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Abstract.

The geometry of minimal surfaces generated by charge 2 Bogomolny monopoles
on R3 is described in terms of the moduli space parameter k. We find that
the distribution of Gaussian curvature on the surface reflects the monopole
structure. This is elucidated by the behaviour of the Gauss maps of the minimal
surfaces.

2000 Mathematics Subject Classification. Primary 53A10; Secondary 53C07,
81T13

§1. Introduction.

In [5], it was shown that the data comprising a static SU(2) monopole on R3 are
encoded in its spectral curve, an auxiliary algebraic curve in T, the total space of the
holomorphic tangent bundle of P1. T is viewed as the space of all oriented lines in
R3, and the spectral curve parameterises the monopole’s spectral lines. These lines
should be thought of as going through the locations of the monopole particles, [6].
For a monopole of charge ℓ, the spectral curve is an ℓ-fold branched cover of P1, of
virtual genus (ℓ− 1)2. For further details and background information see [2], [11],
[20] and [21].

Recall that T compactifies, by the addition of a single point at infinity, to a quadric
cone C(Q), with vertex v say, in P3. Classical osculation duality gives a correspon-
dence between full curves on C(Q), and certain full curves in P ∗

3 = C3 ∪ v∗. The
latter give null curves in C3, and hence project to (branched) minimal surfaces in
R3: in fact all non-planar minimal surfaces in R3 arise in this way. This correspon-
dence was discovered by Lie, see [3], [5]. The main features of a minimal surface,
i.e. the total Gaussian curvature, end structure, branch points and symmetries may
be read off the auxiliary curve in T, see [16] for further details.

Accordingly, a monopole on R3 generates, and is determined by, an auxiliary min-
imal surface in R3: this was observed in [1] and [5]. (However, the correspondence
is not understood directly, but via the spectral curve.) Two simple questions arise:

1On leave at: Faculty of Mathematics, University of Southampton, Southampton SO17 1BJ,

England.
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• what do these minimal surfaces look like?

• How does the geometry of the auxiliary surface reflect a monopole’s structure?

Unfortunately, for charge ℓ ≥ 2, the surfaces are extremely complicated. However,
we show that for ℓ = 2, the key features are tractible, describe them, and indicate
briefly how they relate to the monopole.

Recall that the orbits of the Atiyah-Hitchin manifold M0
2, are parameterised by

the elliptic modulus k ∈ [0, 1), see [2]. For k 6= 0, each orbit contains a reduced,
centred monopole with elliptic spectral curve Sk, as described in §2. The main
technical contribution here, which is given in Theorem 4.7, is the derivation of a set
of tractible formulae, involving elliptic functions, for the components of the auxiliary
null curves determined by osculation of Sk, k ∈ (0, 1).

Now, for a generic monopole of charge ℓ ∈ N, the auxiliary minimal surface is
complete, finitely branched and of finite total curvature −4πℓ, ℓ being equal to the
degree of the Gauss map of the minimal surface. The global structure of such objects
is well understood, largely as a result of the seminal work of Osserman [14], see [13]
and [15], for further details. Their geometry is ‘concentrated’ in the sense that,
‘from infinity one sees a finite number of planes passing through the origin’, see [12]
for a precise statement.

Observe then that the total Gaussian curvature on the minimal surface equals minus
the total energy of the monopole. The results described here show moreover that
for ℓ = 2, the local distribution of Gaussian curvature on the minimal surfaces, as k
varies, reflects the ‘monopole dynamics’. This is closely related to the behaviour of
the area measure induced on the spectral curve by the monopole’s ‘Gauss map’, i.e.
the branched covering map π : Sk −→ P1. Thus the energy of the monopole is tied
to the twisting of its spectral lines.

For ℓ = 2, k 6= 0, the auxiliary minimal surfaces are two ended Klein bottles, where
the ends are perpendicular to the spectral lines through the origin. The geometry
of each of these surfaces is organised by the configuration of six branch points in the
metric on the surface. These are connected by a ‘pointed star’ on the surface, ΓSk

,
formed from the image of four of the quarter-period circles of Sk. The Gaussian
curvature localises on parts of this star to a degree that varies with k. In particu-
lar, as k −→ 1, and the monopoles become well-separated, the Gaussian curvature
localises at the two monopole particles. Moreover, in this limit, the normal lines
to the minimal surface in the vicinity of the particles become exponentially close,
relative to separation distance, to monopole spectral lines. Monopole scattering, cf.
[2], is reflected by an exchange of Gaussian curvature in which ‘particles of curva-
ture’ become more or less attenuated according to their role in the interaction: the
behaviour of the Gauss maps of the minimal surfaces on ΓSk

, as k varies, elucidates
this.

The paper is organised as follows. In §2 we briefly review background material
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about osculation duality. In §3 we see what can be said about the charge 2 case
prior to writing down explicit formulae. §4 contains the main technical results of
the paper. These enable us to write down explicit formulae for the minimal surfaces
which elucidate a number of subtle features of their geometry. In particular, they
furnish a useful formula for the Gauss maps of these surfaces in terms of the moduli
parameter k. This allows us to study the area measure induced by the Gauss maps
on the spectral curves in the limits k −→ 0, 1. These and other issues are explored
in §5 − §8.

§2. Osculation duality.

Let π : T −→ P1 be the projection map. Let ζ be an affine coordinate on P1

and (ζ, η) be the coordinates given by (ζ, η) −→ η
d

dζ
. H0(P1,O(T)) ∼= C3 and the

real structure τ : T −→ T, given in local coordinates by (ζ, η) −→ (−ζ−1
,−ηζ−2

),
determines the R3 of τ -invariant real sections of the form

σ(x1,x2,x3)(ζ) = ((x1 + ix2) − 2x3ζ − (x1 − ix2)ζ
2)
d

dζ
.

T parameterizes the oriented lines in R3 and, equivalently, the affine null planes in
C3.

Intrinsically, classical osculation duality may be understood in terms of the family of
global sections osculating a curve S ⊂ T; this family determines a null holomorphic
curve Ω : S∗ −→ C3 ∼= H0(P1,O(T)), where S∗ is the desingularization of S,
punctured at the finite number of points that correspond to points where S osculates
a fibre. By duality, the original curve parameterizes the set of affine null hyperplanes
osculating the null curve in C3.

If S ⊂ T, an ℓ-fold branched covering of P1, ℓ ≥ 2, is an irreducible algebraic
curve, then osculation duality determines a (finitely) branched minimal immersion
φ = Re(Ω) : S∗ −→ R3. The branched metric, ds2, induced on S∗, is complete
in the sense that every curve that approaches a puncture has infinite length. (The
punctures correspond to the ends of the minimal surface.) However it will in general
be (finitely) branched, i.e. have isolated zeros. In summary, cf. [16], the geometry
of the minimal surface may be discerned from S as follows:

• the ends of the minimal surface correspond to the points where S osculates a fibre;

• the zeros of the branched metric are caused by hyperosculating sections;

• the Gauss map may be identified with π|S , and hence has degree ℓ;

• the total Gaussian curvature
∫∫ Kds2 of the induced branched metric equals −4πℓ;

• if S is τ -invariant then φ factors through S/τ ;
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• if G ⊂ SO(3) is the symmetry group of a regular solid and G̃ ⊂ SU(2) the
corresponding binary group and S is invariant under G̃ then G is a subgroup of the
symmetry group of the corresponding minimal surface.

Remark. Ω induces the branched metric 4ds2 on S∗.

The geometric correspondence described above underlies the Weierstrass formulae
in free form. In ‘global form’, in which S is described by a pair of meromorphic
functions on a Riemann surface: (g, f) : M −→ C2, the coordinate functions of the
null curve Ω : M∗ −→ C3 are given by:

Ω1 =
1

2

(

−1

2
(1 − g2)

d2f

dg2
− g

df

dg
+ f

)

(1)

Ω2 =
i

2

(

−1

2
(1 + g2)

d2f

dg2
+ g

df

dg
− f

)

(2)

Ω3 =
1

2

(

g
d2f

dg2
− df

dg

)

(3)

where
df

dg
=
f ′

g′
and

d2f

dg2
=

(

df

dg

)′ 1

g′
, etc. φ =Re(Ω) describes a branched minimal

surface in R3. Note that g may be identified with the classical Gauss map of φ.

Remark. These formulae are not canonical: their precise shape is determined by the
real structure τ , and thus the choice of R3 in H0(P1,O(T)) made in [5]. They differ
slightly from the classical formulae, [3]. (Note however that the formulae given in
the appendix of [5] require slight adjustment.)

The following is an immediate consequence of the nature of osculation duality.

Proposition 2.1 Suppose that S ⊂ T is the spectral curve of a monopole and
Ω : S∗ −→ C3, the associated null curve. Then the affine null planes in C3 that
osculate the null curve intersect R3 in the spectral lines of the monopole.

Remark. This requires clarification for charge 1, since in that case the spectral curve
is a section, and osculation of it is degenerate, in the sense that it gives only a point
in C3. The affine null planes through a point in C3 should be viewed as ‘osculating
that point’. Similar remarks apply to any spectral curve which includes a global
section as a component.

§3. Osculation of spectral curves of charge 2 monopoles.

In this section we describe the main features of the minimal surfaces generated
by osculation of charge 2 monopole spectral curves. At this point we refrain from
deriving formulae for the minimal surfaces: these are discussed in the next section.
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Hurtubise [8], showed that the spectral curve S, of a centred charge 2 monopole,
may by rotation of R3, be brought to the reduced form:

η2 = r1ζ − r2ζ
2 − r1ζ

3, r1, r2 ∈ R, r1 ≥ 0. (4)

When r1 6= 0, the triviality of L2|S constrains the real period: ω1 = 2
√
r1. At

r1 = 0, S degenerates into the pair of global sections given by η2 = −π2ζ2/4: this
gives the reduced form for an axially symmetric monopole. Observe that if r1 6= 0,
then S is a smooth τ -invariant elliptic curve on T. τ restricted to S takes the form
τ(u) = −u+ ω3/2, and has no fixed points: the associated lattice is rectangular.

When r1 6= 0, the branch points of S are at 0, ∞, −a, and a−1, where −a and
a−1 are the roots of ζ2 − r2

r1
ζ − 1 = 0. These two antipodal pairs give α and

β, the spectral lines through 0, the centre of the monopole. The monopole has
a distinguished bisector e1, of the angle between α and β: this is the monopole’s
main axis. (In the axially symmetric case this is the axis of symmetry.) The second
bisector, e2, is the monopole’s Higgs axis. The perpendicular through 0 to e1 and
e2, is denoted e3, and called the third axis. Having fixed e1, e2 and e3, the monopole
is determined by an angle 0 ≤ θ < π/2. (θ = 0, gives a centred axially symmetric
monopole.) See [2] for further details.

It is observed in [8] that S has symmetries, permuting the roots of (4): these corre-
spond to the subgroup D of SO(3), comprising rotations through π about the axes
e1, e2 and e3 in R3. D is of course isomorphic to Z2 × Z2.

Following [2], let tan(2θ) = 2r1

r2
. 2θ is the angle between the lines α and β. It is

natural and eases calculation to introduce the modulus k = sin(θ), together with
the complementary modulus k′ = cos(θ). SO(3) acts naturally on the moduli space
M0

2 of centred 2-monopoles. The orbits are parameterized by θ, or equivalently,
k ∈ [0, 1). For θ = 0, the orbit is isomorphic to RP2: this parameterizes the centred
axially symmetric 2-monopoles. For θ 6= 0, the orbit is isomorphic to SO(3)/D. In
[2], it is observed that the triviality of L2|S means that (4) may be rewritten:

η2 = K(k)2ζ(kk′(ζ2 − 1) + (k2 − (k′)2)ζ), (5)

where as usual, K(k) =

∫ π/2

0

dψ
√

1 − k2 sin2 ψ
. Accordingly, emphasising k depen-

dence, from now on we refer to this curve as Sk.

Now, a global section σz of T, corresponding to z ∈ C3, osculates Sk at p if and
only if σz osculates Sk at τ(p), thus Ω(τ(u)) = Ω(u), and hence φ(τ(u)) = φ(u).
A cursory inspection of the structure of the Weierstrass formulae for these surfaces
shows that φ(−u) = −φ(u), (cf. Theorem 4.7). These mean that φ enjoys many
symmetries on the fundamental period rectangle. In particular observe that φ is
defined on the doubly punctured Klein bottle Sk/τ − {[0], [ω3/2]}.
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As a curve on C(Q) in P3, Sk has degree 4. The points of hyperosculation on Sk are
the points of order 4 in its group structure: this follows from Abel’s theorem. Each
of the four branch points of π|Sk

, is a point of hyperosculation since the osculating
hyperplane at a branch point b say, lies tangent to C(Q) along the fibre through b,
and thus intersects Sk with multiplicity 4 at b. These give the points of order 2 in
the group structure of Sk. They come in two antipodal pairs and correspond to the
two ends of the minimal surface in R3. This leaves twelve zeros in the branched
metric on S∗

k : these pass to six branch points on Sk/τ − {[0], [ω3/2]}. Comparing
these observations with the properties of osculation duality listed in §2 gives:

Proposition 3.1 (i) Osculation of the spectral curve Sk of a non-axially symmetric
centred 2-monopole gives a branched minimal immersion of the punctured Klein
bottle φ : Sk/τ − {[0], [ω3/2]} −→ R3, with the following properties:

(ii) the total Gaussian curvature of the induced branched metric on S∗
k equals −8π.

(iii) The minimal surface has two ends. These are perpendicular to the two spectral
lines through the monopole’s centre.

(iv) There are six branch points, (of ramification index 1), on the minimal surface
in R3. These are:

±β1 = ±φ(ω1/4), ±β2 = ±φ(ω2/4) and ± β3 = ±φ(ω3/4).

(v) The image of φ : Sk/τ − {[0], [ω3/2]} −→ R3, is invariant under D.

Remark. Osculation of the (reduced and centred) axially symmetric 2-monopole
spectral curve yields the pair of points (0, 0,± iπ

4 ) in C3. (So the auxiliary ‘minimal
surface’ in this case is the point at the origin.)

Locally, around each of the points of hyperosculation that are not branch points
of π|Sk

, Sk may be described by η = a4ζ
4 + O(ζ5), for some a4 ∈ C. Hence at

each of the branch points the minimal surface is locally a perturbation of a rescaled
associate surface of the minimal surface determined by osculation of η = ζ4. It is
easy to see directly from calculation that the latter maps the lines x = 0, y = 1√

3
x,

and y = − 1√
3
x, to the three rays in the (x1, x2, 0)-plane at 120o, where x = 0,

is mapped 2 : 1 onto {(x1, 0) ; x1 ≤ 0}, etc. Each of the 60o sectors in the
(x, y)-plane is embedded, along with the image of its reflection through the origin,
to a surface bounded by two of the rays, cf. Figure 6 in [13]. This triple curve
intersection structure at the branch point is stable under higher order perturbations
and multiplication by a4. (Of course, it ‘twists’ if a4 6∈ R.) Hence we see six of these
triple curve intersection structures at the branch points on the monopole minimal
surface.
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§4. Formulae for the null curve.

In [8], the following substitutions are introduced for r1 6= 0:

ζ = ζ̃ + k2 and η = k1η̃,

where k1 = 1
2

√
r1 and k2 = r2/3r1. Thus (4) becomes

η̃2 = 4ζ̃3 − g2ζ̃ − g3, (6)

where g2 = 12k2
2 + 4 and g3 = 8k3

2 + 4k2.

If ℘(u) is the Weierstrass ℘-function determined by g2 and g3, then the spectral
curve S is uniformised by ζ = g(u) = ℘(u) + k2 and η = f(u) = ω1

4 ℘
′(u).

Remark. It should be noted that direct substitution of these into the Weierstrass
formulae (1)-(3), yields very complicated expressions. We now outline another ap-
proach which results in the relatively simple formulae described in Theorem 4.7
below. First the meaning of the parameter k2 is clarified:

Proposition 4.1 k2 = −e3.
Proof. ℘′(ωj/2) = 0, implies 4e3j − g2ej − g3 = 0, for j = 1, 2, 3, and hence

(ej + k2)(e
2
j − k2ej − (1 + 2k2

2)) = 0, for j = 1, 2, 3.

The roots of the quadratic factor are (k2 ±
√

9k2
2 + 4 )/2. The ordering of the

roots follows from the elementary fact that for a rectangular lattice ℘(u) takes real
values, and is strictly decreasing as u passes around the rectangle with vertices
0, ω1/2, ω3/2, ω2/2, and hence e1 > e3 > e2, see [4]. It follows that k2 = −e3. 2

Corollary 4.2 The half-period values of ℘(u) are given by:

e1 =
2 − k2

3kk′
, e2 = −1 + k2

3kk′
and e3 =

2k2 − 1

3kk′
. (7)

Proof. From the definitions of θ and k2, it follows that k2 =
1 − 2k2

3kk′
. The result is

immediate. 2

Remarks. (i) A simple calculation shows that

g2 =
4(1 − k2 + k4)

3k2k′2
and g3 =

4(k2 − 2)(k2 + 1)(2k2 − 1)

27k3k′3
. (8)

(ii) The periods of Sk are given by:

ω1 = 2
√
kk′K(k) and ω2 = 2i

√
kk′K ′(k), (9)
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where, as usual, K ′(k) = K(k′), [2].

Lemma 4.3 For ℘(u), with g2, g3 determined by k as above:

1 + 2
k′

k
(℘(u) − e3) − (℘(u) − e3)

2 = ℘′(u)
√

℘(2u) − e1 (10)

−1 + 2
k

k′
(℘(u) − e3) + (℘(u) − e3)

2 = −℘′(u)
√

℘(2u) − e2 (11)

1 + (℘(u) − e3)
2 = −℘′(u)

√

℘(2u) − e3 (12)

where, in the first formula, i times the radical is positive at u = ω2/4, and in the
other two, the radical is positive at u = ω1/4.

Proof. The quarter-period formulae of the Appendix, together with the translation
formulae, yield:

℘(
ω1

4
) − e3 = ℘(

3ω1

4
) − e3 =

1 + k′

k
,

℘(
ω1

4
+
ω2

2
) − e3 = ℘(

3ω1

4
+
ω2

2
) − e3 =

−1 + k′

k
.

Now observe that (1 + k′)/k, (−1 + k′)/k are the roots of

1 + 2
k′

k
x− x2 = 0.

It is clear that both sides in (10) have poles of order −4 at 0, and zeros of order 1
at ω1/4, 3ω1/4, ω1/4 +ω2/2 and 3ω1/4 +ω2/2. The scaling is fixed at ω2/4, cf. the
Appendix. (11) and (12) are proved similiarly. 2

Definition. Let fj(u) denote the square root of ℘(u) − ej , whose residue at the
origin is 1.

These choices of signs accord with those in Lemma 4.3.

Remark. This notation follows [4].

Lemma 4.4 Substitution of g(u) = ℘(u) − e3, f(u) =
ω1

4
℘′(u), into (2) yields:

Ω2(u) =
iω1

4

{

1 + (℘(u) − e3)
2

℘′(u)

}3

.

Proof. First observe that

g
df

dg
− f =

ω1

4

{

gg′′ − (g′)2

g′

}

8



=
ω1

4℘′

{

2℘3 − 6e3℘
2 +

g2
2
℘+ g3 + e3

g2
2

}

=
ω1(1 + g2)g

2g′
,

since g2 = 4(1 + 3e23), and g3 = −4e3(1 + 2e23).

Now observe that
d2f

dg2
=
ω1

4

{

g′′′g′ − (g′′)2

(g′)3

}

, and hence

Ω2 =
iω1(1 + g2)

16g′3

{

4g(g′)2 − g′′′g′ + (g′′)2
}

=
iω1(1 + g2)

16g′3

{

4℘4 − 16e3℘
3 + 2g2℘

2 + 4(2g3 + g2e3)℘+ 4e3g3 +
g2
2

4

}

=
iω1

4

{

1 + g2

g′

}3

,

again using g2 = 4(1 + 3e23), and g3 = −4e3(1 + 2e23). 2

Lemma 4.5
Ω2(u) = −iω1

4
f3(2u)

3.

Proof. This follows immediately from (12) and 4.4. 2

Lemma 4.6 For g(u) = ℘(u) − e3, and f(u) =
ω1

4
℘′(u):

d3f

dg3
(u) = −3ω1

℘′(2u)
℘′(u)2

. (13)

Proof. Differentiate (2) and the formula of Lemma 4.5 and compare, using (12). 2

With respect to the k-monopole coordinates (e1, e2, e3), the null curve is represented
by Φ = AkΩ, i.e.







Φ1

Φ2

Φ3






=







−k 0 k′

k′ 0 k
0 1 0













Ω1

Ω2

Ω3






(14)

9



Theorem 4.7 Suppose that k ∈ (0, 1), determines g2, g3, as in (8), and ℘(u) is
the associated Weierstrass function. The null curve that is generated by osculation

of the spectral curve described implicitly by g(u) = ℘(u) − e3, f(u) =
ω1

4
℘′(u), has

components with respect to k-monopole coordinates given by:

Φ1(u) = −kω1

4
f1(2u)

3 (15)

Φ2(u) = k′
ω1

4
f2(2u)

3 (16)

Φ3(u) = −iω1

4
f3(2u)

3 (17)

Proof. The formula for Φ3(u) is equivalent to that of Lemma 4.5. Differentiating
with respect to u:

Φ′
1(u) = g′(u)

dΦ1

dg
(u)

=
k

4
g′(u)

d3f

dg3
(u)(1 − g(u)2 + 2

k′

k
g(u))

= −3

4
kω1℘

′(2u)f1(2u)

where the last equality follows from (10), together with Lemma 4.6. Therefore

Φ1(u) = −kω1

4
f1(2u)

3 + Φ1(
ω1

4
).

Now note that it follows from the quarter-period formulae (of the Appendix) that
Φ1(ω1/4) = 0.

Similiarly,

Φ′
2(u) = g′(u)

dΦ2

dg
(u)

=
k′

4
g′(u)

d3f

dg3
(u)(−1 + g(u)2 + 2

k

k′
g(u))

=
3

4
k′ω1℘

′(2u)f2(2u)

where the last equality follows from (11), together with Lemma 4.6. Therefore

Φ2(u) = k′
ω1

4
f2(2u)

3 + Φ2(
ω2

4
).
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Finally note that it follows from the quarter-period formulae (of the Appendix) that
Φ2(ω2/4) = 0. 2

Remark. The nullity of Φ is a special case of the quadratic identity

(e2 − e3)f
2
1 (z) + (e3 − e1)f

2
2 (z) + (e1 − e2)f

2
3 (z) = 0.

For a normal rectangular lattice this reduces to the following identity between Jacobi
functions: −k2cs2(z) − k′2ns2(z) + ds2(z) = 0. Cf. §4 of [4].

Corollary 4.8 The branched metric induced on the spectral curve by φ has the form:

ds2(u) =
9

32
|℘′(2u)|2{k2|℘(2u) − e1| + k′2|℘(2u) − e2| + |℘(2u) − e3|}|du|2.

Remark. Observe that this displays the branching and end structure at the quarter-
period points described in §3.

§5. The locations of the branch points.

The following can be derived from Theorem 4.7, (or directly from quarter-period
formulae). They are written w.r.t. k-monopole coordinates.

Proposition 5.1

Φ(
ω1

4
) =

K(k)

2k
(0, 1, −ik′2) (18)

Φ(
ω2

4
) =

K(k)

2k′
(−i, 0, k2) (19)

Φ(
ω3

4
) =

K(k)

2
(−ik′2, k2, 0) (20)

Corollary 5.2 Projecting to R3 gives:

β1 =
K(k)

2k
(0, 1, 0) (21)

β2 =
k2K(k)

2k′
(0, 0, 1) (22)

β3 =
k2K(k)

2
(0, 1, 0) (23)

Remark. Observe that the positions of the branch points are tied to the moduli space
parameter k as above, through the non-singularity constraint L2|Sk

= OSk
. There

are a number of interesting consequences which we list in the following corollary.
First note the following
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Definition. For values of k close to 1, by separation distance we mean K(k).

Corollary 5.3 (a) The branch points ±β1, ±β3, lie on the Higgs axis, e2.

(b) In the ‘widely separated limit’, k −→ 1:

• ±β1, ±β3 −→ ±K(k)
2 (0, 1, 0), respectively.

Thus, these pairs of branch points approach the ‘star centres’ exponentially fast
relative to the separation distance.

• ±β2 −→ ±∞ along e3, exponentially fast relative to separation distance.

(c) As k −→ 0, and the monopoles approach the axially symmetric solution:

• ±β2, ±β3 −→ 0.

• As k −→ 0, ±β1 approach the origin (with ±β3, respectively,) but ‘turn around’,
at k0, such that k0dK/dk(k0) = K(k0), and go back out to ±∞, respectively, along
the Higgs axis.

Remark. k0 < 1/
√

2, the value that gives the square lattice.

Definition. We call ±β1, ±β3, the Higgs branch points.

Remark. It is instructive to take note of the asymptotic behaviour of the imaginary
components at the branch points.

§6. Curves of symmetry of φ = Re(Φ).

Definition.

(i) Va := {aω1 + iy ; 0 ≤ y < |ω2|}.
(ii) Ha := {x+ aω2 ; 0 ≤ x < |ω1|}.
We study ΓSk

= φ(H 1

4

∪ V 1

4

∪ V 3

4

): this is a graph on the minimal surface which

connects the six branch points.

Definition. Write V 1

4

= V1 ∪ V2 ∪ V3 ∪ V4 where Vj := {ω1

4 + iy ; (j − 1) |ω2|
4 ≤ y ≤

j |ω2|
4 }, j = 1, 2, 3, 4.

Proposition 6.1 The branched minimal immersion φ maps V 1

4

∪ V 3

4

to the Higgs

axis so that: (i) φ|V3
= φ|V1

and φ|V4
= φ|V2

. (ii) φ maps V1 monotonically from β1

to β3.

(iii) φ maps V2 monotonically from β3 to β1.

(iv) φ(3ω1

4 + iy) = −φ(ω1

4 + i(ω2

2 − y)).

Proof. (i) follows immediately from φ(τ(u)) = φ(u).

(ii) and (iii): for u ∈ V1 ∪ V2, e3 ≤ ℘(2u) ≤ e1. Hence, for such u, φ1(u) ≡ 0, and

12



φ3(u) ≡ 0. φ2(u) monotonically decreases (through real values) from k′(e1 − e2)
3/2

to k′(e3 − e2)
3/2 between ω1/4 and ω3/4. It is monotonically increasing between

ω3/4 and ω1/4 + ω2/2.

(iv) follows immediately from φ(−τ(u)) = −φ(u). 2

Proposition 6.2 φ maps H 1

4

monotonically onto the ‘star’ in the (e2, e3)-plane,

with vertices ±β2, ±β3, that is formed when D acts on the concave curve
φ({x+ ω2/4 ; 0 ≤ x ≤ ω1/4}).
Proof. Since ℘(2u) − e1 < 0, for all u ∈ H 1

4

, it follows from 4.7 that φ1(u) ≡ 0 on

H 1

4

. φ2 is odd at ω2/4 and ω2/4 + ω1/2, while it is even at ω3/4 and ω3/4 + ω1/2.

On the other hand, φ3 is odd at ω3/4 and ω3/4 + ω1/2, while it is even at ω2/4
and ω2/4 + ω1/2. This leads immediately to D-invariance. For u ∈ H 1

4

, ℘′(2u),

(℘(2u)−e2)
1

2 and (e3−℘(2u))
1

2 are real. Hence, for u ∈ {x+ω2/4 ; 0 ≤ x ≤ ω1/4},

dφ3

dφ2
(u) =

Re(Φ′
3(u))

Re(Φ′
2(u))

= − 1

k′

√

e3 − ℘(2u)

℘(2u) − e2
.

For such u, e3 − ℘(2u) monotonically decreases from e3 − e2 to 0, while ℘(2u) −
e2 monotonically increases from 0 to e3 − e2. Thus observe that the derivative
monotonically increases from −∞ to 0 on the curve between β2 and β3. 2

Definition. Write ΓSk
= ΓStar(k) ∪ ΓHiggs(k), where ΓStar(k) = φ(H 1

4

).

Note that ΓSk
is D-invariant. Similiar arguments give:

Proposition 6.3 (i) φ maps V0 onto the e3-axis between β2 and ∞. Similiarly, φ
maps V 1

2

onto the e3-axis between −β2 and −∞.

(ii) Near β2, φ(V0), together with the curves of ΓStar that emanate from β2, comprise
the triple curve intersection structure at β2. The analogue holds at −β2.

(iii) The triple curve intersections at ±β3 are induced by ΓSk
.

(iv) φ maps H0 between 0 and ω1/2, to two arms of the triple curve intersections
at β1. (The third arm is φ(V 1

4

).) These two arms emanating from β1 lie in the

(e1, e2)-plane and are concave down. The analogue holds at −β1.

§7. Spectral lines near ΓHiggs(k), as k −→ 1.

Asymptotically, as k −→ 1, K(k) ∼ −logk′. Thus observe from (5), that as k −→ 1,
the configuration of spectral lines approximates the two stars on the Higgs axis
through the points at distance K(k)/2 from the origin, see [2]. In 5.2, we saw that
ΓHiggs(k) shrinks to these points as k −→ 1. Here we observe that in this limit
the stars approximate the normal lines to the minimal surface in the vicinity of
ΓHiggs(k).
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The branch points on the null curves in C3 which project to the Higgs branch points
approach exponentially close to R3, relative to separation distance, as k −→ 1. In
fact the same is true at all points along ΓHiggs(k), in this limit: this can be deduced
from 4.7. In the light of 2.1, elementary arguments yield:

Theorem 7.1 As k −→ 1, every normal line to the minimal surface, along ΓHiggs(k),
becomes exponentially close, relative to separation distance, to a spectral line of the
monopole.

Remark. Of course, this approximation is true anywhere ‘close enough’ to ΓHiggs(k).
In general, far away from ΓHiggs(k), the normal lines are not close to spectral lines.
Consider, for example, the fact that the maximum distance from the origin, for fixed
k, of any spectral line is finite. However, the minimal surface has flat ends and out
on these will be normal lines at arbitrary distance from the origin.

Note in particular that the latter observation applies at the two branch points ±β2,
on the monopole’s third axis. This is because the branch points on the null curve
in C3 which engender these move away from R3, as k −→ 1.

§8. The Gauss map and curvature concentration.

Recall that the spectral curve of a charge ℓ monopole is an ℓ-fold branched cover
of P1 in T. Since the projection map to P1 may be identified with the Gauss map,
g, of the auxiliary minimal surface determined by osculation, it follows that the
monopole energy is:

E(∇,Φ) = 4πdeg(g) = 4πℓ.

Our purpose here is to interpret this global coincidence ‘locally’, when ℓ = 2. Let
K denote the Gaussian curvature of the branched metric ds2 on C/(Zω1 + Zω2)
induced by the branched minimal immersion. Recall that

∫

C/(Zω1+Zω2)
Kds2 = −

∫

C/(Zω1+Zω2)

4|g′|2
(1 + |g|2)2 dxdy = −4πℓ,

cf. [13]. The second integral is just the area induced by the Gauss map g: we study
the behaviour of

G =
4|g′|2

(1 + |g|2)2 ,

in the limits k −→ 0, 1. In particular, we show that it localises in these limits.
This reflects the behaviour of K on the surface in R3: as k −→ 1, K localises at
the monopole particles. It follows from Theorem 7.1 that in the limit k −→ 1, K
measures the twisting of the spectral lines through the particles. The total twisting,
measured in the induced metric, equals the monopole’s energy.

Recall that the Gauss map is given by g(u) = ℘(u) − e3. This is related to the
Euclidean Gauss map γ, of the minimal surface, via stereographic projection: γ =
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P−1◦g, where P : S2 −→ C∪{∞}, P (x) = (x1+ix2)/(1+x3). g maps the rectangle
with vertices 0, ω1/2, ω3/2, ω2/2, to the lower half plane so that its boundary maps
to R. Obviously, the behaviour of g on the whole period domain may be inferred
from this. The behaviour of the two pairs:

g(0) = ∞, g(ω3/2) = 0, and

g(ω1/2) = k′/k, g(ω2/2) = −k/k′,

corresponding to the two spectral lines through the origin, elucidates the manner in
which g covers P1. In particular, as k −→ 1, it appears that G ‘concentrates’ on the
quarter-period lines x = ω1/4, and x = 3ω1/4. The lines x = 0, and x = ω1/2, map
to the circles on Sk that are ‘asymptotically pinched off’, as k −→ 1. Moreover,
as k −→ 0, G appears to ‘concentrate’ on the quarter-period lines iy = ω2/4, and
iy = 3ω2/4. The lines iy = 0, and iy = ω2/2, map to the circles on Sk that
are pinched off at k = 0. Despite the simplicity of the expression for g, a deeper
insight into these matters is gained through working in monopole coordinates: the
symmetries of G with respect to the quarter-period lines, and its behaviour on them
are thus revealed.

The Gauss map γΦ : C/(Zω1 +Zω2) −→ Q1, with respect to monopole coordinates,
is given by differentiating (15)-(17):

γΦ(u) = [−kf1(2u), k′f2(2u), −if3(2u)].

It follows that gΦ : C/(Zω1 + Zω2) −→ C ∪ {∞}, is given by:

gΦ(u) = h−1 ◦ γΦ(u) =
−if3(2u)

kf1(2u) + ik′f2(2u)
,

where h : C ∪ {∞} −→ Q1, h(ζ) = [1 − ζ2, i(1 + ζ2),−2ζ].

Remark. Let γφ : C/(Zω1 + Zω2) −→ S2, be the Euclidean Gauss map of the
minimal surface φ = Re(Φ). Observe that gΦ agrees with γφ, after the latter is
composed with stereographic projection from −e3 to the (e1, e2)-plane in R3.

Proposition 8.1(i)

gΦ(u) = −k
′f2(2u) + ikf1(2u)

f3(2u)
.

(ii)

g′Φ(u) =
2igΦ(u)

f3(2u)
.

Proof. (i) follows immediately from k2f21 + k′2f22 − f23 = 0.

(ii)

g′Φ(u) = −(
℘′

f33
(f23 (k′f−1

2 + ikf−1
1 ) − (k′f2 + ikf1)))(2u),
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and hence f23 = (k′f2 + ikf1)(k
′f2 − ikf1), implies

g′Φ(u) = (
℘′

f23
(k′2 + k2 − 1 + ikk′(f−1

1 f2 − f1f
−1
2 )))(2u)gΦ(u)

= ikk′
(

℘′(f22 − f21 )

f1f2f
2
3

)

(2u)gΦ(u)

= −i
(

℘′

f1f2f23

)

(2u)gΦ(u),

since e2 − e1 = −1/kk′. Finally recall that ℘′ = −2f1f2f3. 2

Using the eveness/oddness properties of fj(2u) at appropriate points, elementary
considerations reveal that G enjoys symmetries about H 1

4

, H 3

4

, V 1

4

and V 3

4

:

Proposition 8.2 (i) G(
ω1

4
− ū) = G(

ω1

4
+ u).

(ii) G(
3ω1

4
− ū) = G(

3ω1

4
+ u).

(iii) G(
ω2

4
+ ū) = G(

ω2

4
+ u).

(iv) G(
3ω2

4
+ ū) = G(

3ω2

4
+ u).

We now show that the integral density of Gaussian curvature concentrates on V 1

4

∪
V 3

4

, as k −→ 1, and on H 1

4

∪H 3

4

, as k −→ 0. The next result follows immediately

from 8.1 and f23 = (k′f2 + ikf1)(k
′f2 − ikf1).

Proposition 8.3

G(u) =
4|g′Φ(u)|2

(1 + |gΦ(u)|2)2 =
8

k2|℘(2u) − e1| + k′2|℘(2u) − e2| + |℘(2u) − e3|
.

It clarifies the exposition at this point to introduce the following reparameterizations.
Let ρ1 : C −→ C, be given by ρ1(z) = ω1z and ρ2 : C −→ C, be given by ρ2(z) =
|ω2|z, moreover let τ2 = ω2/ω1 and τ1 = ω1/|ω2|: ρ1 induces a biholomorphism
C/(Z1 + Zτ2) −→ C/(Zω1 + Zω2), and ρ2 a biholomorphism C/(Zτ1 + Zi) −→
C/(Zω1 + Zω2).

Let V ′
a := {a + iy ; 0 ≤ y < τ2}, and H ′

a := {x + ia ; 0 ≤ x < τ1}. Moreover,
let G1, G2, be the integral densities induced by φ ◦ ρ1, and φ ◦ ρ2, respectively, i.e.
Gj(z) = |ωj |2G(ωjz), j = 1, 2.

Corollary 8.4 For u ∈ V 1

4

∪ V 3

4

,

G(u) =
4

k′2(℘(2u) − e2)
.

Hence, G1 −→ ∞, on V ′
1

4

∪ V ′
3

4

, as k −→ 1.
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Proof. For such u, f1(2u) ∈ iR, f2(2u) ∈ R and f3(2u) ∈ R. Therefore

G(u) =
8

−k2f1(2u)2 + k′2f2(2u)2 + f3(2u)2

=
8

2k′2f2(2u)2
.

Now observe that for z ∈ V ′
1

4

∪ V ′
3

4

,

4k2K(k)2 ≤ ω2
1

k′2(℘(2ω1z) − e2)
≤ 4K(k)2. 2

Similiarly, we obtain:

Corollary 8.5 For u ∈ H 1

4

∪H 3

4

,

G(u) = − 4

k2(℘(2u) − e1)
.

Hence, G2(u) −→ ∞ on H ′
1

4

∪H ′
3

4

, as k −→ 0.

Corollary 8.6 (i) At the quarter-period points we have:

G(
ω1

4
) =

4k

k′
, G(

ω2

4
) =

4k′

k
and G(

ω3

4
) =

4

kk′
, etc.

(ii) ω3/4 is a maximum of G, ω1/4 and ω2/4 are saddle-points.

Remark. Clearly, the behaviour of G at the other quarter-period points may be
deduced from symmetry.

Comparing

G1(z) ≤
8ω2

1

|℘(2ω1z) − e1|
,

it can be shown that for z 6∈ V ′
1

4

∪ V ′
3

4

, G1(z) −→ 0, as k −→ 1. Similiarly, for

z 6∈ H ′
1

4

∪H ′
3

4

, G2(z) −→ 0, as k −→ 0. This can be seen by inspecting power series.

Remark. As k −→ 1, narrower and narrower bands around V ′
1

4

and V ′
3

4

are stretched

by the Gauss map to cover almost all of the sphere.

The underlying geometrical behaviour of γφ : C/(Zω1 + Zω2) −→ S2 ⊂ R3, eluci-
dates the above results:

Theorem 8.7 (i)As u passes from ω1/4 to ω1/4 + ω2 along V 1

4

, the Gauss map

γφ(u) winds once around the great circle on S2 that projects to the e1-axis under
stereographic projection (from −e3). The analogue holds on V 3

4

.

17



(ii) As u passes from ω2/4 to ω2/4 + ω1 along H 1

4

, the Gauss map γφ(u) winds

once around the great circle on S2 that projects to the e2-axis under stereographic
projection (from −e3).
Proof. This follows easily from the behaviour of gΦ, which is real on V 1

4

∪ V 3

4

, while

purely imaginary on H 1

4

. 2

We spell this out in more detail: Passing from ω1/4 to ω3/4, φ maps onto the Higgs
axis between β1 and β3, while the normal vector turns through 90o. Between ω3/4
and ω1/4+ω2/2, φ maps back along the line segment, but as part of an intersecting
‘sheet’, see Figure 2. This is reflected by the fact that the Gauss map turns through
another 90o, and arrives back at β2 in the antipodal direction. Now, this is all
repeated between ω1/4 + ω2/2 and ω1/4 + ω2, except that the values of the Gauss
map are antipodal: γφ(u + ω2/2) = α(γφ(u)), along V 1

4

. This reflects the fact that

on the upper 1/2-rectangle of the period domain, φ maps onto the same surface in
R3, but with opposite orientation. Of course, the analogue holds along V 3

4

.

As k −→ 1, the length of the line segment between β1 and β3 goes to zero, but the
Gauss map makes one revolution along it for any k ∈ (0, 1). Thus as k −→ 1, it
changes rapidly along the line segment, while as k −→ 0, it winds slowly, away from
β3.

Analogous remarks apply to the behaviour of the Gauss map around ΓStar(k). As
k −→ 0, ΓStar(k) shrinks to 0, but the Gauss map winds around once on ΓStar(k)
for all k ∈ (0, 1). See Figure 1. As k −→ 1, ΓStar(k) becomes very large. (Note that
γφ(u+ ω1/2) = α(γφ(u)), on H 1

4

.)

Notice that the branch points ±β3 play a pivotal role, connecting ΓHiggs(k) to
ΓStar(k). Moreover the integral density is large at these points in both limits.

We close this section with some observations about the ‘bare’ curvature K at β1 and
β2. As k −→ 1, β1 accompanies β3 to infinity along the Higgs axis, while β2, goes
off to infinity along e3, and K(ω2/4), becomes attenuated. As k −→ 0, β1 and β2

‘exchange roles’. More precisely, we have:

Proposition 8.8 (i) There exist constants α1, α2, α3 ∈ R, such that as k −→ 0,

|K(
ω1

4
+
h

2
)| ≤ α1k

5|h|−2 + α2k
4 + α3k

3|h|2 + O(|h|4).

(ii) There exist constants β1, β2, β3 ∈ R, such that as k −→ 1,

|K(
ω2

4
+
h

2
)| ≤ β1k

′5|h|−2 + β2k
′4 + β3k

′3|h|2 + O(|h|4).

It is not an optimal statement. The proof follows from inspection of Laurent series.
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§9. Scattering.

The above results elucidate the behaviour of the family of minimal surfaces generated
by the geodesic C1 on M0

2, which corresponds to a direct collision between two
monopole particles, see [2] for further details. We will discuss the details elsewhere,
however, we make two comments:

• Note that the 90o scattering of the monopoles is reflected in the behaviour of this
family.

• The family includes a point (at the origin) at k = 0. As k −→ 0, ΓStar(k) shrinks
to zero. This is better understood in terms of the two curves on the null curve
in C3 which project to ΓStar(k) . These shrink to the two points (±iπ/4, 0, 0), (in
0-monopole coordinates) and the Gaussian curvature on the null curve concentrates
at these points. Recall that the spectral curve of the axially symmetric monopole
gives the two stars of spectral affine null planes through these points. Because
(±iπ/4, 0, 0) are not in R3, the corresponding configurations of lines in R3 do not
converge to the star through the origin, see [19].

Remark. In fact it is likely that many of the results described here should be
understood directly in terms of the null curve in C3. Cf. [7], [9], [10], [17] and [18].

§10. Charge 3.

Generically, the spectral curve S, of a charge 3 monopole, is a smooth curve on
C(Q) ⊂ P3 of genus 4. It is a canonical curve in P3, has degree 6 and is a complete
intersection of C(Q) with a cubic surface.

The covering map to P1 has six branch points. These come in antipodal pairs,
interchanged by τ , and the three correponding spectral lines through the origin in
R3 are perpendicular to the ends of the auxiliary minimal surface. (In general, the
auxiliary minimal surface of the generic charge k monopole has k ends.)

Since S is canonical, the points of hyperosculation are the Weierstrass points on S.
The total weight of the Weierstrass points is 60. Each of the six branch points of the
covering map has weight 4, leaving 36 of weight 1. S is τ -invariant and hence this
gives 18 branch points on the auxiliary minimal surface in R3. 18 = 6 × 3, where
we group the Weierstrass points in the same fibre. In summary we have:

Proposition 10.1 The auxiliary minimal surface generated by a generic
monopole of charge 3 has three ends, total curvature −12π, and 18 branch points in
the metric.

Of course, this does not take us very far. Perhaps the next step is to consider the
questions:

• How does the area measure induced on the spectral curve by the Gauss map relate
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to the configuration of Weierstrass points?

• How is this reflected in the behaviour of the branch points and Gaussian curvature
on the surface in R3?

However, perhaps all of this is better understood in terms of the role played by the
null curve in the geometry of the monopole’s complexification?

Appendix

Quarter-period Values: g2, g3 as in (8).

u =
ω1

4
u =

ω2

4
u =

ω3

4

℘(u)
1 + 3k′ + k′2

3kk′
−1 + 3k + k2

3kk′
k2 − k′2

3kk′
− i

℘′(u) −2(1 + k′)

k
√
kk′

−2i(1 + k)

k′
√
kk′

2(k′ + ik)√
kk′

℘′′(u)
4(1 + k′)
k′(1 − k′)

4(1 + k)

k(1 − k)
−8 +

4i(k′2 − k2)

kk′

℘′′′(u) −8(1 + 3k′ + k′2)

k′(1 − k′)
√
kk′

8i(1 + 3k + k2)

k(1 − k)
√
kk′

8

(

5k2 − 1

k
√
kk′

− i
5k′2 − 1

k′
√
kk′

)

Remarks on the Figures.

These were drawn with Mathematica. It is easy to write a short program using (1)-
(3), (7)-(9) and (14). It is instructive to do this and experiment with the parameter
values. We show the surfaces near parts of ΓSk

only. One can study larger regions
but the pictures become very complex, particularly when k is not close to 0. It is
also instructive to plot G and K for various values of k.
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Figure 1: k = 0.01, points close to ΓStar(k): 0 ≤ x ≤ ω1, ω2/4 − 0.05 ≤ y ≤
ω2/4 + 0.05
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Figure 2: k = 0.999, points close to (one half of) ΓHiggs(k): ω1/4 − 0.025 ≤ x ≤
ω1/4 + 0.025, 0 ≤ y ≤ ω2/2
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