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Abstract

This paper provides a small-sample adjustment for Bonferonni-
corrected p-values in multiple univariate regressions of a quantitative
phenotype (such as a social trait) on individual genome markers. The
p-value estimator conventionally used in existing genome-wide asso-
ciation (GWA) regressions assumes a normally-distributed dependent
variable, or relies on a central limit theorem based approximation.
We show that the central limit theorem approximation is unreliable
for GWA regression Bonferonni-corrected p-values except in very large
samples. We note that measured phenotypes (particularly in the case
of social traits) often have markedly non-normal distributions. We
propose a mixed normal distribution to better fit observed pheno-
typic variables, and derive exact small-sample p-values for the stan-
dard GWA regression under this distributional assumption.

1 Introduction

This paper provides an alternative formula for the p-values in genome-wide
association (GWA) univariate regressions of a phenotypic variable on single-
nucleotide polymorphisms (SNPs). The formula is easy to apply, and can
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provide substantially more accurate p-values if the phenotypic variable un-
der consideration is non-normally distributed and the number of observations
of the phenotypic variable is not very large (for example, less than ten thou-
sand). For a normally distributed phenotypic variable, or with a very large
sample, the adjustment is not necessary. The magnitude of the p-value ad-
justment depends upon the size of the sample, the non-normal features of
the phenotypic variable including skewness and kurtosis, and the minor allele
frequency of the SNP.
GWA regression is a key exploratory tool in genetic research on the her-

itability mechanisms of phenotypic traits, with the goal of identifying indi-
vidual SNPs associated with the trait. GWA regressions involve a million
or more individual univariate regressions (one per SNP), in the search for
SNPs with significant univariate effects on an observed phenotypic variable.
To account for the multiple comparisons problem, analysts use Bonferonni-
corrected p-values, so that an adjusted 5% p-value with one million inde-
pendent regressions requires an uncorrected univariate regression coeffi cient
p-value (for a two-sided test) of 0.025x10−6.
In the estimation of Bonferonni-corrected p-values, analysts rely on the

assumption that the estimated regression coeffi cient is normally distributed.
This holds exactly if the phenotypic variable has a normal distribution, and
approximately (for suffi ciently large samples) if the phenotypic variable has
any reasonably well-behaved distribution, by the central limit theorem. The
quality of the central limit theorem based approximation depends upon the
size of the sample, the distributional characteristics both of the observed
phenotypic variable and the SNP, and (crucially in this application) on the
magnitude of the p-value.
The central limit theorem guarantees uniform convergence of the true

cumulative distribution to the normal distribution (see White (1984) for a
review). An approximate p-value in the region of 0.025, accurate to within
±0.0001, can be entirely adequate; an approximate p-value in the region of
0.025x10−6 = 0.000000025 which is similarly accurate to within ±0.0001 is
effectively worthless. GWA regressions involve very large-number multiple
tests and therefore extremely low p-value thresholds, with the conventional
critical value set at 0.025x10−6. Invocation of the central limit theorem is
problematic in this context.
In this paper, we develop an alternative approach based on fitting a mixed

Bernoulli-normal distribution to the phenotypic variable. As we show, since a
GWA regression has a trinomial explanatory variable (the three states of the
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SNP) and the Bernoulli-normal mixture is a combination of a binomial and
a normal, the resulting regression coeffi cient p-value is a multinomial-based
linear combination of independent normals, with a closed-form expression in
terms of the standard normal distribution.
We compare conventional and adjusted p-value for two common pheno-

typic variables: years of education (which has a notably non-normal dis-
tribution) and adult height (with a distribution that is close to normal).
Empirically, the p-value adjustment can be quite large, and can increase or
decrease estimated p-values relative to the conventional approach.

2 Exact small-sample p-values for GWA re-
gression under a Bernoulli-normal mixture
distribution

This section presents the new methodological result. We derive the exact
p-values of the GWA regression under an assumed Bernoulli-normal mixture
distribution. This is a reasonably straightforward exercise, combining the
Bernoulli-normal mixture for the dependent variable with the three-valued
explanatory variable of a GWA regression, and then rearranging, manipulat-
ing, and simplifying the expressions.

2.1 The GWA regression framework

The analyst has observations on i = 1, n individuals with the data consisting
of a phenotypic variable (such as income, years of education, life satisfaction
rating, etc.) and a very long (we assume 106 for notational simplicity) string
of genetic markers. The genetic markers are single nucleotide polymorphisms
which have three potential states: major allele homozygot, minor allele ho-
mozygot, and heterozygot. Let SNPij be the trinomial explanatory variable,
set equal to 0 if individual i is a major allele homozygot for the jth genetic
marker, 1 is he/she is a heterozygote, and 2 if he/she is a minor allele ho-
mozygot. To simplify notation we assume that the phenotype variable y is
standardized and so has zero mean and unit variance.
The underlying theoretical model is that SNPs have linear, additive im-

pacts on the phenotypic variable, explaining the phenotype along with non-
genetic (environmental) factors and genetic factors missing from the mea-
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sured SNP string, all of which are included in the residual term:

y = a+
106∑
j=1

βjSNPj + η. (1)

The formal null hypothesis is that there are no genetic effects: βj = 0 for all
j. The alternative hypothesis is that βj 6= 0 for at least one j. We wish to
test the null against the alternative, and also identify some j with βj 6= 0.
The full linear model (1) is not directly estimable by multivariate ordinary

least squares since the number of explanatory variables, 106 + 1, greatly
exceeds the number of phenotypic observations, n. However the assumed
independence across the SNP markers allows us to decompose (1) into a set
of 106 univariate regressions, each using one genetic marker:

y = αj∗ + βj∗SNPj∗ + εj∗ , (2)

where

εj∗ =
106∑
j=1
j 6=j∗

βjSNPj + η.

The model (2) is estimated by ordinary least squares for each of the individual
SNPs and each β̂j∗ is tested for significance. Let mx and σ2x denote the
sample average and mean-square deviation of the explanatory variable in
(2), SNPj∗ . The ordinary least squares regression coeffi cient from the GWA
model (2) is:

β̂j∗ =
1

nσ2x

n∑
i=1

yi(SNPij∗ −mx). (3)

Since (for convenience, without loss of generality) y is standardized, it follows
from (3) that V ar[β̂j∗ ] = 1

n
.

With n = 106 independent tests, H0 : βj∗ = 0 with j∗ = 1, n each tested
separately, it is crucial to apply a Bonferonni correction to the individual
test p-values. With 106 independent tests, and choosing a 95% confidence
level, the two-tailed critical values for Bonferonni-corrected multiple-test sig-
nificance of each coeffi cient uses a cumulative probability of 0.025× 10−6 for
testing a negative estimated coeffi cient and 1 − .025 × 10−6 for a positive
estimated coeffi cient.
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2.2 Fitting a Bernoulli-Normal Mixture Distribution
to a Phenotypic Variable

As we will demonstrate later, the central limit theorem does not always pro-
vide a reliable approximation for Bonferonni-corrected p-values with large-
number multiple tests. We need an alternative estimator of GWA regression
p-values in the case of a non-normally distributed phenotypic variable. We
need a reasonable distributional assumption that, first, better fits the phe-
notypic variable and, second, allows for the feasible computation of small-
sample p-values that do not rely on the central limit theorem approximation.
In this section we propose a Bernoulli-normal mixture distribution.
The Bernoulli-normal mixture distribution is a flexible family of distribu-

tions with good fit in many applications, and convenient analytical properties
in our model.
Let z1 ∼ N(µ1, σ

2
1), z2 ∼ N(µ2, σ

2
2), and λ a Bernoulli distributed ran-

dom variable, λ = 1 with probability p; all three random variables assumed
independent. The mixed Bernoulli-normal y is the random variable:

y = λz1 + (1− λ)z2,

which has five parameters: µ1, σ21, µ2, σ
2
2, p. The first two moments are:

E[y] = pµ1 + (1− p)µ2 (4)

V ar[y] = p(σ21 + µ21) + (1− p)(σ22 + µ2)
2 − E[y∗]2 (5)

The distribution can be fitted via EM-maximum likelihood; see McLach-
lan and Peel (2000) for an overview of mixture distributions and estimation
methods.

3 The GWA regression coeffi cient as a linear
combination of independent normals

Returning to our GWA regression model (2) we now use the assumption
that y has a Bernoulli-normal mixture distribution to derive the exact small-
sample p-values of β̂j∗ . Since we now look at one particular j∗ only, we sim-
plify notation and drop the j∗ subscript. To implement our technique, the
analyst counts the number of major allele observations, heterozygot observa-
tions and minor allele observations in each regression sample. Let {n0, n1, n2}
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denote these three integer values, with n0+n1+n2 = n. The sample average
and mean-square deviation of the explanatory variable have simple forms,
since SNPi only takes the three values 0, 1, 2:

mx =
1

n

n∑
i=1

SNPi =
n1 + 2n2

n

σ2x =
1

n

n∑
i=1

(SNPi −mx)
2 =

n0m
2
x + n1(1−mx)

2 + n2(2−mx)
2

n
.

The cumulative distribution of an estimate β̂ at a value β under the null
hypothesis is:

Pr[β̂ ≤ β] = Pr[
1

nσ2x

n∑
i=1

yi(SNPi −mx) ≤ β]. (6)

For notational convenience, we re-order the observations index so that the
major allele observations are listed first, then the heterozygot observations,
and then the minor allele observations. Let i∗ denote the re-ordered index:

SNPi∗ = 0; i
∗ = 1, n0

SNPi∗ = 1; i
∗ = n0 + 1, n0 + n1

SNPi∗ = 2; i
∗ = n0 + n1 + 1, n

Writing out the coeffi cient formula (6) using the observed values n0, n1, n2:

Pr[β̂ ≤ β] = Pr[
1

σ2x
(

n1∑
i∗=1

(−mx)yi∗+

n1+n2∑
i∗=n1+1

(1−mx)yi∗+
n∑

i∗=n1+n2+1

(2−mx)yi∗) ≤ β].

Under our distributional assumption on y, each of the three integers n0, n1
and n2, in turn decomposes into two (unobserved) integers: the number of
realizations of the dependent variable yi∗ for which the Bernoulli random
variable λ equals zero or one. For notational convenience also define the
remainders n0,2 = n0 − n0,1, n1,2 = n1 − n1,1 and n2,2 = n2 − n1,1. Let
{n0,1, n1,1,n2,1}h, h = 1,m denote the finite set of all integer combinations
with 0 ≤ n0,1 ≤ n0, 0 ≤ n1,1 ≤ n1, 0 ≤ n2,1 ≤ n2. It is easy to show that
m = (n0 + 1)(n1 + 1)(n2 + 1).
Each of the integers n0,1, n1,1,n2,1 has an independent binomial distrib-

ution. The probabilities of all the potential outcomes {n0,1, n1,1,n2,1}h, h =
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1,m can be found from the binomial formula (for three independent binomi-
als):

Ph = Pr[{n0,1, n1,1,n2,1}h] = (7)

(
n0!

n0,1!n0,2!
)(

n1!

n1,1!n1,2!
)(

n2!

n2,1!n2,2!
)×

p(n0,1+n1,1+n2,1)(1− p)(n0,2+n1,2+n2,2).

The cumulative probability of β̂ is the conditional cumulative probability
for each of the potential outcomes h = 1,m times the probability of each
outcome:

Pr[β̂ ≤ β] =
m∑
h=1

(Pr[β̂ ≤ β|h])× Ph. (8)

The last step is to calculate

Pr[β̂ ≤ β|h] = Pr[ 1
nσ2x

n∑
i∗=1

yi∗SNPi∗ ≤ β|h];

this is the sum of n independent normals, consisting of n0,1 draws of (−mx/nσ
2
x)z1,

plus n0,2 draws of (−mx/nσ
2
x)z2, plus n1,1 draws of ((1 − mx)/nσ

2
x)z1, plus

n1,2 draws of ((1−mx)/nσ
2
x)dz2, plus n2,1 draws of ((2−mx)/nσ

2
x)z1, plus n2,2

draws of ((2 − mx)/nσ
2
x)dz2. A linear combination of independent normals

has a normal distribution, and in particular:

Pr[
1

nσ2x

n∑
i∗=1

yi∗SNPi∗ ≤ β|h] = Pr[z0 ≤ β−

1

nσ2x
(−mxn0,1 + (1−mx)n1,1 + (2−mx)n2,1)µ1−

(−mxn0,2 + (1−mx)n1,2 + (2−mx)n2,2)µ2)×

(
1

nσ2x
((m2

xn0,1 + (1−mx)
2n1,1 + (2−mx)

2n2,1)σ
2
1+

(m2
xn0,1 + (1−mx)

2n1,1 + (2−mx)
2n2,1)σ

2
2)
− 1
2 (9)

where z0 denotes a standard normal random variable. Combining (7), (8)
and (9) gives a computable formula for the exact small-sample p-value of the
GWA regression coeffi cient for any sample size.
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3.1 Computationally effi cient implementation of the
estimator

The p-value formula (8) requires a sum over the set of outcomes from three
independent binomials with n0, n1 and n2 draws, giving a total of (n0+1)(n1+
1)(n2 + 1) terms. Even with n = 10, 000 this is not computationally diffi cult
since the vast majority of the random outcomes can be dropped from the
sum, without any discernible effect on the quality of the estimate. Suppose
for example that the regression uses an SNP of 10000 total observations
with n0 = 8100, n1 = 1800, n2 = 100, and that p = 0.7. The complete
sum (8) has a total of 1, 473, 580, 001 terms in this case. However, using the
binomial distribution, the cumulative probability that the number of major
allele homozygots with λ = 1, n0,1, is less than 5376 or more than 5956 is less
than 10−12. All of these very low cumulative probability random outcomes
can be dropped before calculating (7); along with the outcomes where the
number of heterozygots with λ = 1, n11, is less than 1118 or more than 1393;
and those where n21 is less than 35 or more than 97. This leaves a manageable
10, 102, 428 terms in the (trimmed) sum, without noticeably impacting the
accuracy of the estimate.

4 Illustration of the magnitude of the p-value
adjustment using two common phenotypic
variables

This section examines the magnitude of the adjustment arising from our
small sample p-values compared to using large-sample approximate p-values
based on the central limit theorem. We illustrate the adjustment with two
commonly used phenotypic variables: years of education, which is a social
trait with a strongly non-normal distribution, and adult height, which is a
physical trait with a near-normal distribution.
Given the parameters of the mixture distribution, our p-value formula

(8) is exact; it does not require any simulation. The only inputs needed
are the number of major allele homozygot, heterozygot, and minor allele
homozygot observations in the regression sample, (n0, n1, n2), the estimated
regression coeffi cient, β̂, and the five parameters of the mixture distribution,
(p, µ1, µ2, σ1, σ2).
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For the purposes of this comparison, we use five sample sizes, n = 100,
500, 1000, 5000, 10000. For each sample size we fit n0, n1, n2 from the range
of values typically encountered in GWA regression tests. Let MAF denote
the minor allele frequency of the SNP ; we chose four representative values:
MAF = 0.5%, 1%, 5%, 10%. To choose the observation numbers n0, n1, n2
we assume that the SNP is in Hardy-Weinberg equilibrium, which implies
that n0 = n(1−MAF )2, n1 = 2nMAF (1−MAF ) and n2 = nMAF 2. The
numbers of observations n0, n1, n2 must be integers, so for fractional values
we stick the "leftover" one or two observation(s) in the heterozygot category.
Note that the relative numbers of explanatory variables across the three

categories, n0, n1, n2, can affect the quality of the central limit theorem
approximation. For example, with MAF = 1%, only 0.01% of SNP obser-
vations take the value +1; 1.98% take the value 0, and for 98.01% of the
regression sample, SNP = −1. This unbalanced distribution impacts the
speed at which the central limit theorem acts upon the probability distrib-
ution of the coeffi cient estimate, and the asymmetry (right-tail probability
versus left-tail probability) of its finite-sample distribution, unless the de-
pendent variable is exactly normal. This will become clear in the tables
below.
For comparative purposes, we assume β̂ values which have cumulative

probability 2.5%, 0.5%, and 2.5%× 10−6 under normality. These are:

Pr(
β̂√
n
≤ −1.96) = 2.5%

Pr(
β̂√
n
≤ −2.58) = 0.5%

Pr(
β̂√
n
≤ −5.45) = 2.5%× 10−6;

the upper-tail tests are analogous,with a positive sign. Multiplying through
by
√
n gives:

β.025 = −1.96×
√
n

β.025 = −2.58×
√
n

β10−6×.025 = −5.45×
√
n, (10)

and the positive tail values are analogous. In the tables below we take each
of the three β values in (10) and find the small-sample p-value under the
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mixture distribution, which we can then compare to the normality-based
p-values, 2.5%, 0.5%, and 2.5%× 10−6.
To calibrate the parameters of the mixture distribution, (p, µ1, µ2, σ1, σ2),

we run EM-maximum likelihood on the phenotypic variable; see below for
details.

4.1 Application to a non-normal phenotype: Years-of-
education

In this subsection we calibrate the Bernoulli-normal mixture using data on
years of education from the U.S. Census Bureau Current Population Survey
of Educational Attainment, 2015. See Rietveld, et al. (2013, 2015), Okbay
et al. (2016), and references therein for details on the considerable number of
GWA regression studies with years-of-education as the phenotypic variable.
Figure 1 shows a frequency distribution of the years-of-education data,

along with fitted normal and Bernoulli-normal mixture distributions. See
the Appendix for description of the U.S. census data. The mixture distrib-
ution picks up the high-peakedness and asymmetry in the data distribution,
associated with the 76% frequency of data observations in the range 12− 16
years, and the secondary clump of observations in the 0− 6 years range with
frequency 3.04%. These features are missed by the fitted normal. The data
has skewness of −0.676781 and excess kurtosis of 2.126954, which both differ
significantly from zero with 99% confidence. The Jarque-Bera test rejects
normality with 99% confidence.
The 81,913 years-of-education data observations are fitted to a Bernoulli-

normal mixture distribution using the normalmixEM command in the mix-
tools library of programming languageR; see Benaglia et al. (2009) for details
on the estimation routine. The estimated parameter values are p = 0.9654,
µ1 = 13.872, µ2 = 4.628, σ1 = 2.588, σ2 = 2.518.
Table 1 Panel A considers a single-hypothesis, two-sided test with a 95%

confidence limit. The table shows exact small-sample p-values under the
mixture distributions for estimated regression coeffi cients with approximate
p-values (using the central limit theorem) of 2.5%. The central limit theorem
approximation gives quite accurate p-values in almost all cases, even with
small sample sizes and low minor allele frequencies. The approximation error
from invoking the central limit theorem to compute p-values is never severe.
Panel B of the table repeats the exercise for a 99% confidence test, so that
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the p-value under normality is 0.5%. The central limit theorem approximation
continues to work reasonably well, with the exception of small sample sizes
(500 or less observations) with minor allele frequencies of 0.5% or 1%.
For 106 multiple test Bonferonni-corrected p-values, shown in Table 2,

the approximation error from relying on the central limit theorem is severe.
Convergence of the p-value toward its normality-derived value is much slower,
and the small-sample asymmetry in the approximation error is more notable.
For small to medium sample sizes, the true p-value for a negative-tail test
is very substantially above 2.5%, the p-value for the positive-tail test is sub-
stantially below 2.5%, and the sum of the two tail probabilities (which should
be 5%) is substantially higher. The central limit theorem approximation only
works reasonably accurately for sample sizes of five or ten thousand, and only
with relatively high minor allele frequency. In the other cases considered in
Table 2, the small-sample adjustment is critically important.
Figures 2-4 illustrate the dependence of the central limit theorem ap-

proximation to p-values on the size of the regression sample and the minor
allele frequency of the SNP. Figure 2 assumes a minor allele frequency of 1%
and shows the true p-values, under the mixture distribution calibrated to
the years-of-education variable, compared to the approximate p-values from
the central limit theorem, for three regression sample sizes, 500, 1000, and
10000. As in the tables above, the p-value equals the cumulative distribution
for β̂ < 0 and one minus the cumulative distribution for β̂ ≥ 0. Figure 3
repeats this exercise for a minor allele frequency of 10%. Figure 4 holds the
regression sample size fixed at 1000 and examines the quality of the central
limit theorem approximation as a function of the minor allele frequency.

4.2 Application to a near-normal phenotype: Adult
height

In this subsection we examine a phenotypic variable that is closer to normal-
ity than the years of education variable. Recall that the p-value adjustment
in this paper is only relevant in the case of a non-normally distributed phe-
notype. If the phenotypic variable is exactly normal (which corresponds to
p = 0 or p = 1, or µ1 = µ2 and σ1 = σ1 in the mixture distribution) then the
adjusted p-value exactly equals the conventional normality-based p-value. If
the phenotypic variable is "close" to normal (as measured for example by its
skewness and excess kurtosis) then the convergence of the estimated coeffi -

11



cient to normality is likely to be relatively rapid, and the p-value adjustment
is likely to have limited value except for very small sample sizes.
Figure 5 shows the sample frequency distribution of height for U.S. white

males age 25 and over, using 129,735 observations; see the Appendix for a
description of the data source. A normal and fitted mixture distribution
are overlaid on the sample frequency distribution in the Figure. The height
sample has a mean of 70.35, standard deviation 2.83, skewness of−0.086 , and
excess kurtosis of 0.721. We estimate a mixture distribution using mixtools
as above, getting parameter estimates p = 0.0386, µ1 = 69.52, µ2 = 70.38,
σ1 = 4.95, σ2 = 2.71. Visually the sample distribution looks quite close to
normality.
Table 3 and 4 repeat the exercise done in Tables 1 and 2, using the

mixture distribution for height in place of years of education. For p-values
of 2.5% and 0.5% the p-value adjustment is negligible throughout, even for
the smallest sample size and lowest minor allele frequency. In the case of
2.5% × 10−6 the p-value adjustment is not large, except for the smallest
sample size and minor allele frequencies of 1% or less. Sample sizes of 5000
or more have reasonably accurate conventional p-values even with the low
minor allele frequencies. With a near-normal phenotypic variable like height,
the p-value adjustment adds limited empirical value.

5 Summary

This paper provides a new approach to estimating multiple-test Bonferonni-
corrected p-values in genome-wide association (GWA) regressions of individ-
ual genetic markers on a phenotypic variable such as a social trait. The
current standard approach in computing coeffi cient p-values is to assume
a normal distribution for the phenotypic variable, or to invoke the central
limit theorem to justify the approximate normality of the coeffi cient esti-
mate. Many phenotypic variables, particularly for social traits like income
and education levels, have distributions which are far from normality. The
central limit theorem, as we show, does not give reliable p-values for the
types of sample sizes (and multiple-test numbers) used in GWA regression
studies with non-normally distributed phenotypic variables.
We suggest a new approach, based on fitting a Bernoulli-normal mixture

distribution to the phenotypic variable before running the GWA regressions.
We derive the exact small-sample distribution of GWA regression coeffi cient
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p-values under this more flexible distributional assumption. We illustrate
the magnitude of the p-value adjustment from our approach (relative to the
conventional approach) with sample data on a commonly-used phenotypic
variable with a notably non-normal distribution: years of education. The
derived p-values differ markedly from the conventional, normality-based, p-
values. For comparison purposes we also consider a near-normal phenotypic
variable, adult height, for which the difference between the adjusted and
conventional p-values is much more limited.
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Appendix: Data Description
The first two columns of Table A-1 below reproduce two rows from Table

1: Educational Attainment of the Population 18 Years and Over, by Age,
Sex, Race, and Hispanic Origin: 2015 in Current Population Survey Data
on Educational Attainment (U.S. Census Bureau (2015)). We choose the
subsample "U.S. white males ages 25 and greater" from that data source,
which is row 25 of their Table 1. The [white/male/age 25 and over] sub-
sample has 81,913 observations. Row three of Table A-1 below transforms
the qualitative categories into a quantitative variable. There are a few minor
subjective judgements in transforming the survey categories into quantitative
years-of-education. The final column shows the frequency distribution of the
data.
The adult height variable comes from the publicly available database in

Behavioral Risk Factor Surveillance System, U.S. Centers for Disease Control
and Prevention (2010). The selected sample consists of white, male, 25 years
or older respondents excluding those with a missing height data item, giving
a total of 129,735 observations. The data item is recorded in whole inches,
there are no fractional values.
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Table 1 
Comparison of adjusted/unadjusted single-test p-values for GWA regression 

coefficients under a mixture distribution: Years of education 
 

Panel A: 95% two-tailed confidence test (conventional p-value=2.5%) 
Sample Size: 100 500 1000 5000 10000 

Minor allele 
frequency 

Sign of tested 
coefficient 

p-value  

0.5% 
 

Negative 3.68% 3.47% 3.19% 2.81% 2.72% 
Positive 1.31% 1.66% 1.84% 2.19% 2.28% 

1% 
 

Negative 4.00% 3.18% 2.98% 2.72% 2.66% 
Positive 1.45% 1.85% 2.02% 2.28% 2.34% 

5% 
 

Negative 3.10% 2.79% 2.71% 2.59% 2.57% 
Positive 1.94% 2.21% 2.30% 2.41% 2.43% 

10% 
 

Negative 2.93% 2.69% 2.64% 2.56% 2.54% 
Positive 2.11% 2.31% 2.37% 2.44% 2.46% 

 
Panel B: 99% two-tailed confidence test (conventional p-value=0.5%) 

Sample Size: 100 500 1000 5000 10000 
Minor allele 
frequency 

Sign of tested 
coefficient 

p-value  

0.5% 
 

Negative 2.29% 1.12% 0.92% 0.67% 0.62% 
Positive 0.16% 0.22% 0.26% 0.37% 0.40% 

1% 
 

Negative 1.68% 0.91% 0.78% 0.62% 0.58% 
Positive 0.18% 0.26% 0.31% 0.40% 0.43% 

5% 
 

Negative 0.86% 0.66% 0.61% 0.55% 0.53% 
Positive 0.29% 0.38% 0.41% 0.46% 0.47% 

10% 
 

Negative 0.76% 0.61% 0.57% 0.53% 0.52% 
Positive 0.35% 0.42% 0.44% 0.47% 0.48% 

 

Table 2 
Comparison of adjusted/unadjusted 106 multiple-test p-values for GWA 
regression coefficients under a mixture distribution: Years of education 

 
95% two-tailed confidence test (conventional p-valuex106  = 2.5%) 

Sample Size: 100 500 1000 5000 10000 
Minor allele 
frequency 

Sign of tested 
coefficient 

p-valuex106  

0.5% 
 

Negative >100% >100% >100% 40.48% 19.56% 
Positive 0.01% 0.02% 0.04% 0.19% 0.35% 

1% 
 

Negative >100% >100% >100% 19.08% 11.21% 
Positive 0.01% 0.04% 0.08% 0.36% 0.59% 

5% 
 

Negative >100% 37.44% 18.21% 6.29% 4.81% 
Positive 0.08% 0.25% 0.43% 1.06% 1.35% 

10% 
 

Negative >100% 17.66% 10.05% 4.61% 3.84% 
Positive 0.23% 0.56% 0.80% 1.45% 1.70% 

 



Table 3 
Comparison of adjusted/unadjusted single-test p-values for GWA regression 

coefficients under a mixture distribution: Adult height 
 

Panel A: 95% two-tailed confidence test (conventional p-value=2.5%) 
Sample Size: 100 500 1000 5000 10000 

Minor allele 
frequency 

Sign of tested 
coefficient 

p-value  

0.5% 
 

Negative 2.54% 2.60% 2.57% 2.53% 2.52% 
Positive 2.38% 2.45% 2.46% 2.48% 2.48% 

1% 
 

Negative 2.60% 2.57% 2.55% 2.52% 2.52% 
Positive 2.43% 2.46% 2.47% 2.48% 2.49% 

5% 
 

Negative 2.56% 2.53% 2.52% 2.51% 2.51% 
Positive 2.46% 2.48% 2.48% 2.49% 2.49% 

10% 
 

Negative 2.54% 2.52% 2.51% 2.51% 2.50% 
Positive 2.47% 2.49% 2.49% 2.50% 2.50% 

 
Panel B: 99% two-tailed confidence test (conventional p-value=0.5%) 

Sample Size: 100 500 1000 5000 10000 
Minor allele 
frequency 

Sign of tested 
coefficient 

p-value  

0.5% 
 

Negative 0.69% 0.60% 0.56% 0.52% 0.51% 
Positive 0.55% 0.51% 0.50% 0.49% 0.49% 

1% 
 

Negative 0.66% 0.56% 0.54% 0.51% 0.51% 
Positive 0.53% 0.50% 0.49% 0.49% 0.50% 

5% 
 

Negative 0.55% 0.52% 0.51% 0.51% 0.50% 
Positive 0.50% 0.49% 0.49% 0.50% 0.50% 

10% 
 

Negative 0.54% 0.51% 0.51% 0.50% 0.50% 
Positive 0.50% 0.50% 0.50% 0.50% 0.50% 

 

Table 4 
Comparison of adjusted/unadjusted 106 multiple-test p-values for GWA 

regression coefficients under a mixture distribution: Adult height 
 

95% two-tailed confidence test (conventional p-valuex106  = 2.5%) 
Sample Size: 100 500 1000 5000 10000 

Minor allele 
frequency 

Sign of tested 
coefficient 

p-valuex106  

0.5% 
 

Negative >100% >100% 27.05% 4.84% 3.67% 
Positive >100% 27.06% 7.87% 2.70% 2.46% 

1% 
 

Negative >100% 26.24% 9.87% 3.65% 3.16% 
Positive >100% 7.70% 3.87% 2.46% 2.40% 

5% 
 

Negative 20.44% 5.10% 3.70% 2.82% 2.70% 
Positive 6.53% 2.84% 2.51% 2.41% 2.42% 

10% 
 

Negative 16.59% 3.80% 3.16% 2.69% 2.62% 
Positive 6.16% 2.59% 2.46% 2.44% 2.46% 

 



Figure 1: The frequency distribution of years-of-education (red bars) and fitted 
normal (blue line) and mixture (green line) probability densities 
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Figure 2: The central limit theorem p-value approximation (solid line) for 
sample sizes of n=500 (small dashes), n=1000 (medium dashes) and n=10000 

(large dashes) using the years-of-education mixture distribution; 1% minor 
allele frequency 
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Figure 3: The central limit theorem p-value approximation (solid line) for 
sample sizes of n=500 (small dashes), n=1000 (medium dashes) and n=10000 
(large dashes) using the years-of-education mixture distribution; 10% minor 

allele frequency 
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Figure 4: The central limit theorem p-value approximation (solid line) for minor 
allele frequency of 0.5% (dotted line), 1% (small dashes), 5% (medium dashes) 
and 10% (large dashes) using the years-of-education mixture distribution; 1000 

sample size 
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Figure 5: The frequency distribution of adult height (red bars) and fitted 
normal (blue line) and mixture (green line) probability densities 
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