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Summary
One approach to understanding the Reactive Oxygen Species (ROS)-scavenging systems in

plant stress tolerance is to manipulate the levels of antioxidant enzyme activities. In this study,

we expressed in the chloroplast three such enzymes: dehydroascorbate reductase (DHAR),

glutathione-S-transferase (GST) and glutathione reductase (GR). Homoplasmic chloroplast

transformants containing either DHAR or GST, or a combination of DHAR:GR and GST:GR

were generated and confirmed by molecular analysis. They exhibited the predicted changes in

enzyme activities, and levels or redox state of ascorbate and glutathione. Progeny of these

plants were then subjected to environmental stresses including methyl viologen (MV)-induced

oxidative stress, salt, cold and heavy metal stresses. Overexpression of these different enzymes

enhanced salt and cold tolerance. The simultaneous expression of DHAR:GR and GST:GR con-

ferred MV tolerance while expression of either transgene on its own didn’t. This study pro-

vides evidence that increasing part of the antioxidant pathway within the chloroplast

enhances the plant’s ability to tolerate abiotic stress.

Introduction

Environmental stress is the major limiting factor in plant produc-

tivity. Much of the injury to plants caused by stress exposure is

associated with oxidative damage at the cellular level resulting

from increased production of reactive oxygen species (ROS).

The term ROS embraces not only free radicals such as superox-

ide (�O�2 ) and hydroxyl (ÆOH) radicals, but also hydrogen perox-

ide (H2O2) and singlet oxygen (1O2). While it is generally

assumed that ÆOH and 1O2 are so reactive that their production

must be minimized, H2O2 and �O�2 are synthesized at very high

rates even under optimal conditions (Noctor and Foyer, 1998).

In particular, organelles with an intense rate of electron flow

such as chloroplasts and mitochondria are a major source of

ROS production in plant cells (Mittler et al., 2004). Therefore, a

complex array of detoxification mechanisms has evolved to keep

ROS production under control, including not only non-enzy-

matic components such as antioxidant ascorbate and glutathi-

one, but also enzymatic scavengers. The major antioxidant

enzymes are superoxide dismutase (SOD), ascorbate peroxidase

(APX), catalase (CAT) and glutathione peroxidase (GPX),

involved in the scavenging of ROS, while glutathione reductase

(GR), monodehydroascorbate reductase (MDHAR) and dehydro-

ascorbate reductase (DHAR) are involved in the regeneration of

ascorbate and glutathione.

Manipulation of the expression of enzymes involved in scav-

enging ROS by gene transfer technology has provided valuable

information concerning the role of these enzymes by allowing

direct investigation of their functions and interactions (Foyer

et al., 1994). It has also indicated that modifying ROS-scaveng-

ing systems of plants can lead to significant changes in oxida-

tive stress tolerance, and improve plant performance under

stress (Aono et al., 1993; Sen Gupta et al., 1993; Broadbent

et al., 1995; Foyer et al., 1995). All these studies were per-

formed using nuclear transformation with, in many cases, chlo-

roplast-targeted recombinant protein. Elevated expression of

antioxidant enzymes in chloroplasts, using this approach, has

confirmed a key role for these enzymes in the protection of

plants against these various oxidative stresses in this vulnerable

cellular compartment (Badawi et al., 2004). For instance,

Yoshimura et al. (2004) reported that in transgenic tobacco

plants expression of GPX protein in the chloroplast was more

effective at providing stress tolerance than the expression of the

same protein in the cytosol. More recently, some studies have

aimed at developing transgenic plants expressing several chloro-

plast-targeted antioxidant enzymes simultaneously (Kwon et al.,

2002; Tang et al., 2006; Lee et al., 2007; Ahmad et al., 2010).

They demonstrated the effectiveness of manipulating more than

one gene in improving plant resistance to stress.

The only attempt at expressing genes for ROS scavenging

enzymes directly in the chloroplast via plastid transformation

was carried out in our laboratory (Poage et al., submitted). Two

genes encoding MnSOD and GR were inserted into the plas-

tome of tobacco plants. Transgenic plants overexpressing

MnSOD showed an increased resistance to methyl viologen and

UV-B stress, while GR-overexpressing plants were more tolerant
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to cadmium and UV-B stress. These first results demonstrated

that modifying levels of antioxidant enzymes by chloroplast

genetic engineering is a promising strategy to study the ROS

scavenging system in plants.

Compared with conventional transgenic technologies, plastid

engineering offers several potential advantages such as high pro-

tein expression levels, absence of epigenetic effects (gene silenc-

ing, position effects) and gene containment through the lack of

pollen transmission (Bock and Khan, 2004; Daniell, 2007). This

method also provides additional advantages over nuclear trans-

formation pertaining to oxidative stress. The antioxidant system

is most commonly modified via nuclear transformation, requiring

a transit peptide for translocation into the chloroplast, while

plastid engineering provides the advantage of expression at the

site of the majority of ROS production in the cell, the chloroplast,

without the need for protein import. Chloroplast genetic engi-

neering also offers the advantage of transgene stacking, i.e.

simultaneous expression of multiple transgenes, creating the

opportunity to express different ROS scavenging enzymes in a

single transformation step (Bock, 2001; Daniell et al., 2005).

In this work, three genes were selected for chloroplast trans-

formation experiments: DHAR, glutathione-S-transferase (GST)

and GR. They were chosen based on their roles within the ROS

antioxidant pathway and indications from previous nuclear

transformation studies that they showed potential for engineer-

ing multiple stress tolerance. Several studies have highlighted

the importance of DHAR in the maintenance of the ascorbate

pool and indicated that DHAR contributes to the protection

against the oxidative stress in plants cells (Yamasaki et al.,

1999; Kwon et al., 2003; Ushimaru et al., 2006). A cDNA

encoding the rice DHAR was cloned (Urano et al., 2000) and

used in the generation of transgenic Arabidopsis thaliana

expressing DHAR in the cytosol (Ushimaru et al., 2006). This

DHAR gene was used in the current work.

The second gene chosen for this investigation was E. coli gor

encoding GR. From previous studies it seemed clear that GR of

bacterial origin could function in plant chloroplasts to increase

both the GSH ⁄ GSSG ratio and the total glutathione pool (Noc-

tor et al., 1998) and glutathione itself is an attractive target for

engineering stress tolerance in plants because of its multiple

roles in plant defences against both biotic and abiotic stresses

(Foyer et al., 1997). Moreover, this same gene has been

inserted in the plastome of tobacco plants and its expression

resulted in increases in the enzyme activity and total glutathione

levels (Poage et al., submitted). GR is also a particularly attrac-

tive candidate for combined expression with DHAR, since the

two enzymes catalyse consecutive steps in the ascorbate-gluta-

thione cycle in chloroplasts (Mittler, 2002).

The final target enzyme in this study was a glutathione-S-

transferase. These are evolutionarily conserved detoxification

enzymes with the ability to conjugate a broad range of poten-

tially harmful xenobiotics to glutathione, thereby rendering

them more susceptible to removal from the cell (Burns et al.,

2005). Some GSTs have been shown to function as glutathione

peroxidases to detoxify directly the products of oxidative stress

(Bartling et al., 1993). An E. coli GST gene was used in this

work, which has been shown to exhibit a GSH-dependent per-

oxidase activity against cumene hydroperoxide (Nishida et al.,

1994) and proved to be important for bacterial resistance to

oxidative stress generated by hydrogen peroxide (Kanai et al.,

2006). As well as having a potential impact in its own right,

this enzyme, combined with GR could significantly influence

glutathione homeostasis, further affecting the ROS scavenging

capacity of the chloroplasts. The aim of this work was to pro-

duce transplastomic tobacco plants that express these important

enzymes of the antioxidant pathway in the plastome both singly

and in pairwise combinations and to analyse their influences on

enzyme activity, key metabolite (glutathione and ascorbate)

contents and plant tolerance to oxidative stresses.

Results

Construction of the chloroplast expression vectors and
plant transformation

The plasmid pZS-197 contains the chimeric aminoglycoside

3¢adenylyltransferase (aadA) gene that confers resistance to

spectinomycin ⁄ streptomycin and integrates gene(s) of interest

into the large single copy region of the tobacco chloroplast

genome in between the rbcL and accD genes (Svab and Maliga,

1993). The aadA and gene(s) of interest are driven by the con-

stitutive plastid rRNA operon promoter (Prrn), and transcription

is terminated by psbA3¢ untranslated region. This vector was

modified to contain an AscI ⁄ PacI cloning site upstream of the

aadA gene where the transgene(s) were cloned (Figure 1). All

four constructs pZS-DHAR, pZS-GST, pZS-DHAR:GR and pZS-

GST:GR were introduced into tobacco by biolistic bombardment

(Svab and Maliga, 1993). Bombarded leaves were placed on

RMOP medium with no antibiotic selection pressure for 2 days,

then cut into 10 mm2 pieces and transferred to RMOP contain-

ing 500 mg ⁄ L spectinomycin. Between 20 and 27 putative

transformants were obtained from 24 bombarded leaves with

each of the different constructs.

Foreign gene(s) integration

Transplastomic plants were initially confirmed by PCR using

transgene-specific primers and external primers designed to

confirm the correct incorporation of the construct into the chlo-

roplast genome (data not shown). Four and three independently

generated lines per single (pZS-DHAR and pZS-GST) and double

gene (pZS-DHAR:GR and pZS-GST:GR) constructs, respectively,

were characterised in detail. The lines are referred to subse-

quently as DHAR 3,4,6,15; GST 4,5,8,19; DG 2,3,4 and GG

15,16,18.

Chloroplast transformants were subjected to two additional

regeneration cycles under antibiotic selection to obtain homo-

plasmic plants. Successful chloroplast transformation was then

confirmed by Southern blot analysis. In the chloroplast genome,

EcoRI and EcoRV sites flank the chloroplast border sequence 5¢
of rbcL and 3¢ of accD respectively (Figure 1) which generates a

3.2 kb fragment when digested with these two restriction

enzymes. When the chloroplast genome is transformed with

the cassette from pZS-DHAR or pZS-GST, its insertion between

rbcL and accD increases the size of the EcoRI ⁄ EcoRV digested

fragment to 5.2 kb; and to 6.4 kb when the chloroplast gen-

ome is transformed with the cassette pZS-DHAR:GR or pZS-

GST:GR (Figure 1). Total DNA from each clone and WT tobacco

was digested with EcoRI and EcoRV and two blots with two dif-

ferent probes were made for each type of transformant. Blots

shown in Figure 2 were probed with a Digoxigenin (DIG)

labelled rbcL fragment designed to hybridize at the 3¢end of

rbcL present in both the WT and transformed plastomes. The

probe hybridized to a 3.2 kb fragment in the WT as expected,

and to a 5.2 kb (Figure 2a) or 6.4 kb (Figure 2b) fragment,

confirming the correct integration of the transgene(s) in the
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chloroplast genome, for all of the tested transgenics. DIG

labelled gene specific probes designed to hybridize to the entire

DHAR and GST genes, and the middle part of the DHAR:GR

and GST:GR transgenes showed no hybridizing fragment to the

WT, while all the transformed lanes showed presence of the

transgene(s) (Figure 3). In addition to the strong band for the

transplastomic fragment, a faint hybridization signal that corre-

sponds in size to the restriction fragment from the WT genome

can be seen in Figure 2a. Persistence of wild-type like hybridiza-

tion signal even after multiple rounds of regeneration is often

seen in transplastomic lines and is usually caused not by true

heteroplasmy of the chloroplast transformants but rather by the

presence of promiscuous plastid DNA in one of the other two

genomes of the plant cell (Ruf et al., 2001; Wurbs et al., 2007).

Seed assays were performed to confirm homoplasmy of all

transplastomic lines. There was no segregation of antibiotic

resistance in the T1 generation, confirming homoplasmy (data

not shown).

Protein expression and enzyme activities

To confirm transgene(s) expression, total soluble protein

obtained from transformed and non-transformed leaves was

subjected to Western blot analysis. In all the transplastomic

plants, the gene or combination of genes introduced was found

to express immunoreactive protein (Figure 4). Densitometric

analysis of DHAR blots compared to those of various concentra-

tions of purified protein (not shown) gave estimated recombi-

nant protein levels of 0.79% total soluble protein (TSP), while a

similar analysis of TSP blots gave an estimated recombinant pro-

tein level of 0.75% TSP. Band intensities of other proteins, sug-

gested expression levels of similar magnitude. The expression of

the different introduced genes resulted in increased specific

activity of their respective enzymes (Table 1).

In leaves from the DHAR plants, the level of DHAR activity

increased between 1.8 and 2.7 fold when compared to WT.

This increase was found to be significant (P < 0.001). In leaves

from the DHAR:GR plants, this increase was found to be

greater, between 3.2 and 4 fold. Leaves of the GST plants

exhibited an increase in GST activity of approximately 2-fold,

while this increase was greater, at 2.9- to 3.7-fold in the

GST:GR double transformants. As some GST enzymes can exhi-

bit a GPX activity, and the GST from E. coli was shown to have

GPX specific activity against cumene hydroperoxide (Nishida

et al., 1994), the GPX assay was performed on leaves of WT

3′UTR

rbcL
probe

5.2 kb

accDDHAR/GST aadA
psbAPrrn

DHAR/GST 
probe

rbcL

accDrbcL aadA
psbAPrrn 3′UTR

EcoRV

EcoRV

EcoRV

rbcL
probe

DHAR/GST

6.4 kb

GR

DHAR-GR/GST-GR probe

rbcL probe

accD

3.2 kb

rbcL

Chloroplast genome in tobacco

EcoRI

EcoRI

EcoRI

Figure 1 Diagram of expression cassettes and

integration site used for plastid transformants

(not to scale). The site of integration of pZS-

dehydroascorbate reductase (DHAR), glutathione-

S-transferase (GST), GST:glutathione reductase

(GR) and DHAR:GR constructs is represented by

dotted lines. The location of the different probes

used for Southern blot analysis and the size of

the EcoRI ⁄ EcoRV fragment generated in each

case are indicated.

5.2 kb

3.2 kb

L WT 3 4 6 15 4 5 8 19

GSTDHAR

2.3 kb

4.36 kb

6.55 kb

(a)

L WT 2 3 4 15 16 18

6.4 kb

3.2 kb

GST:GRDHAR:GR

(b)

Figure 2 Southern blot analysis of T1 generation of dehydroascorbate reductase (DHAR) and glutathione-S-transferase (GST) (a), DHAR:glutathione

reductase (GR) and GST:GR (b) transformed plants using a rbcL probe. Hybridisation of EcoRI ⁄ EcoRV digested total genomic DNA with the DIG labelled

rbcL probe. The rbcL probe hybridises to a 3.2 kb fragment in WT, a 5.2 kb fragment in both DHAR and GST lines (a) and a 6.4 kb fragment in both

DHAR:GR and GST:GR lines (b). L: DIG labelled Marker weight II (Roche).
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and GST as well as GST:GR. The levels of GPX were slightly

increased (1.7 fold on average) in GST lines compared to WT.

In the GST:GR lines, this increase was somewhat higher, at 2.6

fold (Table 1).

GR activity was measured in leaves of WT, DHAR:GR and

GST:GR lines but also in GST and DHAR lines as both GST and

DHAR enzymes use reduced glutathione as a substrate. An

enhanced DHAR or GST activity might have an impact on the

GR activity. The GR level in leaf extracts of the DHAR:GR and

GST:GR plants was higher than in the WT with an increase esti-

mated between 3.6- and 4.7-fold for the DHAR:GR lines and

between 4.1- and 4.5-fold for the GST:GR lines. No significant

difference in terms of GR levels was found between the

DHAR:GR and the GST:GR lines. In the DHAR and GST lines,

the GR level was slightly increased compared to the WT. These

levels were significantly lower than those determined for the

DHAR:GR and the GST:GR plants (P < 0.001) but the difference

with the WT was still found to be significant (P < 0.05).

Metabolite contents

The levels of reduced and oxidized ascorbate were measured in

WT, DHAR and DHAR:GR lines, while the levels of reduced and

oxidized glutathione were measured in fully expanded leaves of

all transplastomic lines. As expected, the levels of reduced

ascorbate (AsA) in the leaves of DHAR lines increased up to

1.6-fold over the WT, while the levels of oxidized ascorbate

(DHA) decreased by 40% overall (Figure 5a). Consequently, the

ratio [AsA] ⁄ [DHA], increased markedly in the leaves of DHAR

overexpressing plants. The total ascorbate content was also

found to be slightly increased in the DHAR plants. Both these

effects became significantly enhanced in the DHAR:GR double

transformants.

The level of total glutathione was slightly increased in the

DHAR and GST transformed lines when compared to the WT.

This increase was mostly due to an increase in the levels of oxi-

dized glutathione (GSSG). As a consequence, the ratio

[GSH] ⁄ [GSSG], was decreased significantly in the transgenic

lines by comparison with the WT (Figure 5b).

In the case of the DHAR: GR and GST:GR transformants

(Figure 5c), the total content of glutathione compared to the

WT, was significantly elevated by 2.4-fold for both transformed

lines. This increase was explained by similar increases in both

oxidized and reduced glutathione. As a consequence, the ratio

[GSH] ⁄ [GSSG] was little changed in the transformants.

Analysis of stress tolerance in transplastomic lines

Chilling stress

Growth of transplastomic and WT seedlings under non-stressful

conditions (24 �C) was similar. When incubated at 15 �C, all

the seeds germinated but the growth rate of the seedlings was

considerably reduced by the low temperature, especially for the

WT seedlings which also exhibited yellow or pale green cotyle-

dons suggesting a delay in chlorophyll development. After

12 days all the seedlings exhibited reduced growth at 15 �C,

5.2 kb

2.3 kb

4.3 kb
6.5 kb 6.4 kb

(d)(c)(b)

L WT 3 4 6 15 L   2  3 4 WT L 15 16 18 WTL WT 4 5  8 19 L

5.2 kb

2 kb 

3.5 kb 

5.2 kb 
4.2 kb 

(a)

Figure 3 Southern Blot analysis of T1 generation of transformed plants using gene specific probes. Hybridization of EcoRI ⁄ EcoRV-digested total

genomic DNA with the DIG-labelled gene-specific probe. No hybridization occurs in the WT lanes. (a) Glutathione-S-transferase (GST) lines (as

numbered). L: DIG labelled Marker Weight III (Roche). (b) Dehydroascorbate reductase (DHAR) lines (as numbered). L: DIG-labelled Marker Weight II

(Roche). (c) DHAR:glutathione reductase (GR) lines (as numbered). L: DIG-labelled Marker Weight II (Roche). (d) GST:GR lines (as numbered).

L: DIG-labelled Marker Weight II (Roche).

(b)

(a)

(c)

(d)

25 kDa

M 4 5 8 19 WT 15 16 18

26 kDa

M WT 3 4 6 15 

50 kDa

M 2 3 4 WT 15 16 18

2 3 4
26 kDa

Figure 4 Western Blot analysis of transplastomic leaf extracts. (a) Dehy-

droascorbate reductase (DHAR) protein 26 kDa detected in DHAR clones

3,4,6 and 15. (b) Glutathione-S-transferase (GST) protein 25 kDa

detected in GST clones 4,5,8,19 and GST:glutathione reductase (GR)

clones 15,16,18. (c) GR protein 50 kDa detected in DHAR:GR clones

2,3,4 and GST:GR clones 15,16,18. (d) DHAR protein 26 kDa detected

in DHAR:GR clones 2,3,4.
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but the reduction was much more pronounced in the WT seed-

lings compared to all the transplastomic lines (Figure 6a) and

the DHAR: GR and GST:GR seedlings displayed a further

improvement in their tolerance, in comparison with the single

transformants. Furthermore, WT seeds didn’t germinate when

incubated at 4 �C for up to 50 days, while all transgenic seeds

germinated albeit slowly (data not shown).

In the leaf disc tests, the Fv ⁄ Fm values taken at 48 h and

72 h time points were expressed as a percentage against the

values obtained before the stress treatment. Before the stress,

the Fv ⁄ Fm values were quite similar for WT and transformed

plants. After 48 h incubation at 8 �C, the maximal Photosystem

II (PSII) activity of WT, GST and DHAR leaf discs all showed the

same tendency, a decrease to approximately 88% of the pre-

stress level. Only after the 72 h treatment, was a difference

observed between the leaf discs, the maximal PSII activity of the

WT leaf discs dropped to 72%, while in GST and DHAR leaf

discs it remained higher, at between 75% and 83% (Figure 6b).

With DHAR:GR and GST:GR leaf discs, a difference could

already be seen after 48 h of chilling stress, as these maintained

a higher maximal PSII activity than the WT, with values between

90% and 94%. After 72 h treatment, the maximal photosyn-

thetic capacity of the transgenic leaf discs was still higher than

WT, between 83% and 87% compared to 72% for the WT.

To determine whether overexpressing DHAR, GST and GR

had any influence on H2O2 accumulation during chilling stress

exposure, the amount of H2O2 was also measured in control

and transgenic leaf discs, in the presence or absence of stress.

There was no difference in H2O2 content of WT and transgenic

leaf discs without stress treatment. The H2O2 content increased

markedly in all lines when they were incubated at 8 �C for 72 h

but remained significantly lower in transplastomic leaf discs

than in WT. DHAR:GR and GST:GR leaf discs were more effi-

cient at reducing H2O2 levels than were DHAR or GST alone

(Figure 6c).

Salt and heavy metal stress

To test their salt tolerance capacity, seeds were germinated on

germination medium supplemented with high concentrations

of NaCl: 100, 150, or 200 mM, and seedling growth was

recorded after 14 days. On 100 or 150 mM NaCl medium,

seedlings grew more slowly than on the control plates, but

no differences in growth between WT and transplastomic

seedlings were observed. However, in 200 mM NaCl medium

the growth of WT seedlings was strongly inhibited in compari-

son with transplastomic seedlings. The mean reduction in

growth of WT seedlings grown in 200 mM NaCl was 83% in

length while DHAR and GST seedlings were reduced by only

57% and 62% respectively and DHAR:GR and GST:GR seed-

lings by 65% and 63% respectively (Figure 7). No significant

difference in salt tolerance was observed between the trans-

plastomic lines.

Heavy metal tolerance was analysed by germinating seeds on

germination medium containing several concentrations of CdCl2
(0.25, 0.5, 0.75 and 1 mM) or ZnSO4 (0.5, 1, 2 and 5 mM). The

percentage germination was determined after 7 days, however,

no difference in sensitivity to these two heavy metals was

detected between WT and any of the transplastomic lines (data

not shown).

Effect of methyl viologen (MV) on leaf bleaching and
oxidative damage to lipids

Evaluation of the response to oxidative stress caused by

MV involved visual observations on leaf discs, chlorophyll deter-

minations, membrane damage as assessed by conductivity

measurements, and lipid peroxidation as determined by mal-

ondialdehyde measurements. None of these measurements

revealed any differences between the DHAR or GST (expressed

singly) lines and WT, so the data presented herein are restricted

to the double transformant (DHAR:GR and GST:GR) lines, all of

which exhibited marked differences from WT for all four of

these parameters.

The level of bleaching in the WT leaf discs was greater than

in the DHAR:GR and GST:GR leaf discs for the 0.5 and 1 lM

MV treatments, which indicated that WT leaf discs were under-

going more severe damage. At 5 lM, both lines suffered severe

damage and no obvious difference between them was seen

(Figure 8a). These differences are confirmed in comparisons of

the percentage of chlorophyll retained after exposure to the dif-

ferent MV solutions (Figure 8b) which show much greater chlo-

rophyll retention in the double transformants, compared to WT,

at the two lower levels of MV.

The membrane damage in MV treated, WT and transgenic

leaf discs was measured by electrolyte leakage. A protective

effect was again detected in the double transplastomic leaf

discs after exposure to 0.5 and 1 lM MV, which showed a far

Table 1 Specific activities of DHAR, GST, GPX and GR in protein extracts from WT and transplastomic tobacco plants

Plant line DHAR activity GR activity Plant line GST activity GPX activity GR activity

WT 27.9 ± 4 20.7 ± 2 WT 4.5 ± 0.5 20.1 ± 0.5 20.7 ± 2

DHAR3 75.8 ± 9 34.2 ± 4.1 GST4 9.5 ± 1.5 30.9 ± 5 29.4 ± 4.5

DHAR4 68.4 ± 6 28.1 ± 2.3 GST5 10.2 ± 2.3 28.7 ± 1.9 24 ± 1

DHAR6 50 ± 3 30 ± 1 GST8 8 ± 0.7 38.5 ± 1.2 32.3 ± 3

DHAR15 74.2 ± 2.7 40 ± 3.6 GST19 11 ± 1.6 40.2 ± 2 33 ± 0.9

DG2 100 ± 3 75 ± 8.1 GG15 13 ± 0.6 50.6 ± 4.3 85 ± 6.2

DG3 89.3 ± 8.1 89 ± 5.6 GG16 16.7 ± 1.3 57.3 ± 1.6 94 ± 5

DG4 113 ± 6 97 ± 4.1 GG18 15.5 ± 2.1 50 ± 1.2 86 ± 4.3

DHAR, dehydroascorbate reductase; GPX, glutathione peroxidase; GR, glutathione reductase; GST, glutathione-S-transferase.

DHAR, GPX and GR values are expressed in nmol ⁄ min per milligram protein. GST values are expressed in lmol ⁄ min per milligram protein. Data are means ± SD

of specific activities from three separate assays on three different plants per line. Samples for the assay were collected from nodes 3 and 4 of 6 weeks-old soil

grown plants. The differences between WT and transgenic plants are statistically significant (P < 0.05) as determined by ANOVA.
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lower percentage electrolyte leakage compared to WT

(Figure 8c). Furthermore, these lines also showed a significantly

lower level of lipid peroxidation (as assessed by malondialde-

hyde levels) at the lower MV concentrations (Figure 8d).

Discussion

This study approaches stress research from a novel perspective

by applying chloroplast transformation technology to the engi-

neering of oxidative stress resistance. Plastid transformation has

proved to be an effective tool for enhancing tolerance to sev-

eral abiotic stresses including drought (Lee et al., 2003; Zhang

et al., 2008), salt (Kumar et al., 2004) and chilling (Craig et al.,

2008). Even though these are important advances in the appli-

cation of plastid engineering to the stress research field, engi-

neering for specific stresses fails to address overall mechanisms

which may confer resistance to a broader range of abiotic stres-

ses plants encounter in the environment. The work presented

herein demonstrates a capacity to modify particular aspects of

the endogenous antioxidant pathways via plastid transforma-

tion, creating plants more resistant to several stresses.

Four types of transplastomic tobacco plants were generated.

In two of them one single gene was introduced in the plastome

encoding DHAR or GST. In the other two, a combination of

two genes was inserted in the plastome, DHAR or GST in com-

bination with GR. In all lines, the expression of the introduced

genes resulted in substantial increases in the total leaf specific

activity of their respective enzymes. Measurements were not

made on isolated chloroplasts, which would have supported the

chloroplast location of the elevated enzyme activity. The

increase however is consistent with the high level of immuno-

logically detected recombinant protein, which should be

restricted to the plastids, on the basis of plastid specific promot-

ers, and the absence of any known mechanism for protein

export from chloroplasts. A presumption of chloroplast location

(without supporting data) is also a common feature of reports

on nuclear transformants with recombinant ROS scavenging

enzymes targeted to the chloroplasts through transit sequences
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Figure 5 Biochemical characterization of trans-

plastomic and WT tobacco plants. Samples for

the assay were taken from leaves (nodes 3

and 4) of 6 weeks-old soil-grown plants. Results

are expressed in lmol ascorbate ⁄ g FW and in

nmol glutathione ⁄ g FW. Shown here are the

means ± SD of three independent experiments

on three different plants per line. In all cases the

differences between WT and transgenic plants

are statistically significant (P < 0.05) as deter-

mined by ANOVA. (a) Levels of total, reduced

(AsA) and oxidized (DHA) ascorbate in WT and

dehydroascorbate reductase (DHAR) and

DHAR:glutathione reductase (GR) transgenic

plants. (b) Levels of total, reduced (GSH) and

oxidized (GSSG) glutathione in WT, DHAR and

glutathione-S-transferase (GST) transgenic plants.

(c) Levels of total, reduced (GSH) and oxidized

(GSSG) glutathione in WT, DHAR:GR and GST:GR

transgenic plants. The ratio of AsA to DHA or

GSH to GSSG in each line is indicated below the

histograms.
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(e.g. Foyer et al., 1995; Kwon et al., 2001, 2003; Lee et al.,

2007; Ahmad et al., 2010).

Some comparisons can be made with expression levels

obtained with comparable nuclear transformants, while recogn-

ising that different gene sources, plant species and age of plant

material might have been used in the different studies. The

current DHAR expressing plants had increases in total DHAR

activity (as calculated from the data in Table 1) ranging from

1.8- to 2.7-fold, over wild type, in single transformants, and 3.2-

to 4.0-fold, in double transformants (with GR). These increases

are considerably greater than those achieved by nuclear transfor-

mation in the most comparable study (Ushimaru et al., 2006), in

which the increases in DHAR activity ranged from 1.2 to 1.5,

which proved sufficient to significantly enhance salt tolerance in
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Figure 6 Chilling tolerance in transplastomic seedlings and plants. (a) Transplastomic glutathione-S-transferase (GST), dehydroascorbate reductase

(DHAR), DHAR:glutathione reductase (GR), GST:GR, as well as WT seedlings were grown at 15 �C or at 24 �C on germination medium. Measurements

were taken after 12 days on 25 randomly selected seedlings per line. The experiment was repeated three times. Shown here are the means ± SD. The

differences between WT and all transgenic plant lines are statistically significant (P < 0.05) as determined by ANOVA. The decrease in length of the

seedlings grown under chilling stress compared to those grown under control condition (24 �C) is indicated as a percentage. (b) Effect of chilling on

the relative variable fluorescence of WT, GST, DHAR, DHAR:GR and GST:GR transgenic leaf discs. The minimal fluorescence (Fo), and maximal

fluorescence (Fm) were measured on dark-adapted samples before stress, and after 48 h and 72 h incubation at 8 �C, light intensity of 80 lmol ⁄ m2

per second. Maximal photosynthetic efficiency of PSII was measured as the relative variable fluorescence Fv ⁄ Fm where Fv = Fm)Fo. Shown here are

the means ± SD of three independent experiments on six leaf discs taken from two plants per line. The differences between WT and all transgenic

plant lines are statistically significant (P < 0.05) as determined by ANOVA (c) Effect of chilling on H2O2 accumulation in leaf discs of WT, DHAR,GST,

DHAR:GR and GST:GR. H2O2 content expressed as lmol ⁄ g FW was determined in non-treated leaf discs (control) and after the leaf discs had been

incubated 72 h at 8 �C with moderate light (intensity 80 lmol ⁄ m2 per second). Data represent the means ± SD of three independent experiments on

six leaf discs taken from two plants per line. As determined by ANOVA (P < 0.05) there were no statistical differences between lines for unstressed

plants, but WT was different from all transplastomic lines, after chilling treatment. In all cases, CT, control (unstressed) plants.
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seed germination tests. Our results are however, similar to those

for nuclear tobacco transformants expressing a human DHAR

(Kwon et al., 2003), in which an increase over wild type of 2.29-

fold was reported. Interestingly, it was observed in the plants

expressing a combination of two genes, DHAR or GST ⁄ GPX

activity was higher than when the genes encoding these were

expressed singly. This could be a consequence of improved

translation of the dicistronic message. However it may also be

due to the complex interplay between antioxidants leading to

enhanced endogenous expression levels. A similar result was

obtained in a study of nuclear transgenic plants expressing sev-

eral antioxidant enzymes simultaneously. The APX activity in

plants overexpressing CuZnSOD and APX was higher than that

of plants expressing APX alone (Kwon et al., 2002). GST levels

in our single transformants were 1.8–2.4-fold higher than wild

type, which was similar to levels reported for nuclear transfor-

mants of tobacco (Roxas et al., 2000; Yu et al., 2003), although

in neither of these reports was the recombinant enzyme tar-

geted to the chloroplasts. All three studies show similar increases

in GPX, as well as GST activity. In the present work, both these

enzyme activities were further increased when GST was

expressed together with GR (GG plants). GR levels in our double

transformants (with DHAR or GST) were 3.6- to 4.7-fold higher

than wild type. This compares favourably with nuclear transfor-

mants expressing GR in tobacco chloroplasts; 2.2-fold (Broad-

bent et al., 1995) or 3-fold (Aono et al., 1993), although a

remarkable 1000-fold increase in chloroplast-targeted GR was

reported in transgenic poplar trees (Foyer et al., 1995).

Overexpression of a specific antioxidant gene has been

shown to influence the expression of other antioxidant genes;

indeed transgenic GST expressing seedlings were shown to have

a higher APX activity and MDHAR activity compared to non-

transformed seedlings (Roxas et al., 2000). Tobacco plants

expressing a human DHAR gene showed an increase in GR

activity (Kwon et al., 2001). The GR activity of the DHAR and

GST transformant lines generated in this work also exhibited a

small increase in GR activity compared to the WT. Indeed gluta-

thione reductase activity was increased in all the transplastomic

lines, irrespective of whether or not they included a gor trans-

gene, although it was further enhanced by the inclusion of the

latter.

The analysis of the glutathione and ascorbate pools revealed

that manipulating the activity of ROS scavenging enzymes

affects the antioxidant content of the transformed plants. The

levels of reduced ascorbate (AsA) were increased in all trans-

genic lines overexpressing DHAR and as the levels of DHA were

markedly decreased, the ratio AsA ⁄ DHA was significantly

increased in these lines. This effect was much more pro-

nounced than in the nuclear transformants of Arabidopsis

(Ushimaru et al., 2006), which also showed far greater inter-

line variation. Nuclear transformants of tobacco expressing

human DHAR (Kwon et al., 2003) exhibited a greater than dou-

bling of the AsA ⁄ DHA ratio, similar to the current findings,

although in contrast to our results, and those of Ushimaru

et al. (2006), they did not find an increase in total ascorbate

levels. Other reports have also shown that plants overexpressing

DHAR contained larger quantities of AsA (Kwon et al., 2001;

Chen and Gallie, 2004). In the current work the increase in

AsA ⁄ DHA ratio was even more pronounced in the DHAR:GR

lines. Ding et al. (2009) have previously highlighted the fact

that the capacity for reduction of the glutathione pool by GR

plays an important role in maintaining the ascorbate pool and

redox state.

In the DHAR and GST overexpressing plants, an altered ratio

of oxidized and reduced glutathione levels was observed. This

might be explained by the fact that both GST and DHAR

depend on GSH as an electron donor. Indeed, it was noticed

that the amount of GSH was slightly lower than in WT plants,

whereas the amount of GSSG was higher; consequently the

ratio of GSH ⁄ GSSG was significantly decreased in the transgenic

plants. The double transgenic lines DHAR:GR and GST:GR were

characterized by a substantial increase in total glutathione.

Mullineaux et al. (1994) reported that overexpression of GR in

the tobacco chloroplast, but not in the cytosol, increased both

the reduced state and total pool of glutathione. Overexpression

of GR in the chloroplast in poplar trees also resulted in an

increase in both foliar GSH and the GSH ⁄ GSSG ratio (Foyer

et al., 1995). However, in the present work, the ratio

GSH ⁄ GSSG of the double transgenic plants remained similar to

the WT. This might be explained by an increase in both GSH

and GSSG probably due to the increased DHAR and GST activ-

ity. The reduced glutathione generated is used by DHAR and
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Figure 7 Salt tolerance in transplastomic seedlings. Dehydroascorbate reductase (DHAR), glutathione-S-transferase (GST), DHAR:glutathione reductase
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determined by ANOVA (P < 0.05) there were no statistical differences between lines for unstressed seedlings, but under salt stress WT was different

from all transplastomic lines. The decrease in length of the seedlings grown under salt stress compared to those grown under control conditions is

indicated as a percentage on top of the histograms. CT, control (unstressed) plants.
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GST enzymes; a balance might be established between the

recycling of GSH by GR and its oxidation by DHAR or GST.

The transplastomic plants developed in this work were evalu-

ated for protection against oxidative stresses generated by cold,

salt, heavy metals and MV. The results presented herein demon-

strate that the transplastomic tobacco seedlings, expressing ROS

scavenging enzymes, were less sensitive to low temperatures

and salt stress but no advantage was conferred to heavy metal

stress. In both chilling and salt stresses, the protective effect

could be observed when DHAR or GST levels were enhanced

independently and in the case of chilling stress, a further

improvement was observed when these were combined with

increased GR activity. The most comparable study utilizing

nuclear transformation to increase DHAR levels in tobacco

chloroplasts (Kwon et al., 2003) showed a similar protective

effect on seedling growth against cold and salinity, but chloro-

phyll fluorescence of established plants was not assessed. Us-

humura et al. (2006) showed a protective effect of DHAR

expression in Arabidopsis on seed germination, but in both their

study and that of Kwon et al. (2003) only 100 mM NaCl was

used. The present study found a greatly improved seedling

growth, in comparison with wild type, at double this concentra-

tion. Direct comparisons with published data are hampered by

differences in stress treatments and methods of analysis,

although broad inferences can be drawn. For example, nuclear

transformants of tobacco expressing GST (Roxas et al., 2000)

exhibited qualitatively similar enhancement of tolerance to cold

and salinity, to those presented here, but they used lower salt

concentration (100 mM) and lower temperature (10 �C) than

were employed in the present investigation. Also, they did not

monitor chlorophyll fluorescence under stress, but did explore a

different parameter: metabolic activity, as assessed by calori-

metric analysis. Furthermore, their investigation did not involve

targeting of the recombinant protein to the chloroplasts, and

they do not comment on its probable cellular location. The

present study extended the investigation to explore H2O2 levels

in cold-stressed plants and showed they were reduced in the

transplastomic lines, suggesting the improved tolerance is due

to enhanced levels of ROS-scavenging enzymes, siphoning off

excess H2O2, reducing the risk of its reduction to the toxic ÆOH

radical. Both the reduction of H2O2 and the improvement of

chilling tolerance were more pronounced in the double trans-

formants than in the lines expressing either DHAR or GST. In

the DHAR:GR lines this is probably due to improved operation

of the ascorbate-glutathione cycle, through the increase of two

consecutive enzymes in it, while the GST:GR lines combine one

of these enzymes (GR) with the peroxidase (GPX) activity of

GST, which will contribute to the removal of H2O2.

The effect of expression in the chloroplasts on resistance to

oxidative stress caused by methyl viologen application was also

explored through the analysis of chlorophyll retention, electrolyte

leakage and lipid peroxidation. Expression of ROS scavenging
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Figure 8 Effect of methyl viologen (MV) on leaf discs of dehydroascorbate reductase (DHAR):GR, glutathione-S-transferase (GST):glutathione reductase

(GR) and WT tobacco plants. (a) Representative pictures showing phenotypic differences of transgenic DHAR:GR2 (DG2), GST:GR16 (GG16) and WT

leaf discs floated on water, 0.5, 1 or 5 lM MV solution. Leaf discs were floated on the MV solution, pre-incubated in the dark for 12 h and then

exposed to light (150 lmol ⁄ m2 per second) for 24 h. (b) Effect of MV on the chlorophyll content of leaf discs. The percentage chlorophyll retained

was calculated as follows: the chlorophyll content was measured in each leaf disc after paraquat treatment and compared to the chlorophyll content

of leaf discs floated on water only. The experiments were repeated three times on three different plants per line. (c) Analysis of membrane damage as

measured by electrolyte leakage. Conductivity of the different solutions was measured and expressed as percentages of the conductivity values

obtained after total cell lysis by autoclaving the samples. The experiments were repeated three times on three different plants per line. (d) Effect of

MV on the content of malondialdehyde in leaf discs from WT and transgenic lines DHAR:GR and GST:GR. Malondialdehyde (MDA) content expressed

as nmol ⁄ g FW was determined in non-treated leaf discs (control H2O) and after the different MV treatments. Data represent the means ± SD of 3

independent experiments on six leaf discs taken from two plants per line. In (b), (c) and (d) WT was significantly different from all transplastomic lines

(P < 0.05), as determined by ANOVA, at 0.5 or 1 lM MV, but not at 0 or 5 lM MV.
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enzymes directly at the site of ROS production does enhance

protection from MV induced stress. However this result is not

systematic. DHAR and GST overexpressing plants did not differ

from WT in their tolerance to MV, while DHAR: GR and GST: GR

did. In other studies using nuclear transformation, overexpression

of GR in transgenic plants conferred increased tolerance to MV

(Aono et al., 1993; Broadbent et al., 1995). However, in previ-

ous studies done in our laboratory (Poage et al., submitted)

transplastomic tobacco plants expressing the bacterial GR on its

own didn’t show any increased resistance to MV. The MV treat-

ment was repeated on these same GR plants along with WT,

GST, DHAR, DHAR: GR and GST: GR plants as a control experi-

ment in the current study. This confirmed the previous results.

No difference was observed between WT and GR leaf discs in

terms of electrolyte leakage and chlorophyll analysis after MV

exposure. The improved resistance to MV is clearly dependent on

combining increased GR activity with that of DHAR or GST.

These different results illustrate the fact that in some cases,

overexpression of a single antioxidant enzyme does not provide

protection against oxidative stress and that simultaneous

expression of multiple antioxidant enzymes is more effective

than single expression for enhancing tolerance to environmental

stresses. Kwon et al. (2002) demonstrated that overexpression

of both CuZnSOD and APX (CA plants) genes in tobacco chlo-

roplasts resulted in enhanced tolerance to MV induced oxidative

stress compared to expression of either of these genes alone.

They suggested that the combined increases in SOD and APX

were complementary because they could increase the capacity

for superoxide and H2O2 scavenging and also protect both the

native and transgene-derived CuZnSOD from deactivation dur-

ing stress. In a later study, tobacco plants expressing CuZnSOD,

APX and DHAR (CAD plants) targeted to the chloroplast

showed again elevated protection against MV and salt stress in

comparison with the CA plants (Lee et al., 2007).

In the work presented herein, the improved protection

against MV and chilling could be explained by synergistic effects

of DHAR with GR or GST with GR. The expression of these

combinations of transgenes would increase the regeneration of

reduced ascorbate and glutathione and participate in a more

rapid scavenging of superoxide radicals and hydrogen peroxide

prior to their interaction with target molecules.

There is considerable potential for engineering-improved

stress tolerance by improvement of the antioxidant defence of

the chloroplasts, as chloroplasts appear to be the main location

affected by conditions of stress in plant cells (Tang et al., 2006).

The work presented herein confirms that through chloroplast

transformation one or several antioxidant enzymes can be suc-

cessfully expressed in the chloroplasts, leading to a significant

enhancement in the ability of the plant to withstand adverse

environmental conditions. The method used combines the

advantages of a single step transformation procedure with the

expression of the genes directly in the chloroplast, and can pro-

vide new insights into the role of antioxidant and their relation-

ship within the ROS scavenging pathway in this organelle.

Experimental procedures

Vector construction and plant transformation

The plastid transformation vector pZS197 (Svab and Maliga,

1993) was modified to contain an AscI ⁄ PacI site upstream of

the aminoacid dA (spectinomycin resistance) marker gene. The

coding region of rice dehydroascorbate reductase (DHAR

AB037970.1) gene (Urano et al., 2000; Ushimaru et al., 2006),

kindly provided by Dr T. Ushimaru, Shizuoka University, Japan,

and E. coli GST (D38497.1) gene were first cloned by PCR using

high fidelity Platinum Taq Pfx (Invitrogen Paisley, Scotland, UK)

and ligated into pCR2.1-TOPO (Invitrogen). After sequencing,

they were integrated into the modified pZS197 as AscI ⁄ PacI

fragments to obtain the vectors pZS-DHAR and pZS-GST. The

expression vectors pZS-DHAR:GR and pZS-GST:GR were gener-

ated by inserting E. coli gor, encoding glutathione reductase

(GR M13141.1), as a PacI ⁄ PacI fragment downstream of the

DHAR and the GST genes in the pZS-DHAR and pZS-GST

vectors, respectively (Figure 1).

Generation of chloroplast transgenic tobacco (Nicotiana taba-

cum var. Petit Havana) was carried out by the biolistic method.

Young leaves were bombarded with plasmid DNA coated

0.6 lm tungsten particles using a gene gun (PDS 1000He; Bio-

Rad, Perth, Scotland, UK). Primary spectinomycin resistant

tobacco lines were selected on RMOP regeneration medium

containing 500 mg ⁄ L spectinomycin (Svab and Maliga, 1993).

Green calli and shoot formation were observed after 3–4 weeks

of selection. Shoots were transferred to MS (Murashige and

Skoog, 1962) pots for rooting. Transplastomic lines were sub-

jected to two additional rounds of regeneration on RMOP with

spectinomycin to obtain homoplasmic tissue. Plants were then

moved to soil and seeds were collected from self-pollinated

transgenic plants and used for further analysis.

Molecular analysis of transformation

Integration of foreign genes into the chloroplast genome was

confirmed by Southern Blot analysis. Genomic DNA was

extracted from leaves using the method described by Frey

(1999). Four micrograms of total DNA per sample was digested

with EcoRI and EcoRV, separated in 0.8% (w ⁄ v) agarose gel

(6 h, 70 V) and transferred to Nylon membrane (Hybond N+;

Amersham, Little Chalfont, Bucks, UK). Southern hybridization

was performed using a non-radioactive DNA labelling and

detection protocol (McCabe et al., 1997). An rbcL probe and

genes specific probes DHAR, GST, DHAR:GR and GST:GR were

synthesized and labelled with DIG-dUTP (Roche, Burgess Hill,

West Sussex, UK) by PCR. Following hybridization and mem-

brane washing, the hybridized probe was detected using an

anti-DIG antibody (Roche) and a chemiluminescent substrate

(CDP star; Roche). Signals were visualized by exposure to Kodak

X-ray film for 1–5 min.

Immunoblot analysis

Expression of the different transgenes in leaf tissue was con-

firmed by Western blot analysis. Total proteins were extracted

from 100 mg of leaf material homogenized in extraction buffer

(50 mM HEPES, 1 mM EDTA, 10 mM potassium acetate, 5 mM

magnesium acetate and 2 mM phenylmethylsulphonylfluoride)

and centrifuged at 18 000 g for 15 min at 4 �C. Protein con-

centrations were determined using the Bradford assay with BSA

as a protein standard (Bradford, 1976). Twenty micrograms of

total soluble protein was loaded per lane and electrophoresed

in a 12% SDS-PAGE gel. Proteins were transferred to a nylon

membrane and incubated with rice DHAR antibody (kindly pro-

vided by Dr T. Ushimaru, Shizuoka University, Japan), GR poly-

clonal antibody (Lab Frontier, Seoul, Korea) or GST antibody

(GeneTel Lab, Madison, WI). Alkaline phosphatase conjugated
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anti-rabbit IgG (Sigma, Arklow, Wicklow, Ireland) for DHAR and

GR, and anti-chicken IgG (Sigma) for GST were used as second-

ary antibodies. Recombinant protein was quantified from DHAR

and GST lines by running protein samples and purified protein,

at various concentrations, on the same gel and analysing the

image of the Western blot by densitometry using the Scion

Image programme.

Biochemical analysis

Enzyme activities and metabolite contents were assayed in leaf

samples taken from nodes 3 and 4 of 6 week-old soil grown

plants. Samples for activity assays were prepared from 200 mg

of leaf tissue ground in liquid nitrogen and homogenized in

extraction buffer (50 mM potassium phosphate buffer, pH 7),

centrifuged at 18 000 g, for 15 min at 4 �C. DHAR activity was

determined by the increase in absorbance at 295 nm due to

GSH dependent production of ascorbate using an extinction

coefficient of 14 ⁄ mM per centimetre (Nakano and Asada,

1981). GST assay was carried out using the universal substrate

1-chloro 2,4-dinitrobenzene CDNB (Sigma) and activity was

determined spectrophotometrically by the change in absorbance

at 340 nm (Veal et al., 2002). GR activity was determined fol-

lowing the procedure outlined by Kwon et al. (2001). The reac-

tion was measured by the decrease in absorbance at 340 nm

using an extinction coefficient of 6.22 ⁄ mM per centimetre. GPX

activity was assayed using cumene hydroperoxide as substrate.

The reaction rate was measured spectrophotometrically by fol-

lowing the oxidation of NADPH at 340 nm (Veal et al., 2002).

Protein concentrations were determined using the dye-binding

assay of Bradford (1976). Results were expressed as unit per mg

of protein.

For glutathione and ascorbate determination, tissue samples

were frozen in liquid nitrogen, ground with 2.5 M HClO4 and

centrifuged for 15 min at 18 000 g. The supernatant was neu-

tralized with 1.25 M Na2CO3 to obtain pH values between 4–5

and 6–7 for determination of ascorbate and glutathione, respec-

tively. Glutathione pools (total, reduced and oxidized) were

determined according to the method described in Roxas et al.

(1997). Total glutathione was determined in a 200 lL reaction

containing 20 lL of the crude extract, and 180 lL of the assay

buffer made of 0.1 M potassium phosphate buffer (KPB) pH 6.6,

0.6 mM DTNB (5, 5,-Dithio-bis (2-nitrobenzoic acid)) (Sigma),

1 U ⁄ mL GR (Sigma) and 0.2 mM NADPH. The samples and assay

buffer were loaded in triplicates on a 96 well plate.

The change in absorbance at 412 nm was monitored for 3 min

at timed intervals. The amount of glutathione was determined by

reference to a glutathione standard curve. To determine the

amount of oxidized glutathione (GSSG), the samples were first

incubated with 2 lL ⁄ 100 lL of extract of 2-vinylpyridine at 25 �C
for 1 h, after which the procedure was the same as described

above. Reduced glutathione (GSH) was calculated as the differ-

ence between the total glutathione and the oxidized glutathione,

the results were expressed as nmol Glu ⁄ g fresh weight (FW).

Analysis of ascorbate pools (total, reduced and oxidized) was

carried out as described in Foyer et al. (1983). The assay buffer

contained 0.1 M KPB pH5.6 and 0.25 unit ⁄ mL of ascorbate oxi-

dase (Sigma). Twenty microlitre of crude extract and 180 lL of

assay buffer were loaded per well in triplicate, this first measure

giving the amount of reduced ascorbate (AsA) determined by

comparison to a standard curve. The total amount of ascorbate

(AsA + DHA) was measured by the same method following

reduction to ascorbic acid in a reaction mixture containing

20 mM DTT (Sigma) and 50 mM HEPES-KOH buffer pH 7 and

incubated for 30 min at room temperature. The amount of DHA

was finally determined as the difference between these two

assays. The results were expressed in nmol Ascorbate ⁄ g FW.

Seedling stress analysis

T1 seeds from the different transplastomic lines were analysed

together with control WT seed lines. For low temperature treat-

ment, seeds were germinated on germination medium contain-

ing plates and incubated in growth chambers at either 4 �C or

15 �C. For salt treatment, seeds were placed on germination

medium with added concentrations of salt: 100, 150 and

200 mM NaCl and incubated in a growth chamber at 24 �C. For

these two experiments, seedling growth was evaluated after 12

or 14 days by length measurements of 25 randomly selected

seedlings per line. For heavy metal treatment, germination med-

ium plates contained 0.25 mM, 0.5 mM, 0.75 mM and 1 mM of

CdCl2, or 0.5 mM, 1 mM, 2 mM and 5 mM of ZnCl2. The seeds

were placed on the plates and after 1–2 weeks, seeds were

scored for percentage germination.

MV treatment

Leaf discs (11 mm in diameter) were cut out from leaves of

nodes 3–4 of soil grown plants and floated, abaxial surface

down, on 10 mL of water or solutions containing different con-

centrations of MV (0.5 lM, 1 lM and 5 lM) in 60 mm Petri

dishes. Plates were incubated in the dark for 12 h to allow dif-

fusion of the MV into the leaf disc and then placed under light

(intensity 150 lmol ⁄ m2 per second) for 24 h. Triplicates plates

were prepared for each line of plant treated, to measure chlo-

rophyll content, malondialdehyde (MDA) content and electrolyte

leakage of the leaf discs.

Chilling stress on leaf discs

Leaf discs (11 mm in diameter) were punched out from leaves

of node 3 and 4 of 6 week-old plants grown in soil, and were

subjected to chilling treatment. Per plate, 60 mm Petri dishes,

two leaf discs were floated on 10 mL of distilled water and

incubated at 8 �C for up to 72 h with moderate light intensity

(80 lmol ⁄ m2 per second). Chlorophyll fluorescence was mea-

sured after 48 h and 72 h and H2O2 content was measured

after 72 h treatment. For each line, three plants were tested,

and the experiment was repeated three different times.

Measurements of chlorophyll content

Chlorophyll was extracted by soaking one leaf disc from the

MV treatment, in 1 mL of 95% ethanol for 2 h at 80 �C. The

absorbance of supernatant was read at 649 and 664 nm.

Chlorophyll content was determined using the equations from

Lichtenthaler (1987).

Determination of oxidative damage to lipids

Oxidative damage to lipids was determined by measuring the

content of MDA according to the method described by Heath

and Packer (1968). Following control and MV treatment, two leaf

discs ⁄ samples were frozen in liquid nitrogen, ground in 0.2 mL

of distilled water and homogenized with an equal volume of

0.5% (w ⁄ v) thiobarbituric acid in 20% (v ⁄ v) trichloroacetic acid

(TCA). Samples were heated at 95 �C for 30 min and quickly

cooled on ice for 15 min. After 30 min centrifugation at
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13 000 rpm, at 4 �C, the supernatant was loaded in triplicate in

a 96-well plate and the absorbance read at 532 nm and 600 nm.

The value for non-specific absorption at 600 nm was subtracted

from the 532 nm value. The MDA content was calculated using

its absorption coefficient of 155 nmol ⁄ cm and then expressed as

nmol MDA per gram fresh weight.

Hydrogen peroxide (H2O2) content

Hydrogen peroxide was measured spectrophotometrically after

reaction with potassium iodide (KI) following the method

described in Alexieva et al. (2001). After the control and cold

treatment, three leaf discs ⁄ samples were ground in liquid nitro-

gen and homogenized in 0.1% (w ⁄ v) cold TCA. The homoge-

nate was centrifuged at 13 000 rpm for 25 min, 4 �C. The

supernatant was kept for determination of H2O2 content. The

reaction mixture consisted of 50 lL of 0.1% cold TCA leaf

extract supernatant, 50 lL of 0.1 M KPB pH6.8 and 200 lL of

reagent KI (1 M KI w ⁄ v in dH2O). The 300 lL reaction was loaded

in triplicate in a 96 well plate. The reaction was developed for

1 h in the dark and the absorbance measured at 390 nm. The

amount of H2O2 was calculated using a standard curve prepared

with known concentration of H2O2. The H2O2 content was then

expressed as lmol H2O2 per gram fresh weight.

Electrolyte leakage analysis

The electrolyte leakage into the solutions used for floating the

leaf discs in the MV experiment was determined using the

EC215 conductivity meter (Hanna Instrument). The electrical

conductance was measured first after each experiment (EC ini-

tial), then the bathing solutions containing the leaf discs were

autoclaved at 120 �C for 20 min and the electrical conductance

was measured again to get the total ion leakage (ECmax). The

relative electrolyte leakage was then calculated as a percentage:

EC relative = (EC initial ⁄ EC max) · 100

Measurements of chlorophyll fluorescence

The photosynthetic activity of the leaf discs subjected to chilling

stress was estimated by chlorophyll fluorescence determination

of photochemical yield (Fv ⁄ Fm) which represented the maxi-

mum yield of the photochemical reaction in photosystem II.

Chlorophyll fluorescence was measured with the Handy PEA

chlorophyll fluorimeter (Hansatech Instruments, Norfolk, UK).

Samples were dark adapted for 15 min prior to each measure-

ment and Fv ⁄ Fm was determined.

Statistical analyses

All data are presented as mean and standard deviation of the

mean. Statistical analysis was carried out using one way analysis

of variance (ANOVA). P < 0.05 was considered statistically

significant.
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