COMMENTARY

Toll-like receptor signalling pathways as key targets for mediating
the anti-inflammatory and immunosuppressive effects of

glucocorticoids

P N Moynagh

Department of Pharmacology, Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Belfield, Dublin 4, Ireland

(Requests for offprints should be addressed to P N Moynagh; Email: P.Moynagh@ucd.ie)

Abstract

Toll-like receptors (TLRs) play crucial roles in the induc-
tion of innate immune responses by recognising pathogen-
associated molecular patterns. The engagement of TLRSs
by pathogens results in induction of co-stimulatory mol-
ecules that facilitate a specific immune response and also in
the induction of pro-inflammatory proteins that will
promote the elimination of pathogens from the body.
TLRs employ many of the same signalling components as
the type I interleukin (IL)-1 receptor (IL-1R). This is
hardly surprising since the intracellular regions of TLRs
and the IL-1R share a conserved Toll/IL-1R homology
domain (TIR) that allows the receptors to recruit the

intracellular TIR -containing adaptor protein Myd88. The
latter then activates IL-1R-associated kinases that in turn
recruit well-characterised downstream effectors culmi-
nating in activation of MAP kinases and transcription
factors such as NFxB and AP-1. Since glucocorticoids are
known to target the latter transcription factors and the
MAP kinase cascades, this commentary highlights the
likely crucial importance of Toll-like receptor signalling
pathways as key targets for mediating the anti-
inflammatory and immunosuppressive effects of steroids.
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Toll-like receptors (TLRs) and immunity

Human TLRs are key components in innate immune
responses due to their ability to recognise pathogen-
associated molecules (reviewed by Krutzik et al. 2001).
Many of the TLRs have defined functions in the host
defence system. As examples, TLR2 recognises peptido-
glycan and bacterial lipoprotein from Gram-positive bac-
teria (Aliprantis ef al. 1999, Brightbill ef al. 1999, Takeuchi
et al. 1999), TLR3 mediates responses to double-stranded
RNA (Alexopoulou et al. 2001), TLR4 is involved in
recognition of Gram-negative lipopolysaccharide (LPS)
(Poltorak et al. 1998, Chow et al. 1999, Hoshino et al.
1999, Qureshi et al. 1999, Takeuchi et al. 1999), TLR-5
recognises bacterial flagellin (Hayashi et al. 2001) and
TLRO functions as a receptor for bacterial DNA contain-
ing CpG motifs (Hemmi et al. 2000). Some TLRs, such
as TLR2 and -6 also show functional co-operativity
(Ozinsky et al. 2000). The engagement of TLRs by
pathogenic components results in induction of co-
stimulatory molecules that facilitate T-cell activation and
pro-inflammatory proteins that effect elimination of the
pathogen from the body (Medzhitov ef al. 1997).
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TLR/interleukin-1 (IL-1) signalling and NFkB

TLRs employ many of the same signalling components as
the type I IL-1 receptor (IL-1RI) (O’Neill & Greene
1998) (Fig. 1) by virtue of a conserved cytoplasmic
Toll/IL-1R - homology domain (TIR). The latter is
important in initiating various signalling pathways,
especially that regulating the transcription factor NFxB.
The latter exists in the cytosol of resting cells as a homo-
or heterodimer of proteins of the Rel family of transcrip-
tion factors (Ghosh et al. 1998). The transcriptional activity
of the Rel proteins is tightly regulated by their association
with members of the inhibitory IkB family (e.g. IxkB-a,
IkB-P and IxB-¢) that sequester nuclear factor kappaB
(NFxB) in the cytosol. TLRs and IL-1R cause phosphor-
ylation of IKB on two specific N-terminal serines by the
IxB kinases (IKKs), IKKa and IKKf, which form a large
multiprotein complex with a scaffold protein called
NEMO (IKKYy). The phosphorylation of IkB proteins
represents a signal for polyubiquitination followed by their
degradation via the 26S proteasome (May & Ghosh 1998,
Karin & Ben-Neriah 2000). This allows for translocation
of NFkB to the nucleus, where it activates genes encoding
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Figure 1 Toll-like receptor signalling and lead targets for glucocorticoids. The signalling molecules generally employed by TLRs in
mediating activation of the transcription factors NFkB and AP-1 and the MAPKs are indicated. Some additional signalling molecules in
these pathways have been omitted for the sake of clarity. The lead targets that may be subject to inhibition by activated GR are encircled

in red. PAMPs, pathogen-associated molecular patterns.

inflammatory proteins and co-stimulatory molecules. Thus
the IKKs are crucial regulators of NFxB and much effort
has probed the upstream signalling components employed
by TLRs and IL-1R in regulating IKK activity.

The TIR domain plays a crucial role in transducing
signals from TLRs and IL-1RI (Fig. 1). Thus the binding
of IL-1 to IL-1RI causes association with another TIR
domain-containing protein, IL-1R-accessory protein
(Greenfeder et al. 1995, Wesche et al. 1997a). This
receptor complex then recruits the intracellular TIR-
containing adapter protein Myd88 (Burns et al. 1998).
TLRs can directly associate with Myd88 (Medzhitov ef al.
1998) and other TIR domain-containing adapter proteins
such as MyD88 adapter-like/TIR domain-containing
adapter protein (Fitzgerald ef al. 2001, Horng et al. 2001)
and TIR domain-containing adapter inducing IFN-f/
TIR -containing adaptor molecule (Yamamoto ef al. 2002,
Oshiumi et al. 2003). These adapter proteins subsequently
recruit and activate members of the IL-1R-associated
kinase (IRAK) family (Muzio ef al. 1997, Wesche et al.
1997b, Kobayashi et al. 2002, Li et al. 2002, Suzuki et al.
2002). IRAK is recruited to Myd88 in association with
another protein termed Toll-interacting protein (Tollip)
(Burns et al. 2000). IRAK associates with Myd88 via the
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homophilic interaction of their death domains. IRAK also
contains a kinase domain but the kinase activity is not
required for NFkB activation but may be required for
other pathways such as the p38 MAP kinase (MAPK)
cascade (Knop & Martin 1999, Schmidt ef al. 2001). The
IR AK-Myd88 association triggers hyperphosphorylation
of IRAK by itself (Cao et al. 1996) and/or by other
additional kinases (Li ef al. 1999), leading to its dissociation
from Myd88 and Tollip and its interaction with the
downstream adaptor tumour necrosis factor (TNF)
receptor-associated factor 6 (TRAF-6) (Burns ef al. 2000).
The phosphorylation of IRAK also ultimately leads to its
degradation by proteasomes and this may be a regulatory
mechanism by which cells become desensitised after
prolonged activation of IL-RI and TLRs (Yamin & Miller
1997, Li et al. 2000). The interaction of IRAK with
TR AF-6 leads to activation of transforming growth factor-
B-activating kinase (TAK1) (Ninomiya-Tsuji ef al. 1999).
IRAK is essential in this activation process since it
promotes the translocation of TAK1 binding protein 2
(TAB2) from the membrane to the cytosol where TAB2
interacts with TRAF-6 and bridges the association of
TRAF-6 with TAK1 (Takaesu et al. 2000, 2001). The
latter, with the help of another TAK1-binding protein,
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TAB1, becomes activated and in turn activates NFkB-
inducing kinase (NIK) (Ninomiya-Tsuji ef al. 1999). NIK
can then activate NFKB through phosphorylation and
activation of the IKKs (Ling et al. 1998, Nakano et al.
1998). However, the role of NIK has recently been
equivocated with analysis of NIK knockout mice and
alymphoplasia mice that contain a point mutation in NIK
showing no defect in activation of NFkB by TNF, IL-1
and LPS (Shinkura et al. 1999, Yin et al. 2001). Interest-
ingly IKKs may also be activated by MAPK/ERK kinase
kinase 1 (MEKK-1) that is activated by TRAF-6 via a
novel adaptor protein termed ECSIT (Kopp et al. 1999).
Thus TRAF-6 appears to act as a bifurcation point to
activate the TAK1 and MEKK-1 pathways, both of which
activate NFkB.

TLR/IL-1 signalling and MAPKs

In addition to NFkB activation, IL-1RI and TLRs can
also initiate MAPK signalling cascades and activate mul-
tiple transcription factors, including AP-1 and Elk-1. Thus
IL-1 and LPS induce phosphorylation of p38, ERK1/2
and JNK (Freshney et al. 1994, Rouse et al. 1994, Derijard
et al. 1995, Lin et al. 1995, Ulevitch & Tobias 1995).
Whilst the mechanisms by which the MAPKs are acti-
vated by IL-1R 1 and TLRs are incompletely understood,
several upstream regulators have been identified. Interest-
ingly, as described above, such regulators also play integral
roles in mediating activation of NFkB (Fig. 1). Thus
TAK1/TAB1 can activate the MAPKKs MKK3/6 and
MKK4, which in turn activate p38 and JNK respectively
(Ninomiya-Tsuji et al. 1999). In addition MEKK-1 can
also activate the JNK pathway by phosphorylating MKK4
(Xia et al. 1998).

Transcription factors as targets for glucocorticoids

Whilst the molecular mechanisms underlying the anti-
inflammatory and immunosuppressive effects of glucocor-
ticoids are complex and incompletely understood, the
signalling pathways described above for TLRs are likely
to emerge as lead targets for mediating such effects. A
succinct overview of the known molecular effects of
glucocorticoids gives significant credence to this proposal.

The primary target for glucocorticoids is a specific
intracellular glucocorticoid receptor (GR) (Beato et al.
1995). The engagement of GR by glucocorticoids pro-
motes its dissociation from the 90 kDa heat shock protein
and translocation into the nucleus. The liganded GR binds
as a dimer to DNA by recognising specific palindromic
sequences known as glucocorticoid response elements
(GREs) (Luisi et al. 1991). The binding of GR to GREs
can induce the transcription of genes whose promoters are
in close proximity to GREs, by facilitating recruitment of
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co-activator complexes (such as CREB-binding protein
(CBP)/p300) and RNA polymerase II. By this process
glucocorticoids can directly promote the expression of
anti-inflammatory proteins such as lipocortin, IL-1R
antagonist and IL-10 (Adcock & Caramori 2001). It is also
interesting to note that glucocorticoids can directly induce
the expression of IkB-a, the inhibitor of NFkB (Almawi
& Melemedjian 2002). The author has shown this phe-
nomenon to be cell-type specific (Bourke & Moynagh
1999), but it is still worth emphasising that in responsive
cells the induction of IkB-0 by glucocorticoids is likely to
have a negative influence on TLR signalling. Additional
mechanisms by which glucocorticoids regulate NFKB are
discussed below.

Whilst the direct induction of anti-inflammatory
proteins by glucocorticoids is a significant contributory
mechanism to their clinical anti-inflammatory effects, the
pleiotropic ability of glucocorticoids to inhibit the expres-
sion of a plethora of pro-inflammatory proteins is likely to
be of crucial importance (Barnes 1995). Thus glucocorti-
coids inhibit the expression of an array of cytokines
(including IL-1 and TNF), chemokines and leukocyte
adhesion molecules. In general the promoters of the genes
encoding these proteins lack GREs and thus gene repres-
sion is not dependent on GR—GRE interaction. Instead
repression is mediated by inhibitory effects of activated
GR on transcription factors that are known to promote the
expression of the pro-inflammatory proteins. Two of the
best characterised transcription factors that are known
targets for activated GR are NFkB and AP-1. In addition
to the positive regulation of IkB-a expression, as described
above, activated GR is also known to directly associate
with AP-1 and the p65 subunit of NFkB (Adcock &
Caramori 2001). Such interactions lead to reduced associ-
ation of AP-1 and NFkB with the co-activator CBP
resulting in inhibition of their transactivation potential. A
recent report has suggested a related but novel mechanism
underlying GR repression of pro-inflammatory gene
expression in which GR inhibits histone acetylation by
directly inhibiting CBP-associated histone acetyltrans-
ferase activity and by actively recruiting a histone deacety-
lase complex (Ito ef al. 2000). Such histone deacetylation
will prevent unwinding of DNA from histone complexes
and so limit access of transcription factors such as NFxB
and AP-1 to their binding sites, resulting in inhibition
of expression of pro-inflammatory genes. Furthermore,
another report suggests an additional specific mechanism
for the inhibitory effects of GR on NFkB. Thus GR has
been shown to inhibit NFkB by interfering with serine-2
phosphorylation of the C-terminal domain of RNA
polymerase II, resulting in reduced recruitment of the
latter to NFxB-regulated promoter regions (Nissen &
Yamamoto 2000). A complex picture thus emerges of the
regulatory effects of activated GR on the transcription
factors NFxB and AP-1. However, it is intuitively obvious
that glucocorticoids may target TLR signalling since TLR.
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signalling culminates in activation of NFxB and AP-1
(Fig. 1).

MAPKSs as targets for glucocorticoids

Whilst NFkB and AP-1 are key targets for GR, it is also
apparent that regulation of these transcription factors is not
the exclusive basis for GR repression of inflammatory
genes. The MAPK signalling pathways play important
roles in promoting inflammatory gene expression and it has
emerged that these pathways are also prone to regulation
by glucocorticoids. Dexamethasone has been shown to
inhibit activation of ERK1/2, JNK and p38 MAPKs
(Caelles et al. 1997, Swantek et al. 1997, Gonzalez et al.
1999, Lasa et al. 2001) and repress inflammatory gene
expression. As an example GR blocks the JNK signalling
pathway resulting in lack of phosphorylation of ¢-Jun on
serine-63 and -73 and ultimately inhibition of AP-1 and
repression of gene expression (Caelles ef al. 1997). This
represents another mechanism by which GR can regulate
AP-1 activity and 1s distinct from the direct GR-AP-1
association described above. Furthermore since JNK is
required for LPS stimulation of TNF translation, the
inhibition of JNK by GR results in reduced TNF trans-
lation in response to LPS (Swantek ef al. 1997). Since the
latter is recognised by TLR-4 it is apparent that JNK in
the TLR-4 signalling pathway is a key target for gluco-
corticoids. However, the other MAPKs are also likely to
play roles in mediating anti-inflammatory effects of glu-
cocorticoids on TLR signalling. Thus LPS is well known
to induce cyclooxygenase 2 and dexamethasone has been
shown to destabilise cyclooxygenase 2 mRNA by inhib-
iting the phosphorylation and activity of p38 MAPK (Lasa
et al. 2001). The inhibition of the MAPKs by glucocorti-
coids is mediated by an increased expression and decreased
degradation of the MAPK phosphatase-1 (Kassel et al.
2001). Overall a convincing picture emerges of MAPK
pathways playing key roles as targets for glucocorticoids.
The employment of MAPK pathways by TLRs again
emphasises the obvious relevance of TLR signalling
pathways as targets for glucocorticoids (Fig. 1).

Likely consequences of regulation of TLR
signalling by glucocorticoids

The above discussion highlights TLR signalling pathways
as lead targets for glucocorticoids. The global use of the
transcription factors NFkB and AP-1 and the MAPK
pathways by the various TLRs strongly hints that all of the
TLR signalling pathways will be subject to interference by
glucocorticoids. This has important functional conse-
quence in terms of widespread suppression of the innate
immune response to a variety of pathogens. TLRs are
strategically located at the host—pathogen interface and
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serve to recognise a number of molecules that are
expressed by pathogens and not the host. This recognition
triggers a complex cascade of intracellular signalling path-
ways, as described above, that will ultimately promote the
expression of pro-inflammatory proteins such as IL-1 and
TNF. The latter orchestrate the inflammatory response
and thus the inhibition of TLR signalling by glucocorti-
coids will repress IL-1 and TNF expression and this is
likely to make a major contribution to dampening the
inflammatory response. Since the latter is a crucial com-
ponent of the innate immunity, it is clear that the
regulation of TLR signalling by glucocorticoids lies at the
heart of their immunosuppressive and anti-inflammatory
properties. The targeting of TLR signalling by steroids
probably contributes to the compromised immune status of
individuals on long-term use of steroids for the treatment
of inflammatory diseases. The blunting of TLR signalling
by steroids will interfere with the initial recognition phase
of the immune response and will dampen the innate
response to pathogens. However, the fallout of inhibition
of TLR signalling is not restricted to innate immunity.
The triggering of TLRs, such as TLR-4 by LPS, also
induces the expression of co-stimulatory molecules on
antigen-presenting cells and this is a key process in
initiating a specific immune response (Medzhitov et al.
1997). The signalling pathways employed by TLRs in
promoting the expression of co-stimulatory molecules are
common to the above transduction systems used in induc-
ing pro-inflammatory gene expression. Thus the regu-
lation of these pathways by glucocorticoids will repress the
expression of co-stimulatory molecules and suppress the
specific immune response.

In summary, glucocorticoids have the potential to
inhibit the intracellular signalling pathways employed by
TLRs. The latter act at the crossroads of innate and
adaptive immunity and thus the paralysis of TLR signal-
ling is likely to be central in manifesting the remarkable
immunosuppressive effects of glucocorticoids.

Funding

I would like to acknowledge research funding from the
European Biotechnology 5th Framework programme
(Contract Nos QLG1-CT-1999-00549 and QLK3-CT-
2000-00270), Health Research Board of Ireland,
Enterprise Ireland and Higher Education Authority of
Ireland.

References

Adcock IM & Caramori G 2001 Cross-talk between pro-inflammatory
transcription factors and glucocorticoids. Immunology and Cell Biology
79 376-384.

Alexopoulou L, Holt AC, Medzhitov R & Flavell RA 2001
Recognition of double-stranded RNA and activation of NF-kappaB
by Toll-like receptor 3. Nature 413 732-738.

[www.endocrinology.org|



http://www.endocrinology.org

Toll-like receptor signalling and glucocorticoids

P N MOYNAGH

Aliprantis AO, Yang RB, Mark MR, Suggett S, Devaux B, Radolf
JD, Klimpel GR, Godowski P & Zychlinsky A 1999 Cell activation
and apoptosis by bacterial lipoproteins through toll-like receptor-2.
Science 285 736-739.

Almawi WY & Melemedjian OK 2002 Negative regulation of nuclear
factor-xB activation and function by glucocorticoids. Journal of
Molecular Endocrinology 28 69-78.

Barnes PJ 1995 Anti-inflammatory mechanisms of glucocorticoids.
Biochemical Society Transactions 23 940-945.

Beato M, Herrlich P & Schutz G 1995 Steroid hormone receptors:
many actors in search of a plot. Cell 83 851-857.

Bourke E & Moynagh PN 1999 Antiinflammatory effects of
glucocorticoids in brain cells, independent of NF-kB. Journal of
Immunology 163 2113-2119.

Brightbill HD, Libraty DH, Krutzik SR, Yang RB, Belisle JT,
Bleharski JR, Maitland M, Norgard MV, Plevy SE, Smale ST et al.
1999 Host defense mechanisms triggered by microbial lipoproteins
through toll-like receptors. Science 285 732-736.

Burns K, Martinon F, Esslinger C, Pahl H, Schneider P, Bodmer JL,
Di Marco F, French L & Tschopp ] 1998 MyDS88, an adapter
protein involved in interleukin-1 signaling. Journal of Biological
Chemistry 273 12203—12209.

Burns K, Clatworthy J, Martin L, Martinon F, Plumpton C, Maschera
B, Lewis A, Ray K, Tschopp J & Volpe F 2000 Tollip, a new
component of the IL-1RI pathway, links IRAK to the IL-1
receptor. Nature Cell Biology 2 346-351.

Caelles C, Gonzalez-Sancho JM & Munoz A 1997 Nuclear hormone
receptor antagonism with AP-1 by inhibition of the JNK pathway.
Genes and Development 11 3351-3364.

Cao Z, Henzel W] & Gao X 1996 IRAK: a kinase associated with
the interleukin-1 receptor. Science 271 1128-1131.

Chow JC, Young DW, Golenbock DT, Christ W] & Gusovsky F
1999 Toll-like receptor-4 mediates lipopolysaccharide-induced
signal transduction. Journal of Biological Chemistry 274 10689—-10692.

Derijard B, Raingeaud J, Barrett T, Wu IH, Han J, Ulevitch RJ &
Davis RJ 1995 Independent human MAP-kinase signal transduction
pathways defined by MEK and MKK isoforms. Science 267
682-685.

Fitzgerald KA, Palsson-McDermott EM, Bowie AG, Jefferies CA,
Mansell AS, Brady G, Brint E, Dunne A, Gray P, Harte MT et al.
2001 Mal (MyD88-adapter-like) is required for Toll-like receptor-4
signal transduction. Nature 413 78-83.

Freshney NW, Rawlinson L, Guesdon F, Jones E, Cowley S, Hsuan J
& Saklatvala J 1994 Interleukin-1 activates a novel protein kinase
cascade that results in the phosphorylation of Hsp27. Cell 78
1039-1049.

Ghosh S, May M] & Kopp EB 1998 NF-kappa B and Rel proteins:
evolutionarily conserved mediators of immune responses. Annual
Review of Immunology 16 225-260.

Gonzalez MV, Gonzalez-Sancho JM, Caelles C, Munoz A & Jimenez
B 1999 Hormone-activated nuclear receptors inhibit the stimulation
of the JNK and ERK signalling pathways in endothelial cells. FEBS
Letters 459 272-276.

Greenfeder SA, Nunes P, Kwee L, Labow M, Chizzonite RA & Ju G
1995 Molecular cloning and characterization of a second subunit of
the interleukin 1 receptor complex. Journal of Biological Chemistry
270 13757-13765.

Hayashi F, Smith KD, Ozinsky A, Hawn TR, Yi EC, Goodlett DR,
Eng JK, Akira S, Underhill DM & Aderem A 2001 The innate
immune response to bacterial flagellin is mediated by Toll-like
receptor 5. Nature 410 1099-1103.

Hemmi H, Takeuchi O, Kawai T, Kaisho T, Sato S, Sanjo H,
Matsumoto M, Hoshino K, Wagner H, Takeda K ef al. 2000 A
Toll-like receptor recognizes bacterial DNA. Nature 408 740-745.

Horng T, Barton GM & Medzhitov R 2001 TIRAP: an adapter
molecule in the Toll signaling pathway. Nature Immunology 2
835-841.

Iwww.endocrinology.org

Hoshino K, Takeuchi O, Kawai T, Sanjo H, Ogawa T, Takeda Y,
Takeda K & Akira S 1999 Cutting edge: Toll-like receptor 4
(TLR4)-deficient mice are hyporesponsive to lipopolysaccharide:
evidence for TLR4 as the LPS gene product. Journal of Immunology
162 3749-3752.

Ito K, Barnes P] & Adcock IM 2000 Glucocorticoid receptor
recruitment of histone deacetylase 2 inhibits interleukin-1B-induced
histone H4 acetylation on lysines 8 and 12. Molecular and Cellular
Biology 20 6891-6903.

Karin M & Ben-Neriah Y 2000 Phosphorylation meets ubiquitination:
the control of NF-[kappa]B activity. Annual Review of Immunology
18 621-663.

Kassel O, Sancono A, Kratzschmar J, Kreft B, Stassen M & Cato AC
2001 Glucocorticoids inhibit MAP kinase via increased expression
and decreased degradation of MKP-1. EMBO Journal 20
7108-7116.

Knop J & Martin MU 1999 Effects of IL-1 receptor-associated kinase
(IRAK) expression on IL-1 signaling are independent of its kinase
activity. FEBS Letters 448 81-85.

Kobayashi K, Hernandez LD, Galan JE, Janeway CA Jr, Medzhitov R
& Flavell RA 2002 IRAK-M is a negative regulator of Toll-like
receptor signaling. Cell 110 191-202.

Kopp E, Medzhitov R, Carothers J, Xiao C, Douglas I, Janeway CA
& Ghosh S 1999 ECSIT is an evolutionarily conserved intermediate
in the Toll/IL-1 signal transduction pathway. Genes and Development
13 2059-2071.

Krutzik SR, Sieling PA & Modlin RL 2001 The role of Toll-like
receptors in host defense against microbial infection. Current
Opinion in Immunology 13 104-108.

Lasa M, Brook M, Saklatvala ] & Clark AR 2001 Dexamethasone
destabilizes cyclooxygenase 2 mRNA by inhibiting mitogen-
activated protein kinase p38. Molecular and Cellular Biology 21
771-780.

Li L, Cousart S, Hu J & McCall CE 2000 Characterization of
interleukin-1 receptor-associated kinase in normal and endotoxin-
tolerant cells. Journal of Biological Chemistry 275 23340-23345.

Li S, Strelow A, Fontana E] & Wesche H 2002 IRAK-4: a novel
member of the IRAK family with the properties of an IRAK-
kinase. PNAS 99 5567-5572.

Li X, Commane M, Burns C, Vithalani K, Cao Z & Stark GR 1999
Mutant cells that do not respond to interleukin-1 (IL-1) reveal a
novel role for IL-1 receptor-associated kinase. Molecular and Cellular
Biology 19 4643—-4652.

Lin A, Minden A, Martinetto H, Claret FX, Lange-Carter C,
Mercurio F, Johnson GL & Karin M 1995 Identification of a dual
specificity kinase that activates the Jun kinases and p38-Mpk2.
Science 268 286—290.

Ling L, Cao Z & Goeddel DV 1998 NF-kappaB-inducing kinase
activates IKK-alpha by phosphorylation of Ser-176. PNAS 95
3792-3797.

Luisi BF, Xu WX, Otwinowski Z, Freedman LP & Yamamoto KR
1991 Crystallographic analysis of the interaction of the
glucocorticoid receptor with DNA. Nature 352 497-505.

May MJ & Ghosh S 1998 Signal transduction through NF-kappa B.
Immunology Today 19 80-88.

Medzhitov R, Preston-Hurlburt P & Janeway CA Jr 1997 A human
homologue of the Drosophila Toll protein signals activation of
adaptive immunity. Nature 388 394-397.

Medzhitov R, Preston-Hurlburt P, Kopp E, Stadlen A, Chen C,
Ghosh S & Janeway CA Jr 1998 MyD88 is an adaptor protein in
the hToll/IL-1 receptor family signaling pathways. Molecular Cell 2
253-258.

Muzio M, Ni J, Feng P & Dixit VM 1997 IRAK (Pelle) family
member IRAK-2 and MyD88 as proximal mediators of IL-1
signaling. Science 278 1612-1615.

Nakano H, Shindo M, Sakon S, Nishinaka S, Mihara M, Yagita H &
Okumura K 1998 Differential regulation of IkappaB kinase alpha

Journal of Endocrinology (2003) 179, 139-144

143


http://www.endocrinology.org

144

P N MOYNAGH

Toll-like receptor signalling and glucocorticoids

and beta by two upstream kinases, NF-kappaB-inducing kinase and
mitogen-activated protein kinase/ERK kinase kinase-1. PNAS 95
3537-3542.

Ninomiya-Tsuji J, Kishimoto K, Hiyama A, Inoue J, Cao Z &
Matsumoto K 1999 The kinase TAK1 can activate the NIK-I
kappaB as well as the MAP kinase cascade in the IL-1 signalling
pathway. Nature 398 252-256.

Nissen RM & Yamamoto KR 2000 The glucocorticoid receptor
inhibits NFkappaB by interfering with serine-2 phosphorylation of
the RNA polymerase II carboxy-terminal domain. Genes and
Development 14 2314-2329.

O’Neill LA & Greene C 1998 Signal transduction pathways activated
by the IL-1 receptor family: ancient signaling machinery in
mammals, insects, and plants. Journal of Leukocyte Biology 63
650-657.

Oshiumi H, Matsumoto M, Funami K, Akazawa T & Seya T 2003
TICAM-1, an adaptor molecule that participates in Toll-like
receptor 3-mediated interferon-beta induction. Nature Immunology 4
161-167.

Ozinsky A, Underhill DM, Fontenot JD, Hajjar AM, Smith KD,
Wilson CB, Schroeder L & Aderem A 2000 The repertoire for
pattern recognition of pathogens by the innate immune system is
defined by cooperation between toll-like receptors. PNAS 97
13766-13771.

Poltorak A, He X, Smirnova I, Liu MY, Huffel CV, Du X, Birdwell
D, Alejos E, Silva M, Galanos C et al. 1998 Defective LPS
signaling in C3H/HeJ and C57BL/10 ScCr mice: mutations in
TIr4 gene. Science 282 2085-2088.

Qureshi ST, Lariviere L, Leveque G, Clermont S, Moore KJ, Gros P
& Malo D 1999 Endotoxin-tolerant mice have mutations in Toll-
like receptor 4 (Tlr4). Journal of Experimental Medicine 189
615-625.

Rouse J, Cohen P, Trigon S, Morange M, Alonso-Llamazares A,
Zamanillo D, Hunt T & Nebreda AR 1994 A novel kinase cascade
triggered by stress and heat shock that stimulates MAPKAP
kinase-2 and phosphorylation of the small heat shock proteins. Cell
78 1027-1037.

Schmidt A, Caron E & Hall A 2001 Lipopolysaccharide-induced
activation of beta2-integrin function in macrophages requires Irak
kinase activity, p38 mitogen-activated protein 1 and the Rap]
GTPase. Molecular and Cellular Biology 2 438—448.

Shinkura R, Kitada K, Matsuda F, Tashiro K, Tkuta K, Suzuki M,
Kogishi K, Serikawa T & Honjo T 1999 Alymphoplasia is caused
by a point mutation in the mouse gene encoding NF-kappa
B-inducing kinase. Nature Genetics 22 74-77.

Suzuki N, Suzuki S, Duncan GS, Millar DG, Wada T, Mirtsos C,
Takada H, Wakeham A, Itie A, Li S ef al. 2002 Severe impairment
of interleukin-1 and Toll-like receptor signalling in mice lacking
IRAK-4. Nature 416 750-756.

Journal of Endocrinology (2003) 179, 139-144

Swantek JL, Cobb MH & Geppert TD 1997 Jun N-terminal
kinase/stress-activated protein kinase (JNK/SAPK) is required for
lipopolysaccharide stimulation of tumor necrosis factor alpha
(TNF-alpha) translation: glucocorticoids inhibit TNF-alpha
translation by blocking JNK/SAPK. Molecular and Cellular Biology 17
6274-6282.

Takaesu G, Kishida S, Hiyama A, Yamaguchi K, Shibuya H, Irie K,
Ninomiya-Tsuji ] & Matsumoto K 2000 TAB2, a novel adaptor
protein, mediates activation of TAK1 MAPKKK by linking TAK1
to TRAF6 in the IL-1 signal transduction pathway. Molecular Cell 5
649-658.

Takaesu G, Ninomiya-Tsuji J, Kishida S, Li X, Stark GR &
Matsumoto K 2001 Interleukin-1 (IL-1) receptor-associated kinase
leads to activation of TAK1 by inducing TAB2 translocation in the
IL-1 signaling pathway. Molecular and Cellular Biology 21
2475-2484.

Takeuchi O, Hoshino K, Kawai T, Sanjo H, Takada H, Ogawa T,
Takeda K & Akira S 1999 Differential roles of TLR2 and TLR4 in
recognition of Gram-negative and Gram-positive bacterial cell wall
components. Immunity 11 443—451.

Ulevitch RJ & Tobias PS 1995 Receptor-dependent mechanisms of
cell stimulation by bacterial endotoxin. Annual Review of Immunology
13 437-457.

Wesche H, Korherr C, Kracht M, Falk W, Resch K & Martin MU
1997a The interleukin-1 receptor accessory protein (IL-1 RAcP) is
essential for IL-1-induced activation of interleukin-1 receptor-
associated kinase (IRAK) and stress-activated protein kinases (SAP
kinases). Journal of Biological Chemistry 272 7727-7731.

Wesche H, Henzel WJ, Shillinglaw W, Li S & Cao Z 1997b MyD88:
an adapter that recruits IRAK to the IL-1 receptor complex.
Immunity 7 837-847.

Xia Y, Wu Z, Su B, Murray B & Karin M 1998 JNKK1 organizes a
MAP kinase module through specific and sequential interactions
with upstream and downstream components mediated by its
amino-terminal extension. Genes and Development 12 3369-3381.

Yamamoto M, Sato S, Mori K, Hoshino K, Takeuchi O, Takeda K &
Akira S 2002 A novel Toll/IL-1 receptor domain-containing
adapter that preferentially activates the IFN-beta promoter in the
Toll-like receptor signaling. Journal of Immunology 169 6668—-6672.

Yamin TT & Miller DK 1997 The interleukin-1 receptor-associated
kinase is degraded by proteasomes following its phosphorylation.
Journal of Biological Chemistry 272 21540-21547.

Yin L, Wu L, Wesche H, Arthur CD, White JM, Goeddel DV &
Schreiber RD 2001 Defective lymphotoxin-beta receptor-induced
NEF-kappaB transcriptional activity in NIK-deficient mice. Science
291 2162-2165.

Received 28 March 2003
Accepted 21 July 2003

[www.endocrinology.org|



http://www.endocrinology.org

