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Abstract

This paper analyzes the competition of heterogeneously informed traders in a multi-auction

setting. We obtain that the competition can take different forms depending on the number of

traders, trading rounds and the noise in the information. When the number of traders is small and

the number of trading rounds is large, traders may trade very aggressively at the opening and at

the end of the trading day with lower trading intensity in between. Hence, we can explain volume

patterns by the nature of the competition between traders rather than by pattern in the level of

liquidity. We find that the noise in the signal may be beneficial for traders when the competition is

strong as it gives them a monopolistic position on their private information. The amount of noise

maximizing the trader’s expected profit increases with the number of trading rounds as well as the

number of traders. This implies that the value of information is closely related to the market where

that information is subsequently being used.

JEL Classification: G14-G24-D43-D82

Keywords: efficiency, asymmetric information, noise, liquidity, adverse selection, competition.
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1 Introduction

It is now commonly accepted that people hold divergent opinions on many subjects ranging

from the future performance of a particular stock to the future growth rate of the economy.

These diverging opinions may not be the result of any irrationality but the result of the

information processing or the source of the information itself. This information or belief

heterogeneity is thought to be the main driving force behind the large trading volume ob-

served in financial markets (see Cochrane (2007)). The recent literature acknowledges the

importance of the heterogeneity of beliefs and it has become a central assumption to very

diverse analyses (see for instance He et al. (2009), De Kamps et al. (2014), Gollier (2007)

and Verardo (2009)). Xiong (2013) provides an excellent literature review on the sub-

ject. Some of that literature focuses on the impact of belief heterogeneity on asset pricing.

Gandhi and Serrano-Padial (2015) find that it affects returns and Anderson et al. (2005)

find that it might explain the observed favourite-long shot bias. Ottaviani and Sørensen

(2014) obtain that when traders are credit constrained the competitive equilibrium price

underreacts to information and that this underreaction is larger the more heterogeneous

beliefs are.

In our paper, we assume that traders have heterogeneous beliefs regarding the future

value of a traded asset. We then study the competition between these traders. Given

that framework, we derive the unique linear equilibrium in a multi-auction market where

traders receive heterogenous signals.

Our article aims at answering several questions such as what dynamic strategies should

informed market participants use to maximize their profits? How quickly does the price

adjust to reflect private information? How are the insiders’ profits affected by noisy private

signals? Can informed traders reduce competition when they have noisy private signals

i.e. can noisy information be profitable for informed traders? And as a natural extension

to the previous is there an optimal level of noise that maximizes traders’ profits?

When looking at the informed trader’s behavior we obtain the following results which
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depend on the level of noise in the trader’s signal. When the trader’s private information

is precise, traders trade very aggressively on their private information. Insiders have very

similar private information and try to exploit their private information very early during

the trading day and increase their trading aggressiveness until the closure of the market.

However, when the trader’s private information is very noisy, traders can limit the size

of their orders as they have a monopolistic position on the private information they have

received. In that case, traders wait to exploit their informational advantage as, due to

the noise in the signals, prices will take time to incorporate their private information. We

find that the effect of the number of auctions, the number of traders and the level of noise

do not have a straightforward effect on the competition between traders. Increasing the

number of trading rounds leads to more aggressive traders if there are few traders, whereas

if there are many traders they may trade aggressively at the beginning and at the end of

the trading day. This leads to a pattern in the volume traded whereby the volume is high

at the opening and at the closure of the market and lower between the two. This pattern is

observed in financial markets. Our paper explains it as being a consequence of the number

of trading rounds, the number of traders and the level of the noise.

We are not the first ones to analyze the strategic trading behavior of informed traders

in a dynamic setting. Different frameworks have been used to perform that task. Kyle

(1985) examines the trading behavior of a single perfectly informed trader and finds that

the trader limits the size of his early trades in order not to reveal too much information

too early. Information is then gradually incorporated into prices. That result depends

critically on the presence of a single informed trader and also on the structure of the

private information i.e. whether it is perfect or not. Holden and Subrahmanyam (1992)

show, to the contrary of Kyle (1985), that the competition resulting from the presence

of more than one informed trader with identical information results in almost all the

private information to be revealed in the early auctions.1 Foster and Viswanathan (1996)

analyze the case of imperfect competition when the traders’ information is correlated.

1Foster and Viswanathan (1993) find the same result.
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Back et al. (2000) study the competition between strategic traders in continuous time.

Both papers show that the competition between informed traders is very complex and

depends critically on the initial correlation between the informed traders’ signals. Those

two papers are the closest to our analysis. They find that when the correlation is not

too strong, the competition has two phases. Firstly, insiders trade very aggressively and

release much of their private information in the earlier trading periods. This phase is

known as the “rat race”. Secondly, since the correlation between the residual private

information of the informed traders evolves over time, after a number of auctions the

insiders’ residual information is negatively correlated between each other. This reflects a

difference of opinion between the informed agents about the final value of the risky asset.

The informed participants then become more reluctant to trade, since each insider could

be on the wrong side of the market. Hence, the trading activity is less intense. This

phase is known as the “waiting game”. During that phase, insiders conceal their private

information. This phenomenon leads to an adverse selection problem in the market at the

end of the trading day. Hence, the competition between the insiders does not automatically

lead to more efficient prices as one approaches the time of liquidation. Our result regarding

the very intense competition when the level of noise is low is close in spirit to that rat race

described in Holden and Subrahmanyam (1992), Foster and Viswanathan (1996) and Back

et al. (2000).2 However, when private information is very noisy we only obtain a waiting

game. This result is in sharp contrast to Foster and Viswanathan (1996). Indeed, they

find that the waiting game is followed by a rat race. In this case, the insiders limit their

orders since their private information is noisy. The waiting game observed in our model

is not due to a negative correlation between the signals as a consequence of trading. We

show that the waiting game phase appears when the correlation between the signals of the

traders is low - but positive. We also show that it is possible to have the reverse sequence

of the two stages (first a rat race and then a waiting game).

2We show that the models of Kyle (1985) (discrete setting) and Holden and Subrahmanyam (1992) are

encompassed in our model leading to the same results for some particular parameters values.
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As a natural consequence of the previous results we find that when competition is

strong (the number of informed traders and/or the number of auctions is large), increasing

the noise in the traders’ private information may lead to higher profits. In that case,

traders can make more profits with noisy information than with perfect information. This

can be explained by the fact that increasing noise gives a monopolistic position on the

information received (increasing expected profits). However, adding too much noise in the

traders’ signals may decrease their profits as it leads traders to trade on noise too (this has

a damaging impact on the expected profits). When the level of competition is not as strong,

noise always reduces the profit of the informed traders. Whether one effect dominates the

other one depends on the level of competition in the market as well as the level of noise.

These results generalize the findings of Dridi and Germain (2009). This trade-off between

noise and competition bears some similarities with the results put forward by Foster and

Viswanathan (1996) and Back et al. (2000) regarding the level of correlation of the signals

and the expected profits of the traders. Indeed, Foster and Viswanathan (1996) show

that the expected profits of the traders are higher when there is some positive correlation

compared to the case where the signals are uncorrelated.

Given the trade-off between competition and noise, we find the existence of an optimal

level of noise (i.e. a level of noise maximizing the informed traders’ expected profits).

This optimal level of noise increases with the number of traders and with the number of

auctions. As competition increases the noise maximizing expected profits increases. This

result shows that the value of information is closely related to the market where that

information is subsequently being used. In a highly competitive market, informed traders

would be willing to pay a higher price for a noisier information. This would imply that

companies specialized in the sale of information could introduce that in their pricing.

We model the heterogeneity of beliefs differently than Foster and Viswanathan (1996)

and Back et al. (2000) but similarly to Kyle (1985) and most of the papers following

that model. This enables us to study the effect of the heterogeneity of beliefs onto the

competition between traders as in the two first papers cited. We are then able to analyze
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the direct impact of noise on trading and study the trade-off between noise and competition

in a dynamic setting highlighted in Dridi and Germain (2009).3 This analysis has some

relevance for the models of sale of information and more particularly for models of direct

sale of information as per Admati and Pfleiderer (1988a). In a direct sale of information,

the buyer of information observes the information and trades on it. Obviously an important

aspect of the information is the noise embedded in it. One of our result leads to the fact

that traders may actually be better off by buying noisy information for use in a very

competitive market.

The heterogeneity of beliefs as we model it has also a theoretical appeal. Indeed, con-

sidering the effect of the variance of the noise on the traders’ behavior (as we do) is not

equivalent to considering the effect of the correlation between signals. A change in the

correlation between signals only measures the degree to which signals are identical or not.

A change in the variance of the noise in the traders’ signals does not only affect the cor-

relation between the traders’ signals, but also the correlation of the traders’ signals with

the liquidation value of the asset. Then, changing the level of the noise simultaneously

affects the correlation between the traders’ signals and the correlation with the liquidation

value of the asset. Indeed, a large variance of the noise leads to a lower correlation between

signals. This implies a reduction of the level of competition by giving each trader a monop-

olistic position on his private information and thus prevents competition from destroying

his profits. However, it also implies that informed agents are trading on noise which in

turn reduces their expected profits. This effect is not captured by looking at the effect of

the correlation between signals.

Ostrovsky (2012) highlights that in dynamics models the most important issue is the

aggregation of information. In Foster and Viswanathan (1996) and Back, et al. (2000)

the dispersed information forms a sufficient statistic and prices converge to the liquidation

value. In our model, prices do not, in general, converge to the liquidation value of the

3The model of Dridi and Germain (2009) is a particular case of our model corresponding to a static

setting.
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risky asset. However, we obtain that prices tend to converge to the liquidation value

when we increase the number of traders. Moreover, the rate of the increase for the price

informativeness is lower in our model than in Holden and Subrahmanyam (1992), as noise

slows down the revelation of information.

Some papers have empirically investigated the competition between informed traders

taking place in financial markets. Ellison and Mullin (2007) find that the information is

gradually incorporated into price confirming the result found in Kyle (1985). Cho (2007)

analyses the behavior of stock prices ahead of earnings announcements. The paper finds

evidence of informed trading. However, the evidence is more consistent with Foster and

Viswanathan (1996) than with Kyle (1985). Our model predicts that changes in volume

during the trading day can be explained by the presence of noise in the information of the

traders when they compete in the market. 4

The remainder of the paper is organized as follows. Section 2, presents the general

setup. We show in section 3 the existence and the uniqueness of a linear equilibrium

and characterize the different parameters at each auction. In section 4, we study the

informativeness, the market depth and the expected profits according to the level of noise

in the signals of the informed traders, the number of auctions and the number of traders.

In section 5, we present some practical implications from the model developed. Finally, in

section 6, we make some concluding remarks. All proofs are gathered in the Appendix.

2 The Model

We follow the notation of Kyle (1985) and Holden and Subrahmanyam (1992). We assume

that a risky security is traded during N sequential auctions in a time interval which begins

4That competition has a direct impact on price efficiency i.e. on how prices reflect the information

collected by traders. Hou and Li (2016) study information efficiency and show that the US market is

more efficient in impounding information from other markets. Kim and Ryu (2015) study the speed of

convergence of national stock index vis-à-vis the US Index. They find evidence of convergence for France,

Germany and the UK but very limited evidence of convergence for Italy, Canada and Japan.
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at t = 0 and ends at t = 1. Let ∆t be the time interval between the nth auction and

the previous auction, we assume that ∆t = 1
N

. At t = 1, the liquidation value of the

asset is revealed. This liquidation value is denoted by ṽ, with ṽ ∼ N (v̄, σ2
v). For simplicity

and without loss of generality, we assume v̄ = 0. In each auction, the following market

participants are present:

• M risk-neutral informed traders. At t = 0 each insider i = 1, . . . ,M receives a signal

S̃i = ṽ + ε̃i about the liquidation value of the risky asset, where ε̃i ∼ N (0, σ2
ε ), for

i = 1, . . . ,M . Moreover, we assume that the error terms, ε̃i, are mutually independent

and that they are independent of ṽ. Informed participants receive heterogeneous

signals as in Admati and Pfleiderer (1988b).

• Liquidity traders. They submit orders at each auction and do not possess any in-

formation about the fundamental value of the risky asset. We denote by ∆ũn their

aggregate orders and we assume that (∆ũn) are independently and identically nor-

mally distributed with zero mean and variance σ2
u∆t. Also, we assume that ∆ũn are

independent of ṽ and ε̃i.

• Competitive risk-neutral market makers. They observe the aggregate orders, but do

not know whether these orders are initiated by liquidity traders or insiders. They set

the price pn, at each auction n in a Bayesian way.

At the nth auction we denote ∆X̃n as the aggregate order of all informed traders, and

πin the total expected profit of informed trader i, for i = 1, . . . ,M , from auction n to

auction N .

Each risk neutral informed trader determines his optimal trading strategy by a process

of backward induction in order to maximize his expected profits given his conjectures about

the trading strategies of the other informed traders. We look for a linear equilibrium where

each informed trader chooses an order which is linear in his private information and the

previous public price.
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Competition in market making drives the market makers’ expected profits to zero,

conditional on the aggregate submitted orders w̃n = ∆X̃n + ∆ũn. We also look for linear

strategies for the market makers.

3 Equilibrium

We now introduce the equilibrium concept used in our model. To start, we define the

conditions to be satisfied for a Bayesian Nash equilibrium. Then we restrict our search to

linear Markov equilibrium and conjecture the equilibrium strategies for the market maker

and informed traders.

Just before period n, the information of insider i consists of his own signal S̃i, plus his

own orders (x̃i1, . . . , x̃in−1). In addition, all insiders know the past net trades (w̃1, . . . , w̃n−1).

Let

x̃in = Xin(S̃i, x̃i1, . . . , x̃in−1, w̃1, . . . , w̃n−1),

pn = Pn(w̃1, . . . , w̃n),

represent the optimal strategy of trader i and the optimal strategy of the market maker,

respectively. Finally, let Xi = (Xi1, . . . , XiN) (for each i) and P = (P1, . . . , PN) represent

the two vectors of strategy functions. Define the profit that accrues to informed trader i

from period n on as:

πin(X1, . . . , Xi, . . . , XM , P ) =

N
∑

k=n

(ṽ − pk)x̃ik.

A Bayesian Nash equilibrium of the trading game is a M + 1 vector of strategies

(X1, . . . , XM , P ) such that:

• For any i = 1, . . . ,M , n = 1, . . . , N and for X ′
i = (X ′

i1, . . . , X
′
in, . . . , X

′
iN), we have:

E[πin(X1, . . . , Xi, . . . , XM , P )|S̃i, x̃i1, . . . , x̃in−1, w̃1, . . . , w̃n−1]

≥ E[πin(X1, . . . , X
′
i, . . . , XM , P )|S̃i, x̃i1, . . . , x̃in−1, w̃1, . . . , w̃n−1].

10



The optimal strategy function for informed trader i is best no matter which past

strategies i may have played.

• Given the conditional expected profit of the market makers at trading round n

(E [ (pn − ṽ)w̃n| w̃1, . . . , w̃n]) and perfect competition between market makers, for all

n = 1, . . . , N , we have:

pn = E[ṽ|w̃1, . . . , w̃n]. (3.1)

Also, we define the variance of the price error Σn, a measure of price informativeness,

at auction n:

Σn = var[ṽ|w̃1, . . . , w̃n]. (3.2)

We look for a linear Bayesian Nash equilibrium based on a dynamic programming

argument. Note that the strategy of informed trader i at auction n is required to be

the optimal strategy, not only when trader i plays his optimal strategy in the first n − 1

periods. Furthermore, as in Foster and Viswanathan (1996), there are no off equilibrium

observations of order flow by the other informed traders in the model as every order flow

path is possible.

We now derive the following proposition which provides the different parameters of the

equilibrium.

Proposition 1 If ΣN >
σ2
ε

M
there exists a unique linear equilibrium with noisy private

information in which the demand function of informed trader i at auction n and the price

function at auction n are respectively equal to5,6:

x̂i,n = αn∆tS̃i + βn∆tp̂n−1, (3.3)

5Expressing equilibrium condition as a function of ΣN is equivalent to express the same condition as

a function of Σ0. Indeed, we solve our equilibrium by a process of backward induction i.e. we set the

value of ΣN , then we compute ΣN−1 . . . Σ0. Hence, we can write Σ0 as a bijective function of = ΣN -we

observe numerically that Σ0 is a strictly increasing function of ΣN - and the equilibrium condition could be

interpreted as a condition on Σ0.
6If σ2

ε = 0,we are in the Holden and Subrahmanyam (1992) model, the results in this case are presented

in the appendix.
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p̂n = p̂n−1 + λn(∆Xn + ∆un), (3.4)

where the parameters are defined by the following equations

αn∆t = −
2(k3n −

1
2k4n)λn − an

(M + 1)λn − 2M(k3n −
1
2k4n)λ2

n

+
(M − 1)ψn

M

(1 − an)(1− 2λn(k3n −
1
2k4n))

(M + 1)λn − 2M(k3n −
1
2k4n)λ2

n

,

(3.5)

βn∆t = −αn∆t, (3.6)

λn =
Mαn∆tΣn−1

(αn∆t)2M2Σn−1 + σ2
u∆t+M(αn∆t)2σ2

ε

, (3.7)

Σn = var[ṽ|w̃1, . . . , w̃n] =
Σn−1

(

σ2
u∆t+M(αn∆t)

2σ2
ε

)

(αn∆t)2M2Σn−1 + σ2
u∆t+M(αn∆t)2σ2

ε

, (3.8)

with an = Σn
Σn+(1−ψn)σ2

ε
, ψn = Mλnαn∆t and

δn−1 = δn + λ2
nk3n[σ

2
u∆t+ (αn∆t)

2(M − 1)(1 + (M − 1)an)σ
2
ε ]. (3.9)

Trader i’s value function is given by

E
[

πin

∣

∣

∣
p̂0, ..., p̂n−1, S̃i

]

= k1,n

(

S̃i − p̂n−1

)2
+ δn. (3.10)

The coefficients k’s are solving the following system of equations (fully defined in the Ap-

pendix)

kn−1 = Akn +C, (3.11)

where kn−1, kn are matrices of dimension 6 × 1, A is a matrix with dimension 6 × 6 and

C is of dimension 6 × 1. All matrices are defined in the Appendix. The parameters are

subject to the following boundary conditions

δN = k1,N = k2,N = k3,N = 0, (3.12)

αN∆t =
aN

λN (2 + (M − 1) aN )
. (3.13)

12



Proof: See Appendix.

The necessary condition is a learning process condition. It means that the trading

process continues as long as informed traders still have some private information not yet

incorporated in the market maker’s information set. It also shows that the precision of

the market maker’s information is limited by the level of noise contained in the traders’

signals. The market makers’ estimate of the liquidation value can be written as:

v̂ =
1

M

M
∑

i=1

S̃i = ṽ +
1

M

M
∑

i=1

ε̃i. (3.14)

Suppose that the traders’ signals (S̃i)1≤i≤M are in the information set of the market

maker. In this case, the market maker is able to know the liquidation value ṽ with a

precision measured by the inverse of the variance of the random variable 1
M

∑M
i=1 ε̃i. That

precision is then equal to σ2
ε

M
and represents the best precision of her estimate of the

liquidation value ṽ. The last error variance of price, ΣN , is then greater than σ2
ε

M
. As a

consequence, the level of noise, as measured by the variance of the noise σ2
ε cannot be too

high.

Moreover, we numerically find that if we increase the frequency of trading N , ΣN

decreases for a given level of Σ0. This is due to the fact that increasing the frequency

of trading intensifies the competition between traders leading to more information being

released. As a consequence, the frequency of trading is limited by the level of noise. The

higher the frequency of trading, the lower the level of noise. Regarding the effect of the

number of insiders M , it is not as clear. Increasing the number of insiders M decreases

the lower bound of the necessary condition. However, it also intensifies the competition

between traders and so lead to lower values of ΣN . Hence, we cannot deduct analytically

the effect of increasing the number of informed traders.

By proceeding by backward induction one determines the individual orders for each

auction. There is then a link between the last error variance of price ΣN and the initial one

Σ0 at the opening of the sequential auctions market. Choosing Σ0 is therefore equivalent

to setting ΣN to a certain value. To illustrate the properties of our model, we compute
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the linear equilibrium parameters for different settings.

All the results in the following sections are obtained numerically.

4 Numerical Results

We now illustrate our model with numerical simulations. In order to compare the different

results we choose similar numerical settings to those of Holden and Subrahmanyam (1992),

Foster and Viswanathan (1996) and Back et al. (2000). The results are simulated for a

fixed initial value of Σ0.

4.1 Informativeness and Liquidity

We are interested in how prices aggregate the different pieces of private information held

by informed traders. In the next result, we study the informativeness of prices. We show

that it is tightly linked to the noise in the traders’ signals.

Numerical result 1 The informativeness of prices ( 1
Σn

) increases as the level of noise

in the traders’ signal decreases. Moreover, as the noise decreases the earlier the private

information is incorporated into prices.

In our model, the conditional correlation between the signals of the informed market

participants cannot be negative. As a consequence, traders trade on the same side of the

market. Nevertheless, that competition is softened as traders have noisy signals. We can

compare our model to that of Foster and Viswanathan (1996) by looking at the correlation

between the signals. The correlation between the informed agents’ private signals, i and j

at time n, is given by:

corr(S̃i, S̃j)n =
Σn

Σn + σ2
ε

for i 6= j. (4.1)

It can be seen from this expression that the value of σ2
ε impacts the correlation between

two signals. This correlation affects the traders’ behavior, which in turn impacts price

informativeness. However, the variance of the noise also affects the traders’ behavior
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independently from its effect on the correlation. Noisier (more precise) signals also implies

that informed agents, ceteris paribus, trade more (less) on noise reducing (increasing) price

informativeness.

In Figures 1 and 2, we represent the error variance of prices over time for different

values of the correlation between the signals of the informed traders (given by σ2
ε ).

Calendar time

0 0.2 0.4 0.6 0.8 1

Σ
n

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Error variance of price over time for different values of σ
ε

2

σ
ε
² = 0

σ
ε
² = 0.05

σ
ε
² = 0.1

σ
ε
² = 0.5

σ
ε
² = 1

σ
ε
² = 5

Figure 1: The error variance of prices (Σn)

over time, M = 2, N = 4, σ2

u = 1, Σ0 = 1.
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Σ
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0.8
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Error variance of price over time for different values of σ
ε
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σ
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Figure 2: The error variance of prices (Σn)

over time, M = 2, N = 50, σ2

u = 1, Σ0 = 1.

Figure 1 shows that the error variance of price Σn decreases more slowly when the

variance of the noise, σ2
ε , is large. In other words, the noisier the signal the less information

is revealed during the periods of trading. Figure 1 also shows that, when the trader’s private

information is not too noisy, investors reveal more of their private information in the early

auctions whereas the opposite is true when private information is very noisy. This result is

consistent with Ottaviani and Sørensen (2006). Indeed, they show that insiders participate

to the earliest bets on the basis of their common information as they do not wish to hide

information that is already available to all. Therefore, information is quickly revealed to the

market. Conversely, when the insiders’ private information is very noisy, the trader/bettor

tries to conceal this part by delaying his bets to the end of the betting session. In our
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model, when traders have noisier signals the error variance of prices decreases more slowly.

In this case, each market participant has some information that is unique.

In the next result, we study the market liquidity.

Numerical result 2 The liquidity ( 1
λn

) is non monotonic with σ2
ε . It increases over time

when the noise is small whereas it decreases when the noise is large.
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n
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1

Liquidity parameter over time for different values of σ
ε

2

σ
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ε
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σ
ε
² = 1

σ
ε
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Figure 3: The liquidity parameter (λn) over

time, M = 2, N = 4, σ2

u = 1, Σ0 = 1.
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Figure 4: The liquidity parameter (λn) over

time, M = 2, N = 50, σ2

u = 1, Σ0 = 1.

Figure 3 displays the dynamic of the liquidity parameter as a function of the noise.

It shows that as more information is incorporated into prices, the less aggressively the

market maker prices the asset. It also shows that, when there is a large level of noise in

the private signals, the market maker’s sensitivity to order flow, λn, increases slowly over

time. This is due to the fact that informed traders delay their trades to the last auctions

and do not reveal a large part of their private information. Hence, the market maker does

not learn much about the liquidation value of the asset in the early periods of trading. She

then reacts more aggressively to the order flow that appears in the last periods of trading.

These results are shown numerically in Figures 3 and 4.
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We now focus on the link between the informativeness of prices and the number of

auctions or trading rounds. Figure 5 shows the informativeness of prices for different

values of the number of auctions. In order to guarantee the existence of an equilibrium for

the different parameter configurations, we take σ2
ε = 0.02.
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Figure 5: The error variance of prices (Σn)

for different values of N , M = 2, σ2

ε = 0.02,

σ2

u = 1, Σ0 = 1.
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Figure 6: The liquidity parameter (λn) for

different values of N , M = 2, σ2

ε = 0.02, σ2

u =

1, Σ0 = 1.

Hence, one can observe that for a fixed level of noise, σ2
ε , the informativeness of prices

increases with the number of trading rounds. Similarly, Figure 6 shows that the adverse

selection problem (measured by the parameter λn) decreases with the number of auctions

as one approaches the end of the trading day. It also shows that the larger the number

of auctions, the higher the price is at the first trading round. These results are consistent

with Vayanos (2001). Indeed, Vayanos (2001) shows that when the time between trades is

small, in other words when the number of auctions is high, the insider trades aggressively

at the earliest auctions in order to quickly achieve his optimal stock holdings. In his model,

the insider trades for allocational motives. However, this case has some similarities with

the informational motives of the insiders in our model. Indeed, in Vayanos (2001) the
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strategic large trader knows that his sales lead to a drop in the price.

Figures 7 and 8 show the links between the informativeness of prices and the number

of traders as well as the link between liquidity and the number of traders. One can see

that for a fixed level of noise, the informativeness of prices increases with the number of

traders. We also observe in Figure 8 that the liquidity parameter λn decreases with the

number of traders. We can then conclude that increasing the number of traders and/or

trading rounds boosts the competition between traders and so leads to the release of more

information.

Calendar time

0 0.2 0.4 0.6 0.8 1

Σ
n

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Error variance of price over time for different values of M

M=2

M=4

M=10

Figure 7: The error variance of prices (Σn)

for different values of M , N = 4, σ2

ε = 0.02,

σ2

u = 1, Σ0 = 1.
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Figure 8: The liquidity parameter (λn) for
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ε = 0.02, σ2

u =

1, Σ0 = 1.

We now study the reaction of the traders to their private and public information, and

present the different regimes of competition between traders.

4.2 Competition: The Rat Race and the Waiting Game

We are interested in the effect of the noise on the competition between informed traders.

In the next result, we study the reaction of informed traders to their public and private
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information. At this point it should be reminded that we have previously obtained in the

proposition that βn∆t = −αn∆t. As a result if the trading intensity on private information

(αn∆t) increases or decreases the trading intensity on public information (βn∆t) will do

the same in absolute value.

Numerical result 3 The informed market participants react more to their private in-

formation as time elapses. When the level of noise is low, the informed traders react

aggressively to their private information and increase significantly their orders in the last

periods of trading. The reaction of informed traders becomes less agressive when the level

of noise increases.

These results are shown in Figures 9 and 10.
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Figure 9: The reaction of an informed in-

vestor to his private signal (αn) over time,

M = 2, N = 4, σ2

u = 1, Σ0 = 1.
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Figure 10: The reaction of an informed in-

vestor to the prices (βn) over time, M = 2,

N = 4, σ2

u = 1, Σ0 = 1.

Figures 9 and 10 show that the informed traders trade gradually more aggressively on

both their private and public information. In the explanations below we focus on how

traders react to their private information. It can be seen that the more precise their signal

the more aggressive the traders are. This aggressive trading is what we call a rat race.
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When the level of noise is low, we observe this rat race during all the periods of trading

with a greater intensity closer to the end of the trading day. As the level of noise increases,

this trading aggressiveness decreases. When private information is very noisy, traders limit

the size of their trades during the early periods of trading, we call that a waiting game.

However, we still obtain that in the last periods of trading traders intensify their trading.

This can be explained as follows. Firstly, as time gets closer to the end of the trading day

informed traders have less scope to use their private information. Secondly, the impact

of their trades has less long lasting effect on the liquidity. The intensity of the traders’

trading decreases with σ2
ε (this also includes the traders’ behavior at the late auctions). As

said before, at the early auctions we observe that traders are not comparatively aggressive

in their trading. As the noise in their information is not too high, traders refrain from

trading too early as trading aggressively too early would lead to their private information

being incorporated in the price early. However, when the level of noise is very high, the

competition between informed traders is reduced (expression (4.1) is close to zero). Indeed,

traders have more dispersed initial private information and traders enjoy a position close

to a monopolistic one on their piece of information. They then trade accordingly on that

information. This limits the competition between traders during all the periods of trading.

The waiting game observed in our model is not due to a negative correlation between

the signals as a consequence of trading. We show that the waiting game phase appears

when the correlation between the signals of the traders is low - but positive. In our model,

increasing the level of noise in the traders’ signals decreases the correlation between these

signals (Corr(S̃i, S̃j)n ≈ 0). Hence, in this case, each trader considers that the information

from other traders is completely uncorrelated to the true value of the asset. Therefore,

he limits his orders during the early periods of trading in order to not reveal his private

information and waits for the last periods to submit more significant orders.7

7In this case, we can compare our model to the one of Kyle (1985), since each informed trader considers

other traders as noise traders, and so follows a strategy comparable to that observed in Kyle (1985).
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Figures 11 and 12 show that, for a low level of noise, we only observe a rat race during

all the periods of trading: we can see from these figures that the traders’ reaction to their

information increases rapidly during all the periods of trading. We also observe that the

slope of the parameter αn (which measures the intensity of competition) increases during

all the periods of trading and more significantly at the last periods. This result generalizes

the findings of Kyle (1985) and Holden and Subrahmanyam (1992) in the case of signals

with low levels of noise. For an intermediate level of noise, we observe a waiting game that

lasts most of the auctions, though the trading intensity dramatically increases in the last

trading rounds. However, the intensity of that rat race decreases with the level of noise.

Hence, for very high levels of noise, we only observe a waiting game that lasts for all the

periods of trading.8 One difference with Foster and Viswanathan (1996) is the order in

which the two game stages can appear.
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Figure 11: Reaction of an informed investor

to his private signal (αn) over time, M = 2,

N = 10, σ2

u = 1, Σ0 = 1.
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Figure 12: Reaction of an informed investor

to his private signal (αn) over time, M = 2,

N = 30, σ2

u = 1, Σ0 = 1.

8In fact, we always observe a rat race at the last auctions. However, the intensity of this rat race

decreases with the level of noise and becomes difficult to observe when the level of noise is too high.
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When we analyze the effect of increasing the number of auctions on the previous result,

we obtain the following results. For a very low level of noise and when increasing the number

of auctions, we still have a rat race during all the periods of trading.9 The intensity of that

rat race increases with the number of auctions.10 When increasing the number of auctions

for a high level of noise, a waiting game takes place for most of the auctions however

with an increased trading intensity. We also obtain that increasing the number of auctions

increases the intensity of the rat race observed in the last auctions.
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Figure 13: Reaction of an informed investor

to his private signal (αn) over time, M = 10,

N = 10, σ2

u = 1, Σ0 = 1.
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Figure 14: Reaction of an informed investor

to his private signal (αn) over time, M = 10,

N = 30, σ2

u = 1, Σ0 = 1.

When we analyze the effect of increasing the number of insiders on the previous result,

we obtain the following results when comparing Figure 11 with Figure 13 and Figure 12

with Figure 14. For a very low level of noise, we still have one phase only, i.e. the rat race.

9The simulations show that the range of σ2

ε for which this result is satisfied becomes smaller and closer

to 0 when the number of periods increases.
10Numerically, we observe higher final values of αn when we increase the number of auctions N , and keep

σε constant.
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The results show that the intensity of this rat race increases with the number of insiders.11

For a high level of noise, the competition is distorted as follows. We have an early and

a late rat race with a waiting game occurring between those two rat races. The intensity

of the early rate race increases with the number of insiders as well as with the number of

auctions. It also increases when signals become more precise (see Figures 13 and 14). The

intensity of the final rat race decreases with the number of traders.

4.3 Expected Profits

In this section, we are interested in understanding how the competition between the insiders

affects their profits.

Numerical result 4 The insiders’ profits evolve as follows:

1. When the competition is low, measured by both M and N i.e. when M = 2 and

N < 7, or M = 3 and N < 3, the introduction of the noise in the traders’ signals

reduces the profits.

2. When the level of competition is high (M = 2 and N ≥ 7, or M = 3 and N ≥ 3

or M ≥ 4 and for any N), the traders’ profits are non-monotonic with the level of

noise. More precisely, the profits intially increase with low level of noise and then

decrease with it for high value of the noise.

These results can be explained as follows. Introducing noise in the traders’ signals

diminishes the intensity of the competition and so allows the traders to get greater profits

(Figure 16). However, too much noise decreases the trader’s trading intensity in such a

way that traders switch to a waiting game and so diminishes the profits. Noise acts as a

commitment not to trade. When the competition is low (measured by both N and M),

only the negative effect of the noise is present (Figure 15).

11These results are obtained for a range of very low levels of noise, this range gets narrower when the

number of insiders increases.
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Figure 15: The individual profit (πi) as a

function of σ2
ε for M = 2, the number of

insiders, N = 6, the number of auctions,
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u = 1, Σ0 = 1.
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Figure 16: The individual profit (πi) as a

function of σ2
ε for M = 2, the number of

insiders, N = 7, the number of auctions,

σ2

u = 1, Σ0 = 1.

Generally speaking, introducing noise in the traders’ signals may be a way to circumvent

the Grossman and Stiglitz (1980) paradox. 12 For instance, Germain (2005) shows that

when a very large number of sellers of information enter the market they can endogenize

the amount of noise in such a way that they still not reveal their private information. Thus,

Germain (2005) suggests that fund management activities create an endogenous noise on

top of the noise from the liquidity trades.

4.4 Optimal Noise

In this section, we look at the optimal level of noise, i.e. the value of σ2
ε maximizing the

informed traders’ expected profit. Our previous results show that the presence of noise in

12Indeed, in efficient markets as prices reflect all information available, there is no incentive for agents to

collect costly information. In this case one cannot recover the cost of acquiring information as prices are

fully revealing. This leads to a paradox as investors will never collect information and prices will not be

informative.
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the private signals may reduce the level of competition between informed traders. This

would lead to higher expected profits.

Numerical result 5 When the number of insiders is relatively high, there exists an opti-

mal level of noise maximizing the expected profits of the traders. This level increases with

the number of insiders, and the optimal individual profit decreases with M .

These results are shown in Figures 17 and 18.
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Figure 17: The individual profit (πi) as a
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ε for N = 20, the number of
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Figure 18: The individual profit (πi) as a

function of σ2
ε for M = 2, the number of in-

siders, σ2

u = 1, Σ0 = 1.

Figures 17 and 18 show the individual profit for different values of the number of

insiders. We obtain that the optimal level of noise, i.e. the level of noise maximizing the

traders’ expected profit, increases with the number of trading rounds. We also observe

that the optimal individual profit, computed as the profit obtained from the first auction

to the last and evaluated at the optimal noise, decreases with the number of insiders. This

result is similar to the one obtained by Dridi and Germain (2009).

The next result looks at the effect of increasing the number of trading rounds and

informed traders on the traders expected profits.
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ε for N = 4, the number of auc-
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Figure 20: The aggregate profit (πAgg) as a

function of σ2
ε for M = 2, the number of in-

siders, σ2

u = 1, Σ0 = 1.

Numerical result 6 The optimal level of noise evolves as follows:

1. The optimal level of noise increases with the number of auctions. For a fixed level of

noise, the individual profits decrease with the number of auctions N for low levels of

noise, whereas it increases with the number of auctions for high levels of noise.

2. The optimal level of noise increases with the number of informed traders.13

These results are shown numerically in Figures 19 and 20.

The previous results can be explained as follows: as we increase the number of auctions,

the informed traders scope for positive profit increases. However, when the level of noise

is low, the profit decreases with the number of auctions since, in this case, the traders’

private information is quickly incorporated into the price which then converges quickly to

the true value of the asset. When the level of noise is relatively high, less information is

revealed to the market maker and so the price does not converge as quickly to the true

13We observe numerically that the optimal level of noise increases with N slower than with M .
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value of the asset allowing the traders to obtain larger profits.

5 Practical Implications

Our paper has some policy implications as well as some empirical ones.

Numerical result 2 shows that the liquidity is increasing with the number of auctions.

This result shows that if we compare across financial markets that differ in the number

of trading rounds (for instance between batch auction market and continuous markets),

markets offering traders more possibilities to trade (larger number of trading rounds) will

display the highest liquidity. This is illustrated in Figure 6. Numerical result 2 also shows

that price informativeness increases with the number of auctions. These two results imply

that if the policy maker is interested in having a market with a high level of liquidity and

that prices reveal private information, then an obvious choice would be to design a market

close to a continuous market.

By looking at how informed traders trade on their private information, we obtain that

the trader’s response to private information is not smooth i.e. the trader’s intensity may

be high at the very beginning of the trading day then may decrease and stay low for quite

a while and towards the end of the trading day may sharply increase again. The pattern

described above occurs when the number of trading rounds and/or the number of informed

traders are large and the private information held by traders is very precise. Our model

predicts that this trading pattern results from the competition between traders. Some

papers find that this trading behavior may result from changes in liquidity during the

trading day. We prove that this behavior may not be due to changes in the liquidity but

due to the numbers of competing traders, the numbers of trading rounds and the precision

of private information. This change in the trading behavior implies pattern in the volume

observed in the market. The relationship established in our paper could be empirically

tested.

Finally in the section on optimal noise and more precisely in numerical result 6 we show
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that the optimal noise (i.e. the noise in the private information maximizing the traders’

expected profit) is a function of the number of trading rounds and informed traders. We

prove that this optimal noise increases with the number of trading rounds and the num-

ber of traders. As competition increases the noise maximizing expected profits increases.

This result shows that the value of information is closely related to the market where that

information is subsequently being used. In a highly competitive market, informed traders

would be willing to pay a higher price for a noisier information. Following that, companies

specialized in the sale of information could introduce that in their pricing. This relation-

ship between the value of information and the level of competition could be empirically

investigated.

6 Conclusion

This article analyzes the introduction of heterogeneous noisy signals when strategic insid-

ers compete in a multi-auction market. We derive the unique linear equilibrium and its

properties. We find that the existence of an equilibrium is not always guaranteed. We

show that its existence is tightly linked to the existence of private information not yet

incorporated into prices. As such, the existence condition implies a negative relationship

between the number of auctions and the noise in the traders’ private signal. The existence

of the equilibrium is guaranteed when the competition is limited through noisy signals.

Our model enables us to analyze the trade-off between noise and competition as in

Dridi and Germain (2009). We show that when the competition is strong (the number of

informed traders and/or the number of auctions is high), noisy information can reduce the

intensity of the competition between insiders and can increase their expected profits. In

that case noise acts as a commitment not to trade. When the number of informed traders

and the number of trading rounds are low, the introduction of some noise in the traders’

signals always leads to a drop in their expected profits.

As a consequence to the effect of the noise on competition, the model also investigates
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the optimal level of noise i.e. the level of noise maximizing the expected profits of the

traders. We obtain that this level increases with the number of traders and the number of

auctions. This leads to the fact that traders would be willing to pay for a noisier private

signal if they use that information in a more competitive market.

Furthermore, when the level of the noise is small leading to a strong correlation between

signals, the competition between traders takes the form of a rat race during all the periods

of trading. However, as we increase the level of noise, a waiting game phase appears during

the early periods of trading, and the intensity of the rat race of the last auctions decreases.

Hence, when the level of the noise is too large (implying that the correlation is weak) we

only observe a waiting game. This result is in sharp contrast with Foster and Viswanathan

(1996).

We also observe that when increasing the scope for traders to use their information

(increasing the number of trading rounds), traders may trade very aggressively at the

opening and closure of the trading day and decrease their trading intensity in between.

This pattern is observed in financial markets. Our paper explains it as a consequence of

the number of trading rounds, the number of traders and the level of the noise.

Our paper broadly agrees with the findings of Kyle (1985) where the traders gradually

incorporates their information into price. We find that traders trade very aggressively at

the last auction, as in Kyle (1985), however we do observe an auction where they refrain

from trading and even decrease their trading intensity. One empirical prediction of this

model is that changes in volume during the trading day can be explained by the presence

of noise in the information of the traders when they compete in the market.

7 Appendix

Proof of Proposition 1

The proof involves four steps. We will start by resolving the dimensionality issue

(we avoid the problem of increasing state history with time) when all traders follow their
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optimal strategies. In the second step, we resolve the dimensionality issue when one trader

deviates from his optimal strategy, conjecture the value function and then obtain the first

order condition (FOC) that determines the equilibrium. In the third step, we show with

a lemma that, at the equilibrium, the parameters of the demand function for insider i do

not depend on i. In other words, at the equilibrium, all insiders have the same reaction to

their private information (αn) and to their public information (βn). Finally, in the fourth

step, we derive the insiders’ backward induction program.

Step 1: The Dimensionality Issue

In this section we show how the dimensionality issue is resolved (i.e. we avoid the

problem of increasing state history with time). As in Foster and Viswanathan (1996), we

look at linear strategies for informed traders and learning by the market maker.

Consider trader i who is interested in forecasting the true value of the asset that is not

predicted by the market after n− 1 periods of trading, using his information

(S̃i, x̃i1, . . . , x̃in−1, w̃1, . . . , w̃n−1). By equations (3.1) and (3.4), it can be shown that:

pn = p0 +
n

∑

k=1

λkw̃k.

Trader i’s order for r = 1, . . . , n− 1 can be rewritten as:

x̃ir = αir∆trS̃i + βr∆trpr−1 = αir∆trS̃i + βr∆tr(p0 +

r−1
∑

k=1

λkw̃k).

Following Foster and Viswanathan (1996), we obtain that trader i predicts ṽ− pn−1 as

follows:

E[ṽ− pn−1|S̃i, w̃1, . . . , w̃n−1, x̃i1, . . . , x̃in−1] = an(S̃i − pn−1).

Because trader j submits an order of the form x̃jn = αjn∆tnS̃j + βn∆tpn−1, trader i

needs to predict S̃j. This is done as follows: E[S̃j|S̃i, w̃1, . . . , w̃n−1] = an(S̃i−pn−1)+pn−1.

So (S̃i − pn−1, pn−1) is a sufficient statistic for trader i to predict S̃j, and there is no

history-dependent hierarchy of forecasts. The dimensionality issue is resolved in our model

when all traders submit their optimal orders. However, we must also consider deviations

30



from the optimal strategy by any one trader (keeping the behavior of other traders fixed).

If trader i submits an arbitrary order sequence (x̃i1, . . . , x̃in−1), which is different from the

equilibrium orders (given by equation (3.3)), the sufficient statistics that we have computed

need not be relevant.14

In the next step, we resolve the dimensionality issue when one trader deviates from his

optimal strategy (keeping the strategies of other traders fixed) and find the necessary and

sufficient conditions for the equilibrium. This finishes step 1 of the proof.

Step 2: Necessary and Sufficient Conditions For Equilibrium.

We proceed as in Foster and Viswanathan (1996) and get that

E[ṽ− pn−1|S̃i, w̃1, . . . , w̃n−1, x̃i1, . . . , x̃in−1] = an(S̃i − p̂in−1) + p̂in−1 − pn−1,

and

E[S̃j|S̃i, w̃1, . . . , w̃n−1, x̃i1, . . . , x̃in−1] = an(S̃i − p̂in−1) + p̂in−1,

where p̂in is the price that prevails at the nth round of trading if trader i had followed

the equilibrium strategy (x̂i0, . . . , x̂in−1) at the first n periods of trading.

Hence, we find that (S̃i− p̂
i
n−1, p̂

i
n−1−pn−1, p̂

i
n−1) is a sufficient statistic to forecast the

liquidation value and the signals of other traders. We now conjecture the value function

of trader i after n− 1 to be:

E[πin|p1, . . . , pn−1, S̃i] = k1,n−1S̃
2
i + k2,n−1S̃ipn−1 + k3,n−1p

2
n−1 + k4,n−1pn−1(p̂

i
n−1 − pn−1)

+k5,n−1S̃i(p̂
i
n−1 − pn−1) + k6,n−1(p̂

i
n−1 − pn−1)

2 + δn−1.

We also conjecture the optimal strategy of a trader who has played an arbitrary strat-

egy:

x̃ik = αik∆tkS̃i + βk∆tkpk−1 + ζk∆tk(p̂
i
k−1 − pk−1).

14In particular S̃i − pn−1 is not orthogonal to (w̃1, . . . , w̃n−1) since pn−1 6= E[ṽ|w̃1, . . . , w̃n−1] because

trader i has not played his optimal strategy in the first n − 1 rounds of trading.
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One can consider the profit which is realized at the nth auction, and what remains to

be gained from the next auction to the end of trading. This is given below:

E[πin|S̃i, w̃1, . . . , w̃n−1, x̃i1, . . . , x̃in−1] = E[(ṽ−pn)x̃in+πn+1|S̃i, w̃1, . . . , w̃n−1, x̃i1, . . . , x̃in−1].

The price at auction n is given by

pn = pn−1 + λn(∆X̃n + ∆ũn),

with ∆X̃n = x̃in + ∆X∗
n the aggregate order flow from the demand of the ith insider

(x̃in) and from the M − 1 other informed participants (∆X∗
n) at the nth auction.

Due to normality, we have the standard formula:

an =
cov(ṽ, S̃i|ŵ

i
1, . . . , ŵ

i
n−1)

var(S̃i|ŵi1, . . . , ŵ
i
n−1)

=
cov(ṽ, ṽ + ε̃i|p1, . . . , pn−1)

var(ṽ + ε̃i|p1, . . . , pn−1)
.

Then, we obtain:

E[ṽ|S̃i, w̃1, . . . , w̃n−1, x̃i1, . . . , x̃in−1] =
Σn−1

Σn−1 + σ2
ε

(S̃i−p̂
i
n−1)+p̂

i
n−1 = an(S̃i−p̂

i
n−1)+p̂

i
n−1,

with an = Σn−1

Σn−1+σ2
ε

and Σn−1 = var(ṽ|w̃1, . . . , w̃n−1) being the error variance of price at

the (n− 1)th auction.

Knowing that the ith informed trader chooses his market order xin that maximizes his

future expected profit, we obtain the first order condition (FOC):

E[ṽ − pn−1|S̃i, w̃1, . . . , w̃n−1, x̃i1, . . . , x̃in−1] − λnE[∆X∗
n|S̃i, w̃1, . . . , w̃n−1, x̃i1, . . . , x̃in−1]

E[k2,nλnS̃i + 2λnk3,npn + k4,n[λn(p̂
i
n − pn) − λnpn] − λnk5,nS̃i − 2k6,nλn(p̂

i
n − pn)

|S̃i, w̃1, . . . , w̃n−1, x̃i1, . . . , x̃in−1] − 2λnx̃in = 0.

Moreover, we can directly derive the second order condition:

λn[1 − λn(k3n − k4,n + k6n)] > 0.

Given the linearity of the traders’ market order, the aggregate order flow of the j 6= i other

informed participants is ∆X∗
n =

∑M
j 6=i αjn∆tS̃j + (M − 1)βn∆tpn−1, we have:

E[
∑M

j 6=i αjn∆tS̃j + (M − 1)βn∆tpn−1|S̃i, w̃1, . . . , w̃n−1, x̃i1, . . . , x̃in−1] =

(an(S̃i − p̂in−1) + p̂in−1)(
∑M

j 6=i αjn∆t) + (M − 1)βn∆tpn−1.
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This leads to the following expression for the FOC:

S̃i[an − 2λn(1− λn(k3n−
1

2
k4n))αin∆t+ λn(k2n− k5n) + λnan(2λn(k3n−

1

2
k4n) − 1)

(

M
∑

j 6=i

αjn∆t)] + pn−1[−an + 2λn(k3n −
1

2
k4n) − (M + 1 − 2Mλn(k3n −

1

2
k4n))λnβn∆t

−λn(1− an)(1 − 2λn(k3n−
1

2
k4n))(

M
∑

j 6=i

αjn∆t)] + (p̂in−1 − pn−1)[1 − an

+(1 − an)λn(2λn(k3n −
1

2
k4n)− 1)(

M
∑

j 6=i

αjn∆t) + 2λn(βn + ζn)∆t(λn(k3n−
1

2
k4n) − 1)

−2λ2
nβn∆t(M − 1)(k6n−

1

2
k4n) + 2λ2

nζn∆t(k6n −
1

2
k4n) − 2λn(k6n −

1

2
k4n)] = 0.

By identification, we obtain the coefficients multiplied by S̃i, pn−1 and p̂in−1−pn−1 and

solving for αin, βn, ζn we get

αin∆t =
an + λn(k2n − k5n)

2λn[1 − λn(k3n −
1
2k4n)]

+ an
2λn(k3n −

1
2k4n)− 1

2[1− λn(k3n−
1
2k4n)]

(

M
∑

j 6=i

αjn∆t), (7.1)

βn∆t =
2(k3n−

1
2k4n)λn− an

(M + 1)λn− 2M(k3n−
1
2k4n)λ2

n

−
λn(1 − an)[1− 2λn(k3n −

1
2k4n)]

(M + 1)λn − 2M(k3n −
1
2k4n)λ2

n

M
∑

j 6=i

αjn∆t,

(7.2)

ζn∆t =
an − 1 + 2λn(k6n−

1
2k4n) − (1 − an)λn[2λn(k3n−

1
2k4n) − 1](

∑M
j 6=i αjn∆t)

2λn[λn(k3n−
1
2k4n) − 1] + 2λ2

n(k6n −
1
2k4n)

(7.3)

−
2λn[λn(k3n−

1
2k4n) − 1] − 2λ2

n(M − 1)(k6n−
1
2k4n)

2λn[λn(k3n −
1
2k4n)− 1] + 2λ2

n(k6n −
1
2k4n)

βn∆t.

The first relationship needs to be solved for the αin parameters. Let us define the following

parameters

a′ =
an + λn(k2n − k5n)

2λn[1 − λn(k3n −
1
2k4n)]

, and b′ = −
an

2

1 − 2λn(k3n −
1
2k4n)

1 − λn(k3n−
1
2k4n)

.

Given a′ and b′, between the parameters αi can be rewritten as, for i 6= j

αi = a′ + b′(

n
∑

j 6=i

αj). (7.4)

Step 3: The demand of the insiders.

The Lemma below gives the expression of the αi parameters solving that relationship.
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Lemma Let a′ and b′ be two real numbers such as for i 6= j the relationship (7.4) is

verified then, if b′ 6= −1 for i = 1, . . . ,M :

αi =
a′

1 − b′(M − 1)
.

Proof : We have the following M equalities

α1 = a′ + b′(α2 + . . .+ αM ),

α2 = a′ + b′(α1 + α3 + . . .+ αM),

...

αM = a′ + b′(α1 + α2 + . . .+ αM−1).

Let t be a real number such that t =
∑M

i=1 αi, by adding the M previous equalities,

and solving for t we get:

t =
Ma′

1− b′(M − 1)
.

On the other hand, by considering the difference of the first two equalities we have:

α2 − α1 = b′(α1 − α2).

Hence, we obtain:

α2(1 + b′) = α1(1 + b′).

Then, if b′ 6= −1, all the real numbers αi are identical. Therefore, we can conclude for

i = 1, . . . ,M :

αi =
a′

1 − b′(M − 1)
.

It can be verified that the case where b′ = −1 cannot happen due to the second order

condition.

This ends the proof of the lemma.

By applying the lemma, we find the following expression of αin∆t which is independent

of i:

αin∆t = αn∆t =
an + λn(k2n − k5n)

λn
[

2 + (M − 1)an − 2λn(k3n−
1
2k4n)(1 + an(M − 1))

] .
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The expression of βn is given by:

βn∆t =
2(k3n −

1
2k4n)λn − an

(M + 1)λn − 2M(k3n −
1
2k4n)λ2

n

−
M − 1

M

(1 − an)(1− 2λn(k3n −
1
2k4n))

(M + 1)λn − 2M(k3n −
1
2k4n)λ2

n

ψn,

with ψn = Mλnαn∆t .

On the other hand, one obtains the relationship between the error variance of prices at

the nth auction (Σn) and the error variance of prices at the (n− 1)th auction. Indeed:

Σn = var[ṽ|w̃1, . . . , w̃n] = var[ṽ|w̃1, . . . , w̃n−1] −
cov(ṽ, w̃n)

2

var(w̃n)
.

Hence, one obtains:

Σn = Σn−1 − λncov(ṽ, w̃n) = (1−Mλnαn∆t)Σn−1 = (1 − ψn)Σn−1.

Since Σn is positive, we must have that ψn < 1.

The parameter an can be written as:

an =
Σn−1

Σn−1 + σ2
ε

=
Σn

Σn + (1− ψn)σ2
ε

.

The error variance of the price at the nth auction, Σn, is equal to:

Σn =
Σn−1(σ

2
u∆t+ (αn∆t)

2Mσ2
ε )

(αn∆t)2M2Σn−1 + σ2
u∆t+ (αn∆t)2Mσ2

ε

.

The market efficiency condition implies that λn is the regression coefficient of ṽ on w̃n,

conditional on w̃1, . . . , w̃n−1, then:

λn =
αn∆tMΣn−1

(αn∆tn)2M2Σn−1 + σ2
u∆t+ (αn∆tn)2Mσ2

ε

.

This leads to the following expression

λn

Σn

=
Mαn∆t

M(αn∆t)2σ2
ε + σ2

u∆t
.

Since αn∆t = ψn
Mλn

, one obtains:

λ2
n =

ψnΣn −
ψ2
nσ

2
ε

M

σ2
u∆t

.
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That yields the following condition:

Σn > ψn
σ2
ε

M
.

Since Σn ≥ ΣN and ψn < 1, the following condition is sufficient for an equilibrium

ΣN >
σ2
ε

M
.

Step 4: The backward induction program of the insiders.

Each trader i, for i = 1, . . . ,M , maximizes his expected profit from the nth auction to

the last one:

E[πin|p1, . . . , pn−1, S̃i] = k1,n−1S̃
2
i + k2,n−1S̃ipn−1 + k3,n−1p

2
n−1 + k4,n−1pn−1(p̂

i
n−1 − pn−1)

+k5,n−1S̃i(p̂
i
n−1 − pn−1) + k6,n−1(p̂

i
n−1 − pn−1)

2 + δn−1.

Since each trader uses a backward induction process, we have to find a recurrence

relation between the different parameters:



































k1,n−1

k2,n−1

k3,n−1

k4,n−1

k5,n−1

k6,n−1



































=



































a11,n a12,n a13,n a14,n a15,n a16,n

a21,n a22,n a23,n a24,n a25,n a26,n

a31,n a32,n a33,n a34,n a35,n a36,n

a41,n a42,n a43,n a44,n a45,n a46,n

a51,n a52,n a53,n a54,n a55,n a56,n

a61,n a62,n a63,n a64,n a65,n a66,n





































































k1,n

k2,n

k3,n

k4,n

k5,n

k6,n



































+



































c1,n

c2,n

c3,n

c4,n

c5,n

c6,n



































. (7.5)

By computing E[∆X∗
n|S̃i, w̃1, . . . , w̃n−1, x̃i1, . . . , x̃in−1] and

E[(∆X∗
n)

2|S̃i, w̃1, . . . , w̃n−1, x̃i1, . . . , x̃in−1] and by substituting x̃in = αn∆tS̃i+βn∆tpn−1+

ζn∆t(p̂
i
n−1 − pn−1) in the expression of the profit, and finally by identification we obtain

the following15

δn−1 = δn + λ2
nk3n

[

σ2
u∆tn + (M − 1)(αn∆t)

2(1 + (M − 1)an)σ
2
ε ]

]

. (7.6)

15For the sake of space, the coefficients aij,n for i, j = 1, . . . , 6 of the matrix are omitted and are available

upon request.
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The coefficient of the reaction to private information at the nth auction are equal to:

αn∆t =
an + λn(k2n − k5n)

λn
[

2 + (M − 1)an − 2λn(k3n −
1
2k4n)(1 + an(M − 1))

] ,

ψn =
Man +Mλn(k2n − k5n)

2 + (M − 1)an − 2λn(k3n −
1
2k4n)(1 + an(M − 1))

.

By substituting an = Σn
Σn+(1−ψn)σ2

ε
and λ2

n =
ψnΣn−

ψ2
nσ

2
ε

M

σ2
u∆tn

and developing the previous

equation, we get that ψn is the solution to the following equation of order six:

σ2
ε

M
γ5nψ

6
n + (

σ2
ε

M
γ4n−Σnγ5n)ψ

5
n + (φ5n +

σ2
ε

M
γ3n−Σnγ4n)ψ

4
n + (φ4n +

σ2
ε

M
γ2n− Σnγ3n)ψ

3
n

+ (φ3n +
σ2
ε

M
γ1n− Σnγ2n)ψ

2
n + (φ2n − Σnγ1n)ψn + φ1n = 0,

with

γ1n =
M2(k2n−k5n)2(Σn+σ2

ε )
2

σ2
u∆t ,

γ2n =
−2M2(k2n−k5n)2(σ2

ε+Σn)σ2
ε−2(k3n−

1

2
k4n)(MΣn+σ2

ε )

σ2
u∆t

,

γ3n =
4(k3n−

1

2
k4n)2σ4

ε+M
2(k2n−k5n)2σ4

ε+4M2(k3n−
1

2
k4n)2Σ2

n−4M (k2n−k5n)(k3n−
1

2
k4n)Σnσ2

ε

σ2
u∆t

−
8M (k2n−k5n)σ4

ε (k3n−
1

2
k4n)+4M2(k2n−k5n)σ2

ε (k3n−
1

2
k4n)Σn−8(k3n−

1

2
k4n)2MΣnσ2

ε

σ2
u∆t

,

γ4n =
4M (k2n−k5n)(k3n−

1

2
k4n)σ4

ε−8(k3n−
1

2
k4n)2σ4

ε−8M (k3n−
1

2
k4n)2Σnσ2

ε

σ2
u∆t

,

γ5n =
4(k3n−

1

2
k4n)2σ4

ε

σ2
u∆t

,

φ1n = M2Σ2
n, φ2n = −2MΣn(2σ

2
ε + (M + 1)Σn),

φ3n = 4σ4
ε + 4σ2

ε (M + 1)Σn + (M + 1)2Σ2
n + 4Mσ2

εΣn,

φ4n = −8σ4
ε − 4σ2

εΣn(M + 1), φ5n = 4σ4
ε .
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At the final auction there is no future profit, this implies that k2N = k3N = 0. After

some computations and further simplifications the parameter ψN solves:

2σ2
εψ

2
N − (2σ2

ε + (M + 1)ΣN)ψN +MΣN = 0.

This ends the proof of proposition 1.

The case of perfect private information: S̃i = ṽ

It can be shown that by setting σ2
ε = 0 in the proof of proposition 1, the results of

Holden and Subrahmanyam (1992) are obtained.

The case of the static setting: N = 1

It can be shown that by setting N = 1 in the proof of proposition 1, the results of Dridi

and Germain (2009) are obtained.

All other Propositions are obtained by numerical procedures.
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