

 FPGA based Uniform Channelizer

Implementation

 By Fangzhou Wu
 A thesis presented to the

National University of Ireland
in partial fulfilment of the requirements for the degree of

Master of Engineering Science
 Department of Electronic Engineering

National University of Ireland Maynooth
March 2016

Research supervisors: Dr. Rudi Villing
Head of department: Dr. Ronan Farrell

 ii

Abstract
Channelizers are widely used in modern digital communication systems.
Advanced uniform multirate channelization have been theoretically proved to be
capable of reducing the computational load, with a better performance. Therefore,
in this thesis, we implement these designs on a FPGA board for the sake of the
comprehensive evaluation of resource usage, performance and frequency
response.
The uniform filter-banks are one of the most essential unit in channelization. The
Generalised Discrete Fourier Transform Modulated Filter Bank (GDFT-FB), as an
important variant of basic a DFT-FB, has been implemented in FPGA and
demonstrated with a better computational saving rather than traditional schemes.
Moreover the oversampling version is demonstrated to have a better frequency
response with an acceptable amount of extra resources. On the other hand,
frequency response masking (FRM) techniques is able to reduce the number of
coefficients. Therefore, the full FRM GDFT-FB and alternative narrowband FRM
GDFT-FB are both implemented in FPGA platform, in order to achieve a better
performance and hardware efficiency.

 iii

Declaration
I hereby declare that this thesis is my own work and has not been submitted in
any form for another award at any other university or institute of tertiary
education. Information derived from the published or unpublished work of others
has been acknowledged in the text and a list of references is given.

___________________________ ___________________________
Signature Date

 iv

Acknowledgements
First of all, I’d like to thank my supervisor Dr. Rudi Villing. He has a strong sense
of responsibility. Thank you for your supervision, kindness and patience. I am
deeply grateful for all the help I received during the course.
And I am also very thankful to my parents for continuous support, love and
understanding.

 v

Table of contents
Abstract ... ii
Declaration ... iii
Acknowledgements .. iv
Table of contents ... v
List of figures ... ix
List of tables ... xiii
Chapter 1 Introduction .. 1

1.1 Thesis objective .. 2
1.2 Thesis contributions ... 3
1.3 Thesis outline ... 5

Chapter 2 Background... 7
2.1 Field Programmable Gate Array .. 7

2.1.1 Introduction ... 7
2.1.1.1 LUT .. 9
2.1.1.2 Block RAM .. 10
2.1.1.3 DSP48s... 10

2.1.2 Verilog HDL ... 11
2.1.3 Xilinx IP Cores .. 11
2.1.4 Fixed point DSP .. 12

2.2 Channelization technology ... 13
2.2.1 Single channel and multi-channel ... 14

2.2.1.1 Per-channel approach ... 14
2.2.1.2 Pipelined frequency transform ... 15
2.2.1.3 Polyphase filter-bank ... 16

2.2.2 Hardware complexity comparison .. 17
2.2.3 Uniform Versus Non-uniform ... 20

2.3 Frequency Response Masking (FRM) .. 22
2.3.1 Subclass I filter .. 25

2.4 TETRA standard ... 26
2.5 Related work ... 27

 vi

2.6 Conclusion .. 28
Chapter 3 Critically Sampled Uniform Wideband Channelization....................... 30

3.1 Introduction .. 30
3.1.1 DFT-Filterbank (DFT-FB) .. 30
3.1.2 Generalized DFT Filter-Bank (GDFT-FB) 32

3.2 The FPGA implementation .. 35
3.2.1 Basic DFT-FB channelizer FPGA implementation 35

3.2.1.1 Coefficients Mapping .. 35
3.2.1.2 Complex Signal Process in FPGA ... 36

3.2.2 GDFT-FB Channelizer FPGA Implementation 39
3.2.2.1 Complex modulation of prototype filter coefficients 39
3.2.2.2 Complex Filter Coefficients using the FIR Compiler 39
3.2.2.3 Frequency Shift State Machine .. 41
3.2.2.4 Final Design ... 43

3.3 FPGA Implementation Evaluation ... 44
3.3.1 Implementation and test environment ... 44

3.3.1.1 Implementation specification ... 44
3.3.1.2 Xilinx Viretx-6 board overview ... 46
3.3.1.3 Implementation and test flow .. 47

3.3.2 Evaluation and Results .. 48
3.3.2.1 Frequency response.. 48
3.3.2.2 EVM result ... 50
3.3.2.3 Adjacent channel interference ... 50
3.3.2.4 Hardware usage.. 53

3.4 Chapter conclusion ... 53
Chapter 4 Oversampled Uniform Wideband Channelization 55

4.1 Introduction .. 55
4.1.1 Aliasing problem and oversampling solution 55
4.1.2 Oversampled polyphase decomposition .. 56

4.2 Oversampled DFT-FB (even stacked) .. 57
4.2.1 High level design... 57
4.2.2 Oversampled polyphase decimation FIR .. 58
4.2.3 FIR block output samples rearrangement for the FFT 60
4.2.4 Oversampled frequency shift state machine 62
4.2.5 Final FPGA design .. 63

4.3 Oversampled GDFT-FB (odd-stacked) .. 65

 vii

4.3.1 High level design... 65
4.3.2 Oversampled complex polyphase decimation FIR blocks 66
4.3.3 Final FPGA design .. 66

4.4 FPGA implementation evaluation .. 68
4.4.1 Frequency response ... 68
4.4.2 EVM result .. 70
4.4.3 Adjacent channel interference ... 70
4.4.4 Hardware resource usage .. 71

4.5 Chapter conclusion ... 72
Chapter 5 FRM and the GDFT-FB ... 74

5.1 Full FRM applied to the GDFT-FB .. 74
5.1.1 Introduction ... 74
5.1.2 The FPGA based full FRM DFT-FB (even stacked) 76

5.1.2.1 The high level FPGA design .. 76
5.1.2.2 The delay of second path design with an arbitrary fractional
clock divider .. 78
5.1.2.3 Polyphase decomposed base filter ... 79
5.1.2.4 Phase shifting and addition state machine 79

5.1.3 The FPGA based full FRM GDFT-FB (odd stacked) 80
5.1.3.1 The high level FPGA design .. 81

5.2 Narrowband FRM applied to the GDFT-FB .. 84
5.2.1 Introduction ... 84

5.2.1.1 Narrowband FRM .. 84
5.2.1.2 Alternative structure for oversampled narrowband FRM GDFT-
FB 86

5.2.2 The FPGA based alternative narrowband (oversampled) DFT-FB
(even stacked).. 87

5.2.2.1 The overall design .. 87
5.2.2.2 Efficient FIFO design of base FIR complier 89

5.2.3 The FPGA based alternative narrowband (oversampled) GDFT-FB
(odd stacked) ... 89

5.2.3.1 Theoretical structure .. 89
5.2.3.2 FPGA design .. 90

5.3 Evaluation and results .. 92
5.3.1 Frequency response ... 93
5.3.2 EVM result .. 96
5.3.3 Adjacent channel interference ... 97

 viii

5.3.4 Hardware resource usage .. 100
5.4 Chapter conclusion ... 100

Chapter 6 Scaled up Evaluation .. 102
6.1 Scaling up of filter-banks ... 103

6.1.1 Scaling up critically sampled DFT-FB/GDFT-FB to 256 channels....
 .. 103
6.1.2 Scaling up alternative narrowband FRM DFT-FB/GDFT-FB to 256
channels ... 104

6.2 Evaluation and Results ... 104
6.2.1 Frequency response ... 104

6.2.1.1 Critically sampled GDFT-FB .. 104
6.2.1.2 Alternative narrowband FRM GDFT-FB 106

6.2.2 EVM and adjacent channel interference 107
6.2.3 Hardware resource usage .. 109

6.3 Chapter conclusion ... 111
Chapter 7 Conclusions and future work .. 112

7.1 Summary .. 112
7.2 Future work .. 114
7.3 Conclusions .. 115

References ... 117

 ix

List of figures
Figure 2.1 The typical internal architecture of FPGA... 8
Figure 2.2 FPGA Programmable Logic Block .. 10
Figure 2.3 Xilinx IP core GUI (Xilinx ISE 14.3) .. 12
Figure 2.4 A 4 channels channelizer ... 14
Figure 2.5 Channelizer using per-channel approach to filter channels. 15
Figure 2.6 Pipeline frequency transform structure of a binary tree with DDC
followed by SRC. .. 16
Figure 2.7 The structure of the DFT-FB where L is the oversampling factor and
EK(zL) are the polyphase components of the prototype filter H(z). 17
Figure 2.8 The LUT utilization comparison ... 18
Figure 2.9 the memory bit comparison ... 19
Figure 2.10 The uniform filter-bank’s frequency response 20
Figure 2.11 P-GDFT non-uniform structure ... 21
Figure 2.12 Recombined GDFT-FB channelizer .. 21
Figure 2.13 Direct form of frequency response masking 22
Figure 2.14 The process of two branches filtering base on FRM 23
Figure 2.15 Efficient implementation of FRM ... 24
Figure 2.16 Subclass I Filter frequency response ... 25
Figure 2.17 The efficient FRM design with polyphase decomposition 26
Figure 3.1 The polyphase DFT modulated receiver.. 31
Figure 3.2 DFT modulated filter-bank (DFT-FB)... 32
Figure 3.3 a) Even stacked channels, b) odd stacked channels 33
Figure 3.4. GDFT modulated filter bank (GDFT-FB) .. 34
Figure 3.5 The DFT-FB FPGA design for the complex input 36

 x

Figure 3.6 The FPGA implementation of DFT-FB ... 37
Figure 3.7 The waveform shows that the output of FIR complier has a 3 clock
delay from rdy signal .. 38
Figure 3.8 cross coupling of complex signal filtering .. 40
Figure 3.9 Complex FIR implemented using cross-coupled FIR compiler IP core
 ... 41
Figure 3.10 Frequency shifting state machine work flow. 42
Figure 3.11 FPGA implementation of the GDFT-FB ... 44
Figure 3.12 The Filter-bank development and testing flow 47
Figure 3.13 Sub-band frequency response of the FPGA Fixed Point GDFT-FB
(blue line) compared to a floating point GDFT-FB reference (red line) 49
Figure 3.14 Passband comparison between FPGA based GDFT-FB and its
floating point reference ... 49
Figure 3.15 The QPSK modulation constellation after the FPGA based GDFT-FB
(left), and the QPSK modulation constellation after a floating point GDFT-FB .. 50
Figure 3.16 The even stacked testing wideband signal of adjacent channel
interference when C/Ia = -45 dB ... 51
Figure 3.17 Modulation constellation of a channel of interest subjected to different
levels of adjacent channel interference after extraction by the FPGA GDFT-FB 52
Figure 4.1The interaction of a filter with its images in the decimated sub-band
output a) exhibits aliasing when critically sampled due to overlapping images
whereas b) oversampling separates the images and greatly reduces aliasing. 56
Figure 4.2 Commutator with interpolator in oversampled design 57
Figure 4.3 Converting 2x oversampled 4 channels GDFT-FB input distribution to
A) a functionally equivalent version based on (4.4) and B) an equivalent version
using commutators. ... 59
Figure 4.4 FIR selector state machine mapping the output of two FIR blocks to a
single TDM output suitable for input to the FFT IP core 61
Figure 4.5. Oversampled polyphase decimation FIR implemented using real or
complex critically sampled polyphase decimation FIR blocks (based on the FIR
compiler IP core) ... 61
Figure 4.6 Frequency shifting state machine work flow 63
Figure 4.7 the FPGA architecture diagram of 2x oversampled DFT-FB (even
stacked) ... 64

 xi

Figure 4.8 the FPGA architecture diagram of 2x oversampled GDFT-FB (even
stacked) ... 67
Figure 4.9 Frequency response of one sub-band of the FPGA-based 16-bit 16-
channel 2x oversampled GDFT-FB. The FPGA based (fixed point) response
(blue) and floating point GDFT-FB reference implementation (red) are both
shown. ... 69
Figure 4.10 Passband comparison between 16-bit FPGA GDFT-FB (blue line) and
its floating point reference (red line) ... 69
Figure 4.11 The pi/4 DQPSK modulation constellation of the FPGA based 2x
oversampled GDFT-FB output (left), and the equivalent constellation of the
floating point GDFT-FB reference output (right) ... 70
Figure 5.1 Full FRM DFT-FB ... 76
Figure 5.2 The FPGA based even stacked full FRM DFT-FB 77
Figure 5.3 Full FRM GDFT-FB (odd stacked, with k0=1/2 and n0=0) 80
Figure 5.4 The odd stacked full FRM GDFT-FB ... 83
Figure 5.5 The process of narrow-band FRM filter .. 84
Figure 5.6 Efficient oversample GDFT-FB with narrowband FRM. 87
Figure 5.7 2x oversampled alternative narrowband FRM GDFT-FB 88
Figure 5.8 The FIFO used to slow the FFT output for output sub-band FIR
compiler IP cores... 89
Figure 5.9 Odd stacked GDFT-FB with narrowband FRM technology. 90
Figure 5.10 FPGA implementation of odd stacked narrowband GDFT-FB 91
Figure 5.11 Frequency response of the FPGA based full FRM GDFT-FB sub-band
(blue) compared to the equivalent floating point reference implementation (red) 93
Figure 5.12 Passband comparison between the FPGA based full FRM GDFT-FB
(blue) and its equivalent floating point reference implementation (red) 94
Figure 5.13 Frequency response of the FPGA based 16-channel alternative
narrowband FRM GDFT-FB (blue) compared to its floating point reference
implementation (red) ... 94
Figure 5.14 Passband comparison between the FPGA based alternative
narrowband FRM GDFT-FB (blue) and its floating point reference
implementation (red) ... 95

 xii

Figure 5.15 stop band comparison between the FPGA based alternative
narrowband FRM GDFT-FB (blue) and the equivalent floating point reference
implementation (red) ... 95
Figure 5.16 The QPSK modulation constellation of the FPGA based full FRM
GDFT-FB output (left), and the QPSK modulation constellation of a reference
floating point full FRM GDFT-FB output (right) ... 96
Figure 5.17 The QPSK modulation constellation of the FPGA based narrowband
GDFT-FB output (left), and the QPSK modulation constellation of a reference
floating point narrowband GDFT-FB output (right) ... 97
Figure 5.18 Modulation constellation of the FPGA based full FRM GDFT-FB at
different adjacent channel interference levels ... 98
Figure 5.19 Modulation constellation of the FPGA based alternative narrowband
GDFT-FB at different adjacent channel interference levels 99
Figure 6.1 Frequency response of critically sampled GDFT-FB comparing the
fixed point FPGA implementation (blue) to the floating point reference
implementation (red). .. 105
Figure 6.2 Passband comparison between the FPGA based GDFT-FB (blue line)
and floating point reference implementation (red line)....................................... 105
Figure 6.3 Frequency response of the FPGA based alternative narrowband FRM
GDFT-FB (blue) and floating point reference implementation (red) 106
Figure 6.4 Passband comparison between FPGA based alternative narrowband
FRM GDFT-FB (blue) and the floating point reference implementation (red line)
 ... 106
Figure 6.5 Stop band comparison between the FPGA based alternative
narrowband FRM GDFT-FB (blue) and the floating point reference
implementation (red). .. 107
Figure 6.6 The EVM constellation of critically sampled GDFT-FB and alternative
narrowband FRM GDFT-FB .. 108
Figure 6.7 The EVM constellation of the FPGA based critically sampled GDFT-
FB and alternative narrowband FRM GDFT-FB with C/Ia= -45 dB. 109

 xiii

List of tables
Table 2.1 The hardware comparison of per-channel approach, pipeline frequency
transform DFT-FB .. 17
Table 3.1 Test filter-banks' specifications ... 46
Table 3.2 Virtex-6 XC6VLX240T-1FFG1156 FPGA board resources summary 47
Table 3.3 The EVM performance of a 16 channel GDFT-FB based on FPGA 50
Table 3.4 RMS and Peak EVM for a channel of interest subjected to different
adjacent channel interference level extracted using the FPGA based GDFT-FB . 53
Table 3.5 Resource usage for the (even stacked) DFT-FB and (odd stacked)
GDFT-FB channelizers ... 53
Table 4.1 The EVM performance of an FPGA-based 16-channel 2x oversampled
GDFT-FB .. 70
Table 4.2 EVM result of FPGA 2x oversample GDFT-FB under different adjacent
channel interference level ... 71
Table 4.3 Even and odd stacked 2x oversampled GDFT-FB FPGA resources
usage .. 72
Table 5.1 The EVM performance of both FPGA based designs: the 16-channel
full FRM GDFT-FB and the alternative narrowband GDFT-FB 97
Table 5.2 EVM results of the FPGA based full FRM GDFT-FB and alternative
narrowband FRM GDFT-FB at different adjacent channel interference levels 99
Table 5.3 Hardware usage of full FRM GDFT-FB and alternative narrowband
FRM GDFT-FB ... 100
Table 6.1 Hardware usage of all FPGA based 16-channel filter banks
implemented to date .. 102
Table 6.2 the EVM result of critically sampled GDFT-FB and alternative
narrowband FRM GDFT-FB .. 108
Table 6.3 the EVM result of critically sampled GDFT-FB and alternative
narrowband FRM GDFT-FB under -45 dB adjacent channel interference......... 109
Table 6.4 Resource usage comparison of critically sampled GDFT-FB and
alternative narrowband FRM GDFT-FB when configured for 256 channels 110

Introduction

 1

Chapter 1
Introduction
DSP (Digital Signal Processing) has been a rapidly developing aspect of modern
technology and has become an indispensable part of many products that we use in our
modern lives [1]. Multirate signal processing is one of the major branches of DSP. It is a
technology that finds use in signal processing systems where various sub-systems with
differing sample or clock rates need to be interfaced together. At other times multi-rate
processing is used to reduce the computational overhead of a system. It thus confers
advantages of: (1) greatly reducing the cost of hardware; (2) providing an improved
implementation performance [2]. Multirate digital filters and filter-banks are two widely
used applications in multirate signal processing. They are mostly used in the field of
speech processing, image processing and communications [3, 4].
Polyphase filters and filter-banks are one of the outstanding channelization examples to
represent multirate digital filters [5]. They offer a significant reduction in processing
complexity by way of separating the input signals into several channels. Polyphase filter-
bank are widely used in industry, such as in the MP3 audio format [6] and in the digital
receiver analysers that are discussed in this thesis.
The theory of polyphase filter banks was formed in the 80s and has been further
developed since then [7-10], to have more configurations that can be adapted to more
complicated tasks [11]. However, only a few of the further developments have been
realized on hardware platforms, such as on a field-programmable gate arrays (FPGA) and
DSP processors.
The reason of implementing the theoretic polyphase filter-bank on an FPGA is that an
FPGA has sufficient resources and a high performance that can allow the implementation
of a large number of DSP algorithms very efficiently compared to a single chip processor
[12]. In data flow applications, no instructions need to be fetched from memory, and not
many read/write operation from memory are required since most of the data has directly

Introduction

 2

been inserted into the register, because the FPGA input samples are flowing through the
programmed logic cells. In addition, FPGA architectures allow developers to exchange
resources for speed by configuring more logic resources to perform parallel processing
[13].
Several polyphase DFT-FB (Discrete Fourier Transform-FilterBank) FPGA
implementations have already been realized [14-17]. However these FPGA DFT-FBs
design the architectures from a very basic level. The designs may lack flexibility due to
limited number of channels and the amount of resources that can be exchanged for speed
in different computational complexity scenarios. In the case of a change in the design
requirements, considerable more work could be needed to adjust the design. This could
potentially hinder further complicated development based on the implementation of a
DFT-FB FPGA architecture. Thus some of the complex and resource demanding
algorithm components are replaced by IP cores among the designs in this thesis.
Most of the FPGA implementations are focused on the basic Discrete Fourier Transform-
FilterBank (DFT-FB). There are also some further developments based on DFT-FB,
which are proved to have a better DSP performance or a better hardware efficiency.
However they haven’t been implemented on the FPGA platform in literature. Therefore
in this thesis, these DFT-FB based designs are going to be built on FPGA, then a thorough
evaluation will be evaluated to see if they are practical in terms of being useful for
industry applications.

1.1 Thesis objective
The objective in this thesis is to design and implement a new set of polyphase filter-bank-
based uniform channelizers on an FPGA platform. The designs will cover critically
sampled GDFT-FBs (Generalized DFT modulated Filter Bank), oversampled GDFT-FBs,
GDFT-FBs with full FRM technology and GDFT-FBs with narrow-band GDFT-FBs.
Every type of filter contains both odd and even stacked channel allocation configurations.
Most of the new designs in this thesis take advantage of Xilinx IP cores to simplify and
boost the development, and ensure that other larger DSP FPGA designs based on these
uniform channelizers are more convenient. We will also discuss the implementation of

Introduction

 3

the theory that has been proposed already, along with the problems that developers face
when realizing the FPGA channelizers and possible solutions to these. Later sections in
this thesis will cover the possibility for optimizations in the architecture for better
efficiency, along with a performance and results’ analysis, an assessment of the hardware
resource usage, and an evaluation of whether the design is or is not feasible with current
communication standards.

1.2 Thesis contributions
In this thesis, several kinds of polyphase filters and new filter-bank designs based on the
polyphase filter-bank will be implemented on an FPGA to evaluate their performance,
system complexity, resource usage and their feasibility for industrial scenarios.
Developers are now willing to take advantage of pre-built blocks e.g. IP cores, as the
complexity of modern digital systems increases at a remarkable speed that is driven
nowadays by the challenging pressures of time-to-market. This is one of the design reuse
methodologies [18]. These IP cores give a great convenience when designing or tuning a
new FPGA architecture. Complicated processing elements can be designed to either
process samples in parallel in order to have an improved processing speed, or process
then serially for an efficient resource usage. The works presented in this thesis replace
the FIR filters and FFT elements with IP cores of a basic DFT-FB, and introduce further
developed polyphase filter-banks (GDFT-FB, oversampled GDFT-FB, full FRM GDFT-
FB and alternative narrowband FRM GDFT-FB) implementation by using IP cores, in
order to have a significant reduction in the cost of design.
GDFT-FB is a generalized version of DFT-FB, it allows the polyphase filter-bank to have
more configurations such as facilitating phase shifting and adjustable centre frequency.
This design flexibility leads to an odd-stacked channel allocation filter-bank that has a
better spectrum usage. Therefore, the FPGA implementation of GDFT-FB is presented in
this thesis. A new designed complex FIR block which can filter samples with complex
coefficients is also introduced and explained in detail, which is the essential part of a
GDFT-FB.

Introduction

 4

GDFT-FB also provides the option to design the polyphase filter-bank in an oversampled
configuration. This allows a better reconstruction of signals by reducing the aliasing
problem between adjacent channels. Therefore the oversampled GDFT-FB FPGA
implementation is presented in this work. A mathematical equivalent of a sample
distribution model as a theoretical expression and diagram are developed for the FPGA
architecture in order to fit IP cores in an oversampled configuration. Furthermore, an
oversampled odd-stacked channel allocation GDFT-FB design is also implemented on
the FPGA to have a better spectrum usage.
Apart from the polyphase filter-bank, FRM (Frequency Response Masking) filter
technology also provides a significant computational reduction to produce an equivalent
set of filtering results. The goal of combining into an FPGA design the FRM with the
polyphase filter-bank will further reduce the number of coefficients required, and so the
even and odd stacked channel allocations can be easily achieved. Thus, eventually a very
efficient oversampled GDFT-FB with narrow-band FRM technology design in FPGA
(both even and odd stacked) has been realized in this work.
Besides the high level FPGA implementation, some of adjustments and tweaks to fit IP
cores to the new development of filter-banks, and hardware optimization to some of the
models is also introduced in each design according to the type of the filter-bank.
Then, evaluations are performed of all the new developed filter banks, in a small scale of
16 channels. Evaluation includes frequency response, EVM (Error Vector Measurement),
adjacent channel interference and hardware resources, in order to test their accuracy,
performance and hardware efficiency.
Lastly, another similar evaluation of 256-channel configuration are performed to
critically sampled DFT-FB/GDFT-FB and alternative narrowband FRM DFT-FB/GDFT-
FB, in order to find which filter-bank technology is the most feasible and capable regard
to industry scenario, because they have fairly good performance and yet with efficient
hardware usage.
The summary of contributions of this thesis is as following:

Introduction

 5

 Replacing FIR filters and FFT elements with pre-built IP cores in the basic DFT-
FB design, and introduce further developments of GDFT-FB, oversampled GDFT-
FB, full FRM GDFT-FB and alternative narrowband FRM GDFT-FB
implementations by using IP cores, in order to have a significant reduction in the
cost of design.

 Introducing the FPGA design of generalized version of DFT-FB, i.e. GDFT-FB,
which leads a better spectrum usage with the odd-stacked channel allocation.

 New designed oversampled GDFT-FB (in both even and odd stacked channel
allocation) has also been designed in FPGA, in order to have a better signal
reconstruction by reducing the aliasing between adjacent channels.

 Introducing the FPGA designs of two polyphase filter-banks design combined
with FRM filter technology -- Full FRM GDFT-FB and narrow-band FRM GDFT-
FB, to have a further efficiency in terms of hardware usage.

 The evaluation with 16-channel configuration are performed of all the new
designed filter banks in order to test their accuracy, performance and hardware
efficiency. Then the evaluation with 156 configuration are performed to critically
sampled DFT-FB/GDFT-FB and narrowband FRM DFT-FB/GDFT-FB, in order
to find the most feasible and capable filter-bank technology regard to industry
scenario.

1.3 Thesis outline
The rest of the chapters are organized as follows:
Chapter 2 introduces the literature on which the work of this thesis is based. Moreover,
an overview of FPGA architecture is presented, along with some material that may be
needed to support the discussion of work in this thesis. Furthermore, the concept of
polyphase filters is presented, as this is the base of the new design of GDFT-FB,
oversampled GDFT-FB, and GDFT-FB applied with FRM.

Introduction

 6

Chapter 3 mainly presents the implementation of odd-stacked GDFT-FB that was
developed from DFT-FB. Moreover, a new method is introduced to deal with the complex
coefficients in FPGA design, as the coefficient has been complex modulated.
Furthermore, some tweaks and an additional design which helps in adapting the FPGA
design to fit the odd-stack configuration and complex operations are presented as well.
Finally, there is test of the accuracy of the GDFT-FB design and its hardware usage,
through a simulation test on a 16-channel FPGA architecture.
Chapter 4 applies the oversampled design to the polyphase filter-banks in order to have
a better recovery of the input signal. The oversampled filter-bank FPGA realization
depends on a parallel FIR Filter design. The oversampled configuration has been applied
to the odd-stack GDFT-FB as well, which brings further design complexity. The
performance and hardware usage is also tested on a FPGA simulation with a 16 channel
configuration.
Chapter 5 introduces a computational saving FRM (Frequency Response Masking)
technology and a combinational design with a polyphase filter-bank has been
implemented on an FPGA. The FRM’s two path structure leads to two GDFT-FB filter-
banks in the system. The specially designed FIFO can handle the sample rate change due
to the 2 stage structure of FRM. Additionally, the complex design allows the FPGA
architecture to cope with odd-stack channel allocation. Finally, a very efficient
oversampled alternative narrowband FRM GDFT-FB is introduced and developed on the
FPGA. The FPGA simulation test is carried out again with both of the new designs that
include the FRM for a configuration of 16 channels.
Chapter 6 shows the evaluation and comparison of the new filter-banks designs for a
large number of channels. The resource usage, frequency response, EVM (Error Vector
Measurement) and adjacent channel interference are the key specifications for analysis.
Additionally, this chapter shows the advantages, drawbacks and practicality of these
designs.
Chapter 7 gives the summary of the thesis, and point out several future works that can be
developed based on the work presented. Finally, the conclusions of the work is presented.

Background

 7

Chapter 2
Background

2.1 Field Programmable Gate Array

2.1.1 Introduction
Field Programmable Gate Array (FPGA) technology continues to advance rapidly since
its invention by Xilinx in 1984. The worldwide market of FPGA is anticipated to be 9.8
billion dollars by 2020 [19]. Today FPGAs have become so popular, that in many areas
they have replaced custom ASICs (Application Specific Integrated Circuits) and
processors in the field of signal processing.
From the most basic point of view, FPGAs are reprogrammable silicon chips. It is an
alternative physical architecture to implement digital logic in systems. By using prebuilt
logic blocks, the prefabricated silicon chips can be programmed electrically to implement
any custom digital hardware functionality by the developer or user. The design is
developed in software on a computer, and then compiled to a configuration file that
contains the connections of how the components are wired together. In addition, FPGAs
can be reconfigured multiple times. The FPGAs are usually programmed and configured
using HDL (Hardware Description Languages), such as Verilog and VHDL, like that used
for ASICs.
FPGAs not only provide a lot of flexibility to the digital system design, but also give high
speed and increased reliability. Unlike processors, FPGAs have a purely parallel
processing architecture, which can provide increased speed. Moreover, adding more
functions may not affect the speed of the system [20]. Thus FPGA is preferred in a variety
applications that are computing intensive - like audio processing, medical electronics and
digital signal processing [21-26]. The basic FPGA architecture consists of three important

Background

 8

components: programmable logic block, programmable interconnection and I/O
blocks [27]. Figure 2.1 illustrates a typical architecture of a FPGA.

Figure 2.1 The typical internal architecture of FPGA

 Programmable logic block
The programmable logic blocks are aimed to provide the basic functions and
storages recourses to the digital system. The FPGA logic blocks are normally
based on the combination of transistor pairs called slices, which contain basic
logic gates like AND or XOR, multiplexers, look-up tables (LUTs) and wide-fanin
AND-OR structure. Some modern FPGAs contain a more complex mixture of
different of logics which can be used to do certain functions, like multipliers or
multiplexers.

Logic Block

I/O block

Programmable interconnects

Background

 9

 Programmable interconnection
The purpose of the programmable interconnection of a FPGA is to make
connections among the logic blocks and I/O blocks to match the user defined in
the design. It uses various lengths of wire segments to interconnect through
electrically programmable switches. Wire segments may consist of multiplexers,
pass transistors and tri-state buffers to form the desired connections.

 I/O blocks
The components of FPGAs, such as logic blocks, require to have interaction with
external components off the FPGA chip through the interface called I/O blocks.
The I/O blocks are located around the boundary of the FPGA architecture. They
play important roles, and occupy about 40% of the FPGA area. Normally they
consist of an input buffer and an output buffer with three states, controlled by
pull-up and pull-down resistors.

In recent years, further development has been carried out using the commercial FPGA
architecture. Block RAMs, DSP48s, multipliers and other special function blocks are
embedded into the FPGA chips for some high frequency or multiplications needed
scenarios, such as high speed digital signal processing.
2.1.1.1 LUT
Much of the logic in programmable logic block is built up with Look Up Tables (LUTs)
by using a small amount of Random Access Memory (RAM). A LUT is basically a table
that can determine the output from any given set of inputs. It works just as a truth table
in terms of combinational logic. The truth table is a pre-defined output list for any input
combinations. Thus no matter how complicated the combinational logics in a FPGA
design are, LUTs can implement them with a small amount of resources. Figure 2.2
illustrates an architecture of a 4-input LUT in a programmable logic block.

Background

 10

Figure 2.2 FPGA Programmable Logic Block

2.1.1.2 Block RAM
A block RAM is a dedicated two port memory containing Kbs of RAM and can’t be used
to implement digital logics. It is the RAM embedded throughout the FPGA for data
storage. Xilinx FPGA consists of 2 columns of block RAM. Dual-port allows separate
reading and writing. It can also be configured to divide the memory into different width
sizes: 1x36Kb or 2x18Kb. Block RAM is excellent for First-In/First-Out (FIFO)
implementation. Larger memory blocks can be obtained by cascading multiple block
RAMs. The maximum word-length data path a block RAM can handle is 18 bits.
2.1.1.3 DSP48s
Modern FPGA architectures have been further developed to increase the speed of
multiplication, addition and other operations highly needed for DSP [28]. The Xilinx
Virtex-6 family FPGA board has been brought out along with slice embedded in it. The
basic structure and procedure of this piece of slice is called Multiply Accumulate (MAC)
function, and it is widely used to implement DSP processing in hardware. For example,
the DSP48s slice includes adder, subtractors, accumulator and coefficient register, which
provide high power efficiency and high performance. Each DSP48s slice is equivalent to
more than 500 programmable logic blocks, only consumes about 1/10th of the power of
the equivalent logic hardware design, and runs up to 600 MHz. In addition, the new added
pre-adder in Virtex-6 board can be very useful in symmetric FIR filtering and other
particular operations [29].

Programmable
Logic Block

LUT

Inp
uts FF

Latch
1
0

Defind by
configuration

bit-stream
Outputs

Background

 11

2.1.2 Verilog HDL
Verilog is one of the two most widely used HDLs (Hardware Description Language) used
by integrated designers all over the world. The other is called VHDL.
HDL allows developers simulate their FPGA designs earlier in the development of the
product, in order to debug and test designs. Architectures designed in HDL are easy to
programme and verify. In addition, HDL is normally more readable compared to
schematics, especially for huge scale circuits. [30]
Developers can programme their FPGA modules at 4 levels of design: (1) Algorithmic
level, such as if, case and loop statement; (2) RTL (Register-Transfer level) level, to
connect registers with Boolean equations; (3) Gate level, to have combinational logic
with logic gates like OR and XOR; (4) Switch level, to design the transistor inside
switches.
Verilog is also able to define the architecture to control the inputs and outputs of a
simulation.

2.1.3 Xilinx IP Cores
Conventional FPGA design would involve the user to manually write all the design code.
It may not be the most practical way for producing the best performance for FPGA design.
When writing the code for FIR or FFT algorithm manually in HDL, it can cost a lot of
time, and it is also harder to verify them. Thus, Xilinx and other FPGA manufacturer
provided IP (Intellectual Property) cores to simplify the design procedure.
IP cores are presented with a GUI (Graphic User Interface) and offer a parameterized tool
which lets the developer choose and customize certain designs. This gives the developer
a greater flexibility and reusability. Furthermore, this tool also have other advantages
such as reducing the design risk, less errors, faster and better compiling, more efficient
resources usage and better results of the design. Xilinx IP Cores cover a wide field of

Background

 12

designs in the field of DSP, like FIR filters, FFT and shift registers, which play important
roles in designs described in this thesis.

Figure 2.3 Xilinx IP core GUI (Xilinx ISE 14.3)

Figure 2.3 illustrates the example of GUI form a Xilinx IP core. The parameterize factors
can determine the control pins, data formation, optimization methods and some other
configurations.

2.1.4 Fixed point DSP
Digital signal processing can be separated into two categories – fixed point and floating
point [31]. These refer to the format used to store the data in the devices. For a common
16 bits fixed point application, there are up to 65,536 possible bit patterns (216). Signed
fixed point value can use two’s compliment to make the value include negative numbers
[32]. For a common 32 bits floating point application, there are more bit patterns than

Background

 13

fixed point, which is 232 to be exact. A key feature of floating point presentation is that
the numbers are not uniformly spaced [33].
Normally fixed point arithmetic is much faster than floating point in general purpose
computers. The internal architecture of the floating point hardware is more complex than
the fixed point hardware [31] as all the register and data should be 32 bits word length
instead of 16, and all the multipliers and ALU must be able to process floating point
arithmetic very fast. As a result, floating point has a better precision and higher dynamic
range than fixed point but of greater size and thus cost. Fixed point dividers are usually
cheaper than floating point devices.
In terms of performance, the biggest difference between the fixed point processing result
and floating point processing result is SNR (Signal-to-Noise Ratio). When storing a 16-
bit fixed point value, the original number must be round up or down to its adjacent
neighbour by a maximum of half of the gap size. Every time we round a number to fixed
point presentation, noise will be added to the signal. Fixed point’s rounding noise is much
worse than floating point, because the gap between adjacent numbers is much larger than
floating point. Usually fixed point has about 3000 times more quantization noise than
floating point [31]. Thus these quantization error is a very important criteria in verifying
the fixed point in future design.

2.2 Channelization technology
Channelization is part of a digital signal processing that divides the wideband into
separate channels, and down converts them to baseband, extracting one or more desired
channels. The channels may have uniform or non-uniform allocation. Normally
channelization is implemented by a down-converter and a low-pass filer [34]. Figure 2.4
illustrates a 4 channels channelizer. This wideband input signal has 4 interested channels,
each of them is being filtered and down-converted to DC (baseband frequency), and is
ready for following processing.

Background

 14

Figure 2.4 A 4 channels channelizer

2.2.1 Single channel and multi-channel
Channelization technology is widely applied in the industry. For a mobile base (mobile
phones), normally only one channel of signal is required to process. Thus the one-channel
channelizer, which contains one down-converter and low-pass (or band-pass) filter can
do a good job in this scenario.
2.2.1.1 Per-channel approach
A base station needs to extract a large number of channels [35]. There are several ways
to implement this job. The ‘per-channel approach’ is one of the most straightforward
solutions for the multi-channel cases [34, 36, 37]. This approach operates K independent
one-channel channelizers in parallel, where K is the number of channels. Each sub-
channel extracts one channel of interest in the wideband input, as shown in Figure 2.5.
The ‘per-channel approach’ provides a high level of flexibility in the choice of channels’
centre frequencies and bandwidths. Channels do not have the constraints of equal
bandwidth or that of a uniform allocation. However, this kind of design would need many
more hardware resources and power than other efficient designs, like polyphase filter-
bank. As the down-converter requires quite a lot of complex multiplications and other
operations, and as every channel requires its own down-converter, then as the number of
channel K increases, the system complexity greatly increases. In higher sample rate
applications, the ‘per-channel approach’ is not a wise option to implement channelization,

4 channels
channelizer

Background

 15

as the current digital signal processer and FPGA cannot provide enough performance for
this computational load.

Figure 2.5 Channelizer using per-channel approach to filter channels.

2.2.1.2 Pipelined frequency transform
Another channelization technology is called pipelined frequency transform [38]. This
technology occupies a structure, which contains a binary tree of DDCs (Digital Down
Converters) followed by a number of SRCs (Sample Rate Converters). Every level of the
tree divides the incoming wideband signal into a low frequency half and a high frequency
half, and the next level divides these half bands again, until the tree’s last level separates
out the channels of interest [38]. This structure is also called QMF (Quadrature Mirror
Filter) tree [39]. As a result, the system complexity is greatly reduced compared to the
per-channel approach, because of the utilisation of the half band symmetry and sample
rate reduction at each level.
The pipeline frequency transform offers a more efficient option in terms of hardware
usage and power consumption compared to per-channel approach. This is especially in
applications where a large number of channels are needed to be separated from the wide-
band signal. However, it has weaknesses in terms of flexibility, as all the channels are
required to have equal bandwidths and to be uniformly allocated. The diagram of pipeline
frequency transform structure is shown in Figure 2.6

x(n)

0(2)CHj f te 

1(2)CHj f te 

2(2)CHj f te 

1(2)CHKj f te  

()H z

()H z

()H z

()H z

SRC

SRC

SRC

SRC

0 ()y n

1()y n

2 ()y n

1()Ky n

Background

 16

Figure 2.6 Pipeline frequency transform structure of a binary tree with DDC followed by SRC.

2.2.1.3 Polyphase filter-bank
Computational efficient channelizers have been designed by using fast Fourier Transform
(FFT) [40-42]. The polyphase filter offers further improvement in terms of efficiency.
The operational efficiency and design simplicity is obtained from the fact that only one
low-pass filter-bank is needed to be designed, and that the remaining band-pass filters
will get their properties automatically after the modulation of the prototype filter. An
analysis filter-bank will divide the wide-band signal uniformly (in the even stacked
allocation), such that every sub-band would have the same space from its adjacent
channels in the receiver side. (Even stacked means that there is one sub-band centred at
DC, as shown in Figure 3.3 (a).
The structure of a polyphase filter-bank is shown in Figure 2.7. The input wideband signal
samples will first be down-sampled and sent to polyphase decomposed filters. The
filtered samples are then extracted using DFT. This type of channelizer are also referred
to as DFT-FB (Discrete Fourier Transform Filter-Bank). DFT-FBs require that extracted
channels in the wideband signal have to be uniformly allocated, and the signal sample
rate has to be an integer multiple of the sub-channel’s bandwidth. This is further
discussed in chapter 3 as it is the base of the new implementations in the thesis.

DDC SRC
DDC SRC

DDC SRC
DDC SRC

DDC SRC
DDC SRC

DDC SRC
DDC SRC

DDC SRC
DDC SRC

DDC SRC
DDC SRC

DDC SRC
DDC SRC

Background

 17

Figure 2.7 The structure of the DFT-FB where L is the oversampling factor and EK(zL) are the polyphase
components of the prototype filter H(z).

2.2.2 Hardware complexity comparison
Hardware complexity comparisons between these three methods of channelization can
be obtained from [17]. The detailed data is shown in Figure 2.1.
The comparisons are focused on the utilizations of LUTs and memory size. The
utilization of LUTs is illustrated in Figure 2.8, and the memory size counted in bits
comparison is illustrated in Figure 2.9.
Table 2.1 The hardware comparison of per-channel approach, pipeline frequency transform DFT-FB

Channelization method Number of channels LUTs Memory (bits)
Per-channel approach

256 317,498 436,224
512 650,114 876,544
1024 1,336,754 1,761,280

Pipeline frequency transform
256 27,930 3,840
512 32,270 6,529
1024 36,610 10,625

DFT-FB
256 4,608 4,608
512 4,793 4,793
1024 5,345 5,345

FDM

…..

Eo(ZL)
E1(ZL)
E2(ZL)
…..

EK-1(ZL)

K-point
FFT …..

Background

 18

Figure 2.8 The LUT utilization comparison

In the comparison of the LUTs requirements, the Figure 2.8 shows that per-channel
approach is a very inefficient channelization approach, it uses more LUT resources,
which makes it difficult to compare between DFT-FB and pipelined frequency transform
in the upper figure, and the situation will be much worse when the number of channels
increases. From the lower plot of Figure 2.8, the clear LUT utilization comparison
between DFT-FB and pipelined frequency transform shows that DFT-FB only requires
about one third of the LUT resources that pipelined frequency transform uses.

0
200
400
600
800

1000
1200
1400
1600

256 512 1024

Tho
usa

nds
LUT utilization comparison

Per-channel approach pipelined frequency transform DFT-FB

0
5

10
15
20
25
30
35
40

256 512 1024

Tho
usa

nds

LUT utilization comparison

pipelined frequency transform DFT-FB

Background

 19

Figure 2.9 the memory bit comparison

In the memory usage comparison, a similar result to LUT resource usage is provided by
the data as well. The inefficient per-channel approach still use much more memory
resources than other two approaches. The memory comparison between DFT-FB and
pipelined frequency transform in the lower plot of Figure 2.9 shows us that if the number
of channels is smaller than 256, the pipeline frequency transform will use slightly less
memory than DFT-FB; however, for applications of more than 256 channels, the DFT-
FB will have a lower memory usage than pipelined frequency transform, and further
efficiency will be obtained as the channel number increases.

0
200
400
600
800

1000
1200
1400
1600
1800
2000

256 512 1024

Tho
usa

nds

memory bits comparison

Per-channel approach pipelined frequency transform DFT-FB

0
2
4
6
8

10
12

256 512 1024

Tho
usa

nds

memory bits comparison

pipelined frequency transform DFT-FB

Background

 20

Based on the analysis of LUTs on memory usage and that the number of channels in
industrial application is normally greater than 256, DFT-FB is the preferred approach
for further development.

2.2.3 Uniform Versus Non-uniform
In digital signal processing, the down-sample rate and the filter-response in a filter-bank
are the same across all the channels in the wideband signal, in this case the system is
considered as a uniform filter-bank. An illustration of the frequency response of uniform
filter-bank is shown in Figure 2.10.

Figure 2.10 The uniform filter-bank’s frequency response

There are some further developments based on DFT-FB in the literature that provide non-
uniformly bandwidth channel allocation configurations. [7, 43] developed a non-uniform
P-GDFT (Parallel GDFT) to achieve DFSA (Dynamic Fragment Sub-band Allocation).
The structure of P-GDFT is shown in Figure 2.11. This type of non-uniform channelizer
employs multiple different bandwidth polyphase filter-banks in parallel, to process the
same wideband input signal simultaneously. Every filter-bank implements a uniform
channel extraction of the wideband by its own filtering specification. The channels of
interest are extracted by selecting the needed outputs from each polyphase filter-bank. P-
GDFT has a high ratio of non-used channels, and the process of the non-used channels
cannot be avoided, because all the channels contribute to the overall computational load.
This means that there is a lot of waste in terms of resources usage in the hardware
implementation.

H0(z)H1(z)HK-1(z) H2(z)HK-2(z)

ωπ -π 2π/K 4π/K-2π/K-4π/K

Background

 21

Figure 2.11 P-GDFT non-uniform structure

[7, 43] also carried out another non-uniform channelizer called R-GDFT (Recombined
GDFT), as shown in Figure 2.12. The basic idea of R-GDFT is to let a polyphase filter-
bank channelize the wideband signal first, and then extract the channel of interest by
recombining two or more adjacent channels according to specific requirements of
different standards. The bandwidth of the polyphase filter-bank is also known as
granularity band. The smaller the granularity band is, the more options in bandwidth and
centre frequencies of sub-bands.

Figure 2.12 Recombined GDFT-FB channelizer

1 7 16...

K1-band
GDFT-FB

K2-band
GDFT-FB

K3-band
GDFT-FB

...
...

...

...
-fs/2 fs/2

1
0

7
0

16
0

K-band
Polyphase filter-bank

...
...

...

Recombine

Recombine

Recombine

x(n)

()ay n

()by n

()cy n

Background

 22

Although R-GDFT can have a better computational efficiency, its re-configurability level
is lower than the P-GDFT’s, because in the R-GDFT each type of channel can only be
centred at the multiple of its channel spacing. In addition, to meet a new standard
requirement, P-GDFT only needs partly tuning or adding one more polyphase filter-bank
with the new specification.

2.3 Frequency Response Masking (FRM)
The first concept of Frequency Response Masking (FRM) technology was developed in
[44], in order to reduce the complexity of designing a linear phase FIR filter with a very
sharp transition band. The reduction of FIR design complexity is achieved by employing
the cascading connection of an interpolated FIR filter and a FIR filter with a relaxed
specification, instead of designing one FIR filter with a very restricted specification. The
interpolated FIR filter is obtained by replacing the unit delay 1Z  with the delay LZ  ,
where L is an integer number. In other words, put 1L zeros in every adjacent
coefficients of the FIR filter. After this, the FIR filter’s frequency response will become
periodic. Then the other following relaxed designed FIR filter will mask the duplicate
images produced by the interpolated FIR filter.
A much more practical approach has been developed in [45], for applying FRM when
designing a sharp linear phase digital filter in a narrow-band or an arbitrary-band. The
structure is designed in a parallel form with two branches of cascaded FRM structures
mentioned in last paragraph, as shown in the Figure 2.13.

Figure 2.13 Direct form of frequency response masking

x(n)
Ha(zL) HMa(z)

Hc(zL) HMc(z)

y(n)

Background

 23

In the diagram, the branch on the top is normally called the positive branch and the other
one on the bottom is normally called the complementary branch. All the four linear phase
FIR filters have much more relaxed filtering specification compared to the initial single
directly designed FIR filter. As a result, fewer non-zero coefficients and multiply
operations are required by the FRM structure to have a sharp filter response. The
computational load would have a significant reduction along with the computational load
of the directly designed FIR filter having the equivalent filtering specification. The
process of how to filter in both top and bottom FRM branches, and how to sum them
together to result the final desired filtering frequency response is shown in Figure 2.14.

Figure 2.14 The process of two branches filtering base on FRM

00

1

π ω

00

1

π ω

00

1

π ω

00

1

π ω

00

1

π ω

00

1

π ω

00

1

π ω

00

1

π ω

θ φ

|Ha(ejω)| |Hc(ejω)| |Ha(ejωL)|

|Hc(ejωL)| |HMa(ejω)|

|HMc(ejωL)| |Ha(ejωL)HMa(ejω)|

|Hc(ejωL)HMc(ejω)| |Ha(ejωL)HMa(ejω)| +|Hc(ejωL)HMc(ejω)|

1) Base and complementary filter 2) Interpolated base filter

3) Interpolated complementary filter 4) Positive masking filter

5) Negative masking filter 6) Masked top branch result

7) Masked bottom branch result 8) Final result by adding both branches

Background

 24

In the FRM structure, the base filter is ()aH z and the complementary filter is ()cH z .
Their frequency responses are shown in Figure 2.14 (1) [46]. Both of them are then
interpolated by a factor L by adding 1L zeros in every adjacent coefficient of the FIR
filter. Thus the passbands of ()aH z and ()cH z are reduced L times, and the transition
band is L times sharper. All the filtering frequency responses are centred at 2π/L. After
that, the masking filters ()MaH z and ()McH z will filter the interpolated frequency
responses of base and complementary filter, thus only useful replicas will be left. In the
end, by adding useful base and complementary replicas, the desired sharper filtering
response will be finally produced.

Figure 2.15 Efficient implementation of FRM

The transfer function of the FRM parallel structure is:

 () () (z) () ()L L
a Ma c McH z H z H H z H z  (2.1)

where ()aH z is the base filter, and ()cH z is its complementary filter, and (z)MaH , (z)McH
are the masking filters for interpolated bass filter and complementary filter respectively. If

aN is the order of the base filter, the complementary filter (z)cH has a relationship with
base filter (z)aH given as:

 (/2)() ()aN
c aH z z H z  (2.2)

Hence, the relationship between interpolated base filter and complementary filter can be
expressed as:

 (/2)() ()aL NL L
c aH z z H z  (2.3)

x(n)
Ha(zL) HMa(z)

HMc(z)

y(n)

 1 /2AL Nz 

Background

 25

Therefore the complementary filter can be implemented by a chain of delays subtracting
the base filter output. This will guide us to an efficient FRM structure as shown in Figure
2.15.

2.3.1 Subclass I filter
It has been discussed in the previous section that the transform function of whole FRM
filter is given by equation (2.1). From the description of [45], the specifications of
passband p and stopband s of the base filter ()aH z can be both freely selected. In
addition, the complementary filter ()cH z can be also determined by equation (2.2) in
order to implementing a further efficient FRM module illustrated in Figure 2.15.
However, a new class of FRM FIR filters called subclass I filter can be obtained only if
we can ensure that the relationship between base filter ()aH z and complementary filter

()cH z can be expressed as:

 () ()c aH z H z  (2.4)

In order to match this condition, this special class of FRM filter must be designed with a
base band filter whose transition band includes the normalized frequency π / 2 [47], as
shown in Figure 2.16.

Figure 2.16 Subclass I Filter frequency response

In this circumstance, the computational load of the whole FRM structure could be further
reduced if both branches share the same polyphase component as:

00

1

π ω θ φ

|Ha(ejω)| |Hc(ejω)|

π/2

Background

 26

 2 1 2
0 1() () ()a a aH z H z z H z  (2.5)

where 0 ()aH z and 1 ()aH z are the polyphase components of ()aH z . Then the base filter
()cH z can be expressed as:

 2 1 2 2 1 2
0 1 0 1() () () () ()c c c a aH z H z z H z H z z H z     (2.6)

Thus when (2.6) is applied into (2.1), the whole new efficient design of FRM structure
called full FRM is obtained as illustrated in Figure 2.17. This method makes the whole
FRM filter design simpler than the design shown in Figure 2.15, as only ()aH z , ()MaH z
and ()McH z need to be designed, and the usage of polyphase components of ()aH z takes
the places of two complete filters.

Figure 2.17 The efficient FRM design with polyphase decomposition

2.4 TETRA standard
TETRA (Terrestrial Trunked Radio) is a set of wireless digital telecommunication
standards developed by the European Telecommunications Standardisation Institute
(ETSI) that describes a common mobile radio communications infrastructure throughout
Europe. TETRA provides reliable and robust digital communications to Professional
Mobile Radio (PMR) and Public Access Moible Radio (PAMR) applications [48, 49].
These applications are targeted primarily at the mobile radio needs of public safety
groups (such as police and fire departments), utility companies, and other enterprises that
provide voice and data communications services.

x(n)
Ha0(zL) HMa(z)

Ha1(zL) HMc(z)

y(n)

z-L

Background

 27

In contrast with existing commercial mobile communication standards, PMR
communication systems offer improved communication capabilities such as strong
encryption information security, direct-mode to allow end-2-end communication without
a base station, very long distance transmission [50]. Furthermore, comparing to
commercial communication standards, PMR standards are basically allocated lower
frequency bands, thus the wireless channel will produce less free-space attenuation over
the transmitted signals.
TETRA is a fully digital system providing consistent voice quality and low bit error rate
for data accordingly. It supports voice, circuit switched data and packet switched data
services with a wide selection of data transmission rates and error protection levels.
For its modulation, TETRA uses π»4 Differential Quadrature Phase-Shift Keying
(DQPSK). The symbol (baud) rate is 18,000 symbols per second, and each symbol maps
to 2 bits, thus resulting in 36 kbit/s gross.
TETRA also uses Time Division Multiple Access (TDMA) technology. The process of
TDMA involves digitally modulating a single frequency in order to increase the number
of independent communication channels. Specifically it uses 4 channels interleaved into
one 25 kHz channel. Instead of just one user being able to use the single 25 kHz channel,
it can now be used by up to 4 different users. This creates both a cost savings in frequency
needed and base stations or repeaters needed. It can support a gross bit rate of 36 kbits/s,
with 7.2k bits/s per TDMA channel. The difference in the 28.8 kbits/s (4*7.2) is from
overhead of the TDMA structure.
Each TDMA frame of four slots is grouped further as 18 frames, which, combined, form
a multiframe. In circuit mode (as opposed to packet mode) voice and data, is compressed
into 17 TDMA frames allowing for a control signaling frame to be used without stopping
the flow of data.

2.5 Related work
In this section, we review the relevant works of the polyphase filter-banks.

Background

 28

DFT-FB is widely studied nowadays, and are adopted in several digital systems. A FPGA
implementation of DFT-FB in 16 channels with basic optimization of word length and
multiplications is presented in [51]. However DFT-FB, by the limit of the theory, this
work only has an even-stacked channel allocation. On the other hand, GDFT-FB has the
flexibility to channelize the wideband signal in an odd-stack allocation, leads to a better
spectrum usage. While, few of GDFT-FB FPGA implementation is mentioned in the
literature.
An oversampled DFT-FB has be created in order to reduce aliasing problem [52]. The
author designed a new commutator and upsampler to achieve the oversampling filtering.
However, if a polyphase filter-bank with different number of channels is needed, the
architecture has to be redesigned from a very basic level. A workaround that employs FIR
IP core to implement an oversampled DFT-FB or even an oversampled GDFT-FB would
be preferred, as implementing FPGA with IP core could greatly simplify the process of
design.
Based on DFT-FB, [53] has developed some new FRM applied GDFT-FB designs. The
research indicates full FRM GDFT-FB and alternative narrowband FRM GDFT-FB have
a better efficiency in terms of computational load compared with DFT-FB theoretically,
because FRM technology can greatly reduce the number of coefficients in designing a
very narrow-band filter. However nobody has implemented it in a digital signal
processer, FPGA or any hardware platform to test these new designs’ performance and
feasibility for a practical industry system.

2.6 Conclusion
In this chapter, a thorough introduction of the materials and background that may support
or be related to the DFT-FB, GDFT-FB, oversampled GDFT-FB full FRM GDFT-FB and
alternative narrowband FRM GDFT-FB have been presented in this thesis. There are
three main sections: (1) the FPGA background, (2) channelization processing overview
and (3) an introduction to the FRM technology. The designs in this thesis will mainly be
based on these three sections. In the FPGA background, the basic architecture of FPGA
has been discussed. The FPGA’s flexibility and process parallelism are the core

Background

 29

advantages compare to other implementation options. Three kinds of FPGA
components—LUT, Block RAM and DSP48s are introduced in detail. These components
play a very significant role in DSP algorithm implementation. LUT can efficiently get
the results from any complex combinational logics. Block RAM can store Kbs of data,
and its flexible memory division and read/write strategy make it excellent for building a
FIFO. DSP48 is a piece of hardware slice built especially for DSP algorithms. DSP48s’
build-in adders, accumulators and registers provide high power efficiency and
performance. IP cores are reusable designs that provide resource efficiency and short
developing time. Virtex-6 boards are the hardware platform of this thesis and all the code
was written in Verilog HDL.
In the channelization technology section, the concept of channelization is briefly covered.
Three basic channelization technologies – per-channel approach, pipelined frequency
transform and polyphase filter-bank are introduced. Among them all, polyphase filter
offers the least silicon cost and power consumption. Polyphase filters are one type of
uniform filter-banks, because its sub-bands have the same frequency responses and
bandwidths. Two approaches of non-uniformed channelizer (P-GDFT and R-GDFT)
based on polyphase filter-bank are introduced.
FRM technology is a computational saving method for designing a very sharp transition
band filter. It occupies the cascading connection of an interpolated FIR filter and a FIR
filter with a relaxed specification instead of designing just one high order FIR filter. An
efficient new class of FRM FIR filter is also discussed in this chapter, as further efficient
FPGA designs will be based on this theory.

Critically Sampled Uniform Wideband Channelization

 30

Chapter 3
Critically Sampled Uniform Wideband
Channelization

3.1 Introduction

3.1.1 DFT-Filterbank (DFT-FB)
Different to other channelization technologies, DFT-FBs implement channelization based
on complex modulation of the prototype filter in cooperation with the DFT algorithm.
Compared to per-channel channelization, a DFT-FB only requires one filter and one DFT
matrix, instead of K-1 filters. In addition, using the Fast Fourier Transform (FFT) rather
than the DFT further improves computational load efficiency.
When a critically sampled configuration (D=K, where D is the down-sampling factor and
K is the number of channels) is being applied, every sub-band’s centre frequency is
located at:

 2 2 , 0,1,...., 1CHk
k k k KK D

      (3.1)

If we consider a prototype low-pass filter, h(n), then the appropriate band pass filters for
each sub-band are given by:
 () () , 1, 2, 3,, 1kn

k Kh n h n W k k   (3.2)

where
 (2 /)j K

KW e  (3.3)

Critically Sampled Uniform Wideband Channelization

 31

The prototype filter for a K band filter-bank, H(z) in the z-domain, may be divided into
K poly-phase components, Ep(z), as follows:

 1

0
() () ()Kn p K

p
n p

H z h n z z E z  
 

   (3.4)

where

 () () n
p

n
E z h nK p z 


  (3.5)

The K sub-band filters are obtained by complex modulation of the prototype filter
polyphase components using the DFT algorithm [42] as:

 1

0
() () , , 0,..., 1K K p kp

k p K
p

H z E z z W p k K  


   (3.6)

Figure 3.1 shows the block diagram representation of a DFT-FB analysis bank suitable
for use as a uniform channelizer. (In typical implementations the Fast Fourier Transform
(FFT) is used instead of the DFT because of its greater computational efficiency.)
In Figure 3.1, an anti-clockwised commutator (considered as a efficient form of delay
and downsampling) would deliver the input samples into sub-band (prototype lowpass
filter’s polyphase component) by turns. Following that, a DFT matrix would implement
the kpKW  factor in the (3.6).

Figure 3.1 The polyphase DFT modulated receiver

E0(z)

E1(z)

E2(z)

EK-1(z)

…
…

K-point
DFT

x(n)

y0(n)

y1(n)

y2(n)

yk-1(n)

Critically Sampled Uniform Wideband Channelization

 32

For the convience of further analysis and research, the commutator in Figure 3.1 can be
replaced with delay followed with down-sampling as shown in Figure 3.2.

Figure 3.2 DFT modulated filter-bank (DFT-FB)

In the figure L is the oversampling factor of the DFT-FB, defined as:
 /L K D (3.7)

and the output sample rate of each sub-band, Fs, is related to the input sample rate by:
 , /s s INF F D (3.8)

Therefore, when L = 1 the DFT-FB is critically sampled whereas when L > 1 the filter
bank is oversampled. Moreover, although the output of each filter, Hk(z) in (3.6), is
theoretically decimated after filtering, for efficiency this decimation normally takes place
before the filtering operation in a polyphase decimated implementation according to
noble identities. In this case the polyphase components are also decimated by D so that
instead of ()KpE z we have () ()K D L

p pE z E z .

3.1.2 Generalized DFT Filter-Bank (GDFT-FB)
The DFT can be considered to be a special case of the Generalized DFT in which the sub-
band centre frequencies and phases can be more explicitly controlled [41]. The GDFT-
FB offers extra flexible channel stacking and phase shifting configurations, so that in

D

D
 z-1

D

D

x(n)
 z-1

 z-1

E0(zL)

E1(zL)

EK-1(zL)

0

1

2

K-1

0

1

2

K-1

DFT

y0(n)

y1(n)

y2(n)

yK-1(n)

E2(zL)

Critically Sampled Uniform Wideband Channelization

 33

some applications the GDFT-FB may be preferred to the DFT-FB. One of the important
reasons is that GDFT-FB can support both even-stacked and odd-stacked channel
allocation as shown in Figure 3.3(b) whereas the DFT-FB only supports even-stacked
channels.

Figure 3.3 (a) Even stacked channels, (b) odd stacked channels

The benefit of odd-stacked channels is that the channelization of the wideband signal will
be shifted by half of one sub-band bandwidth to the right. Thus it will eliminate the two
half-sub-bands at either end of the wideband spectrum of the even-stacked allocation,
like in Figure 3.3 (a). If all sub-bands must be used, this achieves more efficient spectrum
usage.
In the GDFT-FB, the configuration of phase shifting and channel stacking flexibility in
the implementation of every sub-band filter results from GDFT modulation. Like the
DFT-FB, the GDFT-FB obtains its every sub-channel’s band-pass filter ()kH z from
complex modulation of the prototype low-pass filter ()H z . In the case of the GDFT-FB,
this is:

 0 0
1()
0

() ()Kk k n K p kp
k K p K

p
H z W E z z W   


  (3.9)

where

H0(z)

H0(z)

H1(z)HK-1(z) H2(z)HK-2(z)

π
HK-1(z)HK-2(z) H1(z)

π ω

2π/K 4π/K-2π/K-4π/K

π/K-π/K 3π/K-3π/K-(K/2-1)π/K

(a)

(b)

(K/2-1)π/K

-π

-π

ω

Critically Sampled Uniform Wideband Channelization

 34

    0 0k D k pK K
p p K KE z E z W W   (3.10)

The GDFT-FB is shown in the Figure 3.4. As before, K is the number of analysis filter-
bank channels and D is the decimation factor. The GDFT parameter n0 determines the
possible phasing shifting which can be applied to the output of the filter-banks. For the
channelizers in this thesis it always equal to 0. The parameter k0 determines the stack
allocation of the channels in the channelizer wideband input spectrum. When k0=0 and
n0=0, then the even-stacked configuration is applied, as in Figure 3.3(a). There is one
sub-band which is centred at DC, and two half sub-bands at either end of the spectrum.
It is exactly the same as DFT-FB. In other words, the DFT-FB is a special case of GDFT-
FB [41]. In contrast, if k0=1/2 and n0=0, all the channels have been shifted half of one
sub-band bandwidth to the right, as in Figure 3.3(b). Thus there is no channel in the centre
of DC, and all the sub-bands are complete.

Figure 3.4. GDFT modulated filter bank (GDFT-FB)

The phase shift term can be simplified to a multiplication by 1, because n0 is zero (as it
is when the filter-bank is used to implement a channelizer). Unfortunately the complex
modulation terms in the definition of  K

pE z means that the polyphase components of
the prototype filter now have complex rather than real coefficients. In general it is clear

{ {{

Critically Sampled Uniform Wideband Channelization

 35

that the flexibility of the GDFT-FB results in some additional complexity and
computation relative to the DFT-FB.

3.2 The FPGA implementation
In this section, a critically sampled DFT-FB (even stacked) FPGA implementation is
developed on the Xilinx FPGA family using the Xilinx ISE (Integrated Software
Environment) tool suite and the reusable IP core library.

3.2.1 Basic DFT-FB channelizer FPGA implementation
For the basic DFT-FB, the FIR compiler IP core provided with the development
environment has a number of possible configurations, one of which is ‘Polyphase
Decimation’ mode. In this mode, the IP core will implement the structure of the anti-
clockwise commutator and polyphase decomposition of a prototype filter shown in
Figure 3.1. It supports designs from 8 channels up to 1024 channels [54].
3.2.1.1 Coefficients Mapping
In Figure 3.1, a K to 1 polyphase decimation filter is illustrated. All the low-pass
prototype filter coefficients 0 1, ,..., na a a have been mapped to K polyphase sub-channels

0 1(), (),... ()Kh n h n h n respectively, according to

 1

0
() (), 0,1,..., 1K

p
p

E n h nK p p K


    (3.11)

If we assume K=4, D=4, as an example, the polyphase filters hk(n) will be given by

0 0 4 8 12
1 1 5 9 13
2 2 6 10 14
3 3 7 11 15

() [, , , ,....]
() [, , , ,....]
() [, , , ,....]
() [, , , ,....]

h n a a a a
h n a a a a
h n a a a a
h n a a a a






 (3.12)

Critically Sampled Uniform Wideband Channelization

 36

3.2.1.2 Complex Signal Process in FPGA
Typically in the FPGA realization of communication systems, a complex signal cannot
be processed directly in the complex form. Instead, before doing any processing on the
FPGA, the complex input signal must be divided into two parts: one part is its in-phase
(I) component, which is also known as the real part of the signal and the other part is it’s
quadrature (Q) component, which is also known as the imaginary part of the signal.

Figure 3.5 The DFT-FB FPGA design for the complex input

The FIR compiler IP core does not deal with complex or I and Q inputs directly, but it
does support 2 inputs. Therefore the I and Q components can be supplied as separate (real
valued) inputs to the same FIR compiler block. Each of these inputs is filtered with the
same (real) filter coefficients in the same sub-band simultaneously. FIR compiler and
FFT Core process a complex signal’s I/Q components in two path respectively as shown
in Figure 3.5.

FIR Compiler FFT CORE

FDM TDM

…..
Eo(Z)
E1(Z)
E2(Z)

EK-1(Z)
…..

…..

E1(Z)
E2(Z)

EK-1(Z)
…..

Eo(Z)

I
Q

I

I I

Q

QQ

Critically Sampled Uniform Wideband Channelization

 37

Figure 3.6 The FPGA implementation of DFT-FB

Figure 3.6 illustrates the FPGA implementation of the DFT-FB. We assume the input is
already down converted to base band and divided into its I and Q components which go
to pins din_1 and din_2 respectively. After filtering by the FIR compiler block samples
corresponding to the same time instance in all sub-bands will come out serially as a burst
of data, transmitted at the rate of the clock. When the FIR compiler core outputs this burst
of data, the ‘rdy’ (ready) pin will be asserted. The Fast Fourier Transform (FFT) core will
be triggered by this signal (connected to its start port), in order to start FFT processing to
the output from the FIR core at the right time instant. The FIR compiler outputs dout_1
and dout_2 have a three clock cycles delay after ‘rdy’ (shown in Figure 3.7). Therefore,
the FFT core needs to be configured with a 3 cycle offset on its ‘start’ port. The FFT core
is pre-set to have a FFT transform length of the number of channels. After FFT transform,
the final result will be output in the form of separated stream of I and Q components from
xk_re and xk_im respectively. The order in which sub-band samples appear in the serial
output stream is determined by the FFT butterfly operation.

Critically Sampled Uniform Wideband Channelization

 38

Figure 3.7 The waveform shows that the output of FIR complier has a 3 clock delay from rdy signal

X(0
)

X(1
)

X(2
)

X(3
)

X(4
)

X(5
)

X(6
)

X(7
)

y(0)
y(1)

y(2)
y(3)

y(4)
y(5)

y(6)
y(7)

clk din rdy dou
t

3 cl
ock

3 cl
ock

Critically Sampled Uniform Wideband Channelization

 39

3.2.2 GDFT-FB Channelizer FPGA Implementation
3.2.2.1 Complex modulation of prototype filter coefficients
For the DFT-FB, the prototype low-pass filter ()H z can be designed to have all real
coefficients. However, in the GDFT-FB case, the filters of the sub-bands have been
subjected to complex modulation as shown in equation (3.9). In fact, this modulation is
applied offline during design so that the complex modulated coefficients may be divided
into their I and Q components. These real-valued I and Q coefficients are then supplied
to two FIR compiler IP Cores. In order to explain how this is done, we need to first
convert equation (3.10) to its time domain equivalent form with the interpolation:

     0 0
2 2j k Dn j k pK Kp pe n e n e e   (3.13)

where

     , 0,..., 1pe n h nK p p K    (3.14)

As in the case of the critically sampled odd stacked GDFT-FB, where D K and
0 1 / 2k  then equation (3.13) will be reduced to

     j n j p K
p pe n e n e e   (3.15)

The modulation of coefficients is applied to each polyphase component independently.
Thereafter the modulated component coefficients are interpolated and reassembled as
indicated by (3.4), substituting  K

pE z for  K
pE z , to form the appropriate arrangement

of prototype filter coefficients.
3.2.2.2 Complex Filter Coefficients using the FIR Compiler
The GDFT-FB is not as straightforward to implement as the DFT-FB when the parameter
k0 is non-zero [41]. (We will not examine cases where the parameter n0 is non-zero in
this work since it is not required for channelizer design.) When k0 is non-zero then the
coefficients of the prototype filter are subject to complex modulation (see (3.10)) yielding
complex filter coefficients which the FIR compiler IP core does not support. Using cross

Critically Sampled Uniform Wideband Channelization

 40

coupling between real and imaginary signal paths though both real and imaginary part of
coefficients could implement complex filtering, as shown in Figure 3.8 (b), where I(z)
represents the I component of the H(z) coefficients and Q(z) represents the Q component
of the H(z) coefficients. It can be easily realized by adding and multiplication operations,
plus delay operations in discrete-time FIR filters [55].

Figure 3.8 Cross coupling of complex signal filtering

To see how this cross-coupled approach works, consider the following example. Assume
an input signal consisting of just one sample, i qx x x j  , and a filter with only one
coefficient i qh h h j  .

The filtering resulting from complex convolution (which reduces to one multiplication in
this case) is

    i i q q i q q ixh x h x h x h x h j    (3.16)

In accordance with this approach, the GDFT-FB has been implemented using two FIR
compiler blocks. Each FIR compiler block has the same number of coefficients but
different values corresponding to the I (real) component of the coefficients for the first

Complex H(z)
(a)

I(z)

Q(z)

I(z)

Q(z)

x(n) y(n)

xi(n)

xq(n)

yi(n)

yq(n)

(b)

Critically Sampled Uniform Wideband Channelization

 41

FIR compiler block and the Q (imaginary) component of each coefficient for the second
FIR compiler block.
Thus before passing FIR compiler outputs into the FFT core, they must be combined
using the cross coupling approach as shown in Figure 3.9.

Figure 3.9 Complex FIR implemented using cross-coupled FIR compiler IP core

3.2.2.3 Frequency Shift State Machine
From Figure 3.4, it is clear that the output of the DFT is followed by two separate complex
multiplications. The first of these, the phase shift operation, simplifies to multiplication
by 1 (that is, no operation required) in our usage because n0 is zero. The second is a
frequency shift operation required to shift the output sub-band down by Fs/2 so that it is
centred on DC. This corresponds to a mixing operation but close examination of the
possible multiplier values shows that it can be efficiently implemented with a state
machine.

The multiplication 0 k nD
KW  is expanded as

  00
2 j k nDk nD KKW e n   (3.17)

HI(z)I

Q

Complex FIR

HI(z)

HQ(z)

HQ(z)

I

Q

 FIR Compiler I

 FIR Compiler Q

Critically Sampled Uniform Wideband Channelization

 42

For a GDFT-FB configuration that is odd-stacked, where k0=1/2, and critically sampled
(that is, the oversample factor is ܮ = ܦ/ܭ = 1), then the complex multiplication will be
reduced to

 0 1, even for 1, odd
k nD j n

K
nW e nn

     (3.18)

where n is the output sample number.
Equation (3.17) can be efficiently implemented using a state machine which either passes
the output through unchanged (for even numbered samples) or negates the output (for
odd numbered samples). Since the FFT outputs 1 sample from each of the K output sub-
band sequentially, the state machine should change state only after K samples have been
output from the FFT.

Figure 3.10 Frequency shifting state machine work flow.

A frequency shifting state machine has the work flow as shown in Figure 3.10. The state
machine could be triggered by the ‘dv’ signal from FFT core, which is when data is valid.

cnt=0

dv=0

data ×1
cnt+1

dv=1

dv=1
cnt ≤ K-1

data ×1
cnt+1

cnt = K

dv=1
cnt ≤ 2K-1

cnt = 2K
dv=0 dv=0

Critically Sampled Uniform Wideband Channelization

 43

When the state machine is reading the first round of K samples x(0)~x(K-1) (one sample
from each channel, they are all ‘n’th sample in each sub-band), it will multiply 1 to these
samples. If the state machine is reading the second x(K)~x(2K-1), it will multiply -1 to
these samples. After the state machine processed 2K samples, the counter will start over
again.
To negate digital bits, an ‘inversion and adding one’[56] is applied. An extra bit is
extended to the MSB of the result register, and initialized with the sign bit (origin highest
bit). As an addition operation will lead to the overflow, the extension of sign bit have to
be applied to positive value as well. In addition, the resetting pin ‘rst_n’ is also assigned
in the statement to clear the registers.
3.2.2.4 Final Design
Figure 3.11 shows the FPGA implementation block diagram of the theoretical GDFT-FB
design shown in Figure 3.4, incorporating each of the steps described above. GDFT-FB
could be used to implement both even-stacked and odd-stacked channelizers (with
suitable choice of k0), because it is a general design. Nevertheless, the DFT-FB is the
more efficient design for even stacked designs since it does not require the complex FIR
(which requires 2 FIR compiler blocks) or the output frequency shift state machine.
It is worth noticing that the addition and subtraction operations in the complex filtering
processing cost 1 clock cycle. Thus the delay of filtering comparing to ‘rdy’(described in
§ 3.2.1.2) increases from 3 to 4 clock cycles. For the sake of synchronization, the signal
‘rdy’ is then delayed for 1 clock cycle. The ‘start’ pin of FFT core is determined by the
logic ‘AND’ of both ‘rdy’ pins of two FIR compilers in the case of synchronization. The
operation ‘AND’ is a combinational operation which only takes a small amount of time
compari to a clock cycle.

Critically Sampled Uniform Wideband Channelization

 44

Figure 3.11 FPGA implementation of the GDFT-FB

3.3 FPGA Implementation Evaluation

3.3.1 Implementation and test environment
All the implementation and evaluation is worked on Xilinx Virtex-6 ML605 and Xinlix
ISE 14.3 design software. The FPGA filter-banks are programmed using Verilog HDL
and cooperate with certain IP cores.
3.3.1.1 Implementation specification
To test the feasibility, demonstrate the performance, and validate the accuracy of the
FPGA implementations, the following designs were simulated: the critically sampled
DFT-FB (even stacked configuration) and critically sampled GDFT-FB (odd-stacked
configuration). All the implementations should have the same design specifications, in
order to make a fair and reasonable comparison. All filter-banks should have the same
number of channels, channel characteristics (passband ripple, stopband attenuation, and
bandwidth) and the same fixed point word-length.
 The evaluation criteria focused on the sub-band frequency response, EVM performance,
and adjacent channel interference. To make the evaluation concrete, the specifications of

Critically Sampled Uniform Wideband Channelization

 45

the TETRA (TErrestrial TRunked RAdio) Voice and Data standard (with 25 kHz
channels) were used [48].
The passband ripple, stop attenuation, bandwidth and other filtering specifications would
vary for different communication standards. To have a comprehensive comparison, the
TETRA 25 kHz channel specification is used as a standard among these FPGA filter-bank
designs. This standard allows us to have a passband ripple not greater than +/- 2dB, a
stop attenuation greater than 55dB and a bandwidth of 25 kHz. Specifications like
frequency band in the RF or others will not be considered in this case.
In this test case, the sampling frequency Fs of wideband input signal is 400 kHz, so that
both the negative and the positive sides of the spectrum could be used, so there are 400
kHz of spectrum (from - Fs/2 to Fs/2) could be used, which could contains 16 channels
with 25 kHz bandwidth. To meet the requirement of the TETRA standard, the designed
prototype filter for both even and odd configuration GDFT-FB has 416 coefficients.
For the even stacked configuration (DFT-FB), the transmitter centre frequencies have
been chosen, so that the input wideband signal is also even stacked. Fifteen channels with
25 KHz bandwidth have been allocated to centre frequencies at 0 kHz, +/- 25 kHz, +/-
50 kHz …… +/- 175 kHz. One channel (which appears as two half-sub-bands at either
end of the wideband spectrum) is not usable because of the nature of even stacked
configuration. For the odd stacked configuration (GDFT-FB) all 16 channels are usable,
and the centre frequencies are located at +/- 12.5 kHz, +/- 37.5 kHz, +/- 62.5 kHz, ……+/
187.5 kHz. In both even and odd stacked configurations, each transmitted channel has an
18k symbols/second of 4/π DQPSK modulated digital signal.
The channel characteristics were matched (as far as possible) by designing one prototype
filter for DFT-FB/GDFT-FBs designs and composite filters having an equivalent
frequency response for the FRM based filter banks.
Number of channels: The number of channels is set to be 16 for both of the filter-bank
designs.
 Word-length: In these implementations, the input samples have 16-bit signed in-phase
and quadrature parts, the coefficients are also in 16-bit signed representation. This allows

Critically Sampled Uniform Wideband Channelization

 46

us to make efficient use of the embedded DSP Blocks on the FPGA. The architecture
allows for 16-bit coefficients with a scale value. The scale value must be computed in
advance by the user, but is simply a case of finding the maximum dynamic range for each
sub-band filter and scaling by a power of 2. In addition, 16 bits is a much more common
word-length in the industry, so for all the design, 16 bits is chosen. The specification of
filter-banks are presented in Table 3.1.
Table 3.1 Test filter-banks' specifications

3.3.1.2 Xilinx Viretx-6 board overview
The Virtex-6 FPGA board is a Xilinx designed programmable platform for developers. It
is built on a 40 nm copper process technology and operates on a 1.0V voltage with a 0.9V
low-power option. The board has an up to 50% lower power consumption than its
previous generation.
The board available in this thesis is Virtex-6 ML605. It uses a XC6VLX240T-1FFG1156
device. XC6VLX240T has a total of 241,152 logic cells, and 37,680 programmable logic
slices. The LUT in Virtex-6 can be used as one 6 inputs LUT or two 5 inputs LUTs. Four
such LUTs and 8 registers form a slice, and two slices form a programmable logic block.
In addition, some part of the slices can configure their LUTs as distributed RAMs, and
these can make up to 3,650 Kb of storage.
This development FPGA board also contains 416 dual-port block RAMs, every block
RAM can store 36 Kbits of data. A 36Kbit block RAM can be split into two 18Kbit blocks
to double Block RAM bandwidth. Each of them has two independent ports which share
the stored data.
There are also 768 DSP48E1 Slices to optimize DSP algorithm computations. It is an
enhanced architecture with a 25-bit pre-adder, 25x18 multiplier, 48-bit adder and 48-bit
accumulator, capable of operating at the clock rate of 600 MHz. The new pre-adders
involved in Virtex-6, are typically used for symmetrical filtering, and may have a

Design specification terms Value
Number of channels 16
Stopband ripple +/- 2 dB
Passband attenuation -55 dB
Fixed point word-length 16 bits

Critically Sampled Uniform Wideband Channelization

 47

significant reduction in usage of logic slices in some certain applications. The resources
summary of the Virtex-6 XC6VLX240T-1FFG1156 is shown in Table 3.2.
Table 3.2 Virtex-6 XC6VLX240T-1FFG1156 FPGA board resources summary

Device

Logic
cells

Programmable Blocks Block RAMs
DSP48s

Slices Max
Distributed
RAM(Kb)

18kb 36kb Max(Kb)

XC6VLX240T 241,152 37,680 3,650 832 416 14,976 768

3.3.1.3 Implementation and test flow
A diagram of the implementation and test flow for filter-banks development appears in
Figure 3.12.

Figure 3.12 The Filter-bank development and testing flow

yes

concept
Matlab
code

function
verified

simulinkno

fixed point
quantization

yes

HDL
code

Behavior
simulation

function
 & timing

OK

no

yes
Sythesis,

Place and route

Static timing
simulation

function
 & timing

OK

no

download
to PC for

testing

function
verified

no

yes

Matlab simulation section FPGA implement section

Critically Sampled Uniform Wideband Channelization

 48

To implement and test a complex DSP application in FPGA not only need the FPGA
design program, but we also need the mathematic programme MATLAB and its
additional package Simulink.
First, Filter Design and Analysis Tool (FDATool) of MATLAB was used to design the
prototype filters in accordance with the specifications. The resulting filter coefficients
are specified with floating point precision. Next a Simulink model of each channelizer
was implemented for the appropriate number of channels using the filter coefficients
already designed. Simulation of this model was performed using floating point data and
parameters to assess whether or not it matches the theoretical performance. After that,
the parameters and internal data of every stage of the Simulink model were quantized to
16-bit fixed point values that would be used in the FPGA implementation. This fixed
point model was then simulated to assess its performance in comparison to the floating
point implementation results. If the fixed point performance matches the specification of
desired filter-bank sufficiently well, MATLAB was used to generate the quantized
parameter and input in .coe file, required by the FPGA platform.
In the FPGA implementation section, functional FPGA components are written using
Verilog HDL. These components and IP cores are wired with each other in a higher level
block using Verilog HDL as well. When the system is build up and synthesised, the
developer also needs to design a testbench in ISE to provide the simulation environment
with all the input, and the testbench also needs to take the results from simulation. A lot
of verifications can be done by checking the result waveform. However in DSP
applications, the result samples also need to write into files for further verification after
downing to PC, like phase and frequency response checking by using MATLAB, because
too many samples need to be recorded. If both functional and timing simulation are
passed and verified functional, developers can get the report of resources usage and other
result.

3.3.2 Evaluation and Results
3.3.2.1 Frequency response
The frequency response of the FPGA based odd-stacked GDFT-FB is shown in Figure
3.13. The reference frequency response was obtained from a floating point simulation of

Critically Sampled Uniform Wideband Channelization

 49

the GDFT-FB in Simulink. Against this, the FPGA GDFT-FB frequency response can be
compared. When zooming into the passband, shown in Figure 3.14, we can see the effect
of fixed point quantization in the passband. The passband ripple has increased to 0.0548
dB, from floating point design’s 0.005 dB. However the 2 dB limit was still not exceeded.

Figure 3.13 Sub-band frequency response of the FPGA Fixed Point GDFT-FB (blue line) compared to a
floating point GDFT-FB reference (red line)

Figure 3.14 Passband comparison between FPGA based GDFT-FB and its floating point reference

Ma
gni

tud
e (

dB
)

Ma
gni

tud
e (

dB
)

Critically Sampled Uniform Wideband Channelization

 50

3.3.2.2 EVM result
Error Vector Magnitude (EVM) is a measurement of error performance in complex DSP
systems. Basically it indicates the vector differences between the ideal signal and the
received signal. EVM can help to validate the performance of the system in terms of
phase noise, I-Q imbalance and filter distortion. The TETRA standard indicates that the
Root Mean Square (RMS) EVM shall be less than 0.1, and the peak vector EVM shall be
less than 0.3.

Figure 3.15 The QPSK modulation constellation after the FPGA based GDFT-FB (left), and the QPSK
modulation constellation after a floating point GDFT-FB

Figure 3.15 shows the DQPSK modulated signal constellation diagram processed by the
FPGA based GDFT-FB and the reference floating point GDFT-FB. The EVM test result
is show in the Table 3.3.
Table 3.3 The EVM performance of a 16 channel GDFT-FB based on FPGA

 GDFT-FB on
FPGA

Floating point
FPGA

TETRA Limits

Peak 0.0732 0.0700 0.1
RMS 0.0298 0.0296 0.3

3.3.2.3 Adjacent channel interference
Adjacent channel interference is caused by unwanted power from the signal in the
adjacent channel intruding into the channel of interest. The interference will be more

Critically Sampled Uniform Wideband Channelization

 51

severe, if more energy is added to the adjacent channel, because more unwanted power
comes into the channel of interest. The ability of a system to reject adjacent channel
interference ultimately affects its ability to deal with a mix of near (higher power) and
far (lower power) transmitters. Thus rejection of adjacent channel interference is an
important characteristic of a channelizer’s sub-band filter performance.
The TETRA specification specifies that the minimum requirement for the value of carrier
to adjacent ratio is C/Ia=-45 dB.
To test this, three adjacent channels were simulated. The channel in the middle was the
channel of interest. The two channels on either of its sides were used to generate
interference. The two interfering channels were set to the maximum amplitude at first
while the channel of interest was attenuated to the limits of the specification. EVM
measurement of the channel of interest will validate if the RMS and peak EVM meets
specifications when C/Ia=-45 dB. Figure 3.16 illustrates the three transmitted channels
which contribute to the wide band input signal. Note that in this case, even stacked
channel allocation (appropriate for the DFT-FB) was used. The channel of interest has
the carrier to adjacent ratio of -45 dB.

Figure 3.16 The even stacked testing wideband signal of adjacent channel interference when C/Ia = -45
dB

Several different levels of adjacent channel interference were simulated: -10 dB, -20 dB, -
30 dB, -40 dB, -45 dB and -50 dB; among these the -45 dB level is the limit required by
the TETRA specification. The modulated constellation of the channel of interest extracted
by the FPGA GDFT-FB under these adjacent channel interference conditions is displayed
in Figure 3.17.

Critically Sampled Uniform Wideband Channelization

 52

Figure 3.17 Modulation constellation of a channel of interest subjected to different levels of adjacent
channel interference after extraction by the FPGA GDFT-FB

The constellation result shows that as the adjacent channel interference increases, the
constellation points become more scattered. Table 3.4 shows the numerical EVM results.
It is worth noting that when the adjacent channel interference is increased to -45 dB, the
RMS and peak EVM are still within the TETRA specified limits. Not until the adjacent
channel interference is increased to -50 dB are the RMS and peak limits (0.1 and 0.3
respectively) exceeded.

Critically Sampled Uniform Wideband Channelization

 53

Table 3.4 RMS and Peak EVM for a channel of interest subjected to different adjacent channel
interference level extracted using the FPGA based GDFT-FB

C/Ia (dB) RMS Peak
-10 0.0462 0.1109
-20 0.0465 0.1119
-30 0.0479 0.1405
-40 0.0573 0.1539
-45 0.0749 0.2078
-50 0.1159 0.3229

3.3.2.4 Hardware usage
The wideband input signal was digitized at 0.2 megasamples/second with a resolution of
16 bits per sample. The FIR compiler’s coefficients, and most of the various input and
output buffers, and interim results (like the phase factor) from the FFT would require the
use of block RAM. All the multiplications and additions were implemented by DSP48s
for maximum performance. Therefore the usage of the block RAM and DSP48 resources
are the most important to evaluate. The 16-channel even and odd stacked FPGA GDFT-
FB with FPGA conventional per-channel approach filter-bank resource usage is shown
in Table 3.5. As the result, odd stacked GDFT-FB will use about 20% percent more
resources, but it can have a better spectrum usage. However GDFT-FB FPGA has a very
great resources efficiency compared to the per-channel approach, because in per-channel
approach design, 16 channels all requires a 416 taps FIR filter, and it’s corresponding
digital down converter with different centre frequencies.
Table 3.5 Resource usage for the (even stacked) DFT-FB and (odd stacked) GDFT-FB channelizers

Filter-bank Type Register LUTs Block
RAM 36

Block
RAM 18

DSP48s
Even GDFT-FB 1223 838 0 8 5
Odd GDFT-FB 1435 1270 0 11 7
Per-channel
approach

3993 3063 4 48 80
Available 301440 150720 416 832 768

3.4 Chapter conclusion
In this chapter, the FPGA based DFT-FB was implemented using IP cores. It can handle
complex input by creating parallel paths for I and Q components through the FIR
compilers. The concept and detail of GDFT-FB was introduced. In channelization, its use
is motivated by the requirement to extract channels from an odd-stacked channel

Critically Sampled Uniform Wideband Channelization

 54

allocation. The odd stacked GDFT-FB could be considered to have a better frequency
spectrum usage, because it eliminates two of the half sub-bands at either end of the even-
stacked channels. Unfortunately, the GDFT-FB requires complex modulated filter
coefficients that the FIR compile cannot directly handle. Thus, in the FPGA
implementation, this problem is solved using two cross coupled FIR compiler blocks and
separating the I and Q components of the complex FIR coefficients such that they can be
applied by two FIR compiler blocks (which only accept real-valued coefficients). The
GDFT-FB also requires a complex mixer on each output sub-band which was efficiently
implemented using a state machine. Nevertheless, the odd-stacked (GDFT-FB) design
requires more resources than even-stacked (DFT-FB) design and this is verified in the
simulation result section. The simulation results also confirm that with 16-bit fixed point
resolution, the critically sampled FPGA based DFT-FB and GDFT-FB can meet the
TETRA V&D 25KHz channel specifications, even when subject to interfering adjacent
channels at 45 dB higher power on both sides of the channel of interest.

Oversampled Uniform Wideband Channelization

 55

Chapter 4
Oversampled Uniform Wideband
Channelization

4.1 Introduction

4.1.1 Aliasing problem and oversampling solution
The critically sampled (L=K/D=1) GDFT-FB architecture is straightforward and reliable,
as described in the previous chapter. However, a critically sampled filter bank requires a
prototype low-pass filter whose pass band and transition band do not exceed the
decimated Nyquist frequency of the sub-band if aliasing is to be minimized. If the sub-
band filter exceeds the Nyquist frequency, aliasing can become a problem by introducing
signal correlated noise which distorts the signal. To avoid the problems of aliasing (in a
critically sampled design) it may be necessary to specify that less of the nominal sub-
band width is available to the signal (thus creating a wider guard band between signals
in adjacent channels), or it may be necessary to design a higher order low-pass prototype
filter so that a sharper filter transition can be achieved (to minimize overlap between a
filter and its images). These solutions have the disadvantage of either reducing the useful
bandwidth of the signal or increasing the resource usage due to the larger numbers of
filter coefficients and higher computational load.
To avoid narrowing the available signal bandwidth or unnecessarily increasing the
prototype filter order an oversampled filter bank may be used. In an oversampled design,
the sub-band Nyquist frequency is now larger than the sub-band spacing (,s INF K) and
it is therefore possible to have sub-band filters which overlap in terms of the input signal

Oversampled Uniform Wideband Channelization

 56

but whose images do not overlap and hence do not cause aliasing after decimation (as
shown in Figure 4.1(b). This is described in more detail in [41] .

Figure 4.1 The interaction of a filter with its images in the decimated sub-band output (a) exhibits
aliasing when critically sampled due to overlapping images whereas (b) oversampling separates the
images and greatly reduces aliasing.

4.1.2 Oversampled polyphase decomposition
There are a number of example implementations of the oversampled DFT-FB (even
stacked) described in the literature, such as[17, 52, 57, 58]. They all use a similar
structure that has integer interpolators in the sub-bands after the operation of a
commutator as shown in Figure 4.2.
These designs use the same commutator (or equivalent structure) as in the critically
sampled design. Then in every channel an integer-valued interpolator is applied right
after the commutator. This approach achieves oversampling the sample rate in every
channel by padding L-1 zeros to input samples. In order to achieve this new oversampled
input method, a new designed commutator is developed by [52]. In addition, in this
oversampled configuration, the polyphase decomposition of the prototype for each
channel is given by:

 () () n
p

n
E z h nK p z 


  (4.1)

0 Fs/2-Fs/2 Fs-Fs

0 Fs/2-Fs/2 Fs-Fs f

(a)

(b)

f

Oversampled Uniform Wideband Channelization

 57

 Figure 4.2 Commutator with interpolator in oversampled design
In this thesis, we developed oversampled polyphase filter-bank FPGA implementations
based on an equivalent GDFT-FB model described by [7], because we can do extra
reconfigurations based on it in order to implement oversampled GDFT-FB with IP cores.
Furthermore we can also develop the odd stacked configuration based on it, as described
in later sections.

4.2 Oversampled DFT-FB (even stacked)

4.2.1 High level design
The high level structure of the oversampled DFT-FB is very similar to the critically
sampled designs shown in Figure 3.2.
Nevertheless, two significant changes must be applied to the filter-bank. First of all, since
the up-sampling factor / 1L K D  in the oversampled case, the decimation factor no
longer matches the number of channels. A design limitation of the FIR compiler IP core
is that it requires the decimation factor and number of polyphase components to match.
For this reason, the implementation of the FIR filtering in the filter bank must be
redesigned for oversampling as described in the following section. The second change is
to the output frequency shift state machine design. This requires modification since the
oversampled signals result in additional possible multiplier values and hence, additional
states in the state machine.

x(n)

…..

Eo(Z)
E1(Z)
E2(Z)

…..

EK-1(Z)

L
L
L

L

...

Oversampled Uniform Wideband Channelization

 58

4.2.2 Oversampled polyphase decimation FIR
As shown in Figure 3.5, the FIR compiler IP core implements a critically sampled
polyphase decimation structure as if using a commutator. Thus like a commutator, the
decimation factor in the GDFT-FB must be equal to the number of channels. However,
in an oversampled GDFT-FB, the decimation factor must be, by its definition, less than
the number of channels (since K/D > 1). The question then, is how to implement an
oversampled polyphase decimation FIR using the FIR compiler blocks when they are
only available in critically sampled form?
Consider a filter bank where up-sampling factor L = 2. First, expand equation (3.4) into

      1 (1)
0 1 1() K K K K

KH z E z z E z z E z      (4.2)

This can be re-written as follows (simply by dividing the terms into two groups)

          
       

2 11
0 1

2 12 1
2 2 1

2

1

1

KK K K

KK K K K
K K

K

K

H z E z z E z z E z
z E z z E z z E z

 

    

  
    

 (4.3)

To generalize equation (4.3) from L=2 into L equals to any integer number, we note that
ܦ = -from which it can be observed that the polyphase decomposition of the DFT ܮ/ܭ
FB prototype filter in equation (4.3) can be re-written as

   

 

1 1

0 0
1

0

L DiD p
p iD

i p
K

F
L iD
i

IRi

H z z z E z

Hz z

    
 


     

 


 (4.4)

where

    1

0
 0,1,..., 1D i

FIRi p i
p

K
DH z z E z i L  

   (4.5)

Oversampled Uniform Wideband Channelization

 59

With this decomposition, the channels are divided into L groups, defined by  FIRiH z ,
and there are D channels in each group. The benefit of this grouping is that the number
of channels in every group is now equal to the down-sampling factor D. Thus in every
group, a quasi-critically sampled decomposition is processed, which makes it compatible
with FIR compiler IP Cores.
To see this in practice, consider a 2x oversampled 4-channel DFT-FB (as discussed in §
4.1.2). Using the original GDFT-FB structure, 2x oversampling is achieved in every
channel by setting the appropriate decimation factor in each channel, D=K/L (hence D=2
in this case). Now applying equation (4.4), the oversampled polyphase components may
be grouped into L groups (in this case L=2) as shown in Figure 4.3(a) (right hand side).

Figure 4.3 Converting 2x oversampled 4 channels GDFT-FB input distribution to (a) a functionally
equivalent version based on equation (4.4) and (b) an equivalent version using commutators.

Figure 4.3(b) shows the grouped structure from Figure 4.3(a) but with the delay chain
and decimator in every group converted to a commutator. Thus in every group a critically
sampled filter bank is obtained. Taking another perspective, the whole system can be seen
to achieve 2x oversampling because two commutators are taking the data at the input

 z-1

x(n)
 z-1

 z-1

2

2

2

2

... z-2

x(n)
 z-1

 z-1

2

2

2

2

E0'(zL)

E1'(zL)

E2'(zL)

E3'(zL)

E0'(zL)

E1'(zL)

E2'(zL)

E3'(zL)

...
(a)

(b)

 z-2

x(n) E0'(zL)

E1'(zL)

E2'(zL)

E3'(zL)

...

Oversampled Uniform Wideband Channelization

 60

sample rate in parallel, thus the whole system is getting twice the number of input
samples simultaneously.
The general solution, therefore, is that the oversampled polyphase decimated FIR is
implemented using L, the oversampling factor, number of polyphase decimation FIR
blocks (real or complex as needed by the DFT-FB or GDFT-FB respectively). The block-
specific prototype filter supplied to each of these FIR blocks is created from a subset of
the interpolated polyphase components of the original prototype filter in accordance with
equation (4.5). In FPGA implementation, each FIR compiler block can only be inserted
with the interpolated coefficients of polyphase filters in this group. Normally most
applications will only require an oversampling factor of L=2, because oversampling by 2
can already greatly reduce aliasing with adjacent channels. It is likely to be wasteful to
oversample by more than this (unless an oversampled output is required for other reasons
such as timing synchronisation) as more FIR compiler blocks and more computations
will generally be required.

4.2.3 FIR block output samples rearrangement for the FFT
Since each of the FIR blocks executes and produces its outputs in parallel, it is necessary
to add an FIR selector state machine which implements the time division multiplexing of
multiple FIR block outputs onto the single I and Q inputs to the FFT IP core. Specifically,
to implement the DFT-FB or GDFT-FB correctly, the oversampled FIR outputs from
branch 0 to branch K of the overall polyphase decomposition must be supplied to the FFT
sequentially. First the D samples from 0 to D-1 are selected from FIR1, then D samples
from D to 2D-1 are selected from FIR2, and so on, until the final D samples from (L-1)
D to LD-1 are selected from FIRL at which point the sequence begins again. An example
of an FIR output selector designed for two 4-channel blocks (that is an 8-channel filter
bank with an up-sample factor of 2 is shown Figure 4.4.
Figure 4.5 shows the high level implementation of the oversampled polyphase decimation
FIR using multiple FIR blocks (based on FIR compiler IP cores), FIFO buffers, and a FIR
selector state machine.

Oversampled Uniform Wideband Channelization

 61

Figure 4.4 FIR selector state machine mapping the output of two FIR blocks to a single TDM output
suitable for input to the FFT IP core

Figure 4.5 Oversampled polyphase decimation FIR implemented using real or complex critically
sampled polyphase decimation FIR blocks (based on the FIR compiler IP core)

3 2 1 0

7 6 5 4

0

7 6 5 4 3 2 1 0

(1)

(2)

(3)

0

7 6 5 4

1 0

3 2 1 0

0 1

Oversampled Uniform Wideband Channelization

 62

4.2.4 Oversampled frequency shift state machine
As was the case for the critically sampled GDFT-FB, the sub-band outputs from the DFT
(FFT) block require a frequency shift to re-centre each extracted channel on DC. As
before, this final frequency shift can be implemented using a state machine, albeit one
with more states. The number of states depends on the oversampling factor /L K D .
Substituting 0 1 / 2k  and K LD into equation (3.17) yields

 0 = k nD j n L
KW e n   (4.6)

In the case that L = 2 this reduces to just four unique values

 0

 1 4
 4 1 , 1 4 2

+ 4 3
k nD

K

n m
j n m n mn m
j n m

W 
        

  (4.7)

Therefore the required frequency shift operation can be replaced by a state machine with
4 states. All 4 of these multiplications can be implemented without any multipliers since
the operations amount to passing through, negating, or swapping the I and Q components.
Similar state machines can be derived for larger oversampling factors but it is worth
noting that some multipliers will be required in this case which is perhaps another reason
to consider avoiding higher oversampling factors.
The procedure of how state machine works is shown by Figure 4.6. The state machine
has two paths of pins for I and Q components respectively. A counter is used to count the
number of inputs taken by the state machine. The port ‘dv’ of FFT core indicates that FFT
core is outputting the result samples, and the state machine starts receiving samples at
this moment. If the state machine is running in first round of K samples x(0)~x(K-1) (one
sample from each channel, they are all ‘n’th sample in each sub-band), it will multiply 1
to these samples. If the state machine is running in samples x(K)~x(2K-1), it will multiply
-j to these samples. If the state machine is running in samples x(2K)~x(3K-1), it will
multiply -1 to these samples. If the state machine is running in samples x(3K)~x(4K-1),

Oversampled Uniform Wideband Channelization

 63

it will multiply j to these samples. After the state-machine processed 4K samples, the
counter will start over again.

Figure 4.6 Frequency shifting state machine work flow

In FPGA implementation, multiplication by 1, is done by passing through the input.
Multiplication by -1, is done by negating both I and Q components using ‘inversion and
adding one’ as mentioned in § 3.2.2.3. Multiplication by j, is done by negating Q
component and then swap pins between I and Q. Multiplication by –j, is done by negating
I components and then swap pins between I and Q. After 32 samples go through the state
machine, the counter will reset to 0. The state machine will have the same 4 states for the
next 32 samples as a loop.

4.2.5 Final FPGA design
The 2x oversampled DFT-FB FPGA diagram is illustrated in Figure 4.7.

cnt=0

dv=0

dv=1

data ×1
cnt+1

dv=1
cnt ≤ K-1

data ×-j

cnt+1

cnt =K

dv=1
cnt ≤ 2K-1

data ×-1

cnt+1

data ×j
cnt+1

cnt =2Kdv=1
cnt ≤ 3K-1

cnt =3K

dv=1
cnt ≤ 4K-1 cnt =4K

dv=0 dv=0

dv=0dv=0

Oversampled Uniform Wideband Channelization

 64

Figure 4.7 the FPGA architecture diagram of 2x oversampled DFT-FB (even stacked)

Oversampled Uniform Wideband Channelization

 65

In Figure 4.7 the delay, Z-D, required between the first and second FIR blocks (see Figure
4.5) is implemented using shift registers (one each for the I and Q components). The first
FIR block contains the filter coefficients for polyphase components from E0(zL) to
EK/2-1(zL). The remaining filter coefficients are used in the second FIR block. As in the
oversampled case, every channel’s filter is given by the polyphase component Ep(zL),
there is an L=2 up-sampling factor is applied, thus FIR IP cores are inserted with
coefficients padded by zero. The FIFO and selector state machine doing exactly the same
thing as in § 4.2.3. It is noticeable that, in the selector machine the outputs are assigned
to a register first, though it will have one clock cycle delay to the output. The benefit is
that, the output waveforms’ edge will be synchronized with the registered ‘start’ signal
of FFT core, to prevent taking the unsafe data to FFT core. The ‘start’ signal is asserted
by the AND operation results of both ‘rdy’ value of FIR compiler. The rest of the system
are almost the same as the critically sampled design, except the state machine has 4 states
rather than 2.

4.3 Oversampled GDFT-FB (odd-stacked)
In chapter 3, a critically sampled oddly stacked GDFT-FB was developed. An
oversampled GDFT-FB design could produce a channelizer that is more appropriate for
systems with odd-stacked channels and suffers less from aliasing in output sub-bands.
An expected disadvantage (relative to the even-stacked DFT-FB) is that the odd-stacked
design will require more multiplication operations, because the filtering of the FIR
compiler is carried out using complex coefficients. In the FPGA implementation, this
means adding extra complexity and increased resource usage, because complex signals
in the FPGA needed to be separated into I and Q components and filtering will require
double the number of FIR compiler in a cross-coupled structure as introduced in the
previous chapter.

4.3.1 High level design
The overall structure of the oversampled GDFT-FB design is the same as even-stacked
design. The frequency shift state machine is the same for the odd stacked GDFT-FB as it

Oversampled Uniform Wideband Channelization

 66

is for the even stacked DFT-FB. The biggest difference between the odd stacked and even
stacked design is that coefficients in the FIR blocks are no longer in real values, and
hence a complex FIR design is required to respectively store I and Q components in two
FIR compilers similar in last chapter will be applied again.

4.3.2 Oversampled complex polyphase decimation FIR blocks
Similar to the odd-stacked critically sampled GDFT-FB (see previous chapter) the
oversampled GDFT-FB requires FIR blocks which can use complex valued coefficients.
These coefficients result from the complex modulation of the filter coefficients required
to implement the phase and frequency shifts of the GDFT, as in equation (3.9).
We apply the same grouping as in section 4.2.2 to give

   1

0

1 1
2 2 0,1,..., 1D i

FIRi p i
p Dkp

K KD
K

K
p

H z z W E iW z LW  
        (4.8)

The coefficients are once again complex, because of the complex modulation. Therefore,
the cross coupling filtering structure like Figure 3.9 is required for every single group
(FIR0, FIR1, FIR2…..) in Figure 4.5. As an example, consider an 8-channel 2x
oversampled odd stacked GDFT-FB. In this example there would be 2 FIR blocks in the
system because of the 2x oversampling. The 8 channels (and hence 8 polyphase
components of the prototype filter) would be divided into two groups and each group
implemented by one of the FIR blocks. Finally each FIR block would be implemented
using two cross-coupled FIR compiler IP cores due to the complex valued coefficients.
Therefore, it can be seen that the general design requires 2L number of FIR compiler
cores for an integer oversampling factor L.

4.3.3 Final FPGA design
An odd-stack 2x oversampled GDFT-FB FPGA diagram is shown in Figure 4.8.

Oversampled Uniform Wideband Channelization

 67

Figure 4.8 the FPGA architecture diagram of 2x oversampled GDFT-FB (even stacked)

Oversampled Uniform Wideband Channelization

 68

In this diagram, FPGA based odd stacked 2x oversampled GDFT-FB occupies the similar
structure to the even stacked design as developed in § 4.2.5. The only difference is that,
each FIR block in Figure 4.5 employs a ‘cross-coupled’ FIR compile block in order to
make the FIR block compatible with complex coefficients.

4.4 FPGA implementation evaluation
Two 16-channel 2x oversampled filter banks were implemented: one using the FPGA
based DFT-FB (even-stacked) and the other using the FPGA based GDFT-FB (odd
stacked). As in the previous chapter, the evaluation focused on sub-band frequency
response, EVM performance, adjacent channel interference, and resource usage. The
simulation setup, based on TETRA 25 kHz channels, was also the same as the previous
chapter. The input signal, output signal, and all internal results used 16-bit resolution and
fixed point arithmetic.
The prototype filter for both even and odd stacked implementations had 576 coefficients.
Apart from different sub-band allocations the even and odd-stacked implementations
have equivalent DFP performance. For this reason only odd-stacked oversampled GDFT-
FB filtering result will be discussed. However both implementations will be considered
in terms of hardware usage.

4.4.1 Frequency response
The frequency response of a single sub-band of the FPGA-based 2x oversampled odd-
stacked GDFT-FB is shown in Figure 4.9. The output of each sub-band is oversampled
and therefore the output signal occupies only half of the spectrum, because it is a 2x
oversampled design.
It can be seen that the 16-bit fixed point quantization has an impact on the stopband
attenuation performance relative to the floating point reference implementation. The
FPGA based implementation has around 5 dB less stopband attenuation than the reference
implementation. Nevertheless, the FPGA based implementation still meets the TETRA
requirement of more than 55 dB attenuation in the stop band.

Oversampled Uniform Wideband Channelization

 69

Figure 4.9 Frequency response of one sub-band of the FPGA-based 16-bit 16-channel 2x oversampled
GDFT-FB. The FPGA based (fixed point) response (blue) and floating point GDFT-FB reference
implementation (red) are both shown.
From the perspective of passband, as shown in Figure 4.10, due to fixed point
quantization, the FPGA based GDFT-FB produces slightly more passband ripple (0.06
dB) than the floating point reference implementation (0.01 dB), but it is still much smaller
than the 2 dB requirement.

Figure 4.10 Passband comparison between 16-bit FPGA GDFT-FB (blue line) and its floating point
reference (red line)

Ma
gni

tud
e (d

B)

0.05 0.1 0.15 0.2 0.25 0.3 0.35
Normalized Frequency (rad/sample)

-0.08
-0.07
-0.06
-0.05
-0.04
-0.03
-0.02
-0.01

0
0.01
0.02

Ma
gni

tud
e (

dB
)

Magnitude Response (dB)

FPGA GDFT-FB
Floating point reference

Oversampled Uniform Wideband Channelization

 70

4.4.2 EVM result
As in § 3.3.2.2, we evaluate the EVM of the 16-bit fixed point FPGA based
implementation’s phase noise, I-Q imbalance, and filter distortion.

Figure 4.11 The π/4 DQPSK modulation constellation of the FPGA based 2x oversampled GDFT-FB
output (left), and the equivalent constellation of the floating point GDFT-FB reference output (right)

Figure 4.11 shows the π/4 DQPSK modulation constellation of the output from the 2x
oversampled FPGA based GDFT-FB, and the π/4 DQPSK modulation of the output from
the reference floating point GDFT-FB. The EVM result shows that FPGA based
implementation performs very similarly to the floating point reference at high signal
levels. The numerical results are listed in Table 4.1.
Table 4.1 The EVM performance of an FPGA-based 16-channel 2x oversampled GDFT-FB

 GDFT-FB on
FPGA

Floating point
FPGA

Limit of TETRA
Peak 0.0697 0.0662 0.3
RMS 0.0292 0.0292 0.1

4.4.3 Adjacent channel interference
The adjacent channel interference characteristics of the FPGA-based 2x oversampled 16
channel GDFT-FB were also evaluated. Table 4.2 shows the EVM results evaluated at
carrier to adjacent channel interfere levels of -10 dB, -20 dB, -30 dB, -40dB, -45dB and
-50dB. As expected, the EVM gets worse as the adjacent channel interference level

Oversampled Uniform Wideband Channelization

 71

increases. When the channel of interest power is -45 dB relative to the adjacent interferer,
the RMS and peak EVM is still within than the TETRA requirements (0.1 and 0.3
respectively). Only at -50 dB (which exceeds the requirements of TETRA), does the RMS
EVM become slightly greater than 0.1. Even here, however, the peak EVM is still less
than 0.3.
Table 4.2 EVM result of FPGA 2x oversample GDFT-FB under different adjacent channel interference
level

C/Ia (dB) RMS PEAK
-10 0.0465 0.1165
-20 0.0466 0.1207
-30 0.0474 0.1105
-40 0.0569 0.1549
-45 0.0756 0.2025
-50 0.1154 0.2879

4.4.4 Hardware resource usage
The 2x oversampled FPGA-based DFT-FB and GDFT-FB designs are more complicated
than the critically sampled designs examined in the previous chapter. More hardware
resources can be expected to be required to deal with the following: extra FIR blocks
required by the oversampled design; a larger number of coefficients in each block
(because the coefficients are interpolated by the oversampling factor and there is no
specific optimization in the FIR compiler IP core for zero value coefficients); and finally,
the slightly more complicated frequency shifting state-machine. Table 4.3 shows the
FPGA hardware resource usage of both even and odd stacked 2x oversampled designs in
comparison to a conventional per-channel approach. The result shows that odd stacked
2x oversampled GDFT-FB will use slightly less than twice the number of DSP48s and
Block RAM 18s than the even-stacked DFT-FB version, but still much less than a per-
channel approach.

Oversampled Uniform Wideband Channelization

 72

Table 4.3 Even and odd stacked 2x oversampled GDFT-FB FPGA resources usage
Filter-bank Type Register LUTs Block

RAM
36

Block
RAM 18

DSP48s

2x Even DFT-FB 1445 1503 0 7 8
2x Odd GDFT-FB 2121 1570 0 12 15
Per-channel approach 3993 2123 4 48 80
Available 301440 150720 416 832 768

4.5 Chapter conclusion
In this chapter, the FPGA-based oversampled configuration of the DFT-FB and GDFT-
FB were designed and evaluated. Such oversampled filter banks are useful to avoid
aliasing (which can be a problem for signal reconstruction) or to allow sub-band filters
which overlap in frequency.
The oversampled designs that were implemented are closely related to critically sampled
designs implemented in the previous chapter. The high level block diagram does not
change very much. The only changes are a reduction in the decimation factor applied to
the input of the polyphase components and an interpolation of the polyphase components
themselves.
However the FPGA-based implementation requires more change than the high level
block diagrams would suggest. First of all, a specific solution was developed to support
an oversampled polyphase decomposition, because the FIR compiler IP core can only
process a critically sampled polyphase decomposition. The solution developed converted
the single oversampled polyphase decomposition into a number, L, (e.g. 2 for 2x
oversampling) of critically sampled polyphase decompositions running in parallel whose
outputs are scheduled appropriately for the DFT by a selector state machine, because it
was desirable to continue using the optimized and well tested FIR compiler IP core.
Finally, the frequency shift state machine required for the GDFT-FB (odd stacked) had
to be modified to allow for more states, specifically 4 states in the case of a 2x
oversampled design.

Oversampled Uniform Wideband Channelization

 73

In the evaluation section, the results show that a FPGA-based 16-bit 16 channel 2x
oversampled GDFT-FB can achieve essentially the same frequency response, EVM
performance and adjacent channel interference resistance as a critically sampled FPGA-
based GDFT-FB. As was the case for the critically sampled filter banks evaluated in the
previous chapter, the odd-stacked configuration (GDFT-FB) uses more hardware
resources than the even-stacked configuration (DFT-FB). However, with the oversampled
designs this difference is even more pronounced.

FRM and the GDFT-FB

 74

Chapter 5
FRM and the GDFT-FB

5.1 Full FRM applied to the GDFT-FB

5.1.1 Introduction
The FRM approach to filter design can be used to design sharp filters using a cascade of
simpler filters with fewer overall coefficients and less stringent design requirements than
a single filter would require. For this reason, FRM has been used to implement filter-
banks such as the QMFB [59] and CMFB [60-62], with the latter being more commonly
implemented.
Basic FRM techniques for filter design were described in some detail in chapter 2. Based
on the efficient FRM design discussed in § 2.3.1, a new GDFT based design using FRM
technology developed in [53, 63], is introduced here for implementation in FPGA form.
The basic idea is to replace both the masking filters of the normal FRM structure, ()MaH z
and ()McH z , with the GDFT-FB to reduce the complexity of calculation from the direct
filtering.
Similar to the FRM based CMFB [64], the full FRM DFT-FB is based on the efficient
FRM design with polyphase decomposition shown in Figure 2.17 as well. It is worth
mentioning that this efficient design requires a Subclass I filter response (magnitude
complementary response) in the base and complementary masking filters. Based on the
equations (2.4),(2.5) and (2.6), the prototype filter ()H z of the GDFT-FB can now be
expressed in FRM form as:

2 2

0 1
2 2

0 1

() () () () ()
() () () ()

L L L
a Ma a Ma

L L L
a Mc a Mc

H z H z H z z H z H z
H z H z z H z H z




 
  (5.1)

FRM and the GDFT-FB

 75

To simplify this equation, we define

 (5.2)

Then substituting ()A z and ()B z into (5.1) yields
 2 2

0 1() () () () ()L L L
a aH z H z A z z H z B z  (5.3)

Similar to the manner in which the low pass prototype filter is modulated to create the
sub-band bandpass filters of the GDFT-FB in equation (3.10), the complex modulation
can be applied in the FRM case to create the sub-band filters ()kH z here also as follows

 2 2
0 1() () () () ()L L L

k a k a kH z H z A z z H z B z  (5.4)

Here, () ()k
k KA z A zW and () ()k

k KB z B zW . Applying the polyphase decomposition to
both ()kA z and ()kB z similar to the treatment in chapter 3 yields:

1

0
1

0

() ()

() ()

K i K
Ai

i
K i K

Bi
i

A z z E z

B z z E z

 

 





 (5.5)

At last, the bandpass filter in each sub-band of the FRM GDFT-FB can be expressed as:

12

0
0

12
1

0

() () ()

(1) () ()

KL i ki K
k a K Ai

i
Kk L L i ki K

a K Bi
i

H z H z z W E z

z H z z W E z

  


  



 


 (5.6)

The whole structure of FRM GDFT-FB is illustrated in Figure 5.1. LDFT is the
oversampling factor of the GDFT-FB which is defined as:

 DFT
KL D (5.7)

() () ()
() () ()

Ma Mc
Ma Mc

A z H z H z
B z H z H z

 
 

FRM and the GDFT-FB

 76

As can be seen in the Figure 5.1, there is a phase shift of π in the output of every second
sub-band from the DFT on the Ha1 path of the filter bank. This phase shift is
mathematically equal to -1. Thus these sub-band outputs should be subtracted from
(rather than added to) the outputs from the DFT on the Ha0 path of the filter bank. This
operation corresponds to the (-1)k in equation, where k refers to the sub-band index.

Figure 5.1 Full FRM DFT-FB

5.1.2 The FPGA based full FRM DFT-FB (even stacked)
5.1.2.1 The high level FPGA design
The diagram of an FPGA even stacked full FRM DFT-FB in shown in Figure 5.2.

x(n) Ha0(z2L) D
D
D
D
D

D

DFT

0 0

K-1 K-1

z-1

z-1

z-1

z-1

z-1

Ha1(z2L) D
D
D
D
D

D

DFT

0 0

K-1 K-1

z-1

z-1

z-1

z-1

z-1

z-L

w0(n)
w1(n)

w2(n)
w3(n)
w4(n)

wK-1(n)

y0(n)
y1(n)
y2(n)
y3(n)
y4(n)

yK-1(n)

e-jπ

e-jπ

e-jπ

w0(n)
w1(n)

w2(n)
w3(n)
w4(n)

wK-1(n)

0 ()DFTL
AE z

1()DFTL
AE z

2 ()DFTL
AE z

3 ()DFTL
AE z

4 ()DFTL
AE z

1()DFT
AK

LE z

0 ()DFTL
BE z

1()DFTL
BE z

2 ()DFTL
BE z

3 ()DFTL
BE z

4 ()DFTL
BE z

1()DFT
BK

LE z

FRM and the GDFT-FB

 77

Figure 5.2 The FPGA based even stacked full FRM DFT-FB

FRM and the GDFT-FB

 78

The high level design of the DFT-FB with full FRM technology is more complicated than
the normal DFT-FB design from chapter 3. First of all, there are two parallel DFT-FB
units in the system as the two paths of a full FRM design, as illustrated in Figure 5.1. In
addition, more stages will be required in the FPGA architecture, specifically the
polyphase decomposed base filter, phase shifting in the output of the second path, and
the addition of both DFT outputs to produce the overall channelizer output. It is also
necessary to add appropriate delays to ensure the final outputs on each path are
synchronized for addition.
5.1.2.2 The delay of second path design with an arbitrary fractional clock divider
The delay z-L prior to the second path of the full FRM design shown in Figure 5.1 subjects
the second path to an L sample period delay. The sampling rate of input wideband signal
may range from 200 KHz (for an 8 x 25 kHz sub-band channelizer) to the order of a few
MHz, according to the filtering specification and number of channels. If we just use a
shift register to delay the input for L sample periods triggered by system clock, the
required shift register depth will be ܮ × ݁ݐܽݎ_݇ܿ݋݈ܿ ⁄݁ݐܽݎ_݈݁݌݉ܽݏ . In this case L is the
interpolation factor for up-sampling the base filter described in § 2.3, and not an
oversampling factor for the filter bank itself. The interpolation factor ranges from 10 ~
100. Thus, the shift register depth on the separate I and Q paths will range from 10’s to
100’s of thousands. As a result, just directly applying shift registers leads to a huge waste
of the register resources.
One of the rational solutions to have an efficient usage of register resources is to trigger
the shift register at the input sample rate rather than the system clock rate. Therefore a
clock divider is introduced in this work.
The clock divider divides the system clock down to the input sample rate. A simple clock
divisions, such as dividing by the value of power of 2 could be realised using a cascading
D flip-flops structure. Dividing by arbitrary integer values could simply employ a
counter, which outputs the divided clock when it counts to the certain value, or changes
state when it reaches half of the value to achieve a 50% duty cycle [65]. Once a non-
integer divider is need, however, a different design will be required.

FRM and the GDFT-FB

 79

A factional-n clock divider introduced in [66] can be applied to the application here.
Assuming the frequency of original clock is N and the desired low speed clock’s
frequency is D, then the required divider is N/D (since N / (N/D) = D). After the dividing
operation, the quotient Q and remainder R can be acquired. A fractional clock division is
implemented by combining R number of (Q+1) times dividing and (D-R) number Q times
dividing. It is not wise to just put R divided by (Q+1) clock at the beginning, and put (D-
R) at the end. To achieve an average between two different frequency clocks, the method
is as follows: firstly employ a register m cumulated R at each fast clock raises. Then if
the value is less than the value of D, the divider divides the fast clock by Q+1. Otherwise,
the divider divides the fast clock by Q. At the same time, subtract m by the value of D.
The duty cycle of the divided clock ranges from Q/(2Q+1) to (Q+1)/(2 Q+1). So with a
greater value of Q, the duty cycle will be closer to 50%.
At last, the clock divider provides clock triggering the shifting register at the input sample
rate, thus the depth of the shift register can be designed to L instead of ܮ ×
݁ݐܽݎ_݇ܿ݋݈ܿ ⁄݁ݐܽݎ_݈݁݌݉ܽݏ , which saves a lot of register resources.
5.1.2.3 Polyphase decomposed base filter
Each polyphase component of the base filter is implemented using an FIR compiler IP
core. The coefficients of the two polyphase components are chosen in accordance with §
3.2.1.1, following the same procedure as for the prototype filter of the DFT-FB. The
notation Ha1(z2L) indicates an interpolation by 2L, that is, 2L-1 zeros padding are needed
between filter coefficients.
5.1.2.4 Phase shifting and addition state machine
The phase shift by e-jπ in every second sub-band in the Ha1 path output shown in Figure
5.1, corresponds to negating every output sample on these sub-bands. The final filter bank
output result is obtained by adding the Ha1 path outputs to the Ha0 path outputs.
Remembering that the output of the DFT blocks is time division multiplexed as a serial
stream, the addition of output sub-bands with every second sub-band on the Ha1 path
negated, can be efficiently implemented by a state machine controlled addition. The state
machine receives samples from both paths of the filter bank. It adds samples from
matching even numbered sub-bands but subtracts samples from odd numbered sub-

FRM and the GDFT-FB

 80

bands. This reduces the number of hardware resources and processing delay required (in
comparison to implementing the operations exactly as shown in Figure 5.1).

5.1.3 The FPGA based full FRM GDFT-FB (odd stacked)
In the last section an even-stack full FRM DFT-FB was developed. Similar to previous
chapters, an odd-stacked variant of the filter bank based on the GDFT-FB may be
designed. As usual, this introduces the requirement for complex filter coefficients which
complicates the filter bank implementation.
The odd-stacked configuration [53] needs the modification similar to that in chapter 3.
This is achieved by applying the same complex modulation as that in equation (3.10) to
the masking filter’s polyphase elements ()kA z and ()kB z as:

 0 0 0

0 0 0

() ()

() ()
() ()
() ()

k k n k k
k K K

k k n k k
k K K

A z W A zW
B z W B zW

  
  


 (5.8)

Figure 5.3 Full FRM GDFT-FB (odd stacked, with k0=1/2 and n0=0)

x(n) D
D
D
D
D

D

DFT

0 0

K-1 K-1

z-1

z-1

z-1

z-1

z-1

D
D
D
D
D

D

DFT

0 0

K-1 K-1

z-1

z-1

z-1

z-1

z-1

z-L

w0(n)
w1(n)

w2(n)
w3(n)
w4(n)

wK-1(n)

y0(n)
y1(n)
y2(n)
y3(n)
y4(n)

yK-1(n)

e-jπ

e-jπ

e-jπ

w0(n)
w1(n)

w2(n)
w3(n)
w4(n)

wK-1(n)

/ 2
0 ()DDFT

A K
LE Wz 

/ 2
1 ()DDFT

A K
LE Wz 

/ 2
2 ()DDFT

A K
LE Wz 

/ 2
3 ()DDFT

A K
LE Wz 

/ 2
4 ()DDFT

A K
LE Wz 

/ 2
1 ()DDFT

AK K
LE Wz 



/ 2
0 ()DDFT

B K
LE Wz 

/ 2
2 ()DDFT

B K
LE Wz 

/ 2
1 ()DDFT

B K
LE Wz 

/ 2
3 ()DDFT

B K
LE Wz 

/ 2
4 ()DDFT

B K
LE Wz 

/ 2
1 ()DDFT

BK K
LE Wz 



1
2nD

KW 

1
2nD

KW 

1
2nD

KW 

1
2nD

KW 

1
2 nD

KW 

1
2nD

KW 

1
2nD

KW 

1
2nD

KW 

1
2nD

KW 

1
2nD

KW 

1
2 nD

KW 

1
2nD

KW 

2 / 2
0 ()L j

aH z e 

2 / 2
1 ()L j

aH z e 

FRM and the GDFT-FB

 81

The same operation as that of the masking filter will be applied to the base filter as well
as shifting the base filter’s frequency response from centre at DC to centre at π/2 to match
the requirement of odd stacking configuration. Thus Figure 5.3 illustrates the structure
of the full FRM odd-stacked GDFT-FB. The expression of the GDFT-FB with FRM
technology is shown as:

1 112 2 2 20

0
1 112 2 2 21

0

() () ()

(1) () ()

Kj i DL i ki K
k a K K K Ai K

i
Kj i Dk L L i ki K

a K K K Bi K
i

H z H z e z W W E z W

z H z W z W W E z W





   


    



 


 (5.9)

It is worth mentioning that, the equation (5.9) and Figure 5.3 are describing the exactly
odd stacked case when k0=1/2 and n0=0 as in chapter 3. It cannot be applied to all the
GDFT-FB cases where arbitrary frequency and phase shifting can be achieved. Therefore
k0 has been replaced by 1/2, and phase shifting factor 0 0(1)K k n

KW    , like in Figure 3.4, is
assigned to 1 in FRM GDFT-FB. Therefore 0 0(1)K k n

KW    is omitted in both expression and
illustration here.
5.1.3.1 The high level FPGA design
The FPGA design of the full FRM odd stacked GDFT-FB is based on the even stacked
version. As part of the conversion to an odd stacked filter-bank, all the FIR filter
coefficients become complex values instead of real values. Therefore the I and Q
components of the coefficients must be separated into cross coupled FIR compiler IP
cores which leads to additional hardware resource usage.
In the case of odd stacked full FRM GDFT-FB, the polyphase decomposition of the
masking filter elements, EA and EB, are subject to complex modulation to yield

11
2

0
() ()K DK K

A Ai K
i

E z E z W 


 (5.10)

FRM and the GDFT-FB

 82

11
2

0
() ()K DK K

B Bi K
i

E z E z W 


 (5.11)

This complex modulation is applied offline at design time so that the modulated filter
coefficients are supplied to the FIR compiler IP core. In addition, to let the polyphase
decomposed base filters have the odd stacked configuration, a complex frequency
shifting /2je  is applied to them. Again, this is performed at design time so that modified
coefficients are used in the corresponding FIR compiler IP cores. That is to say, the
separation of I and Q components of coefficients and cross coupling module are
employed in two stages of the system.
The polyphase decomposition of filter-banks instead of masking filters employs two of
the same structures as the critically sampled odd stacked GDFT-FB, except for the
coefficients from the equivalent model in equation (5.8) rather than the prototype low-
pass filter.
As for the critically sampled odd-stacked GDFT-FB in chapter 3, the frequency shift

1
2nD

KW  applied to the DFT sub-band outputs is implemented using a state machine which
either passes or negates samples and changes state every K samples.
Besides the frequency shifting just introduced, in odd stacked full FRM GDFT-FB, there
is another frequency shifting e-jπ happening at every second channel of the masking filter
in Ha1 path. So a ‘frequency shifting and adding state machine’ is developed here to do
this frequency shifting, and in addition, it also implements the job of adding, which
happens in the end of both paths.
It takes one clock cycle period to process and store the samples to the output, because of
the frequency state machine. A one depth register is employed here to delay the trigger
of ‘en’ pin to this state machine to keep the synchronization of both paths of samples.
The diagram of odd stacked full FRM GDFT-FB based on FPGA is shown in Figure 5.4.

FRM and the GDFT-FB

 83

Figure 5.4 The odd stacked full FRM GDFT-FB

FRM and the GDFT-FB

 84

5.2 Narrowband FRM applied to the GDFT-FB

5.2.1 Introduction
5.2.1.1 Narrowband FRM
In many channelizer applications it may be sufficient to design the prototype filter
response using just the interpolated base filter and a masking filter which rejects all
images which result from interpolation [45]. This approach is illustrated in Figure 5.5. In
contrast with the full FRM technique, this is known as narrow-band FRM. The narrow-
band FRM transfer function is giving by:
 () () ()L

a MaH z H z H z (5.12)

Figure 5.5 The process of narrow-band FRM filter

With narrowband FRM, only the positive branch is occupied, so there is neither a
complementary filter nor a complementary masking filter. Therefore equation (5.2) can
be simplified to [53]:
 () () ()MaA z B z H z  (5.13)

00

1

π ω

00

1

π ω

00

1

π ω

00

1

π ω

φ

|Ha(ejω)| |Ha(ejωL)|

1) Base filter 2) Interpolated base filter

3) Positive masking operation 4) Final frequency response

|HMa(ejωL)| |Ha(ejωL)HMa(ejω)|

FRM and the GDFT-FB

 85

First we consider the basic DFT-FB (even-stacked GDFT-FB) with narrowband FRM.
The polyphase decomposition can be applied to the base filter and masking filter as:
 2 2

0 1() () () () ()L L L
a Ma a MaH z H z H z z H z H z  (5.14)

where
 1

0
() ()K i K

Ma Mai
i

H z z E z 


 (5.15)

Thus every sub-band filter can be expressed as:

12 -

0
0

12
1

0

() () ()

(1) () ()

KL i ki K
k a K Mai

i
Kk L L i ki K

a K Mai
i

H z H z z W E z

z H z z W E z

 


  



 


 (5.16)

From equation (5.16), the masking filter-bank should have the same basic
implementation as the full FRM GDFT-FB shown in Figure 5.1, except that the same
masking filter components, EMai(zK), appear in both the Ha0 and Ha1 branches.
For the odd-stacked GDFT-FB with narrowband FRM, the basic procedure is the same
as for the full FRM GDFT-FB version. We apply equation (3.10) to each sub-band Hk(z).
Furthermore, the frequency response of base filter polyphase components, Ha0 and Ha1,
need to be odd stacked by shifting their frequency response from DC to π/2. Thereafter,
the narrowband FRM odd stacked GDFT-FB expression can be seen as a modified form
of equation (5.16):

1 112 2 2 20

0
1 112 2 2 21

0

() () ()

(1) () ()

Kj i DL i ki K
k a K K Mai K

i
Kj i Dk L L i ki K

a K K Mai K
i

H z H z e z W W E z W

z H z e z W W E z W





   


    



 


 (5.17)

The narrowband FRM odd-stacked GDFT-FB structure is very similar to Figure 5.3, with
the exception that the masking filter components,  0k

Mai
KK

KWE z  , are common to both
branches.

FRM and the GDFT-FB

 86

5.2.1.2 Alternative structure for oversampled narrowband FRM GDFT-FB
In general, GDFT-FB provides a large computational saving in filtering in comparison to
direct per-channel filtering. The benefit is obtained from the polyphase decomposing and
noble identity [67]. In the FRM GDFT-FB designs discussed in previous sections, the
base filter is placed before the GDFT-FB modulated filters. Therefore, the base filters
operate at the wideband input signal sample frequency rather than decimated sub-band
sample frequency required for the masking filter polyphase components. Furthermore,
with a large number of channels, K, the base filter requires more interpolation so there
will be more zero padding and sample delay required in the base filter section.
As an alternative, the base filter can be moved to the output side of the GDFT-FB in order
to operate at the lower sub-band output sample rate using the noble identity [53]. A
similar alternative implementation to the FRM CMFB has been done [64]. In addition,
the FRM interpolation factor L will be applied (in a decimated form) to the base filter
when it is moved to the output side of the DFT. This reduces the zero padding and sample
delay required. Another benefit of this alternative design is that the base filter coefficients
will always be real-valued whether the filter bank is designed for even stacked or odd
stacked channels.
To make the alternative narrowband FRM GDFT-FB work, the system must use an
oversampled configuration.
The alternative narrowband FRM design contributes one further computational saving.
In this configuration, the polyphase decomposition of the base filter is no longer
necessary because it follows the DFT. Therefore we no longer need the masking filter
polyphase components to be repeated in the two branches resulting from the polyphase
decomposition of the base filter. As a consequence, the efficient oversampled narrowband
FRM GDFT-FB can be achieved as illustrated in Figure 5.6. As a final optimization, since
the base filter doesn’t have to be divided into its polyphase components, it may be
symmetric thus permitting further efficiency in terms of the number of multiplications
required.

FRM and the GDFT-FB

 87

Figure 5.6 Efficient oversample GDFT-FB with narrowband FRM.

5.2.2 The FPGA based alternative narrowband (oversampled) DFT-FB (even
stacked)

5.2.2.1 The overall design
The FPGA implementation of the alternative narrowband FRM DFT-FB shares many
similarities with the oversampled DFT-FB design in chapter 4. Typically, an
oversampling factor of 2 may be used, because it already provides a considerable
reduction in terms of aliasing. The masking filter of positive FRM branch replaces the
prototype filter of oversampled DFT-FB. The oversampled polyphase decimation FIR
introduced in § 4.1.2 which split the sub-bands into two groups must also be employed
here. Rearrangement is still required for FFT core to take the right samples. State machine
that switches in 4 states is designed to do the equivalent job as frequency shifting, as
shown in § 4.2.4. The diagram of a 2x oversampled alternative narrowband FRM GDFT-
FB is shown in Figure 5.7. The main difference from the oversampled DFT-FB, is the
extra base filter in each output sub-band. An FIR compiler set to ‘single rate’ mode is
suitable to be used here, as multiple channels are required to be filtered by the same
coefficients at the same sample rate. If the clock is fast enough, this IP core will process
these samples serially by reusing DSP48s. FIR compiler can also take advantages of
symmetric coefficients, in order to have a further hardware efficiency.

x(n) D
D
D
D
D

D

DFT

0 0

K-1 K-1

z-1

z-1

z-1

z-1

z-1

y0(n)
y1(n)
y2(n)
y3(n)
y4(n)

yK-1(n)

Ha(zL/D)

Ha(zL/D)
Ha(zL/D)
Ha(zL/D)

Ha(zL/D)

Ha(zL/D)

1
2nD

KW 

1
2nD

KW 

1
2nD

KW 

1
2nD

KW 

1
2nD

KW 

1
2nD

KW 

0 ()DFTL
MaE z

1()DFTL
MaE z

2 ()DFTL
MaE z

3()DFTL
MaE z

4 ()DFTL
MaE z

1()DFTL
MaKE z

FRM and the GDFT-FB

 88

Figure 5.7 2x oversampled alternative narrowband FRM GDFT-FB

FRM and the GDFT-FB

 89

5.2.2.2 Efficient FIFO design of base FIR complier
In the oversampled alternative narrowband FRM DFT-FB, the base filters follow the FFT
IP core. There is one copy of the base filter on each sub-band and these are implemented
using FIR compiler IP cores. The FFT core outputs a burst of data at the clock rate each
time it has finished processing K input samples as shown in Figure 5.8. It is unwise to
have a design in which the FIR compiler receives input samples in short bursts and then
does nothing for most of the time waiting for the next round of inputs. The solution is to
introduce a FIFO to slow down the pace of the input samples, in order to relieve the
pressure on the polyphase decomposition FIR compiler by giving more clock cycles for
processing. As a result, a lot of DSP and storage resources may be saved.

Figure 5.8 The FIFO used to slow the FFT output for sub-band FIR compiler IP cores

The FIFO works at two different clock speeds: re_clk refers to the clock pin that triggers
the FIFO to read samples at the fast system clock rate and store them into a shift register;
wr_clk triggers the FIFO to write the stored samples at the speed of the sub-band sample
rate. Thus the clock tree introduced in the last section is suitable to employ here. The ‘en’
(enable) input pin is assigned to the FIFO to enable the receiver, and a dv (data_valid)
pin is used to indicate the next component when data is available.

5.2.3 The FPGA based alternative narrowband (oversampled) GDFT-FB (odd
stacked)

5.2.3.1 Theoretical structure
Converting the oversampled alternative narrowband FRM GDFT-FB to odd stacked
channel allocation is similar to converting DFT-FB to GDFT-FB introduced in chapter 3,
and converting the oversampled DFT-FB to the oversampled GDFT-FB in chapter 4.

21 43 21 43 21 43
FIFO

in
re_clk out
wr_clk

...... 1 2 3 4 1 2 3 4 1

FRM and the GDFT-FB

 90

Because the alternative narrowband FRM only employs the positive path of the FRM
structure, and swaps the order of the base and masking filter, the expression of every
channel band-pass filter in GDFT-FB version can be written as:

 1 /D
0

() () ()K i ki K L
k K Mai a

i
H z z W E z H z  


 (5.18)

The odd stacked band-pass GDFT filter is therefore:

 1 11 /2 2
0

() () ()K i Di ki K L D
k K K Mai K a

i
H z z W W E z W H z   


 (5.19)

The resulting structure of the 2x oversampled odd stacked alternative narrowband FRM
GDFT-FB is illustrated in Figure 5.9

Figure 5.9 Odd stacked GDFT-FB with alternative narrowband FRM technology.

5.2.3.2 FPGA design
As usual for odd-stacked GDFT implementations, the filters at the input of the system
are subject to offline complex modulation at design time which yields complex filter
coefficients. This in turn requires the FPGA implementation to use ‘cross-coupled FIR
compiler blocks’ described in § 3.2.2.2 to implement the complex-valued coefficients.
The diagram of the FPGA implementation of odd stacked alternative narrowband GDFT-
FB is shown in Figure 5.10.

x(n) D
D
D
D
D

D

DFT

0 0

K-1 K-1

z-1

z-1

z-1

z-1

z-1

y0(n)
y1(n)
y2(n)
y3(n)
y4(n)

yK-1(n)

1
2nD

KW 

1
2nD

KW 

1
2nD

KW 

1
2nD

KW 

1
2 nD

KW 

1
2nD

KW 
/2

1()DFTL K
MaK KE z W 

/2
4 ()DFTL K

Ma KE z W 

/2
3 ()DFTL K

Ma KE z W 

/2
2 ()DFTL K

Ma KE z W 

/2
1()DFTL K

Ma KE z W 

/2
0 ()DFTL K

Ma KE z W  /()L D
aH z

/()L D
aH z

/()L D
aH z

/()L D
aH z

/()L D
aH z

/()L D
aH z

FRM and the GDFT-FB

 91

Figure 5.10 FPGA implementation of odd stacked alternative narrowband GDFT-FB

FRM and the GDFT-FB

 92

The alternative narrowband FRM design has a considerable reduction of complexity
compared to full FRM. Its structure is similar to the oversampled odd stacked GDFT-FB
except that there is one additional base filter at the output of each sub-band. Unlike filters
at the input to the DFT, these base filters do not need to be complex modulated and
therefore no complex valued coefficients are required.

The polyphase decomposition FIR filter 1
2()DK

Mai KE z W  is modulated to complex values.
The LDFT-1 zeros padding of coefficients are operated before that of the FIR filters (where
LDFT=K/D).
As part of the 2x oversampled GDFT-FB a frequency shifting state machine processes
the data with the 4 states described in § 4.2.4. As before, FIFOs are used to achieve a
steady stream of data from the FFT at the output sample rate.

5.3 Evaluation and results
In this chapter, we have designed the FPGA implementation of the full FRM DFT-
FB/GDFT-FB and alternative narrowband FRM DFT-FB/GDFT-FB. As in previous
chapters, the evaluation of these filter banks uses test signals based on the TETRA voice
and data, 25 kHz channel specifications. All signals and filter bank internal values are
quantized to 16-bit fixed point resolution. The evaluation focuses on sub-band frequency
response, EVM, performance with adjacent channel interference and hardware resource
usage (which ultimately defines how scalable the design is).
The FRM technique for filter design means that the prototype filters used here cannot be
identical to those in chapter 3 or chapter 4 although they have been designed to match
the specifications of those filters as closely as possible. Moreover, the alternative
narrowband FRM approach to filter design differs from the full FRM approach and
therefore these two FRM approaches have different prototype filter designs. For a 16-
channel full FRM GDFT-FB designed to meet the specifications in § 3.3.1.1, the order of
the base filter Ha is 20, the order of the masking filters Hma and Hmc is 145 each, and the
FRM interpolation factor L is 24. In contrast, for the equivalent 16-channel alternative
narrowband FRM GDFT-FB, the order of the base filter Ha is 41, the order of the masking

FRM and the GDFT-FB

 93

filter Hmc is 41, and the FRM interpolation factor L is 8. The full FRM design is critically
sampled whereas the alternative narrowband FRM design is oversampled by 2.
Odd and even-stacked variants of the filter banks will vary in hardware resource usage
and channel allocation but will be based on the same filters in either case. Therefore only
the filtering results of the odd stacked design are discussed here. The hardware usage is
evaluated for even and odd stacked designs separately.

5.3.1 Frequency response
The frequency response of one sub-band of the 16-channel based full FRM GDFT-FB is
shown in Figure 5.11. Zooming into the pass band, as shown in Figure 5.12, indicates
that the fixed point quantization has an impact on the pass band response. However the
passband ripple doesn’t increase much. It is about 0.312dB, compared to floating point
reference implementation’s 0.31dB, and this is still within the 2 dB specification.

Figure 5.11 Frequency response of the FPGA based full FRM GDFT-FB sub-band (blue) compared to the
equivalent floating point reference implementation (red)

Ma
gni

tud
e (d

B)

FRM and the GDFT-FB

 94

Figure 5.12 Passband comparison between the FPGA based full FRM GDFT-FB (blue) and its equivalent
floating point reference implementation (red)

The frequency response of the FPGA based 16-channel alternative narrowband FRM
GDFT-FB is shown in Figure 5.13. Since this design is oversampled by 2 the output
signal pass band only occupies half of the sub-band spectrum.

Figure 5.13 Frequency response of the FPGA based 16-channel alternative narrowband FRM GDFT-FB
(blue) compared to its floating point reference implementation (red)

Ma
gni

tud
e (d

B)
Ma

gni
tud

e (
dB

)

FRM and the GDFT-FB

 95

The pass band performance is shown in Figure 5.14. As usual, the 16-bit fixed point
quantization causes slightly increased pass band ripple (0.1 dB) compared to the floating
point reference (0.05 dB). This is still well within specifications (2 dB).

Figure 5.14 Passband comparison between the FPGA based alternative narrowband FRM GDFT-FB
(blue) and its floating point reference implementation (red)

Figure 5.15 shows that the 16-bit fixed point quantization error has very little effect on
the stop band performance. The frequency response of FPGA based design and the
floating point reference are mostly identical with 0.001 dB variance.

Figure 5.15 stop band comparison between the FPGA based alternative narrowband FRM GDFT-FB
(blue) and the equivalent floating point reference implementation (red)

Ma
gni

tud
e (

dB
)

Ma
gni

tud
e (

dB
)

FRM and the GDFT-FB

 96

5.3.2 EVM result
The EVM test was conducted as in previous chapters. Figure 5.16 shows the constellation
of the π/4 DQPSK modulation signal (at maximum signal level) from one sub-band of
the FPGA based full FRM GDFT-FB while Figure 5.17 shows the equivalent
constellation from the FPGA based alternative narrowband FRM GDFT-FB.
The constellations of both designs indicate acceptable receiving performance. It can also
be seen that the constellation points of the alternative narrowband FRM GDFT-FB are
more concentrated than those of the full FRM GDFT-FB indicating slightly better EVM
performance.
Table 5.1 lists the peak and RMS EVM using full FRM and alternative narrowband FRM
GDFT-FB.

Figure 5.16 The QPSK modulation constellation of the FPGA based full FRM GDFT-FB output (left),
and the QPSK modulation constellation of a reference floating point full FRM GDFT-FB output (right)

-1.5 -1 -0.5 0 0.5 1 1.5-1.5

-1

-0.5

0

0.5

1

1.5 Fixed point FPGA

-1.5 -1 -0.5 0 0.5 1 1.5-1.5

-1

-0.5

0

0.5

1

1.5 Floating point reference

FRM and the GDFT-FB

 97

Figure 5.17 The QPSK modulation constellation of the FPGA based alternative narrowband GDFT-FB
output (left), and the QPSK modulation constellation of a reference floating point alternative narrowband
GDFT-FB output (right)

Table 5.1 The EVM performance of both FPGA based designs: the 16-channel full FRM GDFT-FB and
the alternative narrowband GDFT-FB

 Full FRM GDFT-FB Alternative Narrowband
FRM

GDFT-FB
TETRA limits

 16-bit
FPGA

Floating
point

16-bit
FPGA

Floating
point

Peak 0.1364 0.1197 0.1018 0.0807 0.3
RMS 0.0487 0.0464 0.0392 0.0354 0.1

5.3.3 Adjacent channel interference
Adjacent channel interference was evaluated at several levels of C/Ia as in chapter 3, namely, -10 dB, -20
dB,-30 dB, -40 dB, -45 dB and -50 dB. The TETRA specification indicates that filtering result should
still meet the EVM requirements when C/Ia reaches – 45 dB.

Figure 5.18 and Figure 5.19 show the constellation of a single sub-band output from the
FPGA based full FRM GDFT-FB and alternative narrowband FRM GDFT-FB at different
adjacent channel interference levels. The detailed EVM results are presented in Table 5.2.
As usual, the data shows that EVM results degrade as the interference level increases.
Nevertheless, both the full FRM and alternative narrowband FRM designs meet the
TETRA specifications at -45 dB. Furthermore, alternative narrowband FRM GDFT-FB
still meet the TETRA limit at -50 dB adjacent channel level, but full FRM GDFT-FB

FRM and the GDFT-FB

 98

exceed the limit at this level. Therefore alternative narrowband GDFT-FB have a better
performance regarding to adjacent channel interference than critically and oversampled
GDFT-FB, and full FRM GDFT-FB.

Figure 5.18 Modulation constellation of the FPGA based full FRM GDFT-FB at different adjacent
channel interference levels

FRM and the GDFT-FB

 99

Figure 5.19 Modulation constellation of the FPGA based alternative narrowband GDFT-FB at different
adjacent channel interference levels

Table 5.2 EVM results of the FPGA based full FRM GDFT-FB and alternative narrowband FRM GDFT-
FB at different adjacent channel interference levels

 Full FRM GDFT-FB Narrowband FRM GDFT-FB Alt.
C/Ia (dB) Peak RMS Peak RMS

-10 0.1340 0.0489 0.0970 0.0386
-20 0.1511 0.0524 0.0983 0.0391
-30 0.1589 0.0528 0.1137 0.0404
-40 0.1858 0.0623 0.1374 0.0460
-45 0.2434 0.0829 0.1731 0.0578
-50 0.3326 0.1295 0.2396 0.0865

-2 -1 0 1 2-2
-1
0
1
2 -10 dB

-2 -1 0 1 2-2
-1
0
1
2 -20 dB

-2 -1 0 1 2-2
-1
0
1
2 -30 dB

-2 -1 0 1 2-2
-1
0
1
2 -40 dB

-2 -1 0 1 2-2
-1
0
1
2 -45 dB

-2 -1 0 1 2-2
-1
0
1
2 -50 dB

FRM and the GDFT-FB

 100

5.3.4 Hardware resource usage
The FPGA full FRM DFT-FB/GDFT-FB design uses multiple filters that each have fewer
coefficients than the single filter design of the basic DFT-FB/GDFT-FB. The FPGA based
alternative narrowband FRM DFT-FB/GDFT-FB eliminates one branch of the full FRM
design and moves the base filter to the output side of the DFT so that it operates at a
lower sample rate. This reduces the number of filters to be designed and the total number
of filter coefficients even further. However this design requires the output sub-bands to
be oversampled (by 2 in this evaluation) whereas the full FRM design uses critically
sampled output sub-bands.
Table 5.3 shows the hardware usage of full FRM GDFT-FB and alternative narrowband
FRM GDFT-FB based on FPGA. The data indicates that the alternative narrow band
FRM DFT-FB/GDFT-FB is more efficient in terms of FPGA resources than the full FRM
design, particularly in terms of DSP48s.
Table 5.3 Hardware usage of full FRM GDFT-FB and alternative narrowband FRM GDFT-FB

Filter-bank Type Register LUTs Block
RAM 36

Block
RAM 18

DSP48s

Even full FRM DFT-FB 2356 3379 0 6 31
Odd full FRM GDFT-FB 3098 3976 0 12 43

Even narrowband DFT-FB Alt. 1685 1814 2 0 9
Odd narrowband GDFT-FB Alt. 2120 2529 0 5 16

Per-channel approach 3993 2123 4 48 80
Available 301440 150720 416 832 768

5.4 Chapter conclusion
FRM is an efficient technique for reducing the complexity of a FIR filter by cascading
an interpolated base filter and a low order masking filter to achieve the desired response.
In this chapter FPGA implementations based on combining the FRM filter design
approach with the DFT-FB and GDFT-FB were introduced, in order to achieve more
efficient use of hardware resources and higher performance.

FRM and the GDFT-FB

 101

Firstly, the FPGA design of the full FRM and DFT-FB/GDFT-FB was implemented. In
comparison to the basic DFT-FB/GDFT-FB, this design requires two branches each
containing a polyphase decomposed filter and DFT to be implemented. The principal new
innovations required in the development were related to efficient implementation of
rather long delays at the input side of the filter bank (using a fractional clock divider and
FIFO) and a state machine which appropriately combined the output of the two branches
of the full FRM implementation to form the overall filter bank output.
The FPGA based alternative narrowband FRM technology was implemented as a further
optimization to have fewer filters to design and less complex filters with fewer
coefficients. In this case just one FRM path is required and the FRM base filter now
appears on the output side of the DFT. This change means that the base filter operates at
the output sub-band sample rate and only requires real-valued coefficients (whether the
filter bank is even or odd stacked). The principal additional innovation required to realise
this design was smoothing the rate at which sample data was supplied to the base filter
in each sub-band (from the short bursts of high rate data output by the FFT IP core). This
smoothing (and slowing down) of the data rate allows a more relaxed implementation of
the base filter that can serialize multiplications to reuse multiplier resources rather than
requiring additional multipliers running in parallel.
The simulation results show that the FPGA based alternative narrowband FRM GDFT-
FB has better EVM performance and adjacent channel interference resistance than the
critically sampled DFT-FB/GDFT-FB or its oversampled variants. On the other hand,
FPGA based full FRM GDFT-FB costs the most of hardware resources among all the
filter-banks presented in this work and has a worst EVM performance and adjacent
channel interference resistance, but it still meets the TETRA specification.

Scaled up Evaluation

 102

Chapter 6
Scaled up Evaluation
In chapter 3 ~ chapter 5, the FPGA architectures of a number of DFT-FB and GDFT-FB
were designed and implemented. In the evaluation sections of each of these chapter the
resource usage of the designs in 16-channel form was identified, as shown in Table 6.1.
Table 5.3 presents the results here again in aggregate form to simplify comparison.
Table 6.1 Hardware usage of all FPGA based 16-channel filter banks implemented to date
Filter-bank Type Register LUTs Block

RAM 36
Block
RAM 18

DSP48s
Critically sampled designs

Even DFT-FB 1223 838 0 8 5
Odd GDFT-FB 1435 1270 0 11 7

Oversampled designs
2x Even DFT-FB 1445 1503 0 7 8
2x Odd GDFT-FB 2121 1570 0 12 15

FRM based designs
Even full FRM DFT-FB 2356 3379 0 6 33
Odd full FRM GDFT-FB 3098 3976 0 12 43
Even narrowband DFT-FB
Alt.

1685 1814 2 0 9

Odd narrowband GDFT-FB
Alt.

2120 2529 0 5 16

Per-channel approach 3993 2123 4 48 80
Available 301440 150720 416 832 768

The results showed that, when meeting TETRA Voice and Data 25 KHz channel
requirements, the critically sampled DFT-FB and GDFT-FB performed equally to their
oversampled equivalents, but with less hardware resource usage. On the other hand,
although the full FRM GDFT-FB requires significantly more hardware resources than
any other implementation, it provides a worse EVM and adjacent channel interference
resistance. The results also showed that the alternative narrowband FRM DFT-FB/GDFT-

Scaled up Evaluation

 103

FB can even achieve better adjacent channel interference resistance than the basic DFT-
FB/GDFT-FB and requires far fewer filter coefficients. This latter feature is expected to
make the prototype filters for channelizing large numbers of channels easier to design
and implement. On the other hand, the alternative narrowband FRM was shown to
achieve the best DSP performance with not much more hardware resource usage than the
critically sampled designs in a 16-channel channelizer. It is possible that the alternative
narrowband FRM DFT-FB/GDFT-FB would have an even greater hardware efficiency
than the critically sampled DFT-FB/GDFT-FB when the design is scaled up to a larger
number of channels scenarios, because of the smaller individual filters.
For this reason, we will evaluate the critically sampled DFT-FB/GDFT-FB and alternative
narrowband FRM DFT-FB/GDFT-FB designs when used to implement a 256-channel
channelizer in this chapter.

6.1 Scaling up of filter-banks
6.1.1 Scaling up critically sampled DFT-FB/GDFT-FB to 256 channels
For the FPGA based critically sampled even-stack DFT-FB, scaling up to 256 channels
while retaining the same sub-band characteristics is straightforward: (1) The new
wideband sample rate must be determined—for 256 channels of 25 kHz each, this is 6.4
MHz; (2) A new higher order prototype filter must be designed for the increased sample
rate and the 16-bit quantized coefficients supplied to the FIR compiler IP core; (3) Finally,
the number of channels in the FIR compiler IP core and transform length in the FFT IP
core must be set to the increased number of channels.
For the odd stacked design the changes are identical except that the prototype filter
coefficients must additionally be subject to complex modulation as in equation (3.10),
then divided into their I and Q components and assigned to the correct FIR compiler IP
cores. In addition, the frequency shift state-machine which follows the FFT IP core must
be modified to handle the increased number of channels as well. Specifically, it must be
configured to read the number of channels (K = 256 in this case) samples each time before
changing state.

Scaled up Evaluation

 104

6.1.2 Scaling up alternative narrowband FRM DFT-FB/GDFT-FB to 256
channels

Scaling up the FGA based alternative narrowband FRM DFT-FB/GDFT-FB to 256
channels is very similar to the procedure for scaling up the critically sampled filter banks.
Since alternative narrowband FRM is based on an oversampled design and we choose a
2x oversampling, the prototype filter coefficients must be divided into two groups which
are assigned to different FIR blocks (see Figure 4.5).
The FIFOs, as shown in Figure 4.5, required to rearrange the output of the individual FIR
blocks to an input suitable for the FFT core must now be modified to read and hold D=128
samples, as the channel number increases to 256. As the selector state machine is still
compatible with 256 channel configuration, it remains the same.

6.2 Evaluation and Results
Similar to the evaluation of the 16-channel filter banks evaluated in previous chapters,
the evaluation of the 256-channel critically sampled DFT-FB/GDFT-FB and alternative
narrowband FRM DFT-FB/GDFT-FB examines the sub-band frequency response, EVM
characteristics, and response to adjacent channel interference. As before, the FPGA
hardware resource usage of the designs will also be compared.
The design and test setup is almost the same as described in § 3.3.1. The only difference
is the wide-band input signal contains 256 TETRA 25 kHz channels with a total of 6.4
MHz sample frequency.

6.2.1 Frequency response
6.2.1.1 Critically sampled GDFT-FB
Figure 6.1 shows the frequency response of FPGA based critically sampled GDFT-FB
sub-channel.

Scaled up Evaluation

 105

Figure 6.1 Frequency response of critically sampled GDFT-FB comparing the fixed point FPGA
implementation (blue) to the floating point reference implementation (red)

When zooming into the passband, shown in Figure 6.2, we can see that the fixed point
quantization error has a small impact on the passband characteristics. The passband ripple
increases to 0.2 dB, from about 0.01 dB of the floating point reference. However it still
is well within the 2 dB requirement of the TETRA specification.

Figure 6.2 Passband comparison between the FPGA based GDFT-FB (blue line) and floating point
reference implementation (red line)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
Normalized Frequency (rad/sample)

-70

-60

-50

-40

-30

-20

-10

0

Ma
gni

tud
e (d

B)

Magnitude Response (dB)

FPGA GDFT-FB
floating point

Ma
gni

tud
e (

dB
)

Scaled up Evaluation

 106

6.2.1.2 Alternative narrowband FRM GDFT-FB
Figure 6.3 shows the frequency response of the FPGA based alternative narrowband FRM
GDFT-FB which appears to be very close to the response of the reference
implementation. Figure 6.4 shows the passband detail comparison while Figure 6.5
shows the stopband detail comparison.

Figure 6.3 Frequency response of the FPGA based alternative narrowband FRM GDFT-FB (blue) and
floating point reference implementation (red)

Figure 6.4 Passband comparison between FPGA based alternative narrowband FRM GDFT-FB (blue)
and the floating point reference implementation (red line)

Ma
gni

tud
e (

dB
)

Ma
gni

tud
e (d

B)

Scaled up Evaluation

 107

Figure 6.5 Stop band comparison between the FPGA based alternative narrowband FRM GDFT-FB
(blue) and the floating point reference implementation (red)

We can see from these figures, that in the 256 channel configuration, the FPGA based
alternative narrowband FRM GDFT-FB can still achieve the required filter specifications,
as the passband ripple is about 0.2 dB and the stopband attenuation is just less than 59
dB, both within the 2 dB ripple and 55 dB attenuation requirement of the TETRA
specification.

6.2.2 EVM and adjacent channel interference
The EVM constellation of one sub-band of the critically sampled GDFT-FB and
alternative narrowband FRM GDFT-FB under maximum signal conditions is shown in
Figure 6.6.

Ma
gni

tud
e (

dB
)

Scaled up Evaluation

 108

Figure 6.6 The EVM constellation of critically sampled GDFT-FB and alternative narrowband FRM
GDFT-FB

The results data is presented in Table 6.2. Both filter-banks meet the TETRA
requirements as expected. It is worth noting that the alternative narrowband FRM GDFT-
FB has a better EVM performance than the critically sampled GDFT-FB.
Table 6.2 The EVM result of critically sampled GDFT-FB and alternative narrowband FRM GDFT-FB

 Critically sampled
GDFT-FB

Narrowband FRM
GDFT-FB Alt.

TETRA
requirement

Peak 0.1488 0.1190 <0.3
RMS 0.0550 0.0445 <0.1

The adjacent channel interference was assessed at the most stringent limit of the
specification when C/Ia= -45 dB. Figure 6.7 shows the constellations of both filter-bank
subjected to this adjacent channel interference. The results data is given in Table 6.3. The
results again indicate that both filter-bank designs meet the TETRA requirements. Again
the alternative narrowband FRM exhibits better performance here indicating that it could
potentially operate successfully at a higher level of adjacent channel interference.

Scaled up Evaluation

 109

Figure 6.7 The EVM constellation of the FPGA based critically sampled GDFT-FB and alternative
narrowband FRM GDFT-FB with C/Ia= -45 dB.

Table 6.3 The EVM result of critically sampled GDFT-FB and alternative narrowband FRM GDFT-FB
under -45 dB adjacent channel interference
 Critically sampled

GDFT-FB
Narrowband FRM

GDFT-FB Alt.
TETRA

requirement
Peak 0.2432 0.1896 <0.3
RMS 0.0813 0.0698 <0.1

6.2.3 Hardware resource usage
More channels cost more resources. Thus reusing hardware by running with a faster clock
is essential. Considering the trade-off between resources usage and available clock in
the practical system design, a 96 MHz clock rate is used in 256-channel evaluation.
The critically sampled DFT-FB/GDFT-FB and alternative narrowband FRM
implementations employ different numbers of filter coefficients because of the way their
filters are constructed. For the DFT-FB/GDFT-FB, the prototype filter as designed
required 8704 coefficients which is 34 per channel. In contrast, the alternative
narrowband FRM GDFT-FB only requires 768 coefficients for its masking filter, which
is 3 coefficients per channel. However there is also a base filter with 61 coefficients
required in each channel, but it can take advantages of the symmetric FIR structure to
save about half of the computational load. It is also worth mentioning that, for the even
stacked designs, all these coefficients are in real values. However, for the odd stacked
designs, the 34 taps in each channel of GDFT-FB are all complex valued, whereas the

Scaled up Evaluation

 110

odd stacked alternative narrowband FRM GDFT-FB only has 3 complex coefficients
from the masking filter in each channel. Even in the odd-stacked narrow band FRM
GDFT-FB, the base filter coefficients are real-valued.
Table 6.4 Resource usage comparison of critically sampled GDFT-FB and alternative narrowband FRM
GDFT-FB when configured for 256 channels
 Filter-types Slice

registers
Slice
LUTs

Block
RAM

36
Block
RAM

18
DSP48s

Even
stacked

Critically
sampled DFT-
FB

1386 1594 19 0 12

Narrowband
FRM DFT-FB
Alt.

1765 2281 15 10 14

Odd
stacked

Critically
sampled GDFT-
FB

1859 2579 38 0 22

Narrowband
FRM GDFT-FB
Alt.

2756 2989 17 12 20

Available 301,440 150,720 416 832 768
Table 6.4 shows the resource usage for the critically sampled GDFT-FB and alternative
narrowband FRM GDFT-FB with a clock rate of 96 MHz. The results suggest that the
upper bound capacity of the Virtex-6 development board would be most constrained by
the availability of DSP48 and Block RAM resources. For the even stacked channel
allocation, the alternative narrowband FRM GDFT-FB will require slightly more
resources: 2 more DSP48s are used compared to the critically sampled DFT-FB. However
in the odd stacked channel allocation, the alternative narrowband FRM GDFT-FB has the
advantage of requiring fewer complex operations. It uses 2 fewer DSP48s than the
critically sampled GDFT-FB. In addition, it also saves more than 1/3 of the Block RAM,
because Block RAM36 can be divided into 2 Block RAM18. This advantage could be
expected to increase with larger numbers of channels and hence larger order prototype
filters.

Scaled up Evaluation

 111

6.3 Chapter conclusion
In this chapter, we picked the best two FPGA designs – critically sampled GDFT-FB and
alternative narrowband FRM, from chapter 3 ~ 5, based on their filtering result and
hardware resources usage in a small scale 16-channel implementation. These designs
were then scaled up to 256-channel implementations to test their feasibility, to validate
the FPGA designs in a large multi-channel.
Then the steps and procedure to scale up the designs was described, in order to explain
the modifications and parameter changes required to achieve this.
At last, the 256-channel implementations were evaluated. The results indicate that the
filters necessary to meet the TETRA requirements could be both designed and physically
implemented using both the critically sampled DFT-FB/GDFT-FB and narrow band FRM
DFT-FB/GDFT-DB designs. It was also noted that for the filters as implemented, the
alternative narrowband FRM GDFT-FB has a potential ability to work at a higher levels
of adjacent channel interference than the critically sampled DFT-FB/GDFT-DB design.
If the wideband signal has an even stacked channel allocation, then the critically sampled
GDFT-FB might be a good choice, because it requires the least resources among all the
designs. If channels suffer severe adjacent channel interference, then the better resilience
of the alternative narrowband FRM GDFT-FB may be preferred with a small amount of
extra hardware usage.
For the wideband signal with odd stacked channel allocation, the alternative narrowband
FRM GDFT-FB is the best option. It has a better filtering result, and uses even fewer
hardware resources than odd stacked GDFT-FB.

Conclusions and future work

 112

Chapter 7
Conclusions and future work

7.1 Summary
In Chapter 2, a thorough introduction of the FPGA platform was presented. Its advantages
of parallel computing and design flexibility were the main reasons we chose to develop
the multirate DSP processing algorithms on this platform. Key FPGA elements, like
DSP48s and block RAMs, were introduced in order to help the understanding of the
hardware knowledge required for a FPGA design. The concept of Channelization was
also explained and was in preparation for the new filter-bank designs given in the
following chapter. Three types of channelization technologies were introduced. They are
(1) the per-channel approach, (2) the pipelined frequency transform, and (3) the
polyphase filter-bank. In the end, we chose the polyphaser filter-bank for the work due
to its higher computational efficiency.
In Chapter 3, an in-depth description of DFT-FB was given as it was necessary for
understanding how to proceed with the FPGA implementation. After that, we presented
the concept and detail of odd stacked GDFT-FB. Odd stacked GDFT-FB offers a better
spectrum usage by eliminating two of the half-bands at both ends of the even-stacking
channels. In the odd stacked GDFT-FB FPGA realization, the original DFT-FB FPGA
design is no longer valid because of the existence of complex coefficients which are due
to the GDFT modulation. A ‘cross coupling’ model is introduced and applied to the FPGA
architecture to deal with this. Other designs that allow the rest of the FPGA architecture
to facilitate the ‘cross coupling’ are given as well. Finally, a test simulation of a 16
channel FPGA DFT-FB and GDFT-FB is carried out. The results showed that these FPGA
filter-bank design have an acceptably good filtering result and continue to meet the
required standard.

Conclusions and future work

 113

In Chapter 4, to overcome the aliasing problem caused by the critically sampled
channelizer system, an oversampled design of even and odd stacked GDFT-FB is
discussed. The oversampled GDFT-FB is based on the generalized GDFT-FB concept.
However, the hardware implementation needs some significant alterations. First, a
mathematical expression for oversampled modification by grouping channels into
multiple FIR compilers is discussed and applied to the FPGA implementation. Secondly,
the parallel output from the multiple FIR compilers has to be serialized so that the FFT
can receive and process it. Finally, the odd stacked oversampled GDFT-FB design is
needed to be combined with the ‘cross coupling’ model described in Chapter 3. In the
final evaluation both 16 channels of an odd and even stacked oversampled GDFT-FB
based on a FPGA passed the simulation test. However, the oversampled GDFT-FB has
almost the same filtering result as the critically sampled GDFT-FB but with a greater
hardware usage.
In Chapter 5, FRM technology was applied to GDFT-FB FPGA design. FRM is one of
the computationally efficient approaches for designing a sharp FIR filter by cascading an
interpolated FIR filter and a FIR filter with a relaxed specification instead of designing
just one FIR with a very restricted specification. A new class of FRM FIR filter called
subclass I filter was employed in combination with the GDFT-FB design to get a full
FRM GDFT-FB. Also, the narrowband FRM technology was applied to an oversampled
GDFT-FB to get a very efficient alternative narrowband FRM GDFT-FB. In terms of its
FPGA realization, an arbitrary fragment clock divider was used to slow down the clock
in a precise manner to provide a slow clock to the shift register for optimization reasons.
Newly designed state machines were used to cope with any required frequency and phase
shifting. Lastly, a new FIFO to read and write at different rates helped slow down the
burst of samples and thus optimized the filtering process, which was also improved by
the use of a clock divider. Finally, in the FPGA simulation testing both full FRM GDFT-
FB and narrow-band FRM GDFT-FB give better filtering results than GDFT-FB.
However, full FRM used much more hardware resources, especially the odd stacked
version. Alternative narrowband FRM GDFT-FB is better as it only uses slightly more
resources than critically sampled GDFT-FB, but could have a potentially greater
hardware efficiency in cases with a large number of channels.

Conclusions and future work

 114

In Chapter 6, evaluations of the newly designed FPGA filter-banks for 256 channels were
presented. The method to scale up the filter-bank design was introduced first. After the
background of evaluation was given, the procedure of its testing and verification was
described. Next, we presented how we chose the parameter values for the channel
numbers and word-length. The results indicated that alternative narrowband FRM has a
better filtering result and uses less hardware than critically sampled GDFT-FB in the odd
stacked configuration. In an even stacked configuration, alternative narrowband FRM
could work at a higher interference level than critically sampled GDFT-FB, but with a
slightly greater resource usage.

7.2 Future work
The focus of this thesis was to implement new efficient and uniform channelizers based
on FPGAs. However, there is still room for improvements. Some possible options of the
future work are:

 Further efficiency of the FPGA uniform filter bank can be obtained from replacing
FIR filter by IIR filter with an approximately linear phase response as shown in
[10].

 Some non-uniform channelizers could be implemented based on the newly
designed filter-banks in this thesis, like P-GDFT and R-GDFT introduced in §
2.2.3, in order to reduce the hardware resources usage.

 Use multiple FIR compiler core combination to achieve 1024 channel or even
higher channel number of uniform channelizer, because FIR compiler has a limit
of 512 channels in maximum for polyphase filter-bank implementation.

 Design a complex FIR core that can process input samples with complex
coefficients. It could greatly simplify the design process for odd stacked
polyphase filters.

Conclusions and future work

 115

7.3 Conclusions
Polyphase filter-bank plays a signification role in the DSP system. It has been widely
studied during last 20 years. However, FPGA implementation studies of odd stacked
GDFT-FB and oversampled GDFT-FB is quite few in the literature. The FPGA
implementations of filter-banks with reconfigurable IP Cores are also rare. The work
presented in this thesis shows efficient development of filter-bank based on FPGA with
IP cores. At last, the more efficient technique, i.e., GDFT-FBs applied with FRM, which
is developed in [53], has also been implemented and evaluated in FPGA with IP Cores.
At first, we introduced the background to multirate signal processing, followed by FPGA
technology along with an explanation of its basic hardware architecture, and a discussion
on channelization (Chapter 2). In the thesis the DFT-FB algorithm was chosen for our
investigations and the basic implementation of an even stacked-FB with IP cores was the
starting point of the work presented here. In order to have a better spectrum usage, a
generalized version of DFT-FB was introduced, that is available to be modified to have
an odd stacked channel allocation (Chapter 3). To overcome problems of aliasing both
even and odd stacked oversampled GDFT-FBs have been implemented according to the
GDFT-FB concept (Chapter 4). An FPGA GDFT-FB extended with FRM technologies
was implemented as a further development of GDFT-FB, where FRM allowed us to
design a sharp filter using only a small number of coefficients (Chapter 5). The
procedures involved in implementing these channelizer systems and the subsequent
evaluation of results facilitated comparison between the different filter-banks. A 256-
channel scale up evaluation has been performed among the filter-banks, in order to
validate the DSP performance and feasibility in the practical industry system (Chapter
6).
The results show that odd-stacked GDFT-FB will require more hardware resources than
the DFT-FB design, due to the complex filtering requires more FPGA design. But it is
still very efficient compare to most of channelizer design. However, oversampled GDFT-
FBs achieve essentially the same result as critically sampled GDFT-FB, but use more
hardware resources. On the other hand, alternative narrowband FRM GDFT-FB only use
slightly more hardware recourses than DFT-FB with the even stacked configuration in
large number channels evaluation. While, in the odd stacked configuration, alternative

Conclusions and future work

 116

narrowband FRM GDFT-FB will require less hardware resources than GDFT-FB. The
result is consistent to the studies in [53].
During design and implementation of the uniform channelizer on FPGA, the following
details need to be considered carefully:

 In order to design a prototype filter for a FPGA based polyphase filter-bank to
meet the standard, we need to overdesign the prototype filter a little bit, because
the fixed point quantization error will has an impact to a filters passband ripple
and reduce the attenuation to the stopband.

 When designing a FPGA filter bank, we find that longer length FIR filter would
produce more distortion to the filter [68], as more coefficients will cause the
overflow to the fixed point accumulator of DSP48s.

 During design an odd stacked GDFT-FB based on FPGA, synchronization among
trigger signal ‘rdy’ and output from FIR core will be the biggest problem, because
complex filtering will cost extra delays comparing to even stacked design.

 During design an oversampled GDFT-FB based on FPGA, serialization of output
samples from multiple FIR blocks will be the biggest challenge, as these FIR
blocks will filter input samples in parallel. Thus FIFOs need to be design
independently according to number of samples per time and the length of delay.

 When designing odd stacked GDFT-FB and oversampled GDFT-FB, the output
samples from FIR cores may have different fractional length, due to the different
values of coefficients inserted. It is important to unite the 16 bit fixed point output
to have exactly the same factional length.

References

 117

References
[1] L. R. Rabiner and B. Gold, "Theory and application of digital signal processing,"

Englewood Cliffs, NJ, Prentice-Hall, Inc., 1975. 777 p., vol. 1, 1975.
[2] F. J. Harris, Multirate Signal Processing for Communication Systems: Prentice Hall

PTR, 2004.
[3] V. Strela, P. N. Heller, G. Strang, P. Topiwala, and C. Heil, "The application of

multiwavelet filterbanks to image processing," Image Processing, IEEE
Transactions on, vol. 8, pp. 548-563, 1999.

[4] F. Jabloun, A. E. Cetin, and E. Erzin, "Teager energy based feature parameters for
speech recognition in car noise," Signal Processing Letters, IEEE, vol. 6, pp. 259-
261, 1999.

[5] F. J. Harris, C. Dick, and M. Rice, "Digital receivers and transmitters using
polyphase filter banks for wireless communications," Microwave Theory and
Techniques, IEEE Transactions on, vol. 51, pp. 1395-1412, 2003.

[6] D. Y. Pan, "Digital audio compression," Digital Technical Journal, vol. 5, pp. 28-
40, 1993.

[7] A. P. Navarro, R. Villing, and R. J. Farrell, "Practical Non-Uniform Channelization
for Multistandard Base Stations," ZTE Communications, vol. 09, pp. 15-24, 2011.

[8] N. Fliege, "Computational efficiency of modified DFT polyphase filter banks," in
Signals, Systems and Computers, 1993. 1993 Conference Record of The Twenty-
Seventh Asilomar Conference on, 1993, pp. 1296-1300.

[9] M. Vetterli, "Filter banks allowing perfect reconstruction," Signal processing, vol.
10, pp. 219-244, 1986.

[10] M. Dehghani, R. Aravind, and K. Prabhu, "Design of M-channel IIR uniform DFT
filter banks using recursive digital filters," ETRI journal, vol. 25, pp. 345-355,
2003.

[11] B. Farhang-Boroujeny, "Filter bank spectrum sensing for cognitive radios," Signal
Processing, IEEE Transactions on, vol. 56, pp. 1801-1811, 2008.

[12] C. Dick and Y. Krikorian, "A system-level design approach for FPGA-based DSP
implementations," DSP World, Spring, 1999.

[13] N. S. Bhatia, "A Physical layer implementation of Reconfigurable Radio," 2004.
[14] P. K. Devi and R. S. Bhuvaneshwaran, "FPGA implementation of coefficient

decimated polyphase filter bank structure for multistandard communication
receiver," Journal of Theoretical and Applied Information Technology, vol. 64,
2014.

[15] A. Ambede, K. G. Smitha, and A. P. Vinod, "A new low complexity uniform filter
bank based on the improved coefficient decimation method," Radioengineering,
vol. 22, 2013.

[16] S. A. Fahmy and L. Doyle, "Reconfigurable polyphase filter bank architecture for
spectrum sensing," presented at the Proceedings of the 6th international conference
on Reconfigurable Computing: architectures, Tools and Applications, Bangkok,
Thailand, 2010.

[17] J. Lillington, "Comparison of Wideband Channelisation Architectures," in
International signal processing conference, Dallas, 2003.

References

 118

[18] P. Bricaud, Reuse methodology manual: for system-on-a-chip designs: Springer
Science & Business Media, 2012.

[19] GVR. (2014). FPGA (Field-Programmable Gate Array) Market Analysis By
Application (Automotive, Consumer Electronics, Data Processing, Industrial,
Military And Aerospace, Telecom) And Segment Forecasts To 2020. Available:
http://www.grandviewresearch.com/industry-analysis/fpga-market

[20] R. Joost and R. Salomon, "Advantages of FPGA-based multiprocessor systems in
industrial applications," in Industrial electronics society, 2005. IECON 2005. 31st
annual conference of IEEE, 2005, p. 6 pp.

[21] J.-P. Delahaye, G. Gogniat, C. Roland, and P. Bomel, "Software radio and dynamic
reconfiguration on a DSP/FPGA platform," Frequenz, vol. 58, pp. 152-159, 2004.

[22] D. Bester, J. Du Toit, and J. Enslin, "High performance DSP/FPGA controller for
implementation of computationally intensive algorithms," in Industrial Electronics,
1998. Proceedings. ISIE'98. IEEE International Symposium on, 1998, pp. 240-244.

[23] W. Wang, M. Swamy, and M. Ahmad, "Low power FIR filter FPGA
implementation based on distributed arithmetic and residue number system," in
Circuits and Systems, 2001. MWSCAS 2001. Proceedings of the 44th IEEE 2001
Midwest Symposium on, 2001, pp. 102-105.

[24] A. Tolmachev, M. Orbach, M. Meltsin, R. Hilgendorf, T. Birk, and M. Nazarathy,
"Real-time FPGA implementation of efficient filter-banks for digitally sub-banded
coherent DFT-S OFDM receiver," in Optical Fiber Communication Conference
and Exposition and the National Fiber Optic Engineers Conference
(OFC/NFOEC), 2013, 2013, pp. 1-3.

[25] J. Garcia and R. Cumplido, "On the design of an FPGA-Based OFDM modulator
for IEEE 802.11 a," in Electrical and Electronics Engineering, 2005 2nd
International Conference on, 2005, pp. 114-117.

[26] K.-C. Liu, W.-C. Lin, and C.-K. Wang, "A pipelined digital differential matched
filter fpga implementation and vlsi design," in Custom Integrated Circuits
Conference, 1996., Proceedings of the IEEE 1996, 1996, pp. 75-78.

[27] J. Rose, A. E. Gamal, and A. Sangiovanni-Vincentelli, "Architecture of field-
programmable gate arrays," Proceedings of the IEEE, vol. 81, pp. 1013-1029, 1993.

[28] U. Meyer-Baese and U. Meyer-Baese, Digital signal processing with field
programmable gate arrays vol. 65: Springer, 2007.

[29] i. Xilinx, "Virtex-6 FPGA DSP48E1 Slice," i. Xilinx, Ed., v1.3 ed, 2011.
[30] S. Palnitkar, Verilog HDL: a guide to digital design and synthesis vol. 1: Prentice

Hall Professional, 2003.
[31] S. W. Smith, "The scientist and engineer's guide to digital signal processing," 1997.
[32] R. Yates, "Fixed-point arithmetic: An introduction," Digital Signal Labs, vol. 81,

p. 198, 2009.
[33] "IEEE Standard for Floating-Point Arithmetic," IEEE Std 754-2008, pp. 1-70,

2008.
[34] K. C. Zangi and R. D. Koilpillai, "Software radio issues in cellular base stations,"

Selected Areas in Communications, IEEE Journal on, vol. 17, pp. 561-573, 1999.
[35] R. Regulations, "International Telecommunication Union," Radiocommunication

Sector. ITU-R. Geneva, 2008.
[36] T. Hentschel, "Channelization for software defined base-stations," in Annales des

Telecommunications, 2002, pp. 386-420.
[37] T. Hentschel, Sample rate conversion in software configurable radios: Artech

House, 2002.

References

 119

[38] J. Lillington, "RF Engines Limited White Paper,“The Pipelined Frequency
Transform (PFT)(PFR architecture and comparisons with FFT/digital down-
converter techniques)”, Reference No," PFT, vol. 1, pp. 1-14.

[39] P. Vaidyanathan, "Quadrature mirror filter banks, M-band extensions and perfect-
reconstruction techniques," ASSP Magazine, IEEE, vol. 4, pp. 4-20, 1987.

[40] H. Scheuermann and H. Göckler, "A comprehensive survey of digital
transmultiplexing methods," Proceedings of the IEEE, vol. 69, pp. 1419-1450,
1981.

[41] R. E. Crochiere and L. R. Rabiner, Multirate Digital Signal Processing: Prentice-
Hall, 1983.

[42] N. Fliege, Multirate digital signal processing: multirate systems, filter banks,
wavelets: Wiley, 1994.

[43] A. P. Navarro, T. Keenan, R. Villing, and R. Farrell, "Non-uniform channelization
methods for next generation SDR PMR base stations," in Computers and
Communications (ISCC), 2011 IEEE Symposium on, 2011, pp. 620-625.

[44] Y. Neuvo, C.-Y. Dong, and S. K. Mitra, "Interpolated finite impulse response
filters," Acoustics, Speech and Signal Processing, IEEE Transactions on, vol. 32,
pp. 563-570, 1984.

[45] L. Yong Ching, "Frequency-response masking approach for the synthesis of sharp
linear phase digital filters," Circuits and Systems, IEEE Transactions on, vol. 33,
pp. 357-364, 1986.

[46] S. Radhakrishnan Pillai and G. H. Allen, "Generalized magnitude and power
complementary filters," in Acoustics, Speech, and Signal Processing, 1994.
ICASSP-94., 1994 IEEE International Conference on, 1994, pp. III/585-III/588
vol.3.

[47] H. Johansson, "New classes of frequency-response masking FIR filters," in Circuits
and Systems, 2000. Proceedings. ISCAS 2000 Geneva. The 2000 IEEE
International Symposium on, 2000, pp. 81-84 vol.3.

[48] E. ETSI, "300 392-2 V3. 2.1 (2007-09) Terrestrial Trunked Radio (TETRA),"
Voice plus Data, vol. 500.

[49] E. ETSI, "300 394-1 (V3. 1.1):" Terrestrial Trunked Radio (TETRA),"
Conformance testing specification.

[50] P. Stavroulakis, Terrestrial trunked radio-TETRA: a global security tool: Springer
Science & Business Media, 2007.

[51] P. D. Fiore, "Low-Complexity Implementation of a Polyphase Filter Bank," Digital
Signal Processing, vol. 8, pp. 126-135, 4// 1998.

[52] S. Berner and D. Leon, FPGA-based filter bank implementation for parallel digital
signal processing: National Aeronautics and Space Administration, 1999.

[53] Á. Palomo‐Navarro, R. J. Farrell, and R. Villing, "Combined FRM and GDFT filter
bank designs for improved nonuniform DSA channelisation," Wireless
Communications and Mobile Computing, 2015.

[54] IP. LogiCORE, "FIR Compiler v5. 0, Xilinx," Inc., San Jose, CA, USA, 2010.
[55] K. W. Martin, "Complex Signal Processing is Not Complex," IEEE Transactions

on Circuits and Systems I: Regular Papers, vol. 51, pp. 1823-1836, 2004.
[56] I. Koren, Computer arithmetic algorithms: Universities Press, 2002.
[57] P. L. De Leon, "On the use of filter banks for parallel digital signal processing," in

7th NASA Symposium on VLSI Design,(Albuquerque, NM), 1998.
[58] E. Satorius, W. Ying-Wah, B. LaRocca, and J. Kosinski, "Implementation of

Polyphase Channelizers for Multirate Signal Analysis," in Signals, Systems and

References

 120

Computers, 2006. ACSSC '06. Fortieth Asilomar Conference on, 2006, pp. 1170-
1174.

[59] H. Johansson and T. Saramäki, "Two-Channel FIR Filter Banks Utilizing the FRM
Approach," Circuits, Systems and Signal Processing, vol. 22, pp. 157-192,
2003/03/01 2003.

[60] P. S. R. Diniz, L. C. R. Barcellos, and S. L. Netto, "Design of cosine-modulated
filter bank prototype filters using the frequency-response masking approach," in
Acoustics, Speech, and Signal Processing, 2001. Proceedings. (ICASSP '01). 2001
IEEE International Conference on, 2001, pp. 3621-3624 vol.6.

[61] S. L. Netto, P. S. R. Diniz, and L. C. R. Barcellos, "Efficient implementation for
cosine-modulated filter banks using the frequency response masking approach," in
Circuits and Systems, 2002. ISCAS 2002. IEEE International Symposium on, 2002,
pp. III-229-III-232 vol.3.

[62] L. Rosenbaum, P. Lowenborg, and H. Johansson, "Cosine and sine modulated FIR
filter banks utilizing the frequency-response masking approach," in Circuits and
Systems, 2003. ISCAS '03. Proceedings of the 2003 International Symposium on,
2003, pp. III-882-III-885 vol.3.

[63] Á. P. Navarro, "Channelization for Multi-Standard Software-Defined Radio Base
Stations," Unpublished doctoral thesis, National University of Ireland Maynooth,
2011.

[64] L. Rosenbaum, P. Lowenborg, and H. Johansson, "An Approach for Synthesis of
Modulated -Channel FIR Filter Banks Utilizing the Frequency-Response Masking
Technique," EURASIP Journal on Advances in Signal Processing, vol. 2007, p.
068285, 2007.

[65] L. Gu, N. Zhou, and H. Li, "Research of Frequency Divider Based on
Programmable Logic Device," Procedia Environmental Sciences, vol. 10, pp. 820-
824, 2011.

[66] S. W. Zhang and C. Zhao, "Design for realizing arbitrary fractional divider based
on FPGA which duty cycle is up to 50%," in Applied Mechanics and Materials,
2013, pp. 1653-1657.

[67] P. P. Vaidyanathan, Multirate systems and filter banks: Prentice-Hall, Inc., 1993.
[68] R. Yates, "Practical considerations in fixed-point fir filter implementations,"

Digital Signal Labs, Technical Reference, 2007.

