reference

Myocardial infarction AC133þ bone marrow

cells/direct injection

Function enhanced in 4 of 6 and

tissue perfusion improved

strikingly in 5 of 6 patients

49

Osteogenesis imperfecta Allogeneic bone marrow

transplantation/infusion

New dense bone formation and engraftment

of donor-derived cells in 3 patients

42

Large bone defect Autologous bone marrow

stromal cells/scaffold

Enhanced bone repair in 1

of 1 patient

38

Metachromatic leukodystrophy

(MLD) and Hurler syndrome

Allogeneic MSCs/infusion Significant improvements in nerve

conduction velocities in 4 of 6 MLD

patients. No graft-versus-host disease.

43

Severe idiopathic aplastic anemia Allogeneic MSCs/infusion Improved stroma in 1 of 1 patient 44

From Barry and Murphy.59
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in the underlying bone. In a study described by

Murphy et al,50 MSCs were prepared from marrow

taken from patients with end-stage OA undergoing

joint replacement surgery. The marrow samples

were harvested both from the site of surgery (either

the hip or the knee) and from the iliac crest. It was

found that the proliferative capacity of the cells was

substantially reduced in the osteoarthritic patients,

and this was independent of the site of harvest. In

addition, the chondrogenic and adipogenic activity

of the cells was significantly reduced, again inde-

pendent of the site of marrow harvest. These effects

were apparently disease related and not age related,

but additional studies are necessary to confirm these

preliminary observations. However, the data lead to

an attractive notion that susceptibility to OA or

other degenerative diseases may be due to the

reduced mobilization or proliferation of stem cells,

and, even if mobilized, the cells may have a limited

capacity to differentiate, leading to defective tissue

repair. This may be a simple interpretation, and the

altered stem cell activity may also be interpreted as a

response of the cells to the disease environment,

specifically the elevated levels of inflammatory cy-

tokines seen in OA. Further, the effect of anti-

inflammatory drugs on cell activity needs to be

taken into account.

HOST IMMUNE RESPONSE TO

ALLOGENEIC TRANSPLANTATION

Several studies have suggested that MSCs are

immunosuppressive or hypoimmunogenic51–56 with

allogeneic transplantation to an immunocompetent

host possible. MSCs may in fact play a role in

enabling alloantigen tolerance.42,43 Present at

low levels in HSC transfers, they are considered

to be immunosuppressive, and human MSCs

can promote unrelated HSC survival and suppress

T cell activation in a nonobese diabetic–severe com-

bined immunodeficiency (NOD-SCID) model.57

Numerous therapeutic possibilities based on this

immunosuppressive effect have been proposed.58

Using bone marrow–derived allogeneic Flk-1 Sca-

1 MSCs in a mouse model, Deng et al not only

demonstrated long-term tolerance of allogeneic skin

grafts but also provided data suggesting the induc-

tion of hematopoietic chimerism.59 Aggarwal and

Pittenger demonstrated that human MSCs modu-

late allogeneic immune responses60 and supported

the tolerance of allogeneic MSCs. There is a broad

body of data using different cells, different species,

and diverse readouts all supporting the description

of MSCs as being exceptions to the regular alloge-

neic rejection mechanisms. These findings have

been seen with human cells, with rat and mouse

cells, and even in xenogeneic mixed lymphocyte

reaction.51,61–64

It is clear that a broad body of data supports

the description of MSCs as being exceptions to the

regular allogeneic rejection mechanisms. Two ques-

tions arise out of these observations. First, how do

MSCs mediate this effect? This gap in our under-

standing has prompted the focus of research to the

discovery of mechanisms by which hypoimmuno-

genicity is maintained. Two mechanisms have been

evoked, one involving direct cell-cell interaction,

the other requiring the secretion of immunomodu-

latory factors. The second question relates to the

mechanism by which allogenic MSCS escape im-

mune detection and is more difficult to approach.

Nonetheless, these are questions of critical impor-

tance that must be addressed before we can proceed

with the widespread use of allogeneic MSCs in

therapy.

CONCLUSION

It seems that MSC therapy is likely to be both

effective and safe for use in several disease targets,

but there are still many questions to be answered

regarding the fate of transplanted cells and the

mechanism of repair. It is necessary to continue to

study the pharmacokinetics of transplanted cells and

mechanisms of engraftment, homing, and in vivo

differentiation. Chronic toxicology studies will also
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be necessary as the clinical use of these cells becomes

widespread. It is clear that MSCs present many

fascinating opportunities for the study of stem cell

differentiation, plasticity transdifferentiation, en-

graftment, and homing. Another exciting develop-

ment is the use of stem cells as vehicles for the

delivery of therapeutic genes. As the safety profile

of stem cells is more fully understood and more

advanced and safer gene vectors are developed,

it may be that the combination of stem cell and

gene therapy is a powerful new approach for the

treatment of several diseases that are currently

untreatable.
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