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Background~Aims: There is an urgent need for an ef- 
fective bioartificial liver system to bridge patients with 
fulminant hepatic failure to liver transplantation or to 
regeneration of their own liver. Recently, we proposed 
a bioreactor with a novel design for use as a bioartifi- 
cial liver (BAL). The reactor comprises a spirally 
wound nonwoven polyester fabric in which hepato- 
cytes are cultured (40.106 cells/ml) as small aggre- 
gates and homogeneously distributed oxygenation tub- 
ing for decentralized oxygen supply and CO2 removal. 
The aims of this study were to evaluate the treatment 
efficacy of our original porcine hepatocyte-based 
BAL in rats with fulminant hepatic failure due to liver 
ischemia (LIS) and to monitor the viability of the por- 
cine hepatocytes in the bioreactor during treatment. 
The latter aim is novel and was accomplished by ap- 
plying a new species-specific enzyme immunoassay 
(EIA) for the determination of porcine alpha-glutathi- 
one S-transferase (a-GST), a marker for hepatocellu- 
lar damage. 
Methods: Three experimental groups were studied: 
the first control group (LIS Control, n=13) received 
a glucose infusion only; a second control group (LIS 

No-CelI-BAL, n=8) received BAL treatment without 
cells; and the treated group (LIS CelI-BAL, n=8) was 
connected to our BAL which had been seeded with 
4.4.10 s viable primary porcine hepatocytes. 
Results~Conclusions: In contrast to previous compar- 
able studies, BAL treatment significantly improved 
survival time in recipients with LIS. In addition, the 
onset of hepatic encephalopathy was significantly de- 
layed and the mean arterial blood pressure signifi- 
cantly improved. Significantly lower levels of am- 
monia and lactate in the LIS CelI-BAL group indi- 
cated that the porcine hepatocytes in the bioreactor 
were metabolically activity. Low pig a-GST levels 
suggested that our bioreactor was capable of main- 
taining hepatocyte viability during treatment. These 
results provide a rationale for a comparable study in 
LIS-pigs as a next step towards potential clinical ap- 
plication. 
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I N RECENT years many different extracorporeal bio- 
artificial liver designs have been studied (1-21), for 

potentially bridging the time prior to liver transplan- 
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tation and treating patients with reversible liver dys- 
function (22-24). At present, there are two systems 
under clinical investigation, both based on porcine 
hepatocytes (25,26). Short-term application of one of 
these BAL systems has been associated with some im- 
provements in the condition of patients in fulminant 
hepatic failure (26), without apparent serious immuno- 
logical complications (27). 

We have devised a novel bioreactor for use as a bi- 
oartificial liver (Fig. 1). It comprises a spirally wound, 
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Fig. 1. Schematic drawings of  a transverse and longitudinal cross-section of  the bioreactor (right), a scanning electron 
micrograph of  a small section of  the eell culture compartment (upper left), and a scanning electron micrograph of hepatocyte 
aggregates attaehed to a polyester scaffold (lower left, diameter polyester fibel~': 13 t~m). The system is" composed of a 
polysulfon dialysis housing (A ) comprising a three-dimensional nonwoven polyester fabric (B) for high-density hepatocyte 
culture as small aggregates and hydrophobic polypropylene hollow-fiber membranes ( C, external diameter: 630 tim) for 
oxygen supply and C02 removal. The combination of  the polyester matrix and the oxygenation tubing creates a third compart- 
ment (D). These channels are used to perfuse the plasma of the recipient through the bioreactor. The plasma has direct 
a~'cess to the hepatoo, tes in the polyester .fabric'. Plasma is perfused through the bioreactor via the side ports (F). The 
integrated oxygenator of  the bioreactor is connected to the gas supply (5% C02 in air) via the endcaps ( E). The homogeneous 
distribution of  the oxygenation hollow fibers throughout the bioreactor compartment ensures that evel 3, hepatocyte has an 
oxygen source within its immediate surroundings. 

three-dimensional nonwoven polyester fabric in which 
porcine hepatocytes are cultured at high density 
(40.106 cells/ml) as small aggregates, and an inte- 
grated oxygenator for on-site oxygenation of the cells 
(28). In contrast to other designs, our bioreactor does 
not include semipermeable hollow-fiber membranes for 
cell immobilization, immune isolation, and blood or 
plasma perfusion (29). Instead, the hepatocytes at- 
tached to the polyester fabric function in direct contact 
with the plasma of the recipient, a situation analogous 
to that in vivo. An immune barrier is accomplished by 
incorporating two filters into the BAL circuit (Fig. 2). 
These prevent direct cell-cell interactions between the 
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blood cells of the recipient and the xenogeneic liver 
cells in the bioreactor (30,31). The hepatocyte aggre- 
gates consist only of a few cells and are spaced using 
the nonwoven polyester fabric. This enables plasma to 
be perfused over many individual hepatocytes. It re- 
sults in low diffusion gradients, which are associated 
with mass transfer in the intact liver. The efficacy of 
this approach was shown in vitro: the urea-synthesising 
capacity of the porcine hepatocytes in the bioreactor 
was twice that of hepatocytes in monolayer culture 
(28). Other functions such as protein synthesis, galac- 
tose elimination, and metabolism of amino acids were 
well maintained over an investigated period of 3 days. 
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Fig. 2. Schematic representation of the Bioartificial Liver 
(BAL) support system. A hollow-fiber plasma separator 
and a filter in the plasma return line were incorporated to 
prevent cellular immunological problems. Four pressure 
transducers were used to monitor; the arterial pressure of 
the rat (P1), plugging of the hollow-fiber lumen (P2), foul- 
ing of the hollow-fiber membrane wall (P3), and fouling of 
the return filter (P4). A pressure change recorded simul- 
taneously by P2, P3, and P4 indicates a variation in pressure 
in the venous blood line. 

In addition, lidocaine elimination, which was moni- 
tored up to 14 days, did not decrease below 70% of its 
initial value on day 1. Light, transmission and scan- 
ning electron microscopic photographs showed viable, 
well-differentiated cells (with bile canaliculi, tight junc- 
tions, mitochondria, and desmosomes) after 5 days in 
culture (28). 

It is well known that plasma of patients with acute 
liver failure can be cytotoxic to isolated hepatocytes 
(32). This implies that the metabolic capacity of the 
hepatocytes in the bioreactor could be impaired while 
treating the recipient. To ensure optimal liver support, 
it is important to know when the bioreactor should be 
replaced by an unused device. This requires an evalu- 
ation of the viability of the hepatocytes at regular in- 
tervals during BAL treatment. However, this was not 
feasible until recently. Morphological examination, 
which used to be the only method available, gives an 
indication of the viability of the cells at the end of the 
experiment only, and even then gives only local infor- 
mation. Common biochemical liver tests are not appli- 
cable as they do not discriminate between hepatocyte 
damage in the recipient and the bioreactor. A solution 
seems to be emerging in the field of xenogeneic BAL 
treatment. A range of enzyme immunoassay (EIA) kits 
has become available that allow the determination of 
the enzyme alpha-glutathione S-transferase (a-GST) in 
various species. This enzyme is a more sensitive marker 
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for hepatocellular injury than conventional transamin- 
ases, as it is uniformly distributed in the liver in high 
concentrations, is more readily released in response to 
injury, and has a short in vivo plasma half-life (1 hour) 
(33,34). These uniquely species-specific assays enable 
the status of bioreactor-based xenogeneic hepatocytes 
and recipient hepatocytes to be distinguished. 

In the present study we tested the efficacy of our 
novel bioartificial liver system containing porcine 
hepatocytes in supporting rats with fatal acute liver 
failure. Species-specific properties of the a-GST EIA 
tests were applied to monitor hepatocellular damage 
during xenogeneic BAL treatment. 

Materials and Methods 
Porcine hepatocyte isolation 
Hepatocytes were harvested from male pigs with a body mass ranging 
from 11-20 kg, using a simple two-step collagenase (collagenase type 
P; 0.01% wt/vol, Boehringer Mannheim, Germany) perfusion tech- 
nique, as earlier discussed (35). The viability of the freshly isolated 
cells was estimated to be 78-+4%, based on the trypan blue exclusion 
test, and the yield varied from 11-l06 to 25-106 hepatocytes per 
gram wet liver weight. In previous studies we obtained higher cell 
viabilities, which is possibly related to the use of different types of 
collagenase (28,35). 

Bioreactor 
The newly designed bioreactor (patent pending) consists of two prin- 
cipal components: (i) a spirally wound, nonwoven, hydrophilic poly- 
ester matrix (Fibra Cell, Bibby Sterilin Ltd, Stone, Staffordshire, UK, 
diameter polyester fibers: ~13/am), i.e. an uncoated sheet that pro- 
vided a three-dimensional framework for hepatocyte immobilization 
and aggregation, and (ii) integrated hydrophobic polypropylene hol- 
low-fiber membranes donated by AKZO-NOBEL (Plasmaphan, 
AKZO-NOBEL, Wuppertal, Germany; external diameter: 630/am) 
for on-site oxygenation of the hepatocytes (Fig. 1). These two compo- 
nents are enclosed within a polysulfon dialysis housing (Minifilter, 
Amicon Ltd, Ireland; ID 1.32 cm, ED 1.7 cm, total length 15.5 cm, 
volume 11 ml). The outer ends of the oxygenation hollow-fibers are 
embedded in polyurethane resin (PUR-system 725 A and 725 BE 
Morton International, Bremen, Germany), using dialyser potting 
techniques, and are fitted with gas inlet and outlet endcaps. 

Hepatocyte seeding and culture 
The extrafiber space of the bioreactor was seeded with 4.4.108 viable 
hepatocytes (~4 g) at a concentration of 4.107 cells/ml. This was 
realized by injecting the cell suspension via the side ports (F in Fig. 
1) of the bioreactor housing. The cells were cultured for at least 14 h, 
as previously described (28). The device was then considered to be 
ready for use and was integrated into the BAL set-up. The same side 
ports were used to perfuse the plasma of the rat through the cell space 
of the bioreactor. 

BAL system 
Figure 2 represents a schematic drawing of the BAL system. It con- 
sisted of a plasma circuit including the bioreactor and a blood circuit. 
Blood was pumped (1.5 ml/min) from the carotid artery of the rat 
to a mini hollow-fiber membrane plasma filter (Fresenius SSP1003-P, 
Germany; number of fibers: 80, membrane surface 90 cm 2, membrane 
material: polypropylene [AKZO-NOBEL, Wuppertal, Germany], 
membrane pore size: -0.5/am, Fresenius, St. Wendel) for continuous 
separation of plasma from the blood. As plasma could not be with- 
drawn from the plasma filter at a higher rate than 0.3 ml/min without 
inducing hemolysis, a high-flow plasma loop (5 ml/min) was intro- 
duced to reduce the formation of substrate and metabolite gradients 
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inside the bioreactor. After recirculation through the bioreactor, the 
treated plasma was pumped through an outlet filter (Mediakap 5; 
membrane material: mixed cellulose acetate/cellulose nitrate, mem- 
brane pore size: ~0.2 /~m, Microgon, ILaguna Hills, CA, USA) to 
remove possible cell debris. This plasma was then reunited with the 
blood cells from the plasma filter and given back to the rat via the 
jugular vein. The BAL-system had a total extracorporeal volume of 
25 ml (blood circuit 5 ml, plasma circuit 20 ml). A computerized 
pressure monitoring system was included to monitor the mean ar- 
terial blood pressure of the rat, to check the condition of the two 
filters regarding membrane fouling, and to detect obstruction of the 
arterial and venous blood lines and catheters. Additional safety fea- 
tures involved controls for gas flow, temperature, and balanced 
plasma exchange. 

Preparation of the BAL support system 
The BAL system was prepared for use by priming the plasma separator 
and the silicon tubing (Sitastic, Dow Corning, USA), and flushing the 
bioreactor with 200 ml pasteurized human plasma solution (PPS, Cen- 
tral Laboratory of The Netherlands Red Cross Blood Transfusion Ser- 
vice) supplemented with glucose (12 mM), bicarbonate (26.1 raM), es- 
sential and non-essential amino acids solution (resp. 10 ml/l no. 11130- 
036 and 20 mill no. 11140-035, BRIL Life Technologies Ltd, Paisley, 
Scotland), ornithine (200/~M, Sigma), glutamine ( 1200 itM, BDH Lab- 
oratory Supplies Ltd.), vitamin solution (10 ml/1, Gibco BRL Life 
Technologies Ltd, Paisley, Scotland), KCI (4.5 mM). CaCI2.H20 (2.5 
mM), MgSO4.7H20 (1.0 mM), insulin (20 mU/ml, Novo Nordisk, 
Denmark), dexamethasone (1 /~M), heparin (2.8 units/ml, Fragmin, 
Kabi Pharmacia AB, Sweden) and antibiotic/antimycotic solution (5 
ml/l, Gibco BRL Life Technologies Ltd, Paisley, Scotland) with pH cor- 
rected to 7.4. This "BAiL-medium" was used as a first attempt to realize 
a replacement for both the recipient's plasma and the hepatocyte cul- 
ture medium. Especially in a clinical setting, it would be of interest to 
use such a BAiL-medium to flush the bioreactor prior to application, as 
hepatocyte culture media are not approved for medical use. The cul- 
ture-medium-like composition of the BAL-medium might help to 
maintain hepatocyte function and integrity. 

Experimental animal model of hepatic failure 
Outbred male Wistar rats (275-325 g, Harlan Sprague Dawley, TNO 
Zeist, The Netherlands, kept on a light cycle: 8 am-8 pro) were used 
and had free access to standard laboratory chow (RMH 1410, Hope 
Pharms, The Netherlands) and water ad libitum. Animal welfare was 
in accordance with the institutional guidelines of the University of 
Amsterdam. 

Three days before the experiment, an end-to-side portacaval shunt 
(PCS) was created (36). At day 0, the hepatic artery and the bile duct 
were ligated under ether anesthesia. Immediately thereafter, 2 ml of 
5% dextrose was given intraperitoneatly. Carotid artery and jugular 
vein catheters were placed (ID 0.5 mm, ED 0.9 mm, material: poly- 
ethylene, Braun Medical AG, Melsungen, Germany) for plasmapher- 
esis, dextrose administration, blood sample collection and arterial 
pressure monitoring. The LIS-rats were heparinized with 16.8 units 
Fragmin/100 g animal weight (Kabi Pharmacia AB, Sweden). After 
this procedure the LIS-rats were returned to their cage. No further 
anesthesia was given, allowing the LIS-rats to wake up and move 
around freely until the onset of coma. During this period the rats had 
free access to drinking water. 

Animal treatment protocol 
Three groups of LIS-rats were studied: the first control group (LIS 
Control) only received a 20% dextrose infusion (0.2 to 0.7 ml/hour) 
via the venous blood line to prevent hypoglycemia: a second control 
group (LIS No-Cell-BAL) was connected to the BAL-system without 
pig hepatocytes; and the treatment group (LIS CelI-BAL) was con- 
nected to the BAL-system with 4.4.108 viable pig hepatocytes. No 
other medications were given. 

These three different therapies were initiated 30 min after ligating 
the hepatic artery and bile duct, and were continued until spon- 
taneous death. Several parameters were assessed. The development of 
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liver-associated coma was determined by clinical grading of encephal- 
opathy. Clinical grading was assessed by level of consciousness, which 
ranges from grade 0 (normal behavior) to 5 (deep coma). In the pres- 
ent study this parameter was extended by an additional grade 6, cor- 
responding to death. In addition to clinical grading, the survival time 
of all LIS-rats was registered. The mean arterial blood pressure was 
measured via the carotid artery catheter. The body temperature was 
monitored rectally and was maintained between 36°C and 37°C with 
the aid of a heating lamp. 

Arterial blood samples were collected just before inducing liver is- 
chemia and at hourly intervals thereafter for determination of am- 
monia, glucose, and hematocrit. Blood ammonia was measured by 
the Blood Ammonia Checker II (Kyoto Daaichi Kagaku Ltd, Japan). 
Blood glucose was measured using the blood glucose checker Medi- 
sense (Medisense Inc., Waltham, MA, USA). In all three experimental 
groups glucose levels were maintained around 10 mM by dextrose 
infusion if required. Additionally, in the No-Ceil-BAIL and Ceil-BAIL 
groups, lactate, amino acid, and a-GST levels were determined in 
samples from the plasma circuit just before and at 2-hourly intervals 
after connecting ILlS-rats to the BAL-systems. In this way no blood 
cells were lost, which was important as the rats in this study had only 
about 18 ml of blood in their circulation. Lactate was determined at 
340 nm (Cobas Bio, Roche, Switzerland) using an enzymatic test kit 
(no. 149993, Boehringer Mannheim, Wiesbaden, Germany). Amino 
acids turnover to calculate the Fischer ratio was measured by a fully 
automated precolumn derivatization with o-phthaldialdehyde (OPA), 
followed by high performance liquid chromatography as described 
previously (37). Rat, porcine, and human a-GST were determined in 
the plasma circuit of the CeI1-BAL group. Rat and human c~-GST 
were determined using species-specific enzyme immunometric assays 
(respectively Hepkit-Rt and Hepkit-Hm, Biotrin International ILtd, 
Co. Dublin, Ireland). Porcine a-GST was determined using a pre- 
production EIA, as the Hepkit-Pc was not commercially available at 
that time. The tests involve the simultaneous addition to microtiter 
wells coated with anti-a-GST lgG of sample and horseradish peroxi- 
dase-labeled anti-GST IgG conjugate, or biotinylated IgG followed 
by streptavidin-HRP conjugate. The resultant color intensity is pro- 
portional to the amount of fx-GST present in the sample. Total assay 
time depends on the assay in question, and is 2 to 3 h. 

Sterilization 
All components of the BAL system were sterilized by autoclaving (20 
min at 121°C) to maximize biosafety. 

Statistics 
Statistical analysis of survival time (Fig. 3) was performed using the 
Kaplan-Meier survival test and the Log-Rank test. Continuous vari- 
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Fig. 3. Percentage o f  rats surviving as a ~hmction o f  time 
after inducing liver ischemia ( t = 0  h). Kaplan-Meier Log- 
Rank test, p<O.O01, L I S  CelI-BAL versus L I S  Control and 
L I S  No-Cell-BAL; p=0.8931, L I S  Control versus L I S  No- 
Cell-BAL. 
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Fig. 4. Development of  hepatic encephalopathy in rats after 
inducing liver ischemia (t=0 h), as by determined by clin- 
ical grading. Clinical grading was assessed by level of  con- 
sciousness, which ranges from grade 0 to grade 5 (0: normal 
behavior; 1: mild lethargy; 2: decreased motor activity; 3: 
severe ataxia, no spontaneous righting reflex; 4." no righting 
reflex to painful stimuli; 5: deep coma, no reaction to pain- 
ful stimuli). In the present study grade 6 was introduced to 
indicate death. 

ables in Fig. 4 to 7 were assessed by t-test for multiple comparisons. 
The level of statistical significance was set at p<0.05. Unless indicated 
otherwise, data are presented as means-+SEM. 

R e s u l t s  

In vivo evaluation o f  the novel design B A L  
No major technical problems were encountered during 
the BAL application. After connection of the plasma 
separation unit, hematocrit decreased on average by 
25% due to dilution of the extracorporeal blood circuit 
with the BAL-medium. No hemolysis was detected 
throughout the periods that animals were connected 
to the BAL-system. A small hemorrhage (< 1 ml) was 
observed in the abdominal cavity of some animals. The 
pressures registered by the pressure transducers P2, P3, 
and P4 increased slightly during the procedure (10-15 
mmHg), indicating moderate fouling of the semi-per- 
meable membranes of the plasma separator and the 
plasma return filter. 

Survival. Analysis of the survival curves (Fig. 3) 
showed that the LIS-rats in the Control group, the No- 
Cell-BAL group, and the CeI1-BAL group lived, respec- 
tively, (mean-+sd): 5.4+-1.7 h (n=13), 5.1___1.7 h (n= 
8), and 11.0+-2.2 h (n=8). There was no statistically 
significant difference in survival time between the LIS 
Control group and the LIS No-Cell-BAL group. Life 
was significantly prolonged in the LIS CeI1-BAL group 
compared to the LIS Control group and the LIS No- 
Cell-BAL. The immediate cause of death associated 
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with acute liver failure was cardiac arrhythmia and 
respiratory failure. 

Neurological status. In a previous study we have 
shown that the liver ischemia model of acute liver fail- 
ure exhibits neurological and behavioral characteristics 
that enable the degree of hepatic encephalopathy to be 
readily staged (38). Fig. 4 shows the clinical grade of 
HE in LIS-rats. The evaluation performed was checked 
by two trained technicians to limit the degree of subjec- 
tivity that is typical for any type of clinical grading. 
The LIS-rats recovered from ether anesthesia within 1 
h after liver ischemia was induced and walked around 
in their cage. Eventually, all rats developed hepatic 
encephalopathy (no righting reflex, no response to pain 
stimuli). The LIS Cell-BAL group showed a statisti- 
cally significantly delayed deterioration in neurological 
status compared to the LIS Control group and the LIS 
No-Cell-BAL group. No statistically significant differ- 
ence in clinical grading was observed between the LIS 
Control group and the LIS No-Cell-BAL group. 

Hemodynamics. The mean arterial pressure of the 
LIS rats decreased rapidly after the development of 
coma grade 4, and reached around 35 mmHg just be- 
fore death (data not shown). There was considerable 
variation in the time of onset of coma grade 5. This 
made a statistical analysis of the arterial pressure data 
impossible. It was therefore decided to present the 
mean arterial pressure up to grade 4 (Fig. 5). The LIS- 
rats receiving the CelI-BAL showed significantly im- 
proved hemodynamic stability compared to the LIS 
Control group. In the Cell-BAL group a decreasing 
trend in blood pressure was observed beyond 7 h of 
treatment, but this trend did not reach statistical sig- 
nificance. The mean arterial blood pressure in the LIS 
No-Cell-BAL group was slightly higher than in the LIS 
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Fig. 5. Shown is the mean arterial blood pressure in three 
different groups of  LIS-rats until onset of  coma grade 4 
(see results section). The horizontal line represents the 
mean arterial pressure in healthy normal rats. 
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Cell-BAL group, but the difference was not statistically 
significant. Furthermore,  no significant differences 
were observed in the LIS No-Cell-BAL group versus 
the LIS Control  group. 

Ammonia metabolism. Data on blood ammonia are 
shown in Fig. 6. The mean blood ammonia concen- 
tration in normal  healthy rats (n = 30) was 25.8_+ 5 ,uM. 
It was 180_+21 pM, three days after inducing an end- 
to-side PCS. Over this period the rats lost 14-+3% of  
their total body weight. In the LIS-rats of  the Cell- 
BAL group the blood ammonia concentration was sig- 
nificantly lower than in the LIS Control group (after 
t=  1 h) and the LIS No-Cell-BAL group (after t= 1 h). 
No statistically significant difference in blood am- 
monia levels was observed between the LIS Control 
group and the LIS No-Cell-BAL group. 

Lactate metabolism. The lactate levels were moni- 
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Fig. 8. Rat, pig, and human a-GST levels in the plasma 
circuit o f  the Cell-BAL group are shown. The release o f  
this liver enzyme into the circulation is an indicator of  hepa- 
tocellular damage. The blank sample was collected from the 
plasma circuit before connecting the LIS-rats to the BAL 
(see Results section). 
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Fig. 6. Representation of  the arterial blood ammonia levels 
in three different groups of  LIS-rats. At  t= - 3  days an end- 
to-side portacaval shunt was created, and at day zero liver 
ischemia was induced (see Results section). 
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Fig. 7. Lactate levels in the plasma circuit o f  the LIS  No- 
Cell-BAL group and the LIS  Cell-BAL group. The blank 
sample was collected from the plasma circuit before con- 
necting the LIS-rats to the BAL (see Results section). 
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tored by collecting samples from the plasma circuit. 
The blank samples (Fig. 7) were taken just before con- 
necting the LIS-rats to the BAL. As there was no lac- 
tate in the BAL-medium, no lactate was found in the 
blank samples. Lactate levels rapidly increased in the 
LIS No-Cell-BAL group after connection to the de- 
vice. In the LIS Cell-BAL group lactate levels were 
more stable, and at t=4  h and t=6 h were significantly 
lower (p<0.003) than those in the LIS No-Cell-BAL 
group. The lactate determination test was not available 
at the start of  this study. This explains why the number 
of  experiments in the LIS No-CeI1-BAL group was five 
instead of  eight. 

Amino acid metabolism. HPLC analysis of amino 
acids from the plasma circuit revealed that the concen- 
tration of  nearly all amino acids, except arginine, in- 
creased after inducing LIS with no significant differ- 
ences between the experimental groups (data not 
shown). The Fischer ratio, defined as the ratio of 
plasma valine, plus leucine, plus isoleucine versus phe- 
nylalanine plus tyrosine, decreased in both the LIS No- 
Cell-BAL group and the Cell-BAL group from ap- 
proximately 1.45 at 2 h to approximately 0.80 after 6 
h of  treatment. The ratio did not differ significantly in 
these two groups (p>0.2). 

Hepatocellular integrity. Fig. 8 shows the levels of  
rat, pig and human a -GST in the plasma circuit of the 
CelI-BAL group during treatment. Blank samples were 
collected just before connecting the LIS-rats to the 
BAL. As a result, no rat a -GST could be detected. The 
pig a -GST levels in the blank samples were slightly el- 
evated (700+360 pg/1). The rat c~-GST levels peaked 
after 6 h of liver ischemia at 35000_+6000 pg/1 and 



rapidly decreased to 15000 pg/1 at 14 h, due to the 
short half-life of a-GST (60 min). There was no in- 
crease in the pig a-GST concentration during BAL 
treatment. As the BAL-medium contains a human 
plasma product, it was possible to determine human 
a-GST and to investigate the cross-reactivity of the hu- 
man a-GST assay with the rat and pig a-GST. Human 
a-GST levels remained around 3 pg/1 during the experi- 
ments and were not influenced by the relatively low pig 
and very high rat a-GST levels. 

Discussion 
A true liver support system should be able to prolong 
life in acute liver failure. This property of a liver sup- 
port system should be proven in vivo in experimental 
animals before clinical application. Despite numerous 
studies in the field of extracorporeal BAL support, 
only a few papers have reported improved survival 
times (1-5). With the exception of the study of Jaureg- 
ui et al. (1), the validity of most of these studies may be 
questioned because of the limited number of animals in 
the experimental groups. The choice of the model of 
acute liver failure and the type of anesthesia used are 
also points of concern (39). A study of D-galactosam- 
ine-induced fulminant hepatic failure in unanesthetized 
dogs (40), revealed better survival than that in an 
earlier study in anesthetized dogs (41). It was suggested 
that the difference might be attributable to a possible 
synergism between halothane anesthesia and D-galac- 
tosamine. Furthermore, it was suggested that the halo- 
thane-metabolizing capacity of hepatocytes in a BAL 
could have a protective effect on the recipient liver, 
which would make previous survival data difficult to 
interpret (2). 

The in vivo evaluation of an extracorporeal BAL is 
a significant challenge. The capacity of our BAL to 
prolong life was tested by evaluating the system in ade- 
quate numbers of unanesthetized animals with irre- 
versible acute liver failure. Our results demonstrated 
significantly improved survival, delayed onset of HE, 
lower ammonia and lactate levels, and hemodynamic 
stability: no hypertension in coma grade 4. The last of 
these findings might be explained by a beneficial effect 
of the BAL treatment on the development of brain 
edema and/or the circulation of vasoconstrictive agents 
(42). There were no statistically significant differences 
in survival, onset of coma, hemodynamic stability, and 
ammonia levels between the two control groups, indi- 
cating that there was no device effect and that the 
BAL-medium was well tolerated by the LIS-rats. De- 
spite a significant amino acid turnover of our system 
in vitro (28), no statistically significant effect was found 
between LIS-rats connected to a BAL with, and without 
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hepatocytes. Such differences may be masked by the 
massive release of amino acids from the rat hepatocytes 
into the circulation after liver devascularization (43). 

The cytosolic liver enzyme a-GST is a well-known 
marker for hepatocyte cell membrane integrity 
(33,34,44). In addition to its high sensitivity, it is the 
first marker for hepatocellular injury that can be deter- 
mined for individual species. Enzyme immunoassays 
have been developed for rapid (2-3 h) quantitative de- 
tection of human, dog, rat, and pig a-GST. These tests 
may provide a unique tool to investigate the perform- 
ance of the BAL during in vivo experimental and clin- 
ical studies, when the cells in the bioreactor are from 
a xenogeneic source. This is the first study to report on 
the potential of these assays to discriminate between 
recipient and bioreactor hepatocyte damage. In ad- 
dition, the non-invasive character of these tests allowed 
us to monitor the condition of the hepatocytes in the 
bioreactor and the liver of the recipient during treat- 
ment. To investigate the integrity of the hepatocytes in 
the present study, the release of rat and pig a-GST into 
circulation was monitored. The acute character of the 
liver ischemia model was confirmed by a rapid increase 
in the rat a-GST concentration after devascularization. 
The rat a-GST levels peaked at 6 h after inducing liver 
ischemia, which might suggest that maximum liver 
damage had occurred at that time. As liver ischemia is 
a fatal model of acute liver failure, the observed de- 
crease in rat a-GST could not be attributed to cellular 
recovery but was related to the short half-life of a-GST. 
Based on these results, it seems likely that the ischemic 
liver secretes most of the toxic hepatocellular contents 
into the circulation within 6 h. Accordingly, it was 
hypothesized that the porcine hepatocytes in the biore- 
actor would rapidly lose their viability. However, the 
pig a-GST concentration did not increase during BAL 
treatment, suggesting that the bioreactor was capable 
of supporting the porcine hepatocytes over the investi- 
gated 14-h period. The pig a-GST levels were slightly 
elevated before connecting the bioreactor to the LIS- 
rat. This can be explained by stress induced by the as- 
sembly of the BAL and flushing the device with the 
BAL-medium just before the start of the treatment. 

In the development of a bioartificial liver for clinical 
application the use of hepatocytes from a xenogeneic 
source is a promising alternative to human hepatocytes 
because of the shortage of human donor material and 
the lack of a satisfactory non-tumor human hepatocyte 
cell line. The pig is considered to be the best candidate 
for the supply of hepatocytes, since disease-free pig 
livers can be obtained from specially bred animals and 
large numbers of cells can be isolated. 

A BAL system based on xenogeneic hepatocytes 
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may present cellular and humoral  immunological 
problems. This could result in either destruction of  the 
hepatocytes in the BAL or in hypersensitivity reactions 
in the patient receiving BAL treatment (30,31). Proper 
immunoisolation is therefore essential to ensure safe 
application of  a BAL. Theoretically, this can be 
achieved by using semi-permeable membranes. The 
macroporous membranes in the present study were 
chosen to allow the hepatocytes to function in contact 
with nearly whole plasma, thereby closely simulating 
the in vivo situation. Cellular immunological compli- 
cations were circumvented, but no humoral immuno- 
logical protection was provided. The latter has the fol- 
lowing implications for the clinical application of  the 
BAL. Firstly, patients should be screened for human 
IgM against porcine hepatocytes to prohibit an early 
malfunction of  the bioreactor during BAL treatment 
(45). Secondly, in a recent study we demonstrated that 
rats infused with supernatant of  cultured pig hepato- 
cytes formed antibodies against pig hepatocyte prod- 
ucts (30). As a result, immunological complications 
may arise in the recipient if the BAL treatment is re- 
peated after 1 week or later. A possible humoral reac- 
tion could be serum sickness, a type III hypersensitiv- 
ity reaction (30,31,46). Others have been using mem- 
branes with a molecular weight cut-off of  70 kD (6), 
and 100 kD (16,47). Although such membranes will 
prevent anti-hepatocyte-antibodies (>150 kD) and 
complement factor from entering the bioreactor com- 
partment,  hepatocyte-derived products of  low and 
middle molecular weight will still be able to enter the 
circulation of  the patient and induce antibody forma- 
tion. The liver support  capacity of  these systems might 
be impaired, because the hepatocytes are not in contact 
with all the constituents of  whole plasma and only a 
proport ion of  the synthesized products will be avail- 
able to the patient. Recently, an interesting novel mem- 
brane has been introduced which allows transport  of  
albumin-bound toxins and free solutes, but prevents 
the passage of  proteins (48). In this way a true im- 
munological barrier can be achieved. Future studies 
need to prove which of  the above-mentioned ap- 
proaches will be the best compromise. As our filters 
are located outside the bioreactor, different types of  
membranes can be applied without having to change 
the bioreactor design. 

In summary, we have developed a novel bioartificial 
liver system that has been tested in one of  the most 
acute models of  liver failure: the liver ischemia model. 
Besides the absence of  liver function, additional stress 
is introduced by the ischemic hepatocytes secreting 
toxic cell contents into the circulation. It has been 
stated that in this model of  complete liver failure, BAL 
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support  could achieve, at best, a change in the rate 
of  appearance of  certain metabolic abnormalities (49). 
However, in the present study, our BAL was also able 
to prolong life, delay the onset of  neurologic and 
hemodynamic deterioration significantly, and maintain 
hepatocyte integrity in the bioreactor. These results 
were achieved without using a detoxifying resin or 
charcoal column. 

To our knowledge, this study is the first in which 
such a wide range of  improvements has been demon- 
strated in the LIS model treated with a BAL. As a 
logical next step, a pre-clinical study in completely de- 
vascularized pigs has been initiated, using a scaled-up 
version of our bioreactor (Microgon, Laguna Hills, 
CA, USA) that can hold at least 20-10 9 porcine 
hepatocytes (50). Also, this study is the first using a 
method to assess the viability of  the hepatocytes in the 
bioreactor during treatment. Because most of  the BAL 
systems currently under investigation are based on por- 
cine hepatocytes, widespread application the novel pig 
a -GST EIA kit could perhaps increase our under- 
standing of  how to improve the efficacy of the BAL 
treatment and give us an indication of  the ability of  
different BAL designs to support isolated hepatocytes. 
However, we realise that the use o f a - G S T  EIA requires 
further validation. An additional study will be necess- 
ary to estimate the a -GST content of  hepatocytes of  
different species to obtain the essential quantitative in- 
formation. 
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