
Small data in the era of big data

Rob Kitchin • Tracey P. Lauriault

Published online: 11 October 2014

� Springer Science+Business Media Dordrecht 2014

Abstract Academic knowledge building has pro-

gressed for the past few centuries using small data

studies characterized by sampled data generated to

answer specific questions. It is a strategy that has been

remarkably successful, enabling the sciences, social

sciences and humanities to advance in leaps and

bounds. This approach is presently being challenged

by the development of big data. Small data studies will

however, we argue, continue to be popular and

valuable in the future because of their utility in

answering targeted queries. Importantly, however,

small data will increasingly be made more big data-

like through the development of new data infrastruc-

tures that pool, scale and link small data in order to

create larger datasets, encourage sharing and reuse,

and open them up to combination with big data and

analysis using big data analytics. This paper examines

the logic and value of small data studies, their

relationship to emerging big data and data science,

and the implications of scaling small data into data

infrastructures, with a focus on spatial data examples.
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Introduction

Until recently, academic knowledge building was

conducted through what, in the context of emerging

big data, might now be termed small data studies: that

is, studies underpinned by data produced in tightly

controlled ways using sampling techniques that lim-

ited their scope, temporality, size and variety, and

which tried to capture and define their levels of error,

bias, uncertainty and provenance (Miller 2010). Small

data are thus characterized by their generally limited

volume, non-continuous collection, narrow variety,

and are usually generated to answer specific questions.

In contrast, new forms of big data produced predom-

inately through new information and communication

technologies (ICTs) are characterised as being large in

volume, produced continuously, and varied in nature,

although they are often a by-product of systems rather

than being designed to investigate particular phenom-

ena or processes (Laney 2001; Mayer-Schonberger

and Cukier 2013). The rapid growth and impact of big

data has led some to ponder whether big data might

lead to the demise of small data, or whether the stature

of studies based on small data might be diminished,

due to their limitations in size, temporality and relative
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cost. Indeed, Sawyer (2008) notes that funding

agencies are evermore pushing their limited funding

resources to data-rich areas and big data analytics at

the expense of small data studies, a trend that has

continued in recent years (Kitchin 2013).

This paper scrutinizes such concerns by consider-

ing the value of small data in an emerging era of big

data and how they are being reconceived in the context

of new data archiving and sharing infrastructures. We

examine how small data are increasingly being pooled,

linked and scaled into data infrastructures that make

them more big data-like—that is, amenable to com-

bination with big data and open to analysis using big

data analytics, though the data themselves do not hold

the inherent ontological characteristics of big data. As

such, our focus is not big data per se, though we do

discuss big data in order to help make sense of the

changes occurring with respect to small data.

The principal arguments we develop are three fold.

First, despite the rapid growth of big data and

associated analytics, small data studies will continue

to flourish because they have a proven track record of

answering specific questions. Second, the data from

these studies will more and more be pooled, linked,

and scaled through new data infrastructures, with an

associated drive to try to harmonize small data with

respect to data standards, formats, metadata, and

documentation, in order to increase their value through

combination and sharing. Third, scaling small data

exposes them to the new epistemologies of data

science and to incorporation within new multi-billion

data markets being developed by data brokers, thus

potentially enrolling them in pernicious practices such

as dataveillance, social sorting, control creep, and

anticipatory governance, for which they were never

intended. Small data studies might continue to be a

vital component of the research landscape, but their

position and role within it are thus changing.

Small data versus big data

The distinction between small and big data is a recent

one. Prior to 2008, data were rarely considered in

terms of being ‘small’ or ‘big’. All data were, in effect,

what is now sometimes referred to as ‘small data’

regardless of their volume. Due to factors such as cost,

resourcing, and the difficulties of generating, process-

ing, analyzing and storing data, limited volumes of

high quality data were produced through carefully

designed studies using sampling frameworks designed

to ensure representativeness. In the last decade or so,

small data have been complemented by what has been

termed ‘big data’, which have very different ontolog-

ical characteristics (see Table 1).

As detailed in Kitchin (2013: 262), big data are:

• huge in volume, consisting of terabytes or peta-

bytes of data;

• high in velocity, being created in or near real-time;

• diverse in variety in type, being structured and

unstructured in nature, and often temporally and

spatially referenced;

• exhaustive in scope, striving to capture entire

populations or systems (n = all);

• fine-grained in resolution, aiming to be as detailed

as possible, and uniquely indexical in identification;

• relational in nature, containing common fields that

enable the conjoining of different data sets;

• flexible, holding the traits of extensionality (can

add new fields easily) and scalability (can expand

in size rapidly).

(Boyd and Crawford 2012; Dodge and Kitchin

2005; Marz and Warren 2012; Mayer-Schonberger

and Cukier 2013).

The term ‘big’ then is somewhat misleading as big

data are characterized by much more than volume.

Indeed, some ‘small’ datasets can be very large in size,

such as national censuses that also seek to be

exhaustive and have strong resolution and relational-

ity. However, census datasets lack velocity (usually

conducted once every 10 years), variety (usually c.30

structured questions), and flexibility (once a census is

set and is being administered it is all but impossible to

Table 1 Comparing small and big data

Characteristic Small data Big data

Volume Limited to large Very large

Exhaustivity Samples Entire

populations

Resolution and

indexicality

Coarse and weak to tight

and strong

Tight and

strong

Relationality Weak to strong Strong

Velocity Slow, freeze-framed Fast

Variety Limited to wide Wide

Flexible and

scalable

Low to middling High
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tweak the questions or add new questions or remove

others and generally the fields are fixed, typically

across censuses, to enable time-series analysis; Kit-

chin 2014a). Other small datasets also consist of a

limited combination of big data’s characteristics. For

example, a qualitative dataset such as interview

transcripts are usually relatively small in size (perhaps

a couple of dozen respondents), have a non-continuous

temporality (one-off interviews or a sequence over a

number of months), possess weak relationality, and are

limited in variety (text transcripts), though they have

strong resolution and flexibility.

In contrast, big data have all these characteristics,

or nearly all depending on their form (for example,

sensor data lack variety but have the other character-

istics), with the crucial qualities being velocity and

exhaustivity. The rapid growth of big data has arisen

due to the simultaneous development of a number of

enabling technologies, infrastructures, techniques and

processes, and their rapid embedding into everyday

business and social practices and spaces, such as fixed

and mobile internet, the embedding of computation

into all kinds of objects, machines and systems that are

networked together, advances in database design

(especially the creation of NoSQL databases), new

forms of social media and online interactions and

transactions, and new kinds of data analytics designed

to cope with data abundance as opposed to data

scarcity (Kitchin 2013). Indeed, the practices of

everyday life and the places in which we live are

now augmented, monitored and regulated by dense

assemblages of data-enabled and data-producing

infrastructures and technologies, such as traffic and

building management systems, surveillance and polic-

ing systems, government databases, customer man-

agement and logistic chains, financial and payment

systems, and locative and social media (Kitchin and

Dodge 2011). Within these socio-technical systems

much of the data generation is automated through

algorithmically-controlled cameras, sensors, scanners,

digital devices such as smart phones, clickstreams, or

are the by-product of networked interactions (such as

the records of online transactions), or are volunteered

by users through social media or crowd sourcing

initiatives.

Collectively, such systems produce massive,

exhaustive, dynamic, varied, detailed, indexical,

inter-related, low cost per data point datasets that are

flexible and scalable. To take just two examples as

way of illustration. In 2011, Facebook’s active users

spent more than 9.3 billion hours a month on the site

(Manyika et al. 2011), and by 2012 Facebook reported

that it was processing 2.5 billion pieces of content

(links, stores, photos, news, etc.) and 500 ? terabytes

of data, 2.7 billion ‘Like’ actions and 300 million

photo uploads per day (Constine 2012), each accom-

panied by associated metadata. Walmart was gener-

ating more than 2.5 petabytes of data relating to more

than 1 million customer transactions every hour in

2012. These data are very different to traditional small

data, consisting of a rapid, continuous torrent of highly

resolute, indexical, relational and scalable data.

Whereas small datasets were largely oases of data

within data deserts, big data produce a veritable data

deluge that seemingly enable research to shift from:

‘‘data-scarce to data-rich; static snapshots to dynamic

unfoldings; coarse aggregation to high resolution;

relatively simple hypotheses and models to more

complex, sophisticated simulations and theories’’

(Kitchin 2013: 263).

These promises of big data potentially threaten the

status of small data studies by positioning big data as

being of more value and utility to the academy and

business. However, such a framing misunderstands

both the nature of big data and the value of small data.

Big data may seek to be exhaustive, but as with all data

they are both a representation and a sample. What data

are captured is shaped by:

– the field of view/sampling frame (where data

capture devices are deployed and what their

settings/parameters are; who uses a space or

media, e.g., who belongs to Facebook or shops in

Walmart);

– the technology and platform used (different sur-

veys, sensors, lens, textual prompts, layout, etc. all

produce variances and biases in what data are

generated);

– the context in which data are generated (unfolding

events mean data are always situated with respect

to circumstance);

– the data ontology employed (how the data are

calibrated and classified), and;

– the regulatory environment with respect to pri-

vacy, data protection and security (Kitchin 2013,

2014b).

Indeed, all data provide oligoptic views of the

world: views from certain vantage points, using
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particular tools, rather than an all-seeing, infallible

god’s eye view (Haraway 1991; Amin and Thrift

2002). As such, big data constitute a ‘series of partial

orders, localised totalities, with their ability to gaze in

some directions and not others’ (Latour cited in Amin

and Thrift 2002: 92). Big data undoubtedly strive to be

more exhaustive and provide dynamic, fine-grained

insight but, nonetheless, their promise can never be

fully fulfilled. Big data generally capture what is easy

to ensnare—data that are openly expressed (what is

typed, swiped, scanned, sensed, etc.; people’s actions

and behaviours; the movement of things)—as well as

data that are the ‘exhaust’, a by-product, of the primary

task/output. Tackling a question through big data often

means repurposing data that were not designed to

reveal insights into a particular phenomenon, with all

the attendant issues of such a maneuver, for example

creating ecological fallacies.

In contrast, small data may be limited in volume

and velocity, but they have a long history of devel-

opment across science, state agencies, non-govern-

mental organizations and businesses, with established

methodologies and modes of analysis, and a record of

producing meaningful answers. Small data studies can

be much more finely tailored to answer specific

research questions and to explore in detail and in-

depth the varied, contextual, rational and irrational

ways in which people interact and make sense of the

world, and how processes work. Small data can focus

on specific cases and tell individual, nuanced and

contextual stories. Small data studies thus seek to mine

gold from working a narrow seam, whereas big data

studies seek to extract nuggets through open-pit

mining, scooping up and sieving huge tracts of land.

These two approaches of narrow versus open

mining have consequences with respect to data

quality, fidelity and lineage. Given the limited sample

sizes of small data, data quality—how clean (error and

gap free), objective (bias free) and consistent (few

discrepancies) the data are; veracity—the authenticity

of the data and the extent to which they accurately

(precision) and faithfully (fidelity, reliability) repre-

sent what they are meant to; and lineage—documen-

tation that establishes provenance and fit for use; are of

paramount importance (Lauriault 2012). Much work is

expended on limiting sampling and methodological

biases as well as ensuring that data are as rigorous and

robust as possible before they are analyzed or shared.

In contrast, it has been argued by some that big data

studies do not need the same standards of data quality,

veracity and lineage because the exhaustive nature of

the dataset removes sampling biases and more than

compensates for any errors or gaps or inconsistencies

in the data or weakness in fidelity (Mayer-Schonberger

and Cukier 2013). The argument for such a view is that

‘‘with less error from sampling we can accept more

measurement error’’ (p.13) and ‘‘tolerate inexacti-

tude’’ (p. 16). Viewed in this way, Mayer-Schonberger

and Cukier (2013: 13) thus argue ‘‘more trumps

better.’’ Of course, this presumes that all uses of big

data will tolerate inexactitude, when in fact many big

data applications do require precision (e.g., finance

data), or at least data with measurable error

parameters.

Moreover, the warning ‘‘garbage in, garbage out’’

still holds. Big datasets that generate dirty, gamed or

biased data, or data with poor fidelity, are going to

produce analysis and conclusions that have weakened

validity and deliver fewer benefits to those that

analyze and seek to exploit them. And by dint of their

method of production big data can suffer from all of

these ails. The data can be dirty through instrument

error or biased due to the demographic being sampled

(e.g., not everybody uses Twitter) or the data might be

gamed or faked through false accounts or hacking

(e.g., there are hundreds of thousands of fake Twitter

accounts seeking to influence trending and direct

clickstream trails; Bollier 2010; Crampton et al. 2012).

With respect to fidelity there are question marks as to

the extent to which social media posts really represent

peoples’ views and the faith that should be placed on

them. Manovich (2011: 6) warns that ‘‘[p]eoples’

posts, tweets, uploaded photographs, comments, and

other types of online participation are not transparent

windows into their selves; instead, they are often

carefully curated and systematically managed.’’

There are issues of access to both small and big

data. Small data produced by academia, public

institutions, non-governmental organizations and pri-

vate entities can be restricted in access, limited in use

to defined personnel or available for a fee or under

license. Increasingly, however, public institution and

academic data are becoming more open. Big data are,

with a few exceptions such as satellite imagery and

national security and policing, mainly produced by the

private sector. Access is usually restricted behind pay

walls and proprietary licensing, limited to ensure

competitive advantage and to leverage income
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through their sale or licensing (CIPPIC 2006). Indeed,

it is somewhat of a paradox that only a handful of

entities are drowning in the data deluge (boyd and

Crawford 2012) and companies such as mobile phone

operators, app developers, social media providers,

financial institutions, retail chains, and surveillance

and security firms are under no obligations to share

freely the data they collect through their operations. In

some cases, a limited amount of the data might be

made available to researchers or the public through

application programming interfaces (APIs). For exam-

ple, Twitter allows a few companies to access its

firehose (stream of data) for a fee for commercial

purposes (and have the latitude to dictate terms with

respect to what can be done with such data), but

researchers are restricted to a ‘gardenhose’ (c. 10 % of

public tweets), a ‘spritzer’ (c. 1 % of public tweets), or

to different subsets of content (‘white-listed’

accounts), with private and protected tweets excluded

in all cases (boyd and Crawford 2012). The worry is

that the insights that privately owned and commer-

cially sold big data can provide will be limited to the

business sector, or maybe only opened to a privileged

set of academic researchers whose findings cannot be

replicated or validated (Lazer et al. 2009).

Given these limitations of big data and the strengths

of small data, small data studies will continue to be an

important elements of the research landscape. How-

ever, such data will increasingly come under pressure

to utilize the new archiving technologies, being

scaled-up within digital data infrastructures in order

that they are preserved for future generations, become

accessible to reuse and combination with other small

and big data, and more value and insight can be

extracted from them through the application of big

data analytics. Considerable resources have already

been invested in creating such data infrastructures. In

the remainder of this paper we examine the scaling of

small data into data infrastructures and the implica-

tions of such a scaling with respect to exposing small

data to new big data epistemologies and repurposing,

focusing on spatial data examples.

Pooling, scaling, preserving, sharing and reusing

small data: creating data infrastructures

Data have been collected together and stored for much

of recorded history. Such practices have been both

informal and formal in nature. The former consists

simply of gathering data and storing them, whereas the

latter consists of a set of curatorial practices and

institutional structures designed to ensure that data are

preserved for future generations. The former might

best be described as data holdings, or backups,

whereas the latter are data archives. Archives are

formal collections of data that are actively structured,

curated and documented, are accompanied by appro-

priate metadata, and where preservation, access and

discoverability are integrated into technological sys-

tems and institutions designed to last the test of time

(Lauriault et al. 2013). Archives explicitly seek to be

long term endeavours, preserving the full record set—

data, metadata and associated documentation—for

future reuse.

The ability to store data digitally and to structure

them within databases has radically transformed the

volume of data that can be stored and efficiently and

effectively handled and queried and has enabled the

creation of extensive digital holdings and archives.

Such digital data can be easily shared and reused for a

low marginal cost, although the cost of both the soft

(institutional, policies, standards, human resources)

and hard (technology, servers, software, delivery

mechanisms, portals) infrastructures are not in the

least bit inexpensive. Moreover, these data can be

manipulated and analyzed by exposing them to

computational algorithms. As such, procedures and

calculations that would be difficult to undertake by

hand or using analogue technologies become possible

in just a few microseconds, enabling more and more

complex analysis to be undertaken or the replication of

objects (i.e., an atlas) and results. Further the data can

also be relatively easily linked together and scaled into

other forms of data infrastructure.

A data infrastructure is a digital means for storing,

sharing and consuming data across networked tech-

nologies. Over the past two decades in particular,

considerable effort has been expended on developing

and promoting data access and discovery infrastruc-

tures, which take a number of forms: catalogues,

directories, portals, clearinghouses and repositories

(Lauriault et al. 2007). These terms are often used

interchangeably and are confused for one another,

though they are slightly different types of entities.

Catalogues, directories and portals are centralized

resources that may detail and link to individual data

archives (e.g., Earth Observation Data Management
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Service of the Canada Centre for Remote Sensing) or

data collections held by individual institutions (e.g.

Australian National Data Service) or are federated

infrastructures which provide the means to access the

collections held by many (e.g., US National Sea Ice

Data Center). They might provide fairly detailed

inventories of the datasets held, and may act as

metadata aggregators but do not necessarily host the

data (e.g., GeoConnections Discovery Portal; Euro-

peana; O’Carroll et al. 2013). Single site repositories

host all the data sets in a single site, accessible through

a web interface, though they may maintain backup or

mirror sites in multiple locations (e.g., The UK Data

Archive). A federated data repository or clearing

house can be a shared place for storing and accessing

data [e.g. US National Database for Autism Research

(NDAR), NASA’s Global Change Master Directory].

It might provide some data services in terms of search

and retrieval, and data management and processing,

but each holding or archive has been produced

independently and may not share data formats,

standards, metadata, and policies. Nevertheless, the

repository seeks to ensure that each archive meets a set

of requirement specifications and uses audit and

certification to ensure data integrity and trust amongst

users (Dasish 2012).

A cyber-infrastructure is more than a collection of

digital archives and repositories. It consists of a suite

of dedicated networked technologies, shared services

(relating to data management and processing), ana-

lysis tools such as data visualizations (e.g., graphing

and mapping apps), and shared policies (concerning

access, use, IPR, etc.) which enable data to be

distributed, linked together and analyzed (e.g. a spatial

data infrastructure; Cyberinfrastructure Council

2007). Whilst it is sometimes used to denote the

infrastructure that enables a federated repository to

function, here we use it to denote a data infrastructure

in which data share common technical specifications

relating to formats, standards, and protocols. In other

words, there are strong rules relating to data standard-

ization and compliance within the infrastructure. Such

cyber-infrastructures include those implemented by

national statistical agencies and national spatial data

infrastructures (SDIs) that require all data stored and

shared to comply with defined parameters in order to

maximize data interoperability and ensure data qual-

ity, fidelity and integrity that promotes trust. The

objectives of SDIs are to ensure that users from

multiple sectors and jurisdictions can seamlessly re-

use these data and link them into their systems. A cross

border natural disaster, for instance, would require

multiple agencies, in different countries along with

sub-national entities, under severe time constraints

and pressures, to access, model and visualize spatial

data in near real time while also inputting newly

acquired data to respond to and inform an emergency

response arena. In less stressful environments, SDIs

enable the management of cross border shared

services and natural resources (e.g. EU Water Frame-

work Directives).

The rationale for scaling small data into data

infrastructures

The arguments for the storing, sharing and scaling of

data within repositories and across data infrastructures

centre on the promises of new discoveries and

innovations through the combination of datasets and

the crowdsourcing of minds. Individual datasets are

valuable in their own right, but when combined with

other datasets or examined in new ways fresh insights

can potentially be discerned and new questions

answered (Borgman 2007). By combining datasets, it

is contended that the cumulative nature and pace of

knowledge building is accelerated (Lauriault et al.

2007). Moreover, by preserving data over time it

becomes possible to track trends and patterns, and the

longer the record, the greater the ability to build

models and simulations and have confidence in the

conclusions drawn (Lauriault et al. 2007). Over time

then, the cumulative value of data infrastructures

increases as the data become more readily and broadly

available, both in scope and temporality. Such a

sharing strategy is also more likely to spark new

interdisciplinary collaborations between researchers

and teams and to foster enhanced skill through having

access to new kinds of data (Borgman 2007). More-

over, the sharing of data and the adoption of

infrastructure standards, protocols and policies

increases data quality and enables third party data

and study verification, thus increasing data integrity

(Lauriault et al. 2007).

The financial benefits of data infrastructures centre

on the scales of economy created by sharing resources

and avoiding replication, the leveraging effects of re-

using costly data, the generation of wealth through

new discoveries, and producing more efficient
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societies. Research and the production of administra-

tive, statistical and geomatics data are typically costly

undertakings, with various funding agencies collec-

tively spending billions of dollars every year to fund

research activities. Rather than creating a plethora of

ad hoc archives, it makes more sense to establish a

smaller number of dedicated institutional repositories

or infrastructures which undertake basic data stan-

dardization and produce significant efficiencies in

effort, as well as enable broader access to data for

individual researchers/institutions where entry costs to

a field would normally be prohibitive (Fry et al. 2008).

As well as reducing wastage, preserving and sharing

the fruits of such endeavors is more likely to maximize

the return on investment by enabling as much value as

possible to be extracted from the data (Lauriault et al.

2007). That said, the sustainability of these research

data infrastructures are often an issue as these are

funded through a mix of mechanisms such as state and

research funds, community based organization infra-

structures rely on small grants and membership fees,

while the open data infrastructures run by civil society

organizations are built by volunteers. SDIs, alterna-

tively are funded by national and sub-national gov-

ernments to ensure that all sectors and jurisdictions

can seamlessly interoperate and build upon and access

the same framework datasets. This allows for a

decentralized and distributed data infrastructure that

enables the linking of thematic datasets from multiple

sources, and ensuring that these are managed by their

producers, but done so in such a way that they can be

combined when necessary.

Given the anticipated gains from sharing data, over

the past three decades supranational bodies such as the

European Union, national governments, research

agencies, philanthropic and civil society organiza-

tions, have invested extensively in funding a wide

variety of data and cyber-infrastructure initiatives.

Some example data infrastructures

Spatial data infrastructures (SDIs) are the archetype

cyber-infrastructure. National scale SDIs are normally

institutionally located in national mapping organiza-

tions, national surveys, or the departments that man-

age natural resources. They are an assemblage of

institutions (e.g., government, geomatics), policies

(e.g., data sharing protocols), laws (e.g. licenses,

legislation, regulation), technologies (e.g., data

portals, storage, software), processes (e.g., web map-

ping, metadata aggregation), standards (e.g., metada-

ta, file transfer, data quality) and specifications (e.g.,

interoperability), scientific and computing knowledge,

skilled human resources, discovery and access portals,

framework data (e.g., common datasets upon which

others can build such as road networks) and mapping

services that direct the who, how, what and why

geospatial data are collected, stored, manipulated,

analyzed, transformed and shared. They are inter-

sectoral, cross-domain, trans-disciplinary, interdepart-

mental, and require much consensus building. Supra-

national SDIs such as the Infrastructure for Spatial

Information in the European Community (INSPIRE),

are very similar to national SDIs, however in the case

of INSPIRE, it governs how nations are to construct

their infrastructures via rules, directives, and policies

that will lead to data, geomatic systems and services

being seamlessly interoperable across 27 member

states. Each SDI, irrespective of its scale and juris-

diction, is therefore unique, but by adhering to a shared

set of standards, policies and technologies they can be

joined up. In addition, INSPIRE includes a GeoPortal

which is a federated catalog that aggregates the

metadata of member state SDIs thus providing users

with a single point to discover and view EU geospatial

data.

On a smaller scale, and in a different domain, the

UK Data Archive, is an example of a research data

infrastructure that acquires, curates and provides

access to social science and humanities data. Data

are discovered via the UK Data Service which is a

catalogue that provides access to hosted national and

international survey data collections, international

databanks, census data and qualitative data. Secure

data services for access and use of more sensitive

research data are also provided. Data are described

with standard metadata, and a number of educational

resources are provided for users to work with the data

once they have been downloaded. Although not a

certified trusted digital repository, the UK Data

Archive aims to maintain its large collections of data

for long-term reuse, and provides a number of capacity

building resources to enable researchers to manage

and deposit their data.

There are not many examples of data infrastructures

in the non-profit and charitable sector. The Canadian

Council on Social Development, Community Data

Program (CDP), is however an example of a small data
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infrastructure created for the specific purpose of

enabling small area, evidence based decision making

in the social sector. It is funded by its members

through a consortia model. Members are city based

networks of municipal administrators, school boards,

community health centres, social planning councils

and a number of charitable and non-profit organiza-

tions. The CDP acquires and disseminates mostly

public sector data and custom ordered cross tabulated

data aggregated into neighbourhood, city ward, small

area census geographies and postal codes. These are

stored into a database and delivered to members via an

online catalog. In this instance, members not only

benefit from the data, but also from services where

experts negotiate data acquisition based on commu-

nity needs and specifications, and a knowledge sharing

network between super users and novices.

Finally, since 2009 open data infrastructures have

been created by national governments, sub national

governments such as cities, provinces, counties and

states, and civil society organizations such as the UK-

based Open Knowledge Foundation (OKF), and to a

lesser extent research and private sector entities. The

objectives of these data infrastructures are to unlock

access to public sector datasets and make them

accessible via a discovery and access portals for free

and under open licences. The OKF is an open data

supranational organization which provides direction to

governments and civil society groups and helps build

capacity in terms of the deployment of catalogs (e.g.,

CKAN), and has created a set of open data principles

and open license specifications. Open data portals

have not yet matured into cyber-infrastructures,

although government funded open data portals do

manifest some of their qualities. Unlike SDIs, these

are not grounded in a domain, discipline or the

sciences, and often open data infrastructures are

administered in information management/technology

departments and championed by chief technology

officers, or are created and supported by volunteer

groups composed of new media enthusiasts and app

developers.

These four cases are but a small sample of the

innumerable data and cyber-infrastructures currently

in operation. In all four cases, the data found in their

portals are small data, SDIs being the exception as

remote sensing data and many environmental sensors

produce data that have the qualities of big data.

Alternatively, geodemographic data infrastructures,

discussed later, exemplify the scaling of small data

with big data.

Making small data more big data-like

Whilst the scaling of small data into data infrastructures

does not create big data, in the sense that the data still

lack velocity and exhaustivity, it does make them more

big data-like bymaking themmore extensive, relational

and interconnected, varied, and flexible. This enables

two effects to occur. First, it opens scaled small data to

new epistemologies and, in particular, to new forms of

big data analytics (Kitchin 2014a). Second, it facilitates

small data being conjoined with big data to produce

more complex, inter-related and wide-ranging data

infrastructures that are presently driving the rapid

growth of commercial data brokers, including the

burgeoning geodemographics industry (also known as

locational targeted niche marketing tools). Both have

consequences with respect to how small data are being

used and raise normative questions concerning the

creation and use of data infrastructures.

Exposing small data to new epistemologies

Traditional small data methods of analysis have

primarily been designed to extract insights from

scarce, static, clean and weak relational data sets that

have been sampled and adhere to strict assumptions

(such as independence, stationarity, and normality),

and were generated and analyzed with a specific

question in mind (Miller 2010). The challenge with

big data is to cope with abundance and exhaustivity

(including sizable amounts of data with low utility and

value), timeliness and dynamism, messiness and

uncertainty, high relationality, semi-structured or

unstructured content, and the fact that much of them

are generated with no specific question in mind or are a

by-product of another activity. The solution has been

new data analytics that utilize the power of algorithms

and computation to process and provide insight into

datasets that would simply be too costly, difficult and

time-consuming to analyze otherwise. Such analytics

scale-up existing statistical methods, such as regres-

sion, model building, data visualization and mapping,

as well as employing new machine learning and visual

analytics techniques that computationally mine mean-

ing from data and detect, classify and segment
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meaningful patterns, relationships, associations and

trends between variables, and build predictive, simu-

lation and optimization models (Han et al. 2011;

Hastie et al. 2009).These data analytics can equally be

applied to scaled small data to extract and model

insights.

Data analytics are reflective of a particular way of

making sense of the world; they are the manifestation

of a particular epistemology. Some envisage them as a

new form of empiricism that enables data to speak for

themselves free of theory. For example, Anderson

(2008) argues that ‘‘the data deluge makes the

scientific method obsolete’’. He continues, ‘‘We can

analyze the data without hypotheses about what it

might show. We can throw the numbers into the

biggest computing clusters the world has ever seen and

let statistical algorithms find patterns where science

cannot… Correlation supersedes causation, and sci-

ence can advance even without coherent models,

unified theories, or really any mechanistic explanation

at all.’’ In other words, rather than testing whether

certain hypothesized patterns or relationships exist

within a dataset, algorithms are set to work on big data

to discover meaningful associations between data

without being guided by hypotheses. In this episte-

mological vision, scaled small data are made sense of

through a purely inductive approach.

In contrast, data-driven science seeks to hold to the

tenets of the scientific method, but uses a combination

of abductive, inductive and deductive approaches to

advance the understanding of a phenomenon (Kitchin

2014a). It differs from the traditional deductive

approach in that it seeks to generate hypotheses and

insights ‘born from the data’ rather than ‘born from the

theory’ (Kelling et al. 2009: 613). It thus seeks to

incorporate induction into the initial stages of the

research design guided by abduction (logical inference

and reasoning based on established theory), though

explanation through induction is not the intended

endpoint. Here, the patterns, associations and trends

identified through initial data analytics are used to

identify potential hypotheses worthy of further exam-

ination and testing. As such, the epistemological

strategy adopted within data-driven science is to use

guided knowledge discovery techniques to identify

valuable insights that traditional ‘knowledge-driven

science’ might fail to spot and then to investigate these

further (Kelling et al. 2009; Miller 2010; Loukides

2010).

With respect to the social sciences and humanities,

data infrastructures, new data analytics and associated

epistemologies offer the potential to transform the

research landscape (Kitchin 2013, 2014a; Ruppert

2013). As noted, data infrastructures provide access to

large collections of data for reuse and analysis. These

data can be conjoined in new ways and the relation-

ships and associations between them explored using

data analytics. With respect to structured data, it

becomes possible to produce more refined and

sophisticated models and to test the veracity of these

models across a multitude of groups, settings and

situations (Lazer et al. 2009). This includes the

production of more elaborate and robust spatial

models (Batty 2013). The volume of unstructured

digital data is multiplying rapidly, including access to

new sources of information (e.g., social media) and

sources which have heretofore been difficult to access

(e.g., millions of books, documents, newspapers,

photographs, art works, and material objects; Cohen

2008). These data are opened up to the power of

computation, including sophisticated tools for han-

dling, searching, linking, sharing and analyzing data

that seek to complement and augment existing

humanities methods and traditional forms of interpre-

tation and theory building (Berry 2011; Manovich

2011), as well utilizing new data analytics that provide

new means to make sense of such data (Moretti 2005).

Typically humanities research has progressed by

providing a close reading of a handful of sources,

however new machine learning techniques mean that

thousands of sources can be mined, graphed and

mapped, finding patterns and insights that an individ-

ual would find difficult to spot without the help of

‘reading machines’ (Ramsay 2010).

Such approaches are not without critique, with

detractors arguing that data analytics are mechanistic,

reductionist, functionalist, and parochial, reducing

diverse individuals and complex, multidimensional

social structures to mere data points (Wyly 2014), thus

fostering weak, surface analysis, rather than deep,

penetrating insight; that they sacrifice specificity,

context and depth for scale, automation and breadth.

Indeed, Brooks (2013) contends that data analytics:

struggle with the social (people are not rational and do

not behave in predictable ways; human systems are

incredibly complex, having contradictory and para-

doxical relations); and with context (data are largely

shorn of the social, political and economic and
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historical context); create bigger haystacks (consisting

of many more spurious correlations making it difficult

to identify needles); have trouble addressing big

problems (especially social and economic ones); favor

memes over masterpieces (identifies trends but not

necessarily significant features that may become a

trend); and obscure values (of the data producers and

those that analyze them and their objectives). Such

debates over the value and appropriateness of new

analytics and epistemologies, and their application to

scaled small data, seem set to continue for the

foreseeable future (Kitchin 2014a).

Normative concerns related to scaled small data

Scaled small data also gain in value as a commodity,

especially when they can be conjoined with big data.

In contrast to academic, research-orientated or gov-

ernmental data infrastructures, data brokers (some-

times called data aggregators, consolidators or

resellers) gather together data into privately held

infrastructures for resale on a for-profit basis. They

source data from both public and private sources. For

example, from public sector sources they gather data

relating to individuals and aggregates (e.g., groups,

places) concerning health, education, crime, property,

travel, environment, etc., matching these with private

sector data related to or captured within retail,

financial, logistics, business intelligence, real estate,

private security, political polling, transportation,

media, and so on. The potential to link data across

domains is high. For example, the Dutch Data

Protection Authority estimates that the average Dutch

citizen is included in 250–500 databases, with more

socially active people included in up to 1,000

databases (Koops 2011). More recently, data brokers

have been combining these data with the metadata and

content from locative (e.g., smart phone apps) and

social media (e.g. Twitter and Facebook). For exam-

ple, Facebook is partnering with large data brokers and

marketers in order to merge together the profiles,

networks and uploaded content of its billion users

(their likes, comments, photos, videos, etc.) with non-

Facebook purchasing and behaviour data (Edwards

2013).

These interconnected data infrastructures bind

together a vast array of personal data and are used to

construct a suite of derived data products, wherein

value is added through integration and data analytics,

creating profiles of individuals, groups and places, and

predictions as to what people might do under different

circumstances. In the main, profiles are used to micro-

target advertising and niche marketing campaigns,

assess how such targets might behave and be nudged

into a particular response (e.g., selecting and purchas-

ing a particular item), assess credit worthiness and

socially sort individuals (determine whether onemight

receive a service or set personalized pricing), and

provide detailed business analytics, whilst reducing

their overheads in terms of wastage and loss through

risky investments (Lyon 2002; Graham 2005; Siegel

2013). Acxiom, for instance, seeks to mesh offline,

online and mobile data in order to create a ‘360-degree

view’ of consumers, using these data to create detailed

profiles and robust predictive models which it sells to

interested parties (Singer 2012).

Geodemographic segmentation is a data analytical

process which can combine both small and big data in

order to create quantitatively based classification

systems of groups of people at a particular geographic

unit of analysis, often at postal code geographies.

Once classification systems are developed, primarily

with small data inputs, big data such as purchasing

histories, which use postal codes as unique identifiers,

can be matched to these classifications to assess

consumption patterns and to refine the groupings.

These data infrastructures, while they can be used to

better understand population dynamics in cities, are

mostly developed by the private sector to geo-target

marketing. As an illustration, the Environics Analytics

PRiZMC2 segmentation tool classifies Canadians into

66 lifestyle types such as ‘cosmopolitan elite’ or ‘Les

Chics and Lunch at Tim’s’ (short for Tim Horton

Donuts) ‘‘based on their demographics, marketplace

preferences and psychographic Social Values’’. This

company also produces a product calledWealth$capes

Dollar and Sense which provides marketers with a

similar service (Environics Analytics 2013a, b). The

algorithms, methodological assumptions and the mix

of datasets used to produce the geodemographic

profiles are proprietary and protected by intellectual

property regimes and are not subject to public

scrutiny. Irrespective, by using such products compa-

nies seek to become more effective and efficient in

their operations with respect to targeting customers

and siting stores.

The scaling of small data, mashing them with big

data, and subjecting them to data analytics, can have
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profound implications for citizens and the services and

opportunities extended to them. The worry for some is

that a form of ‘data determinism’ is being practiced in

which individuals are not profiled and judged just on

the basis of what they have done, but on the prediction

of what they might do in the future (Ramirez 2013). A

new probability market is emerging—although gam-

bling industry odds compilers and security markets

have been around for some time—which constitutes a

new phase in the era of probabilistic thinking (Hacking

1975, 1990), one that is making up new kinds of

people (Hacking 2007) and new kinds of places

(Lauriault 2012), led by the private sector and

surveillance institutions, mostly for the purpose of

marketing products and security. Moreover, there are

concerns regarding the extent to which scaled small

data and data infrastructures facilitate dataveillance

(surveillance enacted through the processing and

analyzing of data records), infringe on privacy and

other human rights, affect access to private health

insurance and its rates, stigmatize and redline areas,

pose significant data security concerns with regards to

data being stolen and exploited criminally, and enable

control creep wherein data generated for one purpose

is used for another (Clarke 1988; Innes 2001; Solove

2006; CIPPIC 2006). Citizens may have not agreed

with the entities producing the data as to how data

about themselves are used (CIPPIC 2006). As such,

whilst scaling small data does offer a number of

benefits they also can have differential and negative

consequences. There are thus a number of fundamen-

tal normative questions that need urgent reflexive

consideration concerning the production of data

infrastructures if we are to maximize their benefits

whilst minimizing their more pernicious effects.

Conclusion

We are presently witnessing a fast changing landscape

with respect to data. Not only are we witnessing the

roll-out of a new form of data in the guise of big data,

but traditional small data are evolving through new

data infrastructures that enable them to be scaled and

analyzed in new ways. In this paper we have compared

small and big data before going on to examine how

small data are being scaled, combined with big data,

and being made amenable to big data analytics. Our

argument has been three fold.

First, despite the rapid growth of big data and

associated new analytics, small data will continue to

be a vital part of the research landscape. There will not

be a paradigm shift in the near future in which studies

using big data replace those employing small data,

rather small and big data will complement one

another; mining narrow seams of high quality data

will continue alongside open pit mining because it

enables much more control of the research design and

to answer specific, targeted questions. As such, rather

than directing research funding to projects that have

access to vast quantities of data in the hope that they

will inherently produce useful insights, funding needs

to be focused on answering critical questions, whether

they are tackled using small or big data (Sawyer 2008).

Second, the small data landscape is changing

through the development of data infrastructures. Small

data gain value and utility when made accessible for

reuse and are combined with other datasets. As a

consequence, much effort is being directed at building

such infrastructures and in trying to harmonize small

data, with respect to data standards, formats, metadata,

and documentation, to ensure their compatibility with

systems, maximize discoverability, and facilitate the

linking together of datasets. The pressure to harmo-

nize, share and reuse small data will continue to grow

as research funders seek to gain the maximum return

on their investment through new knowledge and

innovations.

Third, the scaling of small data into data infra-

structures has three consequences. One: by pooling

and linking small data to create larger, interconnected

datasets, small data are opened up to analysis by big

data analytics. Small data are thus exposed to the new

epistemologies of data science, fostering the growth of

new approaches such as the digital humanities and

computational social sciences. Two: small data are

more easily conjoined with big data to produce more

diverse derived data that enables more wide-ranging

and extensive analysis. This reconfiguration of the

data landscape is facilitating the rapid growth of data

brokers and new data products, including detailed

profiling. Three: the scaling of small data, and their

combination with big data and exposure to big data

analytics, produces a set of potential pernicious effects

such as dataveillance, social sorting, control creep, and

anticipatory governance that impinge on privacy,

social freedoms and have structural consequences for

individual lives. As such, the scaling of small data
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raises normative questions concerning how data

should be managed and utilized. We have barely

begun to examine these consequences, with develop-

ments running ahead of critical and normative reflec-

tion and political, policy and legal reaction.

Small data are set to continue being an important

component of research endeavors. However, they are

in the process of taking on new forms that have

consequences for how we think about and utilize such

data. We have made an initial attempt to detail some of

these transformations, but further critical reflection

and normative thinking is required to make sense of

the changes taking place and their implications.
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