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Summary 

The hippocampus and medial prefrontal cortex are two brain regions which have 

repeatedly been linked to spatial learning and memory processing; however, the 

precise roles of individual sub-regions within these areas continue to be debated. The 

Morris water maze is a well-known behavioural task used to measure spatial 

memory. Despite its popularity, the type of spatial information animals encode and 

ultimately rely on for accurate navigation in this task remains unclear. Therefore, the 

primary objectives of this thesis were to conduct an in-depth investigation into the 

use of navigation strategies during memory encoding and retrieval in the water maze, 

and to characterise the specific contributions of the hippocampus and medial 

prefrontal cortex to these processes using Immediate Early Genes (IEG) imaging. In 

addition, we investigated the mechanisms underlying neuronal activation by 

inhibiting ionotropic glutamate receptors (NMDA and AMPA) during or after spatial 

learning. We found novel evidence that the salience (or noticeability) of 

environmental cues significantly impacted the type of learning strategy used (i.e. 

simple or complex), and that increased training led to more flexible responding (i.e. 

strategy switching). We also discovered that NMDA receptor-mediated activation in 

area CA1 (indexed by Zif268) was tightly linked to learning-related plasticity, and 

activation in CA3, prelimbic and anterior cingulate cortices was strongly associated 

with flexible spatial memory recall (i.e. pattern completion). Finally, we revealed 

that spatial memory deficits induced by NMDA receptor blockade could be partially 

prevented by extended environmental experience.  
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1.1. Memory and navigation 

Understanding how memories are instantiated in the brain remains one of the 

greatest challenges in the field of neuroscience. Current knowledge about memory 

processing has been informed by three broad strands of research: experimental 

analyses of learning and memory, studies of brain damage patients and the use of 

animal models (Nadel & Hardt, 2011). Collectively, these investigations have led to 

the classification of distinct memory systems, first according to length of storage 

(short-term or long-term), and subsequently by type (explicit or implicit) (Squire, 

1986, 2004; Tulving, 1972). Explicit (or declarative) memory denotes the acquisition 

and recall of facts and events, later defined as semantic and episodic memory, 

respectively. Semantic information can be considered to represent the ‘what’ of 

memory, while episodic memory represents the ‘where’ and ‘when’ (Tulving, 2002). 

Implicit (or non-declarative) memory refers to learning in the absence of conscious 

awareness; for example, motor skill learning and priming (Squire, 2004). It is 

generally agreed that the medial temporal lobe of the brain, including the 

hippocampus, is crucial for recently acquired declarative memories, but not for non-

declarative memories (see Good, 2002 for a review). One type of declarative 

memory which has been the subject of intense investigation and debate – particularly 

with regard to underlying brain mechanisms – is spatial memory (Eichenbaum & 

Cohen, 2014). 

 

1.2. Theories of navigation 

Spatial navigation is a fundamental behaviour shared by almost all animal species on 

our planet. The ability to navigate a complex environment requires constant 

coordination of sensory and proprioceptive information, learning and memory 
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processes, and planning (Chersi & Burgess, 2015; Penner & Mizumori, 2012). 

Human and non-human animals can avail of a variety of spatial strategies to 

navigate. These are broadly divided into two types: egocentric and allocentric 

(Burgess, 2008). Egocentric strategies generally involve learning the positions of 

objects or destinations in space relative to the navigator themselves. As such, no 

external cues are needed; instead, the animal uses stable self-motion cues, i.e. 

vestibular and kinaesthetic, to learn a fixed trajectory to the target (de Bruin, Moita, 

de Brabander, & Joosten, 2001; Tamara, Leffel, & Timberlake, 2010). This type of 

strategy is also termed path integration or dead reckoning (Cheung, 2014; Etienne & 

Jeffery, 2004). In addition, egocentric navigation can refer to procedural responding 

(termed ‘taxon’ learning). This entails learning to move towards a beacon cue which 

directly marks the goal location from a well-rehearsed start position (Chersi & 

Burgess, 2015; Liu, Turner, & Bures, 1994; O'Keefe & Nadel, 1978). Egocentric 

strategies are not considered to be strictly spatial in nature because the animal is not 

required to encode information about spatial relationship between the cue and the 

goal (or any other information about their environment); rather, it must only learn to 

associate movements towards the cue with reaching the target (Rodrigo, 2002).  

 In contrast, allocentric strategies involve learning spatial locations with 

reference to predictive environmental cues; accordingly, they are independent of the 

position of the navigator (Tamara et al., 2010). Using this kind of strategy, the 

animal navigates to a given destination by learning the spatial relationship between 

the available cues and the target (known as ‘place’ learning) (O'Keefe & Nadel, 

1978; Rodrigo, 2002). Importantly, place learning is thought to culminate in the 

formation of internal representation or ‘cognitive map’ of the environment (Chersi & 

Burgess, 2015; O'Keefe & Nadel, 1978; Poucet, 1993; Tolman, 1948). Although the 
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precise definition continues to change, a cognitive map can broadly be defined as a 

global, unitary, mental representation of the spatial layout of an environment and all 

cues therein, which allows for flexible planning and navigating of novel routes 

(Ishikawa & Montello, 2006; Schinazi, Nardi, Newcombe, Shipley, & Epstein, 

2013).  

Support for the cognitive map proposal came from the discovery of ‘place 

cells’ in the hippocampus of rats (O'Keefe & Dostrovsky, 1971), and later in humans 

(Ekstrom et al., 2003). Place cells are a special class of cell that become active when 

an animal enters specific locations in the environment, which are known as a ‘place 

fields’ (O'Keefe & Dostrovsky, 1971). Place fields are formed within minutes of an 

animal being introduced into an environment and can be maintained robustly for up 

to 153 days (Thompson & Best, 1990; Wilson & McNaughton, 1993). In addition, 

modifying the environment (e.g. rotating or removing cues, or changing the borders 

or floor) has been shown to alter place fields (Cressant, Muller, & Poucet, 1999; 

Hetherington & Shapiro, 1997; Muller & Kubie, 1987). Importantly, place fields 

appear to be reliant on distal cues but not beacons; that is, rotating a distal cue results 

in a corresponding rotation of the place fields, while rotating proximal cues has no 

effect (Cressant et al., 1999). This suggests that the activation of place cells is 

directly related to complex, spatial processing. More recently, different types of 

spatial cells have been identified. These include boundary cells (which are most 

active when the animal is positioned at the edge of the environment; Hartley, 

Burgess, Lever, Cacucci, & O'Keefe, 2000), head direction cells (which respond to 

the animal’s facing direction; Taube, Muller, & Ranck, 1990), and grid cells (which 

fire in multiple evenly spaced locations, forming a grid-like pattern; Moser & Moser, 

2008). Similar to place cells, grid cell firing fields rotate in response to rotations of 
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distal cues (Hafting, Fyhn, Molden, Moser, & Moser, 2005). A number of additional 

spatial cell types have also been documented in the primate hippocampus and 

surrounding areas, including those which are responsive to specific views, goal 

locations and path directions (Ekstrom et al., 2003; Jacobs, Kahana, Ekstrom, 

Mollison & Fried, 2010).  

 Although there is strong physiological evidence that animals encode spatial 

information about the layout of the environment, the question of whether or not such 

representations are in fact ‘global’ (i.e. viewer-independent) continues to be debated 

(Benhamou, 1997; Shettleworth, 1999; Wang & Spelke, 2002). For example, 

Shapiro, Tanila and Eichenbaum (1997) showed that place fields could be 

significantly altered by rotating or removing a sub-set of available cues, or just a 

single cue. This finding argues against the idea of a global map, and suggests instead 

that spatial representations are linked to particular cues in the environment. 

Furthermore, it has been argued that map-like representations are unnecessary, and 

that successful navigation can be achieved using simpler processes. The most 

prominent opposing theory to the cognitive map hypothesis is associative learning 

(Pearce & Hall, 1980; Rescorla & Wagner, 1972; Rudy & Sutherland, 1995; 

Sutherland & Rudy, 1989). Based on the principles of Pavlovian conditioning 

(Pavlov, 1927), associative learning theory proposes that, over time, stored 

representations of elements in the environment (e.g. cues) become associated with 

specific actions or outcomes (e.g. sequences of movements towards a goal) 

(Hamilton, Driscoll, & Sutherland, 2002; Honey, Iordanova, & Good, 2014). These 

associations can be simple, whereby animals learn the spatial relationship between 

individual cues and the goal separately, or complex, which involve learning about a 

group of cues and their relationship to the goal (Sutherland & Rudy, 1989) (see 
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Chapter 3 for further description of the different types of associative learning 

theories).  

Importantly, associative learning theory emphasises the formation of 

associations as required by the navigator (Leising & Blaisdell, 2009). Therefore, 

although both associative and cognitive mapping theories assume that allocentric 

spatial information is learned and represented in the brain, the two are not analogous 

(Mackintosh, 2002). Rather, the former are conceptualised as a collection of 

fragmented local views, or scenes, remembered from various locations in the 

environment, while the latter asserts that these scenes are combined to form a 

cohesive global representation (Ishikawa & Montello, 2006; Leonard & 

McNaughton, 1990; Rodrigo, 2002). Further, associative learning theory posits that 

spatial representations are stored in the cortex, and that the hippocampus contributes 

to spatial processing by enhancing activation of these representations (Rudy & 

Sutherland, 1995). One additional important distinction is that associative learning 

theory predicts ‘cue competition’ effects during learning. That is, cues which are 

more useful to the navigator (e.g. offer more reliable information about the location 

of the goal) will acquire greater control over behaviour than other, less useful cues 

(Diviney, Fey, & Commins, 2013; Redhead, Roberts, Good, & Pearce, 1997). From 

a cognitive map standpoint, these competitive effects should not emerge because all 

cues are thought to be incorporated spontaneously into the map, and thus, any 

combination of cues should allow for accurate navigation (Chamizo, 2002;  Morris, 

1981; Sánchez-Moreno, Rodrigo, Chamizo, & Mackintosh, 1999).  

Contrary to cognitive mapping theory, two separate cue competition effects, 

known as ‘blocking’ and ‘overshadowing’, are well-documented in the literature 

(Chamizo, 2002). Blocking occurs where the presence of one cue during initial 
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learning delays or inhibits learning about a second cue presented subsequently 

(Kamin, 1969). This effect can also be reversed; that is, cues can be ‘unblocked’, if 

the location of the cues in relation to the goal is altered (Rodrigo, Arall, & Chamizo, 

2005). Blocking has been demonstrated across species (Biegler & Morris, 1999; 

Cheng & Spetch, 2001; Hamilton & Sutherland, 1999; Miller & Escobar, 2002; 

Redhead et al., 1997). For example, Hamilton et al. (1999) demonstrated that 

participants initially trained to locate a hidden platform using four cues in a virtual 

navigation task failed to learn about four novel cues during a second training phase, 

and could not navigate to the goal location when only these novel cues were present. 

Stahlman and Blaisdell (2009) illustrated a comparable effect in rats, whereby pre-

training with a beacon inhibited animals’ ability to navigate using a second beacon 

introduced later.  

Overshadowing is a similar phenomenon which denotes the inhibition of 

learning about one cue by a co-occurring cue, which is deemed more useful for 

finding the goal (Chamizo, Sterio, & Mackintosh, 1985). Overshadowing effects 

have also been observed in both human and non-human animals (Chamizo, 

Manteiga, Rodrigo, & Mackintosh, 2006; Chamizo & Rodrigo, 2004; Redhead, 

Hamilton, Parker, Chan, & Allison, 2013; Redhead et al., 1997; Sanchez-Moreno, 

Rodrigo, & Chamizo, 1999). For example, Chamizo and colleagues (2006) showed 

that rats navigating in the Morris water maze learned more about a cue positioned 

near to a hidden platform than similar cues located farther away, indicating that the 

near cue overshadowed the other cues. There a variety of factors which are known to 

influence which cues will overshadow others. These include the proximity between 

the cue and the target, with closer cues typically overshadowing farther cues 

(Redhead et al., 2013; Spetch, 1995), and the type of cues available, e.g. intra-maze 
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cues (textured flooring) or room cues surrounding the environment (Chamizo et al., 

1985; March, Chamizo, & Mackintosh, 1992).  

Importantly, it has been suggested that – instead of being reliant on one type 

of representation – spatial memory is supported by multiple representations in 

parallel, including both egocentric (self-motion and taxon learning) and allocentric 

(place learning via spatial representations) (Burgess, 2008). Concurrent use of 

strategies in rats has been observed in previous work from our laboratory via in-

depth analyses of navigational behaviour (Harvey et al., 2008). Specifically, animals 

trained to find a hidden platform in the water maze were shown to rely on an 

egocentric strategy (i.e. movements towards particular cues) supported by allocentric 

learning (i.e. ‘scanning’ of the overall environmental layout). Over time, reliance on 

egocentric behaviours decreased, presumably as rats acquired a more stable spatial 

representation of the cue arrangement relative to the goal (Harvey et al., 2008). A 

similar effect was documented by Hamilton et al. (2004) using the egocentric 

(visible platform) version of the Morris water maze task. The authors demonstrated 

sequential use of strategies, whereby rats first employed an allocentric strategy by 

orienting relative to the available distal cues; once closer to the target, animals 

switched to an egocentric strategy using the platform itself as a beacon (Hamilton et 

al., 2004).  

Much research has been carried out to investigate the conditions under which 

particular strategies become more dominant. One of the most robust findings is that 

egocentric strategies will be preferred when proximal cues (positioned close to the 

goal) are available (Carman & Mactutus, 2002; Cheng & Spetch, 1995; Harvey, 

Brant, & Commins, 2009). As the distance between the cue and the target increases, 

animals will typically decrease their dependence on procedural responding and 
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become more reliant on the surrounding configuration of cues (Tamara et al., 2010). 

In a systematic examination of cue proximity, Chamizo and Rodrigo (2004) revealed 

that rats can accurately locate a target using a single beacon positioned up to 110cm 

away from the goal. When the distance is greater than this, rats require additional 

information (e.g. the direction in which to travel) in order to navigate effectively 

using an allocentric strategy (Chamizo & Rodrigo, 2004; Mackintosh, 2002; Vorhees 

& Williams, 2014).  

In addition, the reliability of the information provided by cues can have a 

significant influence on the strategy employed (Maaswinkel & Whishaw, 1999; 

Shettleworth & Sutton, 2005). That is, animals will use distal cues so long as they 

offer consistent spatial information about the goal location (Timberlake, Sinning, & 

Leffel, 2007). For example, Maaswinkel and Whishaw (1999) reported that forging 

rats preferentially used visual or olfactory cues when they were available, but could 

rely self-motion cues if necessary. However, animals may not always be able to 

switch between strategies; Kealy et al. (2008) found that rats trained with visual cues 

in the water maze for an extended period (12 days) were impaired when these cues 

were removed, despite both the start position and target remaining fixed. 

Accordingly, the precise factors governing the type of spatial information an animal 

will encode and utilise during navigation to a goal remain somewhat unclear.  

 

1.3. The Morris water maze task 

There are a variety of laboratory-based tasks that can be used to probe spatial 

processing in animals (Paul, Magda, & Abel, 2009). The most popular of these for 

examining rodent navigation is the Morris water maze task (Morellini, 2013). The 

water maze, originally developed by Richard Morris (1981), is an aversively 
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motivated task consisting of a circular pool of opaque water and a platform (the goal 

location) which is submerged just below the surface of the water in a fixed location, 

rendering it hidden to the navigating animal. The aim of the standard spatial 

reference version of task is for the animal to locate the hidden platform using a 

collection of distal cues which surround the maze. To acquire the task, the animal 

typically receives multiple training trials over a number of days, wherein they 

gradually learn the spatial relationship between the cues and the platform, eventually 

enabling them to find the goal. Spatial memory retrieval can subsequently be tested 

by removing the platform and examining where animals search during a probe trial.   

 The water maze has several advantages over other, land-based tasks such as 

the radial-arm maze (Olton & Samuelson, 1976) and the Y-maze (Conrad, Galea, 

Kuroda, & McEwen, 1996). For example, task acquisition does not require the 

animal to be food deprived, and the presence of water eliminates the potential use of 

confounding information such as olfactory or auditory cues (D’Hooge & De Deyn, 

2001). Further advantages include fast and reliable learning, the absence of non-

performers, and the elimination of any effects arising from differences in body 

weight (Vorhees & Williams, 2014). The main disadvantage of this task is its 

stressful nature, due to rodents’ natural aversion to water (Vorhees & Williams, 

2014). However, the stress induced under normal learning conditions is thought to be 

mild. Specifically, Kavushansky, Vouimba, Cohen and Richter-Levin (2006) 

measured levels of corticosterone in rats following training with a visible platform, a 

hidden platform, or no platform (forced swim test). The authors found that 

corticosterone was elevated in the group trained with no platform, i.e. where there 

was no escape from the water, indicating heightened stress in these animals only.  
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One final advantage of the water maze is that the ambiguity of this task – 

where effective navigation is not merely based on a single defined path – allows for 

an investigation of multiple navigational strategies (Kelly & Gibson, 2007; Penner & 

Mizumori, 2012). In addition to the standard version of the task which taxes 

allocentric spatial navigation, egocentric (or non-spatial) learning can also be 

assessed. This can involve training without cues  (prompting the use of idiothetic 

information; Moghaddam & Bures, 1996), or training with a visual platform or a 

single beacon (via a taxon strategy; Morris, 1981; Roberts & Pearce, 1999). Working 

memory can also be examined by relocating the hidden platform to a new location on 

each day of training (Steele & Morris, 1999). In addition to navigational behaviour, 

the water maze can also be applied to the study of underlying brain mechanisms 

(Whishaw, 1985b). Since its development, the maze has been extensively used to 

examine the importance of specific brain areas for different types of spatial learning 

and memory (D’Hooge & De Deyn, 2001). Finally, the water maze has most recently 

been applied to human navigation using a virtual reality protocol, thereby 

demonstrated its cross-species relevance to the study of navigation (Driscoll, 

Hamilton, Yeo, Brooks, & Sutherland, 2005; Hamilton et al., 2002; Kelly & Gibson, 

2007). 

 

1.4. Brain regions involved in spatial learning and memory 

A myriad of research over the past few decades has identified multiple brain regions 

which are thought to be important for representing space and enabling navigation. 

Chief among these is the hippocampal formation, which is widely accepted as a 

crucial structure for successful spatial memory processing (Burgess, Maguire, & 

O'Keefe, 2002; Morris, Garrud, Rawlins, & O'Keefe, 1982; O'Keefe & Nadel, 1978).  
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1.4.1. Hippocampal formation 

1.4.1.1. Anatomy 

The hippocampal formation is located in temporal lobe of the cerebral cortex. It 

comprises three distinct regions: the hippocampus proper, the dentate gyrus and the 

subiculum (Amaral & Lavenex, 2007). The hippocampus proper can, in turn, be 

divided into three separate fields based on the size and distribution of their cells; 

these include Cornus Ammonis 1 (CA1), Cornus Ammonis 2 (CA2) and Cornus 

Ammonis 3 (CA3) (Amaral & Witter, 1989). The term ‘hippocampus’ typically 

refers to the hippocampus proper and the dentate gyrus (see Figure 1.1).  

 

 

Figure 1.1: Left: schematic diagram of the position of the hippocampus in the brain 

including dorsal and ventral regions; Right: A coronal slice of the dorsal 

hippocampus and its sub-regions including CA1, CA3 and the dentate gyrus. 

Adapted from Barry (2013) and Witter and Amaral (2004).  

 

The principal cell types of the hippocampus proper and dentate gyrus are the 

pyramidal cell and the granule cell, respectively (Amaral, Scharfman, & Lavenex, 

2007; Lavenex & Amaral, 2000). The hippocampus receives input from the 

entorhinal cortex via the perforant path; projections to area CA1 and the subiculum 

originate mainly from cells in layer III and those to area CA2, CA3 and the dentate 
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gyrus originate from the cells in layer II (Amaral et al., 2007; Gigg, 2006). Area 

CA2 is the least well defined region and has been referred to as a transitionary zone 

between CA1 and CA3 cellular layers (Stubley-Weatherly, Harding, & Wright, 

1996). The dentate gyrus is connected to the hippocampal formation via the mossy 

fibers (axons originating from the granule cells) which project to area CA3; 

projections from area CA3 pyramidal cells include the Schaffer collaterals which 

comprise the major projection to area CA1 (Amaral & Lavenex, 2007). Cells in area 

CA3 are also highly interconnected, forming a system of associational connections 

or ‘recurrent collaterals’ (Amaral & Lavenex, 2007). Cells in area CA1 project to the 

subiculum and to the deep layers of the entorhinal cortex (Naber, Lopes da Silva, & 

Witter, 2001). The unidirectional circuit from the entorhinal cortex through the 

hippocampus (dentate gyrus to CA3 to CA1) is known as the trisynaptic pathway 

(Amaral & Witter, 1989). Finally, area CA1 receives inputs from the perirhinal 

(Aggleton, Kyd, & Bilkey, 2004) and medial prefrontal cortices (Rajasethupathy et 

al., 2015).   

 

1.4.1.2. Role in spatial learning and memory 

Since the discovery of place cells over 40 years ago, the hippocampus has repeatedly 

been linked to spatial learning and memory. Collective evidence from lesion studies 

has revealed that rats tasked with navigating to a hidden platform in the water maze 

without a functioning hippocampus are impaired at both encoding and retrieval 

stages (Deacon & Rawlins, 2002; Dolleman-van der Weel, Morris, & Witter, 2009; 

Mogensen, Moustgaard, Khan, Wortwein, & Nielsen, 2005; Morris et al., 1982; 

Sutherland & Rodriguez, 1989). Moreover, performance deficits in lesioned animals 

have been shown to increase according to the spatial complexity of the task (Save & 
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Poucet, 2000). In contrast, hippocampal lesioned rats are unimpaired at navigating to 

a visible platform in the water maze (de Bruin et al., 2001; Morris et al., 1982; Save 

& Poucet, 2000). Additionally, Riedal and colleagues (1999) reported that temporary 

pharmacological inactivation of the hippocampus during water maze acquisition 

caused rats to swim randomly. The authors also showed that when the hippocampus 

was inactivated after training, rats continued to be impaired, exhibiting focused but 

inaccurate search patterns (Riedel et al., 1999). Together, these results indicate that 

an intact hippocampus is necessary for flexible place learning (i.e. when a 

representation of the environment is encoded), but not for taxon learning, in line with 

cognitive mapping theory (Poucet, 1993). However, they are also consistent with 

revised associative learning theory (Rudy & Sutherland, 1995), which posits that the 

hippocampus is involved in processing complex (but not simple) associative 

representations stored in the cortex.  

Similar results have been documented in humans. Astur, Taylor, Mamelak, 

Philpott, and Sutherland (2002) tested patients with unilateral hippocampal damage 

in the hidden platform version of the virtual water maze and found that all patients 

displayed severe deficits in learning and remembering the goal location relative to a 

matched control group with no damage and a group of patients with extra-

hippocampal lesions. Findings from neuroimaging studies also support the central 

role of the hippocampus in navigational processing. For example, Maguire and 

colleagues (2000) carried out a structural fMRI analysis of a group of expert 

navigators (London taxi drivers) and a control group (with no experience of driving 

taxis). The authors noted significantly enlarged posterior hippocampi in the experts, 

and a positive correlation between hippocampal size and time spent as a taxi driver 

(Maguire et al., 2000). In keeping with these results, a study by Schinazi, Nardi, 
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Newcombe, Shipley and Epstein (2013) showed that the size of the right posterior 

hippocampus predicted participants’ proficiency at using recently acquired spatial 

knowledge about a real-world large-scale environment. More recently, work by 

Spiers and colleagues has provided specific evidence that the human hippocampus 

and entorhinal cortex are particularly engaged in processing direction and distance to 

the goal (Chadwick, Jolly, Amos, Hassabis, & Spiers, 2015; Howard et al., 2014). 

Within the hippocampus, a functional distinction has been made between 

dorsal and ventral regions. Specifically, lesions to the dorsal hippocampus in rodents 

reliably produce severe deficits in spatial learning and memory, as well as spatial 

working memory, while ventral lesions have little or no effect on performance 

(Bannerman et al., 2002; Bannerman et al., 1999; Hock & Bunsey, 1998; Moser, 

Moser, & Andersen, 1993; Moser, Moser, Forrest, Andersen, & Morris, 1995; 

Potvin, Allen, Thibaudeau, Dore, & Goulet, 2006; Zhang, Pothuizen, Feldon, & 

Rawlins, 2004). On the other hand, ventral lesions lead to an attenuated anxiety 

response, indicating that this region is more involved in processing anxiogenic 

stimuli (Bannerman et al., 2003; McHugh, Deacon, Rawlins, & Bannerman, 2004). 

Of particular note, Moser and colleagues (1995) illustrated that spatial learning in the 

water maze could be achieved with only 26% of the hippocampus, provided that the 

remaining tissue was at the dorsal pole. The proportion of place cells in the ventral 

hippocampus is also lower than that of the dorsal hippocampus, and the place fields 

are less selective (Jung, Wiener, & McNaughton, 1994). Importantly, the posterior 

hippocampus in humans is considered to be the mammalian analogue of the dorsal 

region in rodents; as such, results from human studies (e.g. Maguire et al., 2000; 

Schinazi et al., 2013) lend further support to this functional segregation.  
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 In addition, discrete sub-regions within the dorsal hippocampus also appear 

to play subtly different roles in spatial learning and memory (Kesner, Lee, & Gilbert, 

2004). Focal lesions to area CA1 have been shown to impede spatial working 

memory performance in the Y-maze (Dillon, Qu, Marcus, & Dodart, 2008) and place 

learning in the water maze (Okada & Okaichi, 2009; Stubley-Weatherly et al., 1996). 

Further, Hunsaker, Fieldsted, Rosenberg and Kesner (2008) found that deficits in 

processing spatial locations were specific to lesions of dorsal CA1 region in rats. 

Importantly, rats with CA1 lesions resulting in 50% cellular loss have been shown to 

perform as poorly as those with 88% cellular damage to area CA3, suggesting that 

CA1 may be more engaged in encoding (Stubley-Weatherly et al., 1996). Moreover, 

while lesions to CA1, CA3 and dentate gyrus regions in rats all disrupt memory for 

metric information (i.e. learned distances between available distal cues), only CA1 

lesions affect topographical memory (i.e. representations of the overall cue 

arrangement) (Goodrich-Hunsaker, Hunsaker, & Kesner, 2008); again, this indicates 

that CA1 is particularly important for processing complex spatial representations. 

Bartsch and colleagues (2010) demonstrated a similar effect in patients with focal 

damage to area CA1. Specifically, participants were profoundly impaired at learning 

the location of the goal in a virtual water maze task, and performance deficits were 

positively correlated with lesion size (Bartsch et al., 2010). Finally, Rondi-Reig et al. 

(2006) tested CA1 knockout mice (lacking N-methyl-D-aspartate (NMDA) 

receptors) in a novel water star-maze task which taxed allocentric and egocentric 

strategy use. The authors found that while control mice could reach the platform 

using both strategies, knockout mice acquired neither, suggesting that CA1 also 

facilitates the use of multiple types of memory representations (Rondi-Reig et al., 

2006). 
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 In contrast to CA1, the role of CA3 in spatial encoding and retrieval is less 

clear, with lesion studies yielding equivocal results. For example, Stubley-Weatherly 

and colleagues (1996) showed that CA3 lesions impaired water maze performance in 

rats. Florian and Roullet (2004) found analogous deficits following temporary 

inactivation of CA3 before training. However, others have demonstrated accurate 

place learning in CA3 lesioned animals (Nakazawa et al., 2002; Okada & Okaichi, 

2009; Steffenach, Sloviter, Moser, & Moser, 2002; Sutherland, Whishaw, & Kolb, 

1983). Similarly, memory retrieval deficits have been reported in CA3 lesioned rats. 

Brun and colleagues (2002) found evidence for a functional segregation of areas 

CA1 and CA3. Using a lesion approach in rodents, the authors showed that removal 

of CA3 had no effect on place fields in CA1 or spatial recognition memory for goal 

locations (measured in the annular water maze). Conversely, recall of goal locations 

and routes towards them (tested in the standard water maze) depended on an intact 

CA3 sub-region. Together, these results suggest that CA1 supports spatial location 

encoding, while CA3 is required for memory recall (Brun et al., 2002). However, 

such effects have failed to be replicated following pre-testing pharmacological 

inactivation (Florian & Roullet, 2004) or genetic ablation of CA3 cells in mice 

(Nakazawa et al. 2002).  

Area CA3 may be particularly important for rapid acquisition of novel spatial 

information (Rolls & Kesner, 2006). More specifically, deletion of NMDA receptors 

in CA3 prevents mice from learning a novel platform location in the water maze, 

despite normal performance when tested with previously learned locations 

(Nakazawa et al., 2003). Lee and Kesner (2002) found similar deficits in working 

memory with mice treated with selective CA3 injections of NMDA channel blocker 

APV. More specifically, mice were impaired on a previously acquired delayed-non-
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matching-to-place task when tested on the same task in a novel environment (i.e. a 

different experimental room). Crucially, selective inactivation of CA1 or the dentate 

gyrus had no effect in the novel environment (Lee & Kesner, 2002). A further study 

by Lee, Rao and Knierim (2004) revealed that rotation of distal cues led to 

comparable shifts in CA3 place fields on first exposure to the novel environment 

(day 1), whereas place fields in CA1 were slower to change (day 2 onwards). 

Together, results strongly imply that CA3 facilitates the rapid formation of spatial 

representations.   

During retrieval, CA3 is thought to mediate recall of stored information 

patterns when faced with partial inputs; a process known as pattern completion 

(Marr, 1971). A simple example of this would be training rats to find a hidden 

platform in the water maze using a distal cue arrangement, and subsequently testing 

them with only a sub-set of the original training cues. Area CA3 is considered to be 

particularly suited to this process due to its recurrent collaterals, which are said to 

enable reconstruction of an intact memory trace (Rolls & Kesner, 2006). Supporting 

evidence for this suggestion has been found in rodents (Fellini, Florian, Courtey, & 

Roullet, 2009; Jo et al., 2007; Nakazawa et al., 2002; Vazdarjanova & Guzowski, 

2004) and humans (Deuker, Doeller, Fell, & Axmacher, 2014; Schapiro, Kustner, & 

Turk-Browne, 2012).  

Interesting, Vazdarjanova and Guzowski (2004) found that – in addition to 

playing an important role in pattern completion – CA3 is also involved in pattern 

separation. Pattern separation refers to the process of separating spatially similar 

memories into distinct representations (Marr, 1971; Morris, Churchwell, Kesner, & 

Gilbert, 2012). Specifically, rats were exposed to two different environments with a 

30 minute interval in between; in some cases the environments differed mildly from 
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one another (e.g. cues were moved), and in others the environments were markedly 

distinct (e.g. novel objects in a new testing room). Using a novel gene-based imaging 

approach (Arc/H1a catfish), the authors were able to monitor activation of neuronal 

ensembles in CA3 and CA1 as the animals explored. They found greater overlap of 

activated neurons in CA3 relative to CA1 when the environmental changes were 

small, indicative of pattern completion; in contrast, less overlap was seen in CA3 

(compared to CA1) when the environments were drastically different, in line with 

pattern separation (Vazdarjanova & Guzowski, 2004).  

 Regarding the dentate gyrus, studies in rodents have shown that lesions to 

this sub-region lead to impaired acquisition and recall of both spatial reference and 

working memory tasks (Jeltsch, Bertrand, Lazarus, & Cassel, 2001; Nanry, Mundy, 

& Tilson, 1989; Okada & Okaichi, 2009; Sutherland et al., 1983; Walsh, Schulz, 

Tilson, & Schmechel, 1986; Xavier, Oliveira-Filho, & Santos, 1999). Okada and 

Okaichi (2009) and Sutherland and colleagues (1983) noted that dentate gyrus 

lesions caused greater navigation deficits than lesions to other sub-regions of the 

hippocampus. Further, Nanry et al. (1989) and Xavier et al. (1999) highlighted that 

rats with dentate gyrus lesions tested in the water maze exhibited comparable deficits 

to rats with complete hippocampal lesions. Together, these results indicate that the 

dentate gyrus is particularly important for spatial information processing. This could 

reflect its anatomical connectivity; specifically, because the dentate gyrus receives 

input from the entorhinal cortex and projects to CA3, it is in a position to control the 

flow of information within the hippocampus (Xavier et al., 1999).  

Finally, the dentate gyrus has also been implicated in pattern separation 

(Kesner et al., 2004; Rolls, 2010). Studies have demonstrated that lesions to the 

dentate gyrus disrupt pattern separation in tasks of spatial working memory (Gilbert, 
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Kesner, & Lee, 2001; Goodrich-Hunsaker et al., 2008). For example, Goodrich-

Hunsaker and colleagues (2008) demonstrated that rats with dentate gyrus lesions 

were unable to detect changes in distance between two objects, as evidenced by 

reduced exploration for displaced objects relative to control rats. Importantly, such 

deficits were not observed following lesions to areas CA1 or CA3, indicating that the 

dentate gyrus is specifically required for discriminating between similar spatial 

representations (Gilbert et al., 2001; Goodrich-Hunsaker et al., 2008). Recently, 

Morris et al. (2012) examined the role of the dentate gyrus in pattern separation for 

spatial reference memory using a place learning paradigm in the radial arm maze. 

Rats were trained to discriminate between a rewarded arm and a non-rewarded arm 

which were either next to each other (adjacent condition) or separated by two arms 

(separate condition). Results showed that in the separate condition, where the degree 

of overlap between spatial cues was low, lesion and control groups acquired the task 

at comparable rates. However, when the spatial overlap between cues was increased 

in the adjacent condition, lesioned rats took significantly longer to reach learning 

criterion relative to controls. These findings demonstrate that the dentate gyrus 

facilitates the formation of distinct memory representations when there is a high 

degree of spatial similarly (Morris et al., 2012).   

 Collectively, evidence to date strongly supports the integral role of the 

hippocampus in spatial processing. However, evidence of accurate navigation in the 

absence of this region has been reported (Pouzet, Zhang, Feldon, & Rawlins, 2002). 

In one study, Morris, Schenk, Tweedie and Jarrad (1990) found that hippocampal 

lesioned rats eventually learned to navigate via an allocentric strategy in the water 

maze, although they did not reach the same performance levels as control animals. 

Stubley-Weatherly and colleagues (1996) reported similar effects in CA1 and CA3 
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lesioned animals, i.e. acquisition improved over the course of training but rats 

remained impaired relative to controls. In addition, a retention study by Whishaw 

(1985a) revealed that fimbria-fornix lesioned rats retained some memory for a 

learned target location after prolonged training in the water maze (31 days), but not 

after standard five-day training. Taken together, these findings indicate that the 

hippocampus is not exclusively responsible for encoding and retrieval of spatial 

memories, and that its role in spatial processing may decrease with greater 

environmental experience.  

 

1.4.2. Medial prefrontal cortex 

The medial prefrontal cortex has also been implicated in spatial information 

processing (Simons & Spiers, 2003). Evidence strongly suggests that memories 

become increasingly dependent on the medial prefrontal region over time (Frankland 

& Bontempi, 2005). However, its importance for processing recently acquired spatial 

memories continues to be debated.  

 

1.4.2.1. Anatomy 

Current opinion remains divided as to whether or not rodents possess a prefrontal 

cortical region analogous to humans and other primates (Kesner, 2000; Uylings, 

Groenewegen, & Kolb, 2003). However, the prefrontal cortex of the rat can be 

separated anatomically into medial, orbital and lateral areas (Ongur & Price, 2000). 

Within the medial prefrontal cortex, there are four sub-regions; from dorsal to 

ventral, these are the medial agranular, anterior cingulate, prelimbic and infralimbic 

cortices (Hoover & Vertes, 2007; Ongur & Price, 2000) (see Figure 1.2). Each sub-

region of the medial prefrontal cortex projects to the others, although the infralimbic 
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cortex receives comparatively fewer inputs from other medial prefrontal areas, with 

the prelimbic cortex being its primary source of afferent projections (Hoover & 

Vertes, 2007). The medial prefrontal cortex also receives projections from 

entorhinal, perirhinal, retrospenial and posterior parietal cortices, as well the 

hippocampus (Agster & Burwell, 2009; Hoover & Vertes, 2007; Kolb & Walkey, 

1987; Valenti & Grace, 2009). Hippocampal inputs from area CA1 and the 

subiculum target prelimbic and infralimbic regions in particular (Hoover & Vertes, 

2007; Jay & Witter, 1991; Laroche, Davis, & Jay, 2000). The infralimbic cortex also 

receives strong afferent projections from the amygdala (McDonald, Mascagni, & 

Guo, 1996; Vertes, 2004).  

 

 

Figure 1.2: Medial view of the brain showing the location of the medial prefrontal 

cortex including anterior cingulate, prelimbic, and infralimbic sub-regions. Adapted 

from Burwell and Amaral (1998). Medial agranular cortex not shown.  

 

1.4.2.2. Role in spatial learning and memory 

In comparison to the hippocampus, the importance of the medial prefrontal cortex 

for spatial memory is less well characterised. Most of the research investigating its 

role in navigation has focused on spatial working memory. Lesions to the medial 

prefrontal cortex have been shown to impair this capacity on a range of delayed 
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response tasks in rodents (Granon & Poucet, 1995; Kesner, Hunt, Williams, & Long, 

1996; Kolb, Buhrmann, McDonald, & Sutherland, 1994; Lee & Kesner, 2003; 

Wikmark, Divac, & Weiss, 1973). Lesions to the prelimbic/infralimbic cortices in 

particular, produce severe deficits (Delatour & Gisquet-Verrier, 2000; Ragozzino & 

Kesner, 1998), while anterior cingulate (Ragozzino, Adams, & Kesner, 1998) and 

agranular insular lesions have little effect (Ragozzino & Kesner, 1999). In an 

additional study, Granon and Poucet (1995) trained rats with medial prefrontal 

lesions in a modified version of the water maze task wherein the number of start 

positions was increased from one to four in consecutive stages. Results revealed that 

animals were impaired at locating the platform when tested from four distinct start 

positions, and poor performance was specific to the two most recently introduced 

platform locations. This was thought to be reflective of a working memory deficit 

which prevented rats from encoding a sufficient representation of all movements 

needed to reach the goal (Granon & Poucet, 1995). Similarly, prefrontal lesions have 

also been shown to impair working memory performance in humans, wherein the 

patient is required to maintain a goal destination as they navigate (Ciaramelli, 2008).  

 The role of the medial prefrontal cortex in place learning and spatial 

reference memory has received less attention. Initial electrophysiological recordings 

of prefrontal cells indicated that neuronal firing patterns in this region were not 

associated with animals’ position or head direction (Jung, Qin, McNaughton, & 

Barnes, 1998; Poucet, 1997). However, a more recent study by Hok, Save, Lenck-

Santini and Poucet (2005) showed that a sizeable proportion of cells in the 

prelimbic/infralimbic area (25% of cells analysed) had place fields. A smaller 

proportion of place cells were also found in the dorsal anterior cingulate region (4%). 

However, these place fields displayed less spatial coherence and were larger in size 
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compared to those of hippocampal cells. In addition, their distribution was not 

homologous; that is, place fields were mainly distributed at goal locations, indicating 

that cells in the prefrontal cortex encode spatial information about relevant places (or 

goals) in the environment (Hok et al., 2005).  

 The effects of lesions to the medial prefrontal cortex on spatial reference 

learning in the water maze are varied. For example, Lacroix, White and Feldon 

(2002) reported that medial prefrontal lesions had no impact on spatial acquisition of 

the water maze using an allocentric strategy. Similar results were also found by de 

Bruin and colleagues (de Bruin et al., 2001; de Bruin, Sanchez-Santed, Heinsbroek, 

Donker, & Postmes, 1994) and Compton, Griffith, McDaniel, Foster and Davis 

(1997). In contrast, a series of experiments by Mogensen et al. and Kolb et al. 

showed allocentric navigation was initially somewhat impaired in rats with medial 

prefrontal lesions, although animals eventually learned the task in some cases (Kolb, 

Sutherland, & Whishaw, 1983; Mogensen, Lauritsen, Elvertorp, Hasman, 

Moustgaard, & Wortwein, 2004; Mogensen, Pedersen, Holm, & Bang, 1995; 

Sutherland, Kolb, & Whishaw, 1982).  

 In support of these findings, recent research by Woolley and colleagues 

showed that prefrontal activation in both mice (measured by gene expression) and 

humans (using fMRI) was increased during initial encoding of the traditional and 

virtual water maze task, respectively (Woolley et al., 2013). Evidence for prefrontal 

involvement in egocentric navigation in the water maze has also been found (Ethier, 

Le Marec, Rompre, & Godbout, 2001; Mogensen et al., 2005). In addition, medial 

prefrontal lesions produce deficits in spatial reversal learning in the water maze, 

wherein the platform is moved to a new location in the middle of training (Kolb, 

Nonneman, & Singh, 1974). To accomplish this task, animals must inhibit their 
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original learning about the platform’s location and encode the new target position. 

The failure of prefrontal lesioned rats to complete this task suggests a deficit in 

flexible responding, i.e. the ability to adopt a new strategy when the learned one 

becomes ineffective (Jones, Groenewegen, & Witter, 2005; Lacroix, White, & 

Feldon, 2002). 

Several studies have reported deficits consistent with this idea. Ragozzino, 

Wilcox, Raso and Kesner (1999) inactivated prelimbic/infralimbic or dorsal anterior 

cingulate regions before training rats in spatial and cued versions of the cheeseboard 

task, which is similar a dry land version of the Morris water maze (the order of the 

tasks was counterbalanced). They found acquisition of both versions was unaffected 

by prelimbic/infralimbic or anterior cingulate inactivation; however, the former did 

impair rats’ learning when they were required to switch between strategies, 

regardless of which version was presented second (Ragozzino, Wilcox, et al., 1999). 

These findings have been replicated with mice in the water maze (Latif-Hernandez et 

al., 2015) and rats in the cross maze (Ragozzino, Detrick, & Kesner, 1999). 

Interestingly, Floresco, Block and Tse (2008) demonstrated that, when the medial 

prefrontal cortex is inactivated, relative difficulty of tasks significantly impacts 

animals’ ability to switch between them. Specifically, rats were trained on two 

discrimination tasks: visual-cue (i.e. always press the lever below a light cue) and 

response (i.e. always press the lever on the left; considered the more difficult task of 

the two). Results showed that inactivation of the medial prefrontal region impaired 

performance when rats were required to switch from the visual cue to the more 

demanding response task, but not vice versa (Floresco et al., 2008). Such behavioural 

flexibility is considered functionally similar to executive functioning in humans 

which is mediated by the dorsolateral prefrontal cortex (Granon & Poucet, 2000).  
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 An additional study by Jo and colleagues (2007) investigated prefrontal 

involvement in behavioural flexibility and strategy switching. The authors tested rats 

with lesions to the medial prefrontal cortex (or to area CA3) in a hidden platform 

task under full and partial cue conditions. For the full cue condition, rats were tested 

with four distal training cues. For the partial cue condition, three of the cues were 

removed, leaving only one distant cue. Both prefrontal and CA3 lesion groups 

showed poor retrieval under partial, but not full, cue conditions. Temporary 

inactivation of the medial prefrontal cortex with infusions of muscimol administered 

before testing also produced impairments under partial cue conditions. Based on 

their results, Jo et al. (2007) proposed that the medial prefrontal cortex contributes to 

pattern completion processes during memory retrieval. More specifically, this region 

may be necessary to integrate the degraded memory provided by the hippocampus 

with additional inputs from the cortex, thereby producing a more complete 

representation which can be used to navigate to the target (Hok et al., 2005; Jo et al., 

2007; Rudy, Biedenkapp, & O'Reilly, 2005).  

 Although studies aimed at investigating the specific roles of medial prefrontal 

sub-regions in spatial processing are limited, a functional distinction has been made 

between dorsal and ventral areas (Gisquet-Verrier, Winocur, & Delatour, 2000; 

Uylings et al., 2003). Dorsal areas (agranular insular and anterior cingulate cortices) 

are thought to be involved in motor behaviours (Dalley, Cardinal, & Robbins, 2004). 

For example, anterior cingulate lesions have been shown to cause impairments in 

temporal ordering of movements in space, i.e. when executing complex routes to a 

goal location (Eichenbaum, Clegg, & Feeley, 1983; Kesner, 2000; Kolb, 1984; 

Sutherland, Whishaw, & Kolb, 1988). In contrast, ventral regions (prelimbic and 

infralimbic cortices) have been implicated in a range of mnemonic processes, e.g. 
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task switching (Dalley et al., 2004). In keeping with the evidence outlined above, a 

recent study by Rich and Shapiro (2009) showed that place cell activity in prelimbic 

and infralimbic sub-regions was altered during spatial and non-spatial task switching 

in rats. The prelimbic cortex is thought to be particularly important for behavioural 

flexibility when task or attentional demands are high (Granon & Poucet, 2000). In 

comparison, the precise function of the infralimbic cortex is less clear. However, 

some evidence suggests that this area is important for emotional responding, 

particularly with regard to fear-related behaviours (Dalley et al., 2004; Hoover & 

Vertes, 2007; Uylings et al., 2003).  

 

1.4.3. Connectivity between brain regions 

The hippocampus and medial prefrontal cortex are highly interconnected (see Figure 

1.3). Until recently, these connections were thought to be unidirectional, i.e. 

hippocampus to medial prefrontal cortex (Hoover & Vertes, 2007; Laroche et al., 

2000). However, Rajasethupathy and colleagues (2015) discovered a direct return 

projection from the prefrontal cortex – primarily from the anterior cingulate area –  

to the CA3/CA1 region in mice.  
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Figure 1.3: Diagram showing the direct interconnectivity of the hippocampal and 

medial prefrontal sub-regions examined in this thesis. Summarised from Agster and 

Burwell (2009), Amaral and Lavenex (2007), Burwell and Amaral (1998), Hoover 

and Vertes (2007), and Rajasethupathy et al. (2015).  

 

Accordingly, it is reasonable to assume that hippocampal-prefrontal 

interactions are fundamental to spatial memory processing. In the last ten years, a 

number of studies have reported evidence in support of this suggestion. For example, 

Churchwell, Morris, Musso and Kesner (2010) demonstrated that disconnection of 

CA1 and the medial prefrontal cortex impaired encoding and retrieval of allocentric 

spatial memory in the Hebb-Williams maze, a task involving navigation to a food 

reward. Wang and Cai (2008) reported analogous effects in the water maze, whereby 

inactivation of the CA1-prelimbic circuit in rats resulted in significant performance 

deficits. This is consistent with an earlier finding by Kyd and Bilkey (2003), which 

showed that hippocampal place cell firing was altered by medial prefrontal lesions.  

 Together, results strongly suggest that functional interactions between the 

hippocampus and medial prefrontal cortex are essential for adaptive behaviour 

during encoding and retrieval of spatial representations (Churchwell et al., 2010). 

Finally, it should be noted that these regions represent only part of a wider brain 
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network thought to underlie navigational behaviour (Jenkins, Amin, Harold, Pearce, 

& Aggleton, 2003). More specifically, hippocampal and prefrontal regions are both 

connected (directly and/or indirectly) with the retrospenial, perirhinal and entorhinal 

cortices (Aggleton & Brown, 2005; Aggleton et al., 2004; Agster & Burwell, 2009; 

Hoover & Vertes, 2007; Valenti & Grace, 2009; Wyss & Van Groen, 1992), all of 

which likely contribute during one or more stages of spatial processing.  

 

1.5. Mechanisms underlying memory formation 

Synaptic plasticity is widely accepted as the physiological basis of memory storage 

in the brain (Collingridge, Isaac, & Wang, 2004). Synaptic plasticity refers to 

changes in the strength of the synapses between two cells. These changes can be 

positive or negative, resulting greater or less efficient information transfer. Persistent 

changes in synaptic strength are considered to underlie long-term memory 

(Lamprecht & LeDoux, 2004). The most prominent synaptic model of long-term 

memory formation is long-term potentiation (LTP), which has predominantly been 

studied in the hippocampus (Bliss & Collingridge, 1993). LTP was first described by 

Bliss and Lomo (1973) who noted a long-lasting increase in synaptic strength in the 

rabbit dentate gyrus following high-frequency stimulation. Since then, LTP has 

reliably been observed at synapses throughout the brain, including the prefrontal 

cortex (Zhuo, 2014), and has been shown to last from anywhere between one hour to 

one year (Abraham, 2003).  

LTP is consistent with the physiological requirements of Hebb’s theory of 

memory formation (1949) which states that when two neurons are repeatedly active 

at the same time, the connection between them will strengthen, such that subsequent 

activation of one neuron leads to activation of the other. According to the synaptic 
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tagging hypothesis, LTP can be divided into early and late phases (Frey & Morris, 

1997). During early LTP, a short term increase in synaptic strength occurs  in the 

absence of protein synthesis (lasting a few hours), causing structural changes to the 

synapses which act as a ‘tag’ for the later stage; in late LTP, these structural changes 

are stabilised via protein synthesis (Redondo & Morris, 2011). A second form of 

long-term synaptic plasticity has also been found. This is known as long-term 

depression (LTD), and refers to a prolonged reduction in neuronal excitability which 

can be induced by low frequency stimulation (Bear & Abraham, 1996; Lynch, 

Dunwiddie, & Gribkoff, 1977). LTD has also been shown to play an important role 

in spatial processing; Ge and colleagues (2010) found that an LTD-blocking 

glutamate antagonist impaired memory consolidation in the water maze.  

Whether synapses show LTP or LTD is thought to depend on the absolute 

post-synaptic change in Ca
2+

. That is, strong activation of NMDA receptors leads to 

large increases in Ca
2+

 (yielding a post-synaptic response above a critical threshold) 

which triggers LTP, whereas slower, more modest activation of NMDA receptors 

results in smaller increases in Ca
2+

 (less than the critical value) which leads to LTD 

(Dudek & Bear, 1992). According to the Bienenstock–Cooper–Munro (BCM) theory 

of bidirectional synaptic plasticity, the induction thresholds for LTP and LTD are 

dynamically adjusted to the level of previous post-synaptic activity; a history of low 

activity will lower the threshold for LTP and increase the threshold for LTD, while 

the opposite holds for a history of high synaptic activity (Bienenstock, Cooper, & 

Munro, 1982; Karabanov et al., 2015; Lüscher & Malenka, 2012).  

The majority of synapses use glutamate to induce rapid neuronal excitation, 

making it the primary excitatory neurotransmitter in the central nervous system 

(Collingridge et al., 2004; Lamprecht & LeDoux, 2004). Glutamate regulates 
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synaptic transmission via activation of ionotropic (ion channel coupled) and 

metabotropic glutamate receptors (second messenger coupled) (Kew & Kemp, 

2005), which are found in pre- and post-synaptic membranes (Pinheiro & Mulle, 

2008). There are three families of ionotropic glutamate receptors which are named 

after the selective agonists NMDA (N-methyl-d-aspartic acid), AMPA (2-amino-3-

(3-hydroxy-5-methylisoxazol-4-yl)-propionic acid) and kainate (Granger, Gray, Lu, 

& Nicoll, 2011) (see Figure 1.4).  

 

 

 
 

 

Figure 1.4: Schematic diagram of ionotropic glutamate receptor mediated synaptic 

plasticity. A series of impulses arrives at the presynaptic terminal which triggers the 

release of glutamate into the synaptic cleft (clear circles). Glutamate binds to 

receptors at the postsynaptic membrane. Activation of AMPA (AMPAR) and kainate 

receptors (KAR) causes an influx of sodium ions (Na
+
; purple) which depolarises the 

membrane. Depolarisation leads to the release of magnesium ions (Mg
2+

; red) 

blocking NMDA receptors (NMDAR). Once open, NMDA channels enable the 

influx of calcium ions (Ca
2+

), which initiates long-term potentiation. Glutamate can 

also activate receptors located on the presynaptic terminal (autoreceptors), which 

modulate neurotransmitter release. Summarised from Voglis and Tavernarakis 

(2006), Lamprecht and LeDoux (2004), Pinheiro and Mulle (2008), and Engelman 

and MacDermott (2004). 
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 Metabotropic glutamate receptors have also been classified into three groups: 

group I (mGluR1 and mGluR5), group II (mGluR2 and mGluR3) and group III 

(mGluR6-8), based on their pharmacology, sequence homology, G-protein coupling 

and specific associated second messenger systems (Conn & Pin, 1997; Pinheiro & 

Mulle, 2008). Broadly, ionotropic receptors mediate fast excitatory synaptic 

transmission, while metabotropic receptors modulate neuronal excitability (Pinheiro 

& Mulle, 2008; Schoepp, 2001).  

 

1.5.1. NMDA receptors 

NMDA receptors are composed of NR1, NR2 (NR2A-D) and, in some cases, NR3 

subunits (NR3A and NR3B) (Madden, 2002). In order to become activated, NMDA 

receptors require two processes to occur. Firstly, glutamate must be released into the 

synapse from the presynaptic neuron and bind to the NMDA receptor; secondly, the 

postsynaptic neuron must be depolarised to remove the magnesium ion block in the 

NMDA receptor channel and allow for the influx of calcium (Malenka & Nicoll, 

1999). This mode of action is unique to the NMDA receptor and reflects its role as a 

Hebbian ‘coincidence detector’, where neurons discriminate between correlated and 

uncorrelated synaptic inputs (Miyashita et al., 2012; Tsien, 2000).  

NMDA receptors are considered to be the primary glutamatergic triggers for 

the induction of LTP and LTD (Bashir, Alford, Davies, Randall, & Collingridge, 

1991; Christie & Abraham, 1992; Collingridge et al., 2004; Martin, Grimwood, & 

Morris, 2000; Peng et al., 2010; Thiels, Barrionuevo, & Berger, 1994), although 

NMDA receptor-independent LTP and LTD have been documented (Bortolotto et 

al., 1999; Johnston, Williams, Jaffe, & Gray, 1992; Wang, Rowan, & Anwyl, 1997). 

Importantly, the induction of LTP in the hippocampal-prefrontal pathway has been 
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shown to be NMDA receptor-dependent (Jay, Burette, & Laroche, 1995). NMDA 

receptor activation has also been directly implicated in learning and memory (see 

Levin, Buccafusco, & Rezvani, 2006; Gernot Riedel, Bettina Platt, & Jacques 

Micheau, 2003, for reviews).  

A number of studies have shown that blockade of hippocampal NMDA 

receptor activation using selective antagonists (e.g. MK-801) leads to diminished 

LTP and impaired spatial learning and memory in rodents (Bannerman, Good, 

Butcher, Ramsay, & Morris, 1995; Lee & Kesner, 2002; Li, Matsumoto, Yamamoto, 

& Watanabe, 1997; Liang, Hon, Tyan, & Liao, 1994; Martin et al., 2000; Morris, 

Anderson, Lynch, & Baudry, 1986). MK-801 is a non-competitive antagonist which 

binds to the phencyclidine (PCP) binding site within activated NMDA receptor 

channels, thus preventing the flow of ions (Chahal, d’Souza, Barson & Slater, 1998; 

Foster & Wong, 1987). Evidence suggests that NMDA receptors may be particularly 

important for initial encoding. For example, Morris and colleagues (Morris, 1989; 

Morris, Davis, & Butcher, 1990) demonstrated that AP5 did not impair recall of a 

previously learned platform location in the allocentric water maze task. Interestingly, 

encoding deficits can be prevented by spatial pre-training prior to NMDA receptor 

blockade, despite the absence of LTP (Bannerman et al., 1995; Saucier & Cain, 

1995).  

In addition, it should be noted that antagonists such as MK-801 have a 

number of effects which are independent of synaptic plasticity. For example, acute 

injections of MK-801 into the rat prefrontal cortex decreases synchronization of 

action potential firing which is thought to result in disrupted information processing 

(Homayoun & Moghaddam, 2007; Molina, Skelin & Gruber, 2014). Further, 

administration of MK-801 (intraperitoneal and subcutaneous) increases basal gamma 
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band oscillations in rats, which is also considered to reflect cortical network 

dysfunction, e.g. in schizophrenia (Hiyoshi, Kambe, Karasawa, & Chaki, 2014; 

Pinault, 2008).  

With regard to sub-regional NMDA receptor activation, Tsien, Huerta and 

Tonegawa (1996) showed LTP was absent in mice lacking the NR1 NMDA receptor 

sub-unit in CA1. These animals also exhibited poor acquisition of the allocentric 

water maze task, but were not impaired on a non-spatial version of the task. More 

specifically, CA1-KO mice successfully learned to find a submerged platform whose 

location was marked by a beacon, indicating that response memory was unaffected 

(Tsien et al., 1996). In contrast, Niewoehner et al. (2007) found that specific NR1 

sub-unit deletion in the dentate gyrus had no effect on spatial performance in the 

water maze. Fellini et al. (2009) reported that selective inactivation of CA3 NMDA 

receptors in mice also had no effect on standard water maze performance, although 

animals were impaired on a pattern completion version of the task (i.e. when a sub-

set of the distal cues were removed). In addition, Mei, Li, Gu, Cui and Tsien (2011) 

illustrated that knockout mice lacking NMDA receptors in CA1 or the entire 

hippocampus at the time of memory recall were not impaired in a spatial reference 

memory task under full or partial cue conditions. Collectively, these results indicate 

that NMDA receptors are crucial for encoding and/or consolidation of spatial 

memories, but not for retrieval (Martin et al., 2000; Mei et al., 2011; Nakazawa, 

McHugh, Wilson, & Tonegawa, 2004).  

In relation to response memory, Mackes and Willner (2006) found that rats 

administered with the NMDA receptor antagonist MK-801 (subcutaneously) before 

water maze training were significantly less likely to use a place strategy during 

testing, instead relying on a response strategy. Similarly, Packard and Teather (1997; 
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1999) demonstrated that direct infusions of NMDA receptor antagonist AP5 into the 

caudate nucleus impaired memory in the visible platform water maze task, thus 

implicating this region in the use of response strategies. In a further study, Packard 

(1999) showed that post-training injections of glutamate could enhance place or 

response learning, depending on the site of injection (intrahippocampal or 

intracaudate). Specifically, rats that received intrahippocampal injections continued 

to rely on a place strategy after extended training, unlike saline-treated animals, who 

initially relied on a place strategy (day 8) but later switched to a response strategy 

(day 16). In contrast, rats administered with intracaudate injections displayed a 

response strategy after standard and extended training. Together, these results 

support the suggestion that the hippocampus and striatum are preferentially involved 

in place and response learning, respectively (Packard, 1999).  

 

1.5.2. AMPA and kainate receptors 

AMPA receptors consist of combinations of four sub-units (GluR1-4) (Hollmann & 

Heinemann, 1994). They exhibit extremely fast kinetics relative to NMDA receptors; 

that is, activation and deactivation occurs within milliseconds (Kleppe & Robinson, 

1999). AMPA receptors require only glutamate binding to be activated and primarily 

conduct sodium and potassium (Gouaux, 2004). These receptors are thought to be 

responsible for fast excitatory synaptic signalling and modulation of synaptic 

strength (Nakazawa et al., 2004). Similar to NMDA receptors, AMPA and kainate 

receptors can also induce LTP (Castillo, Malenka, & Nicoll, 1997; Vignes & 

Collingridge, 1997; Yu, Wu, Liu, Ge, & Wang, 2008) and LTD (Chamberlain, 

Sadowski, Ruivo, Atherton, & Mellor, 2013; Holman, Feligioni, & Henley, 2007; 

Yu et al., 2008).  
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The GluR1 sub-unit has been shown to be particularly important for normal 

hippocampal LTP in rodents (Sanderson et al., 2008; Selcher, Xu, Hanson, Malenka, 

& Madison, 2012). In contrast, deletion of GluR4 has no effect on LTP in area CA1 

(Sagata et al., 2010). Behaviourally, GluR1-deficient mice exhibit severe deficits in 

spatial working memory, while spatial reference memory is largely unaffected 

(Reisel et al., 2002; Sanderson et al., 2007; Schmitt et al., 2004; Schmitt, Deacon, 

Seeburg, Rawlins, & Bannerman, 2003; Zamanillo et al., 1999). Lee and colleagues 

(2003) did, however, report a reference memory deficit in GluR1 mice trained in the 

water maze. Specifically, mice successfully remembered the platform location when 

tested shortly after learning (2-4 hours), but were impaired at later time points (8 or 

24 hours post-learning). Further, Bast, da Silva, and Morris (2005) found that 

hippocampal infusion of the AMPA receptor antagonist CNQX had no effect on 

acquisition of a one-trial allocentric place memory task, but resulted in poor 

retrieval. The authors found the opposite result in rats treated with NMDA receptor 

antagonist AP5. Therefore, it seems that both working and long-term term memory 

recall require fast excitatory transmission facilitated by AMPA receptors (Kessels & 

Malinow, 2009; Martin et al., 2000).  

Like AMPA receptors, kainate receptors also mediate excitatory synaptic 

signals and are activated by glutamate binding (Nakazawa et al., 2004). Recently, 

pre-synaptic kainate receptors have been shown to play a role in modulating 

neurotransmitter release; specifically, these receptors act as ‘autoreceptors’ which 

can either facilitate or inhibit neurotransmission (Pinheiro & Mulle, 2008). Kainate 

receptors are composed of different combinations of five sub-units (KA1, KA2 and 

GluR5-7) (Wisden & Seeburg, 1993). GluR6 and GluR7 sub-units may be 

particularly important for the expression of LTP, as deletion of either sub-unit has 
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been shown to markedly impair its induction (Contractor, Swanson, & Heinemann, 

2001; Lauri et al., 2001; Pinheiro et al., 2007). Although limited, existing evidence 

suggests that kainate receptors are involved in working memory processing (G. R. 

Barker et al., 2006), not unlike AMPA receptors.  

 

1.6. Immediate Early Gene Imaging  

The long-term structural cell changes which occur during late LTP are mediated, in 

part, by immediate early genes (IEGs) (Davis, Bozon, & Laroche, 2003). IEGs are 

rapidly and transiently expressed in response to neuronal activation and do not 

require protein synthesis to be induced (Sheng & Greenberg, 1990). The RNA 

transcripts of IEGs appear in the nucleus within minutes of neuronal activation and 

are subsequently transferred to the cytoplasm where – after 30-45 minutes – the 

protein products of these genes are translated (Guzowski et al., 1999; Murphy, 

MacKeigan, & Blenis, 2004). Their expression facilitates lasting cell modifications 

through encoding of transcription factors, cytoskeletal proteins, growth factors, 

metabolic enzymes and proteins involved in signal transduction (Lanahan & Worley, 

1998). These long-term structural changes are, in turn, thought to underlie the 

maintenance of synaptic plasticity and the formation of long-term memories (Hughes 

& Dragunow, 1995; Lanahan & Worley, 1998; Tischmeyer & Grimm, 1999). IEGs 

are divided into two classes: regulatory transcription factor (RTF) IEGs, which 

encode proteins that increase or decrease downstream gene expression, or effector 

IEGs, which encode proteins that directly influence cell functions (Davis et al., 

2003). There are approximately forty neuronal IEGs, of which 10-15 are classified as 

RTFs (Lanahan & Worley, 1998).    
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Because the expression of many IEGs is extremely low in quiescent cells, 

IEG imaging has become an increasingly popular method to investigate patterns of 

neuronal activation in response to a range of behavioural tasks (Aggleton, Brown, & 

Albasser, 2012; Barry & Commins, 2011; Kubik, Miyashita, & Guzowski, 2007). 

Using this technique, IEGs act as indirect markers of neuronal activation, where 

increased expression in particular brains areas is considered to reflect their 

involvement of in a given task (Aggleton & Brown, 2005). The primary advantage of 

this approach is that it allows for the visualisation of neuronal activity in multiple 

brain regions simultaneously, while preserving intact neural circuitry and functioning 

(Miyashita, Kubik, Lewandowski, & Guzowski, 2008). Accordingly, IEG imaging 

circumvents some of the problems faced by lesion studies. That is, lesions can impair 

functioning of nearby regions by disrupting input pathways, making any behavioural 

deficits difficult to interpret (Morris, 2007). In addition, IEG imaging provides 

excellent spatial resolution, i.e. down to an individual cell level. Further, because 

IEG imaging allows for the examination of multiple regions at the same time, 

patterns of coordinated activity across regions, reflective of wider brain networks, 

can be identified (Wheeler et al., 2013). Two of the most studied RTF IEGs are 

Zif268 and c-Fos, both of which have repeatedly been linked to LTP, LTD, learning 

and memory (Davis et al., 2003; Dragunow & Faull, 1989; Jones et al., 2001; 

Kovacs, 2008; Tischmeyer & Grimm, 1999; Worley & Shuler, 2014).  

 

1.6.1. Zif268 

Zif268 (also known as Egr-1, Krox-24, TZS8, NGFI-A and Zenk) is a member of the 

early growth response (Egr) family of genes (along with Egr-2, Egr-3 and Egr-4). 

Zif268 encodes a zinc finger protein and its expression is initiated by activation of 
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glutamatergic, dopaminergic, adrenergic and opiate receptors (Davis et al., 2003). 

Downstream target genes which are activated by Zif268 include Synapsin I and 

Synapsin II, which are thought to be important for controlling neurotransmitter 

release (Petersohn, Schoch, Brinkmann, & Thiel, 1995).  Basal expression of Zif268 

is highest in layers II and IV of the cerebral cortex, and in area CA1 of the 

hippocampus; expression is lower in areas CA2 and CA3, and negligible in the 

dentate gyrus (Schlingensiepen, Lüno, & Brysch, 1991). Zif268 is also found in the 

medial prefrontal, entorhinal, olfactory and cerebellar cortices, and in the striatum, 

amygdaloid nuclei and nucleus accumbens (Davis et al., 2003; Woolley et al., 2013).  

Zif268 expression is tightly coupled with the induction of LTP. For example, 

Cole, Saffen, Baraban and Worley (1989) found that the frequency and intensity of 

neuronal stimulation needed to increase Zif268 mRNA levels were comparable to 

those required to induce LTP. Additionally, the authors demonstrated that both 

responses could be inhibited by administration of synaptic inhibitory inputs known 

to block LTP and by NMDA receptor antagonism. Gass, Herdegen, Bravo and 

Kiessling (1993) further emphasised the association between Zif268 and NMDA 

receptors, showing that MK-801 eradicates Zif268 expression in the cortex. 

Moreover, Jones et al. (2001) found that mutant mice lacking Zif268 failed to exhibit 

late phase LTP in the dentate gyrus (though the early phase was present). Together, 

these results indicate that Zif268 and LTP are regulated by similar synaptic 

mechanisms (Cole et al., 1989). 

 

1.6.2. c-Fos 

c-Fos is part of a group of transcription factors which comprises c-Fos, FosB and the 

Fos-related antigens 1 and 2 (Fra-1 and Fra-2) (Herdegen & Leah, 1998). Together 
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with the product of c-Jun, c-Fos forms a heterodimeric transcription factor complex 

which regulates gene expression by binding to the Activator Protein 1 (AP-1) 

recognition sequence found in various target genes (Fleischmann et al., 2003), 

although these genes have yet to be fully characterised. c-Fos is the most widely 

used marker of neuronal activation due to its low levels of basal expression 

throughout the brain (Dragunow, Currie, Faull, Robertson, & Jansen, 1989; Kovacs, 

2008), especially in the rat hippocampus (Herdegen & Leah, 1998; Hughes, Lawlor, 

& Dragunow, 1992), which make it particularly suited to the detection of task-related 

neuronal activation. However, c-Fos also exhibits higher induction thresholds 

relative to other IEGs; therefore, it is thought to be a more useful marker of 

activation when task demands are high (Okuno, 2011). Like Zif268, c-Fos 

expression is induced by activation of glutamate receptors (Vaccarino, Hayward, 

Nestler, Duman, & Tallman, 1992), as well as hippocampal LTP (Nikolaev, 

Tischmeyer, Krug, Matthies, & Kaczmarek, 1991) and LTD (Kemp, Tischmeyer, & 

Manahan-Vaughan, 2013).  

 

1.6.3. IEGs in learning and memory 

In addition to their close association with LTP and LTD, Zif268 and c-Fos are highly 

expressed in response to a number of behavioural learning paradigms including 

odour discrimination (Hess, Lynch, & Gall, 1995; Magavi, Mitchell, Szentirmai, 

Carter, & Macklis, 2005), fear conditioning (Beck & Fibiger, 1995; Campeau et al., 

1991; Hall, Thomas, & Everitt, 2001), object recognition (Albasser, Poirier, & 

Aggleton, 2010; Castilla-Ortega et al., 2012; Jones et al., 2001), paired associate 

learning (Tse et al., 2011) and long-term memory (Veyrac et al., 2015; Veyrac, 

Besnard, Caboche, Davis, & Laroche, 2014). In tests of spatial working memory, 
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elevated levels of Zif268 and c-Fos have been found in the hippocampus 

(particularly CA1 and CA3) and the medial prefrontal cortex (Mendez et al., 2008; 

Nagahara & Handa, 1995; Vann, Brown, Erichsen, & Aggleton, 2000). An 

additional study by He, Yamada and Nabeshima (2002) investigated c-Fos 

expression in rats at multiple time points during training (days one, three and five) in 

the radial arm maze. The authors found elevated expression in area CA3, the 

prelimbic and cingulate cortices on day three relative to control animals, but not on 

day five, suggesting that c-Fos may play a time-dependent role in memory encoding 

(He et al., 2002).   

A number of studies have also analysed IEG expression during spatial 

reference memory (Gusev, Cui, Alkon, & Gubin, 2005; Guzowski, Setlow, Wagner, 

& McGaugh, 2001; Teather, Packard, Smith, Ellis-Behnke, & Bazan, 2005). 

Guzowski et al. (2001) reported that levels of Zif268 and c-Fos were significantly 

elevated from baseline in all regions of the dorsal hippocampus (and lateral 

entorhinal cortex) in rats trained in the allocentric water maze task for three days. 

Further, IEG expression was found to be highest early on in training, again 

indicating that learned-related increases in IEG activation are time-dependent. 

Teather and colleagues (2005) examined hippocampal c-Fos expression after a single 

day of training in the water maze, during which rats acquired either the hidden 

(spatial) or visible (cued) platform version. Results revealed increased c-Fos 

expression in area CA1 in the spatially trained group relative to rats trained in the 

cued task, as well as swim-yoked controls and naïve animals. These findings are in 

keeping with the idea that CA1 is particularly important for the formation of 

complex spatial representations (Teather et al., 2005).  
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In addition, genetic knockout studies have emphasised the functional role of 

IEGs in spatial learning and memory. Jones and colleagues (2001) demonstrated that 

mice lacking Zif268 displayed intact short-term memory but impaired long-term 

memory on both spatial and non-spatial tasks, indicating that Zif268 is crucial for 

memory consolidation. Subsequently, Bozon, Davis and Laroche (2002) illustrated 

that spatial learning is particularly sensitive to Zif268 activation. Specifically, they 

noted that a reduction in Zif268 mRNA levels (to approximately half that of wild-

type mice) was sufficient to impede spatial learning; on the other hand, mutant mice 

were only somewhat impaired in a conditioned taste aversion task, and exhibited no 

deficits in a novel object recognition task (Bozon et al., 2002). Zif268 gene deletion 

has also been shown to weaken the long-term stability of newly formed hippocampal 

place fields, although they can be rescued by repeated exposure to the environment 

(Renaudineau, Poucet, Laroche, Davis, & Save, 2009). Together, these results 

indicate that Zif268 activation constitutes a crucial mechanism for the initial 

encoding of long-lasting spatial memories. Unlike Zif268, however, c-Fos deletion 

in mice has produced mixed results. For example, Zhang, McQuade, Vorhees and Xu 

(2002) found that mutant mice exhibited normal spatial learning in the water maze, 

whereas Fleishmann et al. (2003) reported deficits in spatial learning which 

correlated with a reduction in LTP in hippocampal CA3-CA1 synapses. Thus, the 

significance of c-Fos for spatial memory processing is less well defined at present.    

 

1.7. Objectives of this thesis 

The primary objectives of this thesis are to conduct an in-depth investigation into the 

use of allocentric navigation strategies during memory encoding and retrieval, and to 

characterise the specific contributions of the hippocampus and medial prefrontal 
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cortex to these processes. The popular Morris water maze will be employed as the 

behavioural task to measure spatial learning and memory. This task is particularly 

suitable due to its ambiguity, which facilitates the use of multiple types of strategies. 

A number of dorsal hippocampal and medial prefrontal sub-regions will be assessed, 

all of which have been implicated in spatial information processing to greater or 

lesser degrees. These will include CA1, CA3, dentate gyrus, prelimbic, anterior 

cingulate and infralimbic cortices. The mechanisms underlying neuronal activation 

in these areas will be examined by inhibiting different types of ionotropic glutamate 

receptors; namely, NMDA and AMPA receptors. Brain activity will be measured 

using IEG imaging of Zif268 and c-Fos protein, due to their known role in 

glutamate-dependent LTP and LTD, learning and memory.  

Despite being one of the most widely used tasks of spatial learning and 

memory (Vorhees & Williams, 2014), the type of spatial information animals encode 

and ultimately rely on to navigate in the Morris water maze remains unclear. 

Therefore, we will first examine spatial strategy use in the maze, with a particular 

focus on two understudied, yet important, influencing factors. These are cue salience 

(i.e. what makes some cues more useful for finding the goal than others?) and 

environmental experience (i.e. does increased training lead to a change in the 

strategy used?). We hypothesise that when two cues are equally salient, animals will 

encode both into their navigation strategy; however, when one is markedly more 

useful than the other, rats will learn to rely on the more useful of the two. In addition, 

we predict that a proximal cue will acquire a higher salience than a distal cue, and a 

brighter cue will become more salient than a less luminous cue. Further, when one 

cue is closer to the target and the other is brighter, we expect the cues to compete for 

control over behaviour. Finally, we anticipate that increased training in the 
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environment will result in more flexible navigation, whereby animals can rely on any 

or all cues.   

 Following this behavioural examination, we will investigate the role of 

specific hippocampal and medial prefrontal sub-regions in allocentric spatial 

encoding in the water maze using Zif268 and c-Fos as markers of neuronal 

activation. We predict activation will be highest in area CA1 of the hippocampus, 

with heightened expression also in the anterior cingulate cortex relative to caged 

controls. In addition, we will assess the importance of NMDA and AMPA receptors 

for spatial learning, and for IEG expression in these brain regions. Importantly, few 

studies to date have examined the effects of glutamate receptor blockade on basal 

IEG expression, making any post-learning changes in IEG expression levels difficult 

to interpret. Thus, we will first measure dose-dependent effects of NMDA channel 

blocker MK-801 and AMPA receptor antagonist CNQX on baseline hippocampal 

and prefrontal IEG expression. We hypothesise that higher drug concentrations will 

lead to significant changes in IEG expression, while lower doses will have little or 

no effect. The impact of glutamate receptor inhibition on spatial learning will then be 

assessed. We expect NMDA receptor inhibition to impair task acquisition and 

attenuate IEG expression, and blockade of AMPA receptors to have little or no effect 

on learning or IEG activation.  

   Lastly, we will evaluate the role of hippocampal and medial prefrontal sub-

regions during memory recall. Specifically, we will assess the use of spatial (distal 

cue) and non-spatial (beacon) strategies in the water maze and their associated brain 

regions following standard or extended training. We hypothesise that increased 

environmental experience will lead to better performance in spatially-trained rats, 

but have no impact on beacon-trained animals. Further, we expect greater 
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hippocampal IEG expression in the spatial group relative to the non-spatial group, 

and higher activation in CA3 and the prefrontal cortex in rats tested under partial cue 

conditions (i.e. when one of the two training cues is removed). Finally, we will 

delineate the importance of NMDA receptor activation for spatial and non-spatial 

memory retrieval via post-training injections of MK-801. Importantly, it has yet to 

be established if enhanced training can protect against the effects of NMDA receptor 

blockade. Rats will therefore be trained for standard or extended periods of time 

prior to MK-801 administration. We anticipate gross memory deficits and reduced 

IEG expression in all groups after standard training, but preserved memory following 

greater environmental experience.  
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2.1. Subjects  

Male Wistar rats obtained from Charles River, UK, were used as subjects in this 

thesis. Animals were approximately three months old and weighed 250-300g at the 

beginning of all experiments. All rats were given a number with a non-toxic marker 

pen for identification purposes and housed three per cage in plastic-bottomed cages 

(56 x 38cm and 22cm high; NKP Cages, UK) with a 3cm layer of woodchip 

bedding, paper strip nesting material and cardboard tubes. All cages were cleaned 

out once a week. All rats had access ad libitum to water and food pellets and were 

maintained under a 12:12 hour light:dark cycle (lights on at 07:00h) at a fixed 

temperature of 21°C. All experimentation was conducted during the light phase. All 

rats were experimentally naïve and were well handled for one week prior to the onset 

of each experiment.  

 

2.2. Morris water maze apparatus 

The Morris water maze was employed as the spatial navigation task for all 

experiments. The Morris water maze task is widely known as a simple and effective 

measure of spatial learning and memory (Terry, 2009), and has been used previously 

in our laboratory (Harvey et al., 2008). The maze consisted of a black, circular 

fibreglass pool (170cm diameter, 35cm deep) resting 70cm above floor level on a 

metal support frame. The pool was filled with opaque water to a depth of 20cm and 

maintained at 21±1°C. A black concrete escape platform (13cm diameter, 13.5cm 

width) was placed in the centre of the northeast quadrant of the pool (25cm from the 

edge of the pool wall) for all training trials. The pool-to-platform area ratio was 

171:1, and thus, was well-within the optimal range of task difficulty for rats 

(Vorhees & Williams, 2014). The platform rested 2cm below the water surface, 
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ensuring that rats could not see it when navigating in the maze. The maze was 

surrounded by a black curtain suspended from ceiling to floor at a distance of 60cm 

from the pool wall which provided a uniform background and prevented access to 

room cues.  

Visual, distal cues located in fixed positions around the maze were used to 

guide the rats to the platform. Cues were fluorescent, inside-frosted, low energy 

Philips glass light bulbs which were suspended from the ceiling inside the curtain. 

The number, spatial position and brightness of the cues varied according to the 

experimental condition. Two cues, positioned northeast (NE; distance of 127cm, 

height angle of 42°; near cue) and northwest (NW; distance of 162cm, height angle 

of 25°; far cue) of the platform, or a single beacon positioned 50cm directly above 

the platform (Chamizo & Rodrigo, 2004), were used (see Figure 2.1). Cues were 

either 25 or 40 Watt brightness intensity. For all experiments, rats were trained and 

tested in complete darkness (i.e. the cues were the only light source) to ensure that 

they learned to navigate using these cues. To minimise distraction for the animals 

(e.g. noise), all trials were observed by the experimenter in an adjacent testing room 

via a video camera positioned directly above the centre of the maze. Behavioural 

data of the animals’ movements were recorded using EthoVision© tracking system 

(Noldus Information Technologies, Wageningen, Netherlands). 
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Figure 2.1: (A). Schematic diagram of a birds-eye view of the Morris water maze 

used in this thesis showing spatial positions of the distal cues and beacon. (B). 

Photographs of the maze with the platform in cue and beacon conditions.    

 

2.3. Morris water maze procedure 

2.3.1. Acquisition.  

Acquisition training was based on previous procedures from our laboratory (Harvey 

et al., 2009). Rats were trained for up to ten days in the presence of two cues or a 

single beacon (depending on the experimental condition), which remained available 

throughout the training period. Training on each day consisted of four trials. For 

each trial, rats were placed into the pool near to and facing the pool wall from one of 

four pseudo-randomised directional starting positions (north, south, east or west). 

The time taken to reach the platform was recorded. Rats were allowed a maximum of 
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sixty seconds to find the platform (located in the NE quadrant). If they failed to 

locate the platform within this time, rats were guided there by the experimenter. 

Once on the platform, rats remained there for fifteen seconds after which they were 

removed from the maze and placed into an open-topped container for an inter-trial 

interval of at least ten seconds. Rats were placed back into the pool from a different 

starting position for the next trial. When all four trials had been completed, rats were 

returned to their home cage. Successful acquisition of the task was determined by a 

statistically significant decrease in time taken to escape the maze across training 

days.  

 

2.3.2. Recall.  

Where appropriate, water maze recall was examined. The procedure for assessing 

recall followed previously used protocols from our laboratory (McGauran, Harvey, 

Cunningham, Craig, & Commins, 2004). For all experiments, recall was assessed 24 

hours after the final day of training. During recall, rats’ memory for the platform 

location was tested in a single probe trial with the platform removed. Depending on 

the experimental condition, rats were tested in the presence of two distal cues, one 

distal cue or a single beacon. The position of the cues during testing also varied 

across conditions. For each probe trial, rats were placed into the pool near to and 

facing the pool wall from a novel start position and allowed to swim freely for sixty 

seconds. Start positions for each condition were chosen based on existing water 

maze protocols, where animals are released from the quadrant opposite to where the 

platform had been located (Steffenach, Witter, Moser, & Moser, 2005). After this 

time had elapsed, rats were removed from the maze and returned to their home 

cages. Successful recall was measured by examining the amount of time spent 
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swimming in the NE quadrant and platform area during the probe trial, relative to 

other quadrants and platform areas of the pool. As a visual representation of where 

animals’ searched during the probe trial, heatmaps displaying swim distributions 

were generated using MATLAB (R2012b). Swim distributions for animals in each 

group were processed together, resulting in one heatmap per group.   

 

2.4. Drug administration 

Where applicable, animals were administered with glutamate receptor antagonists to 

examine their effects on spatial navigation and IEG expression. Rats were given 

intraperitoneal (i.p.) injections of the NMDA channel blocker MK-801 (0.05mg/kg 

or 0.1mg/kg body weight; Sigma-Aldrich) or the AMPA receptor antagonist CNQX 

(0.75mg/kg or 1.5mg/kg body weight; Tocris Bioscience). Sterile saline was used as 

the vehicle for all drugs (0.3ml total volume per injection). Depending on the 

experiment, injections were administered 20-30 minutes before training or testing, as 

per previous studies (de Lima, Laranja, Bromberg, Roesler, & Schroder, 2005). 

Selected doses were based on preceding research in our laboratory and in the wider 

literature where i.p. injections at the same concentrations led to a significant change 

in behaviour, but had no sensorimotor effects (Kealy & Commins, 2009; Murschall 

& Hauber, 2005; van der Staay, Rutten, Erb, & Blokland, 2011). Separate groups of 

animals were treated with physiological saline (0.1 ml/100 g body weight of 0.9 % 

NaCl; Sigma, Ireland) as a control, to ensure comparative stress levels across groups 

(related to receiving injections). All drugs were made up fresh for each experiment 

and dose-sized aliquots were frozen for daily use. 
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2.5. Tissue preservation 

Animals were sacrificed ninety minutes after the final acquisition or recall trial, as 

IEGs are thought to be maximally expressed at this time point (Zangenehpour & 

Chaudhuri, 2002). Rats were terminally anaesthetised via i.p. injection with sodium 

pentobarbital (60mg/kg, Euthatal). Rats were then perfused transcardially with 0.9% 

phosphate buffered saline (PBS, 250ml, Ph 7.4) followed by 4% paraformaldehyde 

in 0.1M phosphate buffer (PB, 300ml, Ph 7.4). Brains were immediately removed 

and post-fixed in 4% paraformaldehyde overnight at 4°C before being cryoprotected 

in 30% sucrose solution. Brains were then frozen on dry ice and cut into 40-μm-thick 

coronal sections using a freezing stage sledge microtome (Brights Instruments, 

Huntingdon, UK). Free floating sections were stored in 0.1M PB containing 0.01% 

sodium azide (4°C). 

 

2.6. Immunohistochemistry 

Standard immunohistochemical staining methods were followed (Coogan & Piggins, 

2003). Specificity of this staining procedure for Zif268 and c-Fos was confirmed 

previously in our laboratory (Barry, 2013). Sections were washed twice in 0.1M PB 

(ten minutes each), followed by a ten minute wash in 0.1M PB containing 0.2% 

Triton-X-100 (PBX). Sections were then washed in 0.1M PB with 1.5% hydrogen 

peroxide for twenty minutes. Two more ten minute washes in 0.1M PB and one in 

PBX followed. Subsequently, sections were blocked in 5% normal goat serum 

(NGS) in 0.1M PBX for sixty minutes at room temperature, and then incubated for 

24 hours in a primary antibody solution (2% NGS in 0.1M PBX). Zif268 and c-Fos 

were labelled using the following antibodies: Zif268/Egr-1, rabbit polyclonal 
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antibody (dilution 1:3000; Santa Cruz Biotechnology), and c-Fos, rabbit polyclonal 

antibody (dilution 1:2000; Santa Cruz Biotechnology).  

Post-incubation, sections were given two washes in 0.1M PB and one in 

PBX. Sections were then incubated with biotinylated secondary antibody (goat anti-

rabbit, Jackson Laboratories, dilution 1:400) for seventy minutes. Two more washes 

in 0.1M PB and one in 0.1M PBX followed, after which sections were incubated 

with avidin-biotin-peroxidase complex (0.4%; Vector Laboratories) for ninety 

minutes in complete darkness at room temperature. Sections were again washed 

twice more in PB and once in 0.1M sodium acetate (Ph 6). The reaction product was 

visualised using the nickel-DAB technique with glucose oxidase (Sigma, Poole, UK) 

as the catalyst. The length of reaction time was standardised for all sections to ensure 

comparable staining intensity across sections. To further minimise variation in 

staining specificity, sections were stained in group cohorts where possible, with one 

animal from each group being processed side-by-side in the same well plate. Finally, 

sections were mounted onto gelatin-coated slides, dehydrated, cleared in Histoclear 

(National Diagnostics, Hull, UK), and coverslipped using Eukitt (Sigma, Poole, 

UK).  

 

2.7. Regions of interest  

Six areas were chosen for analysis including three regions from the dorsal 

hippocampus; CA1, CA3 and the dentate gyrus (DG), and three medial prefrontal 

regions; the prelimbic (PLC) anterior cingulate (ACC), and infralimbic cortices 

(ILC). All regions are illustrated on coronal sections in Figure 2.2 (adapted from 

Barry, 2013; Paxinos & Watson, 2007). These regions, their coordinates, and the 

number of sections sampled per IEG are displayed in Table 2.1. Dorsal hippocampal 
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sections were obtained as close as possible to AP level -3.24mm from Bregma. 

Medial prefrontal regions were attained as near to AP +3.72mm from Bregma as 

possible.  

 

 

Figure 2.2: Coronal diagrams of the regions of interest in (A) CA1, CA3 and DG 

(the dentate gyrus), and (B) PLC (prelimbic cortex), ACC (anterior cingulate cortex), 

and ILC (infralimbic cortex). Modified from Barry (2013), and Paxinos and Watson 

(2007). Scale bar = 1mm. 
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Table 2.1: Coordinates of selected regions and numbers of sections for each region. 

Brain region              Distance from Bregma Number of sections 

 Start End  

CA1 -3.24mm -4.08 mm 4 

CA3 -3.24mm -4.08 mm 4 

DG -3.24mm -4.08 mm 4
 

PLC +3.72mm +2.76mm 4 

ACC +3.72mm +2.76mm 4 

ILC +3.72mm +2.76mm 4 

 

2.8. IEG quantification 

Images of the six regions were taken using an Olympus digital camera (Camedia C-

2020-Z) mounted on an Olympus BX-50 microscope. To capture the maximum 

number of cells possible, all images were taken using a 4x magnification. For sub-

regions of the medial prefrontal cortex, the sampled area was larger than the area 

under investigation; therefore, novel acetate coronal masks developed by Barry 

(2013) were placed over the section to obscure all adjacent regions during image 

acquisition (see Figure 2.3 for sample masks). For hippocampal regions, the images 

were manually cropped following acquisition. For all regions analysed, IEG cell 

counts were obtained from four sections per animal.  

To eliminate experimenter bias in the cell counting process, counts were 

automatically calculated by ImageJ digitizing software (National Institute of Health, 

USA). In order for the software to distinguish active cells from inactive background 

tissue, a number of detection thresholds were used. These included brightness 

intensity (set between 70 and 100, depending on the experiment) and particle size 
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(20 to 200 pixel range). Detection thresholds for each IEG remained constant for all 

regions in a given experiment. Counts from each animal (from four sections) were 

averaged to produce a mean. Mean counts for individual rats in each group were then 

averaged to produce group means. Unless otherwise stated, raw counts were used for 

statistical analyses. 

 

 

 

 

Figure 2.3: Coronal masks used to obscure surrounding tissue during image 

acquisition of the PLC, ACC and ILC (A-C). Reproduced from Barry (2013). Scale 

bar = 1mm. 

 

2.9. Statistical analysis  

All statistical analyses were carried out using SPSS (Version 22). Wherever possible, 

parametric inferential tests were conducted to test for differences between groups 

and conditions. One-way between groups, repeated measures or mixed factorial 

analysis of variance (ANOVA) were used, with appropriate Tukey and/or Bonferroni 

post hoc tests (at the 5% level of significance). Independent and dependent t-tests 

were also used to assess differences between conditions, where applicable. In cases 

of violations of normality, sphericity or homoscedasticity, non-parametric 

equivalents of the corresponding ANOVAs and post hoc tests were conducted. 
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Bivariate correlations were calculated using the Pearson product-moment correlation 

coefficient. Error bars on graphs depict standard error of the mean (S.E.M.). 

Statistical significance was indicated using an asterisk-based system representing p-

values of p < 0.05 (*), p < 0.01 (**), and p < 0.001 (***) throughout. 

 

2.10. Ethical considerations 

All experimental work was approved by Maynooth University ethics committee and 

conformed to the Department of Health and Children (Ireland) and HPRA (Health 

Products Regulatory Authority) guidelines for the maintenance and experimentation 

of animals under statutory instrument (S.I.) No. 543 of 2012 and the European 

directive 2010/63/EU. Every effort was made to minimise the suffering of animals 

used in this thesis. 
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Chapter 3 
 

An In-depth Behavioural Investigation of 

Cue Salience and Training Length in 

Allocentric Spatial Strategy Use 
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influence of cue salience during spatial navigation. Behavioural Processes, 116, 17-
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Abstract 

Most motile animals use environmental cues to aid navigation. Animals can learn to 

associate cues with a goal destination in one of two ways: individually (elemental 

learning) or in groups (configural learning). A number of factors are thought to 

influence the way in which these associations are formed. One such important factor 

is the salience (or noticeability) of the available cues. Despite its significance, 

however, few studies have examined the role of cue salience in allocentric strategy 

use to date. Here, we explored the influence of cue salience in the acquisition and 

recall of Morris water maze task. Experiments 1 and 2 investigated two salience 

factors: proximity to the goal and brightness. Results showed that a bright cue 

acquired more control over behaviour than a weaker cue, regardless of relative 

proximity to the platform and training length. Animals in Experiment 3 were trained 

with equally bright proximal and distal cues. Unexpectedly, probe tests revealed that 

rats tested with the farther cue outperformed those tested with the proximal cue – but 

only after extended training. Experiment 4 aimed to verify that animals were relying 

on the cues to navigate. Animals were trained with a bright (distal) cue and a 

proximal cue and tested with one or both cues in novel positions. Results 

demonstrated that rats did in fact modify their searching behaviour according to the 

spatial location of the cues. Overall, these findings point towards the use of an 

elemental learning strategy involving the more salient of two available cues, which 

emerges earlier when the relative saliences of the cues differ considerably.  
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3.1. Introduction 

The importance of environmental cues for successful navigation is well-documented 

in many species (for reviews see Rodrigo, 2002; Tommasi, Chiandetti, Pecchia, 

Sovrano, & Vallortigara, 2012). According to associative theories of spatial learning, 

navigating animals form representations of cues from a collection of viewpoints, 

which then become associated with a goal destination (Hamilton et al., 2002; Honey 

et al., 2014; Leonard & McNaughton, 1990). These associations are thought to be 

created in one of two ways; elementally or configurally (Siegel & White, 1975; 

Sutherland & Rudy, 1989). Elemental learning strategies (e.g. Miller & Shettleworth, 

2007; Rescorla & Wagner, 1972) occur where the animal forms direct associations 

between each cue and the destination separately (Pearce, 2002). When navigating to 

the goal, the animal must therefore identify the cues and remember their discrete 

spatial relationships to that location. Configural learning strategies (e.g. Rescorla, 

Durlach, & Grau, 1985; Rudy & Sutherland, 1995) involve the association of a 

group of cues with the destination, where a novel configural representation 

(independent of the individual cue components) is generated (Honey et al., 2014; 

Pearce, 2002). Here, the animal is required to remember the position of the goal 

relative to the complete configuration. 

 Research in various species has attempted to discriminate between configural 

and elemental strategies by altering the arrangement of cues between navigational 

training and testing phases. Using this approach, evidence for elemental strategy use 

has been found in children and non-human primates (MacDonald, Spetch, Kelly, & 

Cheng, 2004), gerbils (Collett, Cartwright, & Smith, 1986) and pigeons (Spetch, 

Cheng, & MacDonald, 1996). Specifically, results illustrated that, when trained to 

locate a goal in the centre of a fixed array of cues and tested with the distance 
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between these cues increased, animals tended to search for the goal at the absolute 

distance and direction from individual cues rather than at the relative midpoint of the 

configuration. Moreover, Collett and colleagues (1986) showed that when one of the 

two trained cues was removed, gerbils searched in two distinct locations which 

corresponded to the distances and directions from each cue to the target during 

training. On the other hand, adult humans (Spetch et al., 1996; Spetch et al., 1997) 

and honeybees (Cartwright & Collett, 1982) have been known to search in the same 

relative location during testing as in training; for example, if trained to navigate to 

the centre of a cue arrangement, they continue to search in the centre of the expanded 

array, suggesting a configural strategy. More interestingly, the use of both strategies 

has been documented in Clark’s Nutcracker birds (Kamil & Jones, 1997, 2000), 

indicating that configural and elemental learning may not be mutually exclusive. 

Rather, the use of a particular strategy may be influenced by the nature of the cues 

available to the animal in a given scenario. 

Cue salience arguably plays a vital role in determining the type of learning 

strategy an animal will use, although it has not yet been studied to any great extent in 

the spatial domain (Rodrigo, Gimeno, Ayguasanosa, & Chamizo, 2014). The term 

salience can be defined as the “significance or noticeability” of a cue (Chamizo, 

Rodrigo, Peris, & Grau, 2006, p. 340). There are a number of factors which can 

influence cue salience (Domjan, Grau, & Krause, 2010). One such well-established 

factor is the distance of a cue from the goal location, whereby proximal cues acquire 

more control over navigation (i.e. become more salient) than distal cues (Artigas, 

Aznar-Casanova, & Chamizo, 2005; Chamizo, 2002; Chamizo & Rodrigo, 2004; 

Cheng, Collett, Pickhard, & Wehner, 1987; Redhead & Hamilton, 2007; Spetch & 

Wilkie, 1994). For example, Chamizo and Rodrigo (2004) showed that rats 
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navigating in the water maze performed better when a single available cue was 

located near to the platform (on the same side of the pool) than when it was 

positioned far from the platform (on the opposite side of the pool). Further, 

performance was best when the cue was suspended directly above the platform, thus 

revealing the target location. This effect is thought to occur because proximal cues 

offer the most precise spatial information about the location of the goal (Spetch, 

1995). That is, estimates of the distance and direction in which to travel are more 

variable for distant cues and, thus, more prone to error (Kamil & Cheng, 2001; 

Spetch, 1995). Specific features of a cue (e.g. size or luminance) have also been 

shown to effect salience (Chamizo, Rodrigo, Peris, et al., 2006; Chamizo, Rodriguez, 

Espinet, & Mackintosh, 2012; Young, Choleris, & Kirkland, 2006). Chamizo and 

colleagues (2006), for example, demonstrated that rats navigating in the Morris 

water maze with a bright distal cue performed as well as those navigating with a less 

luminous proximal cue.  

Recently, Rodrigo and colleagues (2014) examined the effects of varying the 

salience of a cue configuration on the type of strategy employed by rats in the Morris 

water maze. Cues ranged from having approximately the same salience to having 

different saliences across conditions. Probe trials revealed that rats could adopt 

different spatial strategies, depending on the similarity of the cues’ saliences 

(Rodrigo et al., 2014). Namely, when the salience was comparable, rats relied on the 

arrangement of cues (i.e. a configural strategy), and when salience was dissimilar, 

they used an elemental strategy involving the more salient of the two cues to reach 

the platform (Rodrigo et al., 2014). Notably, Rodrigo et al. (2014) suggest that the 

emergence of these distinct strategies may be somewhat dependent on a prolonged 

training period. Although this idea has not yet been thoroughly examined in a spatial 
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learning context, visual discrimination research in honeybees has demonstrated that 

extended training can in fact produce a change in the chosen strategy, from elemental 

to configural (Giurfa, Schubert, Reisenman, Gerber, & Lachnit, 2003). Giurfa and 

colleagues (2003) also showed that, at longer training lengths, perceptual similarity 

between cues promoted a configural learning approach.  

This chapter aimed to expand on previous work in two ways; firstly, by 

further exploring the effects of altering cue salience on spatial learning strategies 

used in the Morris water maze, and secondly, by delineating the influence of training 

length on the type of strategy used. Four experiments were conducted. Experiment 1 

examined two components of cue salience; distance from the goal and brightness. 

Rats were trained with a proximal (near) cue and a bright distal (far) cue for five or 

ten days, and subsequently tested with both or one of these cues. We hypothesised 

that if one cue acquired more salience than the other, rats would initially adopt an 

elemental strategy with the high salience cue; however, if both cues became equally 

salient, rats should readily incorporate both into a configural strategy after only five 

days of training.  

Experiments 2 and 3 examined animals’ learning behaviour in the presence 

of two cues with more distinct saliences. In Experiment 2, rats were trained with the 

original positions of the cues reversed. Here, as one cue was both brighter and closer 

to the goal, we expected rats to employ an elemental strategy with this cue. In 

Experiment 3, rats were trained with equally bright near and far cues. We predicted 

that rats would favour an elemental strategy involving the proximal cue to begin 

with, but after further training, may incorporate the farther cue into a configural 

strategy (similar to Giurfa et al., 2003). Finally, Experiment 4 aimed to verify that 

rats were in fact navigating via the distal cues, as opposed to unknown room cues. 
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Animals were trained with a near and bright cue, followed by testing with two cues 

or a single cue in a novel position. We hypothesised that rats would modify their 

searching behaviour according to the new locations of the cues.  
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3.2. Experiment 1 

Experiment 1 had three goals: (1) to establish which component of cue salience 

(proximity or brightness), if any, acquired more control over navigation; (2) to 

identify the type of learning strategy rats were using (elemental or configural); and 

(3) to determine if increased training could lead to a change in strategy.  

 

3.2.1. Method 

3.2.1.1. Subjects.  

Male Wistar rats (n = 39) obtained from Charles River, UK, were used as subjects. 

Rats’ age and weight, housing conditions, handling, and time of experimentation 

were as described previously in Chapter 2. 

 

3.2.1.2. Apparatus.  

The water maze was used as the behavioural task in this experiment. Maze 

dimensions, position of the distal cues and platform location were as described in 

Chapter 2. For this experiment, two cues of unequal brightness were used; one cue 

was a 25 Watt light bulb (190 lumen light output; NE position; near cue) and the 

other was a 40 Watt light bulb (370 lumen light output; NW position; far cue).  

 

3.2.1.3. Procedure. 

Rats were randomly assigned to one of six experimental groups. Three of these 

groups (n = 21) were trained in the water maze for a total of five days (totalling 20 

training trials) and the remaining three were trained for ten days (n = 18; 40 training 

trials). All training was carried out in the presence of both cues with a fixed hidden 

platform in the NE quadrant, followed by 24-hour recall without the platform, as 
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outlined in Chapter 2. Rats trained for five days were divided into a Control group, a 

Near group and a Bright group (n = 7 per group). Rats trained for ten days were also 

separated into Control, Near and Bright groups (n = 6 per group). The Control 

groups were tested with both the near (NE) and bright (NW) cues present, as per 

training (see Figure 3.1). The Near groups were tested with the near (NE) cue only, 

and the Bright groups were tested with the bright (NW) cue only (see Figure 3.1). 

For groups tested with a single cue, the alternate cue was removed from view by 

switching the light off and moving it outside of the curtain. During the probe trial, all 

rats were placed into the pool from the centre of the SW quadrant at the pool wall. 

The SW quadrant was chosen as a novel start position because it was the quadrant 

opposite to where the platform had been located, i.e. the NE quadrant. 

 

 

Figure 3.1: Representation of cue configuration during (A) training for all animals, 

and cue configuration during testing for (B) Control, (C) Near and (D) Bright groups 

during testing (A-C) with 25 Watt (closed circle) and 40 Watt bulbs (open circle).  

 

3.2.1.4. Data analysis. 

Task acquisition was quantified by escape latency (seconds) and distance travelled 

(centimetres): two measures which are widely used in the assessment of water maze 

learning (Terry, 2009). Values for each trial were calculated and averaged for each 

rat, which were then averaged to produce group means. To examine swimming 

behaviour during the recall trial, the maze was divided into a number of zones (see 

Figure 3.2). First, the maze was divided into four quadrants (NE, NW, SE and SW), 
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and mean percentage time (of sixty seconds) spent in each of these quadrants was 

recorded. Next, percentage time spent in four platform areas was assessed. Platform 

areas were defined as the circular areas surrounding the NE platform location and 

equivalent areas in the other three quadrants (NW, SE and SW; all 18cm diameter). 

These areas were included in the analyses as a more refined measure of rats’ 

searching behaviour during the probe trial (Hoz, Martin, & Morris, 2004). Finally, 

thigmotactic behaviour – defined as a tendency to remain close to the perimeter of an 

environment (Treit & Fundytus, 1988) – was investigated as a general measure of 

anxiety by evaluating percentage time spent in an area defined to as the outer 

corridor (16cm width).  

 

 

Figure 3.2: Zones of the maze used for recall including (A) quadrants, (B) platform 

areas and (C) the outer corridor.  

 

3.2.1.5. Statistical analysis.  

As all animals received identical training (with both cues), rats were first assessed a 

single group for acquisition analyses using one-way repeated-measures ANOVAs 

(within-groups factor: training day; days 1 to 5 or days 1 to 10, depending on the 

training length), with Bonferroni post hoc tests where appropriate. Rats were then 

assessed in their respective retention groups for acquisition analyses to ensure that 

they did not differ behaviourally at this stage using mixed factorial ANOVAs with 
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group as the between-groups factor (Control, Near and Bright) and training day as 

the within-groups factor (days 1 to 5 or days 1 to 10, depending on the training 

length). Significant differences were followed up by Tukey and Bonferroni post hoc 

tests and separate between- and within-groups ANOVAs, where appropriate. To 

establish whether rats showed a significant preference for any quadrant during the 

probe test, percentage time spent in each quadrant was compared to chance level 

(25%) for all groups using a series of one sample t-tests. As a more specific indicator 

of rats’ searching behaviour, percentage time spent in all four platform areas was 

assessed using a 3 x 4 mixed factorial ANOVA with group as the between-groups 

factor and platform area as the within-groups factor (NE, NW, SE and SW). As an 

indicator of thigmotaxis, time spent in the outer corridor was examined using one-

way between-groups ANOVAs with Tukey post hoc analyses.  

  

3.2.2. Acquisition results  

3.2.2.1. Escape latency. 

One-way repeated-measures ANOVAs (for all animals as a single group) yielded 

significant main effects of training day after five days, F4,80 = 27.79, P = 0.0001, 

partial eta
2
 = 0.58, and ten days, F9,153 = 22.79, P = 0.0001, partial eta

2
 = 0.57. 

Bonferroni post hoc tests showed that escape latency on day 5 was significantly 

shorter than on day 1 (P = 0.001; see Figure 3.3A), and on day 10 compared to day 1 

(P = 0.001; see Figure 3.3B). Mixed factorial ANOVAs (for animals separated into 

their recall groups) revealed significant main effects of day after five days, F4,72 = 

33.10, P = 0.0001, partial eta
2
 = 0.65, and ten days of training, F9,135 = 23.84, P = 

0.0001, partial eta
2
 = 0.61. Bonferroni post hoc tests confirmed that rats trained for 

five days were significantly faster at finding the platform on day 5 (14.36 ± 1.49s; 
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95% CI [11.22, 17.48]) compared to day 1 (38.49 ± 1.92s, CI [34.45, 42.52] P = 

0.001). Similarly, rats trained for ten days escaped significantly faster on day 10 

(10.48 ± 1.20s, CI [9.73, 13.03]) than on day 1 (38.03 ± 2.99, CI [31.66, 44.41], P = 

0.001; see Figure 3.3B). No significant group x day interaction effects were found 

after five, F8, 72 =1.25, P = 0.28, partial eta
2
 = 0.12, or ten days, F18,135 = 1.39, P = 

0.21, partial eta
2
 = 0.16.  

The main effect of group was significant for five-day training groups, F1,18 = 

4.77, P = 0.05, partial eta
2
 = 0.35. Tukey post hoc tests indicated an overall 

significant difference between the Control group and the Near group (P = 0.02). 

Between-groups ANOVAs were then carried out to determine on which days these 

groups differed. Although no main effects were found, the observed post hoc 

difference appeared to be driven by escape patterns on day 1, F2,20 = 3.08, P = 0.07, 

and day 2 of training, F2,20 = 3.09, P = 0.06. Main effects on day 3: F2,20 = 1.03, P = 

0.38, day 4: F2,20 = 1.85, P = 0.19, and day 5: F2,20 = 0.40, P = 0.67, were not 

significant. The main effect of group after ten days of training was not significant, 

F1,15 = 0.72, P = 0.50, partial eta
2
 = 0.09.  
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Figure 3.3: Mean escape latencies (± SEM) shown for all animals as a single group 

(Mean groups) and in their respective recall groups (Control, Near and Bright) across 

(A) five and (B) ten days of training.  

 

3.2.2.2. Distance travelled.  

One-way repeated-measures ANOVAs produced significant main effects of training 

day after five days, F4,80 = 22.22, P = 0.0001, partial eta
2
 = 0.53, and ten days, F9,153 

= 19.75, P = 0.0001, partial eta
2
 = 0.54. Bonferroni post hoc tests indicated that 

distance travelled on day 5 was significantly less than on day 1 (P = 0.001; see 

Figure 3.4A) and on day 10 compared to day 1 (P = 0.001; see Figure 3.4B). Mixed 

factorial ANOVAs for distance travelled yielded similar results. Significant main 

effects of day after five-day training, F4,72 = 22.74, P = 0.0001, partial eta
2
 = 0.56, 

and ten-day training, F9,135 = 20.56, P = 0.0001, partial eta
2
 = 0.58. Pairwise 

comparisons (Bonferroni) showed that path lengths were significantly reduced on 

days 5 (371.30 ± 38.76cm; 95% CI [289.87, 452.72]) and 10 (231.92 ± 22.88cm; 

95% CI [183.15, 280.69]) relative to initial training days (906.34 ± 62.09cm, CI 

[775.90, 1036.79], and 813.60 ± 66.26cm; 95% CI [672.37, 954.82], respectively; 

both P = 0.001). Main effects of group were not significant for either training length; 
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five day: F1,18 = 0.79, P = 0.47, partial eta
2
 = 0.08, ten day: F1,15 = 1.80, P = 0.20, 

partial eta
2
 = 0.19. Group x day interaction effects were also non-significant; five 

day: F8,72 = 1.23, P = 0.30, partial eta
2
 = 0.12, ten day: F18,135 = 1.35, P = 0.23, 

partial eta
2
 = 0.15. Acquisition results indicate equivalent learning for all groups by 

the end of the training period. 

 

 

 

Figure 3.4: Mean distance travelled (± SEM) shown for all animals as a single group 

(Mean groups) and in their respective recall groups (Control, Near and Bright) across 

(A) five and (B) ten days of training.  

 

 

3.2.3. Recall results  

3.2.3.1. Quadrants. 

Analyses of time spent in quadrants revealed Control and Bright groups trained for 

five days spent significantly more time in the target (NE) quadrant than expected by 

chance, t12 = 5.84, P = 0.001, and t12 = 2.70, P = 0.04, respectively (see Figure 

3.5A). The Bright group also spent significantly longer in the SE quadrant compared 

to chance, t12 = 4.52, P = 0.01, while both groups spent significantly less time in the 

NW quadrant, t12 = 7.25, P = 0.001, and t12 = 4.37, P = 0.01, respectively. In 

contrast, time spent in the NE quadrant by the Near group was significantly below 
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chance, t12 = 6.79, P = 0.001. Control and Bright groups continued to favour the 

target quadrant after ten days of training, t10 = 2.75, P < 0.05, and t10 = 4.57, P < 

0.05. The Near group showed no preference for any quadrant, with time spent in the 

NW quadrant being significant less than chance level, t10 = 5.30, P = 0.01 (see 

Figure 3.5B). No other significant differences were found.  

 

 

Figure 3.5: Mean percentage time (± SEM) in quadrants by five- and ten-day 

Control, Near and Bright groups (A-B). Dashed line indicates chance level (25%).  

  

3.2.3.2. Platform areas. 

Next, time spent in platform areas was assessed. Mixed factorial ANOVAs revealed 

a significant main effect of area (F3,54 = 10.84, P = 0.001, partial eta
2
 = 0.38) and 

area x group interaction effect (F6,54 = 3.60, P = 0.02, partial eta
2
 = 0.29) after five-

day training. The main effect of group was not significant, F1,18 = 0.96, P = 0.40, 

partial eta
2
 = 0.10. Post hoc analyses showed that rats preferred the target platform 

area (8.16 ± 1.11s, CI [5.83, 10.49]) over the NW (2.33 ± 0.52s, CI [1.25, 3.42]; P = 

0.01) and SW areas (3.41 ± 0.46s, CI [2.44, 4.39]; P = 0.04). When groups were 

examined separately with repeated measures ANOVAs, this preference was found to 

be driven by the Control group (F3,18 = 10.32, P = 0.01, partial eta
2
 = 0.63) who 
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favoured the target area compared to NW (P = 0.01) and SW areas (P = 0.04; see 

Figure 3.6A and 3.6C). The main effect of area was also significant for the Bright 

group (F3,18 = 8.79, P = 0.02, partial eta
2
 = 0.59) but no post hoc differences were 

discovered. Bonferroni corrected paired samples t-tests did, however, show that the 

Bright group spent longer in the target area compared to the NW (t6 = 3.05, P = 0.04) 

and SW areas (t6 = 3.09, P = 0.04). No main effect of area was noted for the Near 

group, F3,18 = 1.07, P = 0.36, partial eta
2
 = 0.15. To explore group differences within 

each area, between groups ANOVAs were then conducted. A significant main effect 

of area was discovered in the target region only (F2,20 = 5.54, P = 0.02), with the 

Bright group spending more time here than the Near group (P = 0.02).  

Platform area analyses after ten day training produced comparable results. 

The main effect of area (F3,45 = 16.61, P = 0.0001, partial eta
2
 = 0.53) and area x 

group interaction effect were significant (F6,45 = 8.94, P = 0.0001, partial eta
2
 = 

0.54). However, the main effect of group was not significant, F1,15 = 0.29, P = 0.75, 

partial eta
2
 = 0.04. Bonferroni post hoc analyses showed that rats spent significantly 

longer in the target area (10.48 ± 1.01s, CI [8.32, 12.64]) compared to the three 

remaining areas (NW: 4.63 ± 0.58s, CI [3.39, 5.87], SE: 4.33 ± 0.64, CI [2.97, 5.70], 

SW: 4.07 ± 0.55s, CI [2.91, 5.24]; all P = 0.01). Repeated measures ANOVAs 

indicated that this result was mediated by the Control (F3,15 = 22.80, P = 0.001, 

partial eta
2
 = 0.82) and Bright groups (F3,15 = 7.59, P = 0.02, partial eta

2
 = 0.60). 

More specifically, the Control group spent significantly more time in the NE area 

than in the southern areas (both P = 0.01), and the Bright group spent more time in 

this area compared to the SE area (P = 0.04; see Figure 3.6B and 3.6C). Again, 

between-groups ANOVAs were used to assess group differences within areas. 

Analyses yielded main effects for the NE (F2,17 = 14.04, P = 0.0001), NW (F2,17 = 
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6.07, P = 0.02) and SE areas (F2,17 = 5.31, P = 0.02). Tukey post hoc comparisons 

indicated that Control rats spent significantly longer in the NE and NW areas than 

the Near group (P = 0.01 and P = 0.02); the Bright group also outperformed the Near 

group in the NE area (P = 0.01), while the Near group spent more time in the SE 

area compared to the other two groups (P = 0.03 and P = 0.05). 

 

 

Figure 3.6: (A-B) Mean percentage time (± SEM) spent in platform areas by 

Control, Near and Bright groups trained for five and ten days. (C) Heat maps 

showing overall search distributions during the probe trial for five- and ten-day 

groups. Dashed line indicates chance level (0.6%). 

 

3.2.3.3. Outer corridor. 

One-way between-groups ANOVAs were carried out to explore groups differences 

in percentage time spent in the outer corridor of the maze after five and ten days of 

training. No significant main effects of group were found for either training length 
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(see Figure 3.7); five day: F2,20 = 1.59, P = 0.23, ten day: F2,17 = 1.88, P = 1.87, 

indicating that one cue groups were not more anxious relative to Controls.  

 

 

Figure 3.7: Mean percentage time (± SEM) spent in outer corridor of the maze by 

Control, Near and Bright groups trained for five and ten days.  

  

3.2.4. Discussion 

All groups acquired the task, as indicated by the decrease in escape latency and path 

length across five- and ten-day training periods. Furthermore, no group differences 

in either acquisition measure were found, signifying that groups showed equivalent 

learning. Analyses of time spent in quadrants and platform areas illustrated that, as 

expected, Control rats successfully located the correct region of the maze, with an 

increase in searching specificity observed from five- to ten-day training. Animals 

tested with the bright cue also showed a steady preference for the target quadrant and 

area across training lengths, indicating that rats correctly assigned the available cue 

to their representation of the bright cue in memory. In contrast, the Near groups had 

poor overall retention, spending the majority of their time in the southern regions of 

the maze. This behaviour is unlikely to be due to increased anxiety, since all groups 

showed comparable levels of thigmotaxis. Rather, the tendency to search in the SE 

area after ten days could indicate that the Near groups misidentified the near cue as 
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the bright cue, as searching in this region corresponds to the spatial relationship 

between the bright cue and the platform during training.  

Taken together, results indicate that the cues did not acquire equal salience 

during training, but rather, the brighter distal cue rapidly became more salient than 

the proximal cue. This finding lends support to the idea that discrete features, in this 

case brightness, can influence the overall salience of a cue (Chamizo, Rodrigo, Peris, 

et al., 2006; Young et al., 2006). With regard to strategy use, the divergent 

performance of the one-cue groups seems to suggest that animals employed an 

elemental strategy involving the bright cue to find the platform, similar to rats in 

Rodrigo et al. (2014). Importantly, no evidence for a shift in learning strategy was 

observed, as rats continued to rely on the bright cue even after extended training.  
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3.3. Experiment 2 

The aim of Experiment 2 was to demonstrate that rats could learn to navigate using a 

bright cue in the near position, thereby controlling for cue location. Since it was 

expected that the bright cue would acquire a higher salience than the near cue from 

the outset of learning (due to it being both brighter and closer to the platform), only 

one training length was employed. 

 

3.3.1. Method 

3.3.1.1. Subjects.  

Twenty-one male Wistar rats (Charles River, UK) were used as subjects (see Chapter 

2 for details regarding age, weight, housing and maintenance).  

 

3.3.1.2. Apparatus and procedure.  

All apparatus and procedures were identical to Experiment 1 with the exception of 

the cue locations. For this experiment, the location of the near and bright cues was 

reversed, such that the brighter cue was positioned closest to the platform (in the 

near NE position). All rats were trained for a total of ten days (four trials per day; 40 

trials) in the presence of both cues, with probe trials being completed 24 hours later. 

Rats were assigned to a Control group, tested with both cues (NE and NW), Bright 

group, tested with the bright (NE) cue, or Far group, tested with the far (NW) cue (n 

= 7 per group; see Figure 3.8).  
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Figure 3.8: Representation of distal cue configuration during (A) training for all 

animals, and cue configuration during testing for (B) Control, (C) Bright and (D) Far 

groups. Closed circle indicates 25 Watt bulb and open circle indicates 40 Watt bulb.  

 

3.2.1.4. Data and statistical analyses. 

Water maze acquisition was measured by mean escape latencies and distances 

travelled and recall was assessed by average time spent in quadrants, platform areas 

and the outer corridor, as per Experiment 1. All statistical analyses carried out were 

the same as those used in Experiment 1. 

 

3.3.2. Acquisition results  

3.3.2.1. Escape latency.  

A one-way repeated-measures ANOVA produced a significant main effect of 

training day, F9,180 = 19.89, P = 0.0001, partial eta
2
 = 0.50, with Bonferroni post hoc 

tests showing that escape latency on day 10 was significantly faster than on day 1 (P 

= 0.001; see Figure 3.9A). Mean escape latencies for animals in their recall groups 

were examined using a 3 (Control, Bright and Far groups) x 10 (days 1 – 10) mixed 

factorial ANOVA, which revealed a significant main effect of day (F9,162 = 29.20, P 

= 0.0001, partial eta
2
 = 0.54). Post hoc tests showed that mean escape latency 

decreased from 39.46 ± 2.91s (CI [33.33, 45.56]) on day 1 to 15.43 ± 1.10s (CI 

[13.12, 17.73]) on day 10 (P = 0.001). The main effect of group, F1,18 = 0.27, P = 
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0.77, partial eta
2
 = 0.03, and day x group interaction effect, F18,162 = 1.52, P = 0.14, 

partial eta
2
 = 0.14, were not significant.  

 

3.3.2.2. Distance travelled.  

A one-way repeated-measures ANOVA produced a significant main effect of 

training day, F9,180 = 15.91, P = 0.0001, partial eta
2
 = 0.44, with Bonferroni post hoc 

tests showing that escape latency on day 10 was significantly faster than on day 1 (P 

= 0.001; see Figure 3.9B). When animals were grouped, a 3 x 10 mixed factorial 

ANOVA also yielded a main effect of day,  (F9,162 = 16.64, P = 0.0001, partial eta
2
 = 

0.48), with a marked reduction in distance travelled from 1047.26 ± 79.90cm (CI 

[879.39, 1215.12]) on day 1 to 399.96 ± 341.50cm (CI [1341.50, 458.41]) on day 10 

(Bonferroni: P = 0.001). No significant main effect of group, F1,18 = 0.28, P = 0.76, 

partial eta
2
 = 0.03, or day x group interaction effect was found, F18,162 = 1.46, P = 

0.16, partial eta
2
 = 0.14.  

 

 

Figure 3.9: (A) Mean escape latencies (± SEM) shown for all animals as a single 

group (Mean groups) and in their respective recall groups (Control, Bright and Far). 

(B) Mean distances travelled (± SEM) shown for all animals as a single group (Mean 

groups) and in their respective recall groups (Control, Bright and Far).  

 

 

A           B 



80 

 

3.3.3. Recall results  

3.3.3.1. Quadrants. 

During the probe trial, time spent in the target quadrant was significantly above 

chance for the Control (t12 = 3.34, P = 0.01) and Bright groups (t12 = 3.31, P = 0.01), 

but not for the Far group (see Figure 3.10A). No other significant differences were 

noted for the NW, SE or SW quadrants.  

 

3.3.3.2. Platform areas. 

Mixed factorial ANOVA results included significant main effects for area (F3,54 = 

18.75, P = 0.0001, partial eta
2
 = 0.51) and group (F1,18 = 15.17, P = 0.0001, partial 

eta
2
 = 0.63), as well as a significant area x group interaction effect (F6,54 = 4.89, P = 

0.01, partial eta
2
 = 0.31). Bonferroni post hoc tests revealed that rats spent more time 

in the NE area (7.49 ± 0.81s, CI [5.79, 9.19]) compared to the NW (2.75 ± 0.45s, CI 

[1.81, 3.68]), SE (3.49 ± 0.49s, CI [2.47, 4.52]) and SW areas (2.33 ± 0.33, CI [1.64, 

3.03]; all P = 0.001).  

When time spent in areas was examined for each group individually, 

significant main effects of area were found for the Control group (F3,18 = 9.42, P = 

0.01, partial eta
2
 = 0.61) and the Bright group (F3,18 = 14.17, P = 0.001, partial eta

2
 = 

0.70), but not for the Far group (see Figure 3.10B-C). Bonferroni corrected t-tests 

revealed that Control rats favoured the NE area over the NW (t6 = 3.39, P = 0.045), 

SE (t6 = 3.31, P = 0.048) and SW areas (t6 = 3.71, P = 0.03). Post hoc tests were 

significant for the Bright group, which also preferred the target area over the three 

remaining areas: NW (P = 0.05), SE (P = 0.01) and SW (P = 0.02). In addition, 

Control and Bright groups spent significantly more time in the target area relative to 
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the Far group (F2,18 = 12.19, P = 0.0001; both P = 0.01; see Figure 3.10B-C). Group 

differences in all other areas were non-significant. 

  

3.3.3.2. Outer corridor. 

A one-way between groups ANOVA revealed a significant main effect of group, F2, 

20 = 1314.39, P = 0.001. Tukey post hoc tests showed that the Far group spent 

significantly longer in the outer corridor (67.57 ± 3.72%, CI [58.48, 76.67]) 

compared to the Control (40.95 ± 4.82%, CI [29.17, 52.74]) and Bright groups 

(48.62 ± 4.26%, CI [38.18, 59.05]) during the probe trial (P = 0.001 and P = 0.02, 

respectively; see Figure 3.9D).  
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Figure 3.10: Mean percentage time (± SEM) spent by Control, Bright and Far 

groups in (A) quadrants and (B) platform areas during the probe trial. (C). Heat maps 

illustrating search patterns during the probe test for five- and ten-day groups. (D). 

Mean percentage time (± SEM) spent in outer corridor by Control, Bright and Far 

groups during recall. Dashed line indicates chance level (0.6%). 

 

3.3.4. Discussion 

As per Experiment 1, all groups learned to reach the platform equally well after ten 

days of training. During the recall test, the Control and Bright groups favoured the 

target quadrant and platform area, while rats navigating with the less luminous far 

cue were impaired. The Far group also demonstrated greater thigmotaxis relative to 

the other groups, which may indicate increased anxiety levels. Overall, results 

indicate that the bright cue again became the more salient of the two cues. 

Interestingly, the Far group did not appear to mistake the far cue for the bright cue 

here, as was noted in Experiment 1. Namely, this group showed no preference for 
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searching in the NW region of the pool. It is possible that because the bright cue was 

both brighter and closer to the platform relative to the far cue, this cue acquired a 

beacon-like control over navigation (Redhead et al., 1997), whereby animals paid 

little attention to the relationship between the far cue and the platform during 

training. Thus, rats were completely impaired with the near cue during the recall 

phase, resulting in greater thigmotactic behaviour. In line with Experiment 1, the 

discrepancy in performance level between the one-cue groups also implies the 

presence of an elemental over configural learning strategy.  
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3.4. Experiment 3 

Findings from Experiments 1 and 2 showed that brightness can have a greater effect 

on cue salience than proximity to the goal. Therefore, the purpose of Experiment 3 

was to more closely examine the role of proximity to the goal in determining cue 

salience and on the type of strategy learned. We also aimed to investigate if greater 

experience with a cue arrangement via increased training influenced the type of 

strategy used.  

 

3.4.1. Method 

3.4.1.1. Subjects.  

Subjects were male Wistar rats (n = 38; Charles River, UK; see Chapter 2 for age, 

weight, housing and maintenance details).  

 

3.4.1.2. Apparatus and procedure.  

Apparatus and procedures were the same as Experiment 1 with the exception of the 

far cue, which was replaced with a 25 Watt light bulb, resulting in an environment 

with two equally bright distal cues. Rats were trained for five (n = 20; 20 trials) or 

ten days in total (n = 18; 40 trials), followed 24-hours later by a single probe trial. 

Before training, rats trained for five days were randomly allocated to one of three 

groups; Control group (n = 6), Near or Far (both n = 7). Rats trained for ten days 

were grouped in the same way (n = 6 per group). Control groups were tested with 

both cues (NE and NW), Near groups were tested with the near (NE) cue only and 

Far groups with the far (NW) cue only (see Figure 3.11). 
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Figure 3.11: Diagram of (A) training cue configurations for all animals and testing 

cue configurations for (B) Control (C) Near and (D) Far groups 25 Watt bulbs (open 

circles). 

  

3.2.1.4. Data and statistical analyses. 

All behavioural data and statistical analyses were identical to those outlined in 

Experiment 1.  

 

3.4.2. Acquisition results  

3.4.2.1. Escape latency.  

One-way repeated-measures ANOVAs (for animals as a single group) yielded 

significant main effects of training day after five days, F4,76 = 31.84, P = 0.0001, 

partial eta
2
 = 0.63, and ten days, F9,153 = 26.25, P = 0.0001, partial eta

2
 = 0.61. 

Bonferroni post hoc tests showed that escape latency on day 5 was significantly 

shorter than on day 1 (P = 0.001), and on day 10 compared to day 1 (P = 0.001; see 

Figure 3.12). Mixed factorial ANOVAs were then once again employed to 

investigate animals’ escape latencies according to recall group. Main effects of day 

were found after five (F4,68 = 33.86, P = 0.0001, partial eta
2
 = 0.67) and ten days of 

training (F9,135 = 25.88, P = 0.0001, partial eta
2
 = 0.99). Bonferroni post hoc analyses 

showed that escape latencies after five days (11.97 ± 1.35s, CI [9.12, 14.82]) and ten 

days (10.39 ± 0.92s, CI [8.44, 12.34]) were significantly shorter compared to day 1 

(31.23 ± 1.68s, CI [27.68, 34.79], P = 0.001, and 33.59 ± 1.92s, CI [29.54, 37.65], P 

= 0.001, respectively). No significant main effects of group (five day: F1,17 = 2.21, P 
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= 0.14, partial eta
2
 = 0.21, ten day: F1,15 = 4.18, P = 0.36, partial eta

2
 = 0.20) or day x 

group interaction effects were found (five day: F8,68 = 1.66, P = 0.15, partial eta
2
 = 

0.16, ten day: F18,135 = 0.88, P = 0.55, partial eta
2
 = 0.11). 

 

 

Figure 3.12: Mean escape latency (± SEM) shown for all animals as a single group 

(Mean groups) and in their respective recall groups (Control, Near and Far) across 

(A) five and (B) ten days of training.  

 

 

3.4.2.2. Distance travelled.  

One-way repeated-measures ANOVAs yielded significant main effects of training 

day after five days, F4,76 = 30.78, P = 0.0001, partial eta
2
 = 0.62, and ten days, F9,153 

= 22.35, P = 0.0001, partial eta
2
 = 0.57. Bonferroni post hoc tests showed that path 

length on day 5 was significantly shorter than on day 1 (P = 0.001), and on day 10 

compared to day 1 (P = 0.001; see Figure 3.12). Mixed factorial ANOVAs produced 

significant main effects of day after five- (F4,68 = 31.39, P = 0.0001, partial eta
2
 = 

0.65) and ten-day training (F9,135 = 21.37, P = 0.0001, partial eta
2
 = 0.59; see Figure 

3.13). Bonferroni post hoc tests illustrated that path lengths were significantly 

shorter on day 5 (219.05 ± 24.43cm, CI [167.52, 270.59]) and day 10 (280.76 ± 

28.90cm, CI [219.15, 342.36]) in comparison to day 1 (644.52 ± 37.40cm, CI 
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[565.61, 723.43], and 758.70 ± 44.11cm, CI [664.67, 852.72], respectively; both P = 

0.001). Main effects of group were not significant for either training length; five day: 

F1,17 = 3.39, P = 0.06, partial eta
2
 = 0.29, ten day: F1,15 = 3.65, P = 0.06, partial eta

2
 

= 0.32. Day x group interaction effects also failed to reach significance; five day: 

F8,68 = 1.24, P = 0.30, partial eta
2
 = 0.13, ten day: F18,135 = 0.62, P = 0.77, partial eta

2
 

= 0.08.  

 

 

Figure 3.12: Mean distance travelled (± SEM) shown for all animals as a single 

group (Mean groups) and in their respective recall groups (Control, Near and Far) 

across (A) five and (B) ten days of training.  

 

 

3.4.3. Recall results  

3.4.3.1. Quadrants.  

After five days of training, no group displayed a significant preference for any 

quadrant (see Figure 3.14A). One significant result was found for the Far group, 

which spent significantly less time in the SW quadrant compared to chance level, t12 

= 2.48, P = 0.05. After ten days of training time spent in the NE quadrant was 

significantly greater than chance for the Control group (t10 = 6.93, P = 0.001) and the 

Far group (t10 = 6.63, P = 0.001), but not for the Near group (see Figure 3.14B). 

Percentage times were significantly below chance level in the NW quadrant for the 
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Near (t10 = 3.15, P = 0.03) and Far groups (t10 = 4.43, P = 0.01), and in the SW 

quadrant for the Control (t10 = 7.18, P = 0.001) and Far groups (t10 = 3.89, P = 0.02).  

 

 

Figure 3.14: Mean percentage time spent in quadrants (± SEM) after (A) five-day 

and (B) ten-day training for Control, Near and Far groups.  

 

3.4.3.2. Platform areas.  

A comparison of time spent in platform areas after five days of training produced a 

significant main effect of area (F3,51 = 3.13, P = 0.03, partial eta
2
 = 0.16) and area x 

group interaction effect (F6,51 = 5.08, P = 0.0001, partial eta
2
 = 0.57), but no main 

effect of group, F1,17 = 1.30, P = 0.89, partial eta
2
 = 0.01. Post hoc tests were non-

significant, however, repeated measures ANOVAs showed that, of the three groups, 

Control rats spent significantly more time in the target area compared to NW and SE 

areas (F3,15 = 13.30, P = 0.001, partial eta
2
 = 0.73; P = 0.01, and P = 0.04, 

respectively). Near and Far groups did not display a preference for any area. The 

Control group also spent significantly longer in the NE area compared to the Near 

group, F2,15 = 13.30, P = 0.02 (P = 0.02; see Figure 3.15A and 3.15C).  

A main effect of area (F3,45 = 48.33, P = 0.001, partial eta
2
 = 0.76) and area x 

group interaction (F6,45 = 8.54, P = 0.001, partial eta
2
 = 0.53) were also found after 

A           B 
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10-day training. The main effect of group was not significant, F1,15 = 0.15, P = 0.86, 

partial eta
2
 = 0.02. Bonferroni post hoc comparisons showed that rats spent 

significantly more time in the target area (9.57 ± 0.77s, CI [7.93, 11.22]) compared 

to all other areas (NW: 2.04 ± 0.43s, CI [1.13, 2.94]; SE: 4.35 ± 0.52s, CI [3.23, 

5.47]; SW: 1.46 ± 0.31, CI [0.81, 2.21]; all P = 0.001). Individual main effects of 

area were also found for the Control (F3,15 = 34.82, P = 0.001, partial eta
2
 = 0.87) and 

Far groups (F3,15 = 37.13, P = 0.001, partial eta
2
 = 0.88). Both groups favoured the 

NE area over the NW (P = 0.02 and P = 0.01), SE (P = 0.01 and P = 0.02) and SW 

areas (both P = 0.01). Furthermore, between-groups ANOVA showed that the 

Control and Far groups spent significantly longer in the NE area compared to the 

Near group, F2,17 = 11.84, P = 0.01 (both P = 0.01; see Figure 3.15B-C). Time spent 

in all other areas did not differ across groups.  
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Figure 3.15: (A-B). Mean percentage time spent (± SEM) in platform areas by 

Control, Near and Far groups after five and ten days. (C). Heat maps showing search 

distributions during testing for five- and ten-day groups. Dashed line indicates 

chance level. 

 

3.4.3.3. Outer corridor.  

One-way between-groups ANOVAs failed to produce significant main effects of 

group after five- and ten-day training; F2,19 = 1.49, P = 0.25, and F2,17 = 2.12, P = 

0.16, respectively (see Figure 3.16).  
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Figure 3.16: Mean percentage time (± SEM) spent in outer corridor by Control, 

Near and Far groups trained for five and ten days.  

  

3.4.4. Discussion 

All groups successfully acquired the task after standard and extended training, as 

before. After five days of training, no strong group preferences were observed for 

any quadrant of the maze. However, the Control group did search in the NE area 

(over the NW and SE regions, and compared to the Near group). When the number 

of training trials was doubled, the performance of the Control and Far groups 

improved significantly. Both groups favoured the NE quadrant and the NE area over 

all remaining areas and relative to the Near group. In contrast, rats navigating with 

the proximal cue failed to search in the target regions after ten days. Not entirely 

unlike Experiment 1, the Near group did exhibit a slight tendency to search in 

eastern over western regions of the maze – although these differences did not reach 

significance. This preference could potentially denote that the cues were confounded, 

and thus rats divided their time between searching in areas appropriate for each cue. 

Rats in the Far group showed no indication of a similar pattern of searching; time 

spent by this group in the NW quadrant was in fact significantly below chance level. 

Overall, the results of Experiment 3 revealed that a distal cue can acquire 

greater salience than a proximal cue, contrary to our hypothesis and to some previous 
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literature (Artigas et al., 2005; Chamizo & Rodrigo, 2004; Redhead & Hamilton, 

2007). Furthermore, findings do not support our prediction regarding strategy use. 

The poor navigation of the one-cue groups after five-day training indicates that rats 

did not adopt an elemental strategy from the beginning. Rather, it seems that animals 

initially engaged in configural learning with the entire cue arrangement, and the 

farther cue only became more salient after additional training. This could potentially 

have been due to the enhanced visual similarity of the cues (relative to Experiments 

1 and 2) which may have promoted an initial configural learning approach, akin to 

the observations of Giurfa and colleagues (2003).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



93 

 

3.5. Experiment 4 

As animals in the previous experiments were trained to navigate to a constant 

platform location (NE quadrant), it is possible that rats were relying other, 

unintentional room cues (e.g. noises, draughts or odours) to navigate. The goal of 

Experiment 4 was to exclude this possibility using a number of control conditions. A 

secondary aim of this experiment was to confirm that rats could discriminate cue 

brightness. 

 

3.5.1. Method 

3.5.1.1. Subjects.  

Subjects were twenty-eight make Wistar rats (see Chapter 2 for description of age, 

weight, housing and maintenance).  

 

3.5.1.2. Apparatus and procedure.  

The apparatus and procedure were similar to Experiment 1. All animals were trained 

with two cues (one 25 Watt light bulb in the near position and one 40 Watt light bulb 

in the far position) for five days only (four trials per day; 20 trials). Rats were 

separated into five groups; a Control group (n = 6), a Swap group (n = 6), a Rotated 

Control group (n = 4), a Rotated Near group (n = 6) and a Rotated Bright group (n = 

6) (see Figure 3.17). During recall, Control animals were tested with both cues, as 

per acquisition (from the SW start position). The Swap group was also tested in the 

presence of both cues (SW start position); however, their locations were reversed, 

such that the near cue was located in the NW position and the bright cue was located 

in the NE position. The Rotated Control group were tested with both cues rotated 

180°, i.e. the bright cue was located in the SE position and the near cue was located 
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in the SW position. The Rotated Near and Rotated Bright groups were tested with a 

single cue only; the near cue and the bright cue, respectively, located in the SE 

position. All rotated groups were placed into the maze from the centre of the NW 

quadrant by the pool wall, i.e. opposite to the target quadrant as specified before (to 

ensure that start positions for all groups were equally distant from the cues).  

 

Figure 3.17: Cue configurations during (A) training and (B-F) testing for Control, 

Swap, Rotated Control, Rotated Near and Rotated Bright groups, with 25 Watt 

(closed circle) and 40 Watt bulbs (open circle).   

 

3.2.1.4. Data and statistical analyses. 

All analyses were the same as those outlined in Experiment 1. 

 

3.5.2. Acquisition results  

3.5.2.1. Escape latency. 

A one-way repeated-measures ANOVA yielded a significant main effect of training 

day, F4,108 = 27.43, P = 0.0001, partial eta
2
 = 0.50. Bonferroni post hoc tests showed 

A                            B                          C    

D                            E                           F     
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that escape latency on day 5 was significantly shorter than on day 1 (P = 0.001; see 

Figure 3.18A). A 5 x 5 mixed factorial ANOVA investigating escape latencies for 

animals according to recall group also produced a significant main effect of day, 

F4,92 = 26.63, P = 0.0001, partial eta
2
 = 0.54. Bonferroni pairwise comparisons 

showed that rats were significantly faster at escaping the maze on day 5 (16.20 ± 

1.15s, CI [13.82, 18.58]) than on day 1 (33.81 ± 1.75s, CI [30.20, 37.43]; P = 

0.0001). No main effect of group, F1,23 = 1.01, P = 0.43, partial eta
2
 = 0.16, or day x 

group interaction effect was noted, F16,92 = 1.32, P = 0.24, partial eta
2
 = 0.19. 

 

3.5.2.2. Distance travelled. 

A one-way repeated-measures ANOVA for path length yielded a significant main 

effect of training day, F4,108 = 27.40, P = 0.0001, partial eta
2
 = 0.50. Bonferroni post 

hoc tests indicated that path length on day 5 was significantly less than on day 1 (P = 

0.001; see Figure 3.18B). A 5 x 5 mixed factorial ANOVA examining path lengths 

produced similar results. The main of day was significant, F4,92 = 27.32, P = 0.0001, 

partial eta
2
 = 0.54, and Bonferroni post hoc tests confirmed that mean distance 

travelled was significantly reduced on day 5 (390.47 ± 40.69cm, CI [306.30, 

474.64]) compared to day 1 (834.64 ± 40.29cm, CI [751.30, 917.97]; P = 0.0001). 

The main effect of group, F1,23 = 1.81, P = 0.16, partial eta
2
 = 0.24, and day x group 

interaction effect, F16,92 = 1.43, P = 0.14, partial eta
2
 = 0.21, were non-significant.  
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Figure 3.18: (A) Mean escape latencies and (B) distances travelled (± SEM) for all 

animals as a single group (Mean groups) and in their respective recall groups 

(Control, Swap, Rotated Control, Rotated Near and Rotated Bright). 

 

 

3.5.3. Recall results 

3.5.3.1. Quadrants. 

Mean percentage time spent in each quadrant was compared to chance level for each 

group using a series of one sample t-tests. Only three significant results above 

chance were noted: the Control group spent significantly more time in the NE (t10 = 

2.69, P = 0.05) and SE quadrants (t10 = 3.21, P = 0.04), and the Rotated Control 

group favoured the SW quadrant (t8 = 2.70, P = 0.05; see Figure 3.19). A number of 

significant deviations below chance were found which included the Rotated Control 

group in the NE (t8 = 4.79, P = 0.03) and SE quadrants (t8 = 6.77, P = 0.02), and 

Control and Rotated Near groups in the NW quadrant (t10 = 3.65, P = 0.02, and t10 = 

3.20, P = 0.02, respectively).   

 

A          B 
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Figure 3.19: Mean percentage time (± SEM) spent in each quadrant by Control, 

Swap, Rotated Control, Rotated Near and Rotated Bright groups during the probe 

trial. Dashed line indicates chance level (25%). 

 

 

3.5.3.2. Platform areas. 

A 5 x 4 mixed factorial ANOVA was used to investigate time spent by groups in 

platform areas. Main effects of area, F3,69 = 1.95, P = 0.15, partial eta
2
 = 0.08, and 

group, did not reach significance, F1,23 = 1.30, P = 0.30, partial eta
2
 = 0.19. Post hoc 

tests were also non-significant. The area x group interaction effect was, however, 

significant, F12,69 = 5.10, P = 0.0001, partial eta
2
 = 0.47. Group differences in 

individual areas were assessed using one-way between groups ANOVAs. Significant 

main effects were found in the NE (F4,27 = 5.13, P = 0.01), NW (F4,27 = 10.08, P = 

0.001) and SW platform areas (F4,27 = 3.66, P = 0.02). No main effect was noted in 

the SE area, F4,27 = 0.54, P = 0.71.  

Tukey multiple comparisons showed that Control group spent significantly 

longer in the NE platform area (10.28 ± 3.05%, CI [2.43, 18.13]) compared to the 
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three Rotated groups: Control (2.33 ± 0.81%, CI [0.23, 4.90]; P = 0.03), Near (2.00 ± 

0.74%, CI [0.11, 3.90]; P = 0.01) and Bright (1.72 ± 0.66%, CI [0.02, 3.43]; P = 

0.01) (see Figure 3.20). The Rotated Control group spent significant more time in the 

NW area (7.17 ± 2.91%, CI [2.53, 11.80]) than the Control (0.67 ± 0.23%, CI [0.08, 

1.25]; P = 0.001), Rotated Near (1.83 ± 0.52%, CI [0.51, 3.16]; P = 0.001) and Swap 

groups (2.72 ± 0.53%, CI [1.35, 4.10]; P = 0.01) (see Figure 3.20). Despite a 

significant main effect in the SW area, Tukey post hoc tests were non-significant.  

However, t-tests corrected for multiple comparisons indicated that Control 

animals spent less time in this region (2.06 ± 0.86%, CI [0.15, 4.26]) than the 

Rotated Control (7.25 ± 0.19%, CI [2.80, 11.70]; t8 = 3.37, P = 0.01) and Rotated 

Bright groups (6.06 ± 1.46%, CI [2.30, 9.81]; t10 = 2.36, P = 0.04). The Swap group 

also spent less time here (1.83 ± 0.46%, CI [1.35, 2.32]) than Rotated Control (t8 = 

4.80, P = 0.03) and Bright groups (t10 = 2.87, P = 0.02). Although the Rotated Near 

group also preferred the SW area compared to Control and Swap groups, these 

differences did not reach statistical significance (t8 = 2.13, P = 0.07, and t10 = 2.38, P 

= 0.06, respectively).  

Time spent in platform areas was then assessed for each group individually 

using within-groups ANOVAs. Significant main effects were found for Control 

(F3,15 = 6.26, P = 0.01, partial eta
2
 = 0.56), Swap (F3,15 = 5.28, P = 0.02, partial eta

2
 

= 0.51) and Rotated Control groups (F3,9 = 7.71, P = 0.01, partial eta
2
 = 0.72). No 

main effect was found for the Rotated Near (F3,15 = 3.66, P = 0.04, partial eta
2
 = 

0.42) or Rotated Bright groups (F3,15 = 1.92, P = 0.17, partial eta
2
 = 0.28). 

Bonferroni post hoc comparisons were non-significant for all groups. Accordingly, 

repeated measures t-tests were employed to determine if Control, Swap and Rotated 
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Control groups favoured specific areas over others, however, no significant 

differences were found for any group after Bonferroni correction.   

 

 

Figure 3.20: (A). Mean percentage time (± SEM) spent in platform areas by Control, 

Swap, Rotated Control, Rotated Near and Rotated Bright groups during the probe 

trial. (B). Heat maps illustrating overall searching behaviour during testing by each 

group. Dashed line indicates chance level (0.6%). 

  

  

3.5.3.3. Outer corridor. 

A one-way between groups ANOVA failed to yield a significant main effect of 

group, F4,27 = 0.40, P = 0.81 (see Figure 3.21).  
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Figure 3.21: Mean percentage time (± SEM) spent in the outer corridor by Control, 

Swap, Rotated Control, Rotated Near and Rotated Bright groups during testing.   

 

3.5.4. Discussion 

All rats acquired the task, as illustrated by the significant reduction in escape 

latencies and path lengths across training. Regarding recall, the observed difference 

between Control and Swap groups (in the NE quadrant) showed that the latter group 

identified the change in cue configuration; thus suggesting that rats could in fact 

distinguish between the cues based on their brightness. This finding is important 

because it confirms that rats were not merely relying on the overall cue configuration 

(regardless of individual cue characteristics), but rather, the cues were acquiring 

individual saliences, as suggested by Experiments 1-3. The lack of searching 

specificity displayed by the Swap group can likely be explained by the altered cue 

configuration, i.e. this condition was the only one in which the spatial relationship of 

the cues was different from that of training. As expected, when both cues were 

rotated 180°, rats’ searching behaviour adjusted accordingly. More specifically, the 

Rotated Control group displayed a preference for the SW quadrant and platform 

area, indicating that the spatial relationship between the platform and the cues was 

preserved. By comparison, rats tested with a single cue rotated appeared to be 
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somewhat impaired, although they did appear to modify their searching behaviour in 

response to the novel testing environment (i.e. neither showed a preference for the 

original NE target zones). In addition, the searching behaviour of the Rotated Bright 

group (in the SW platform area) is indicative that this group were relying on the 

learned relationship between the bright cue and the platform, as observed in previous 

experiments. Interestingly, the Rotated Near group did not favour the SE region of 

the pool – as would be expected if rats had navigated via the near cue. Instead, they 

exhibited similar searching patterns to the Rotated Bright group, although these 

differences were not significant. Taken together, these results suggest that rats tested 

with a rotated near cue may have misidentified it as the bright cue (akin to 

Experiment 1). Overall, findings support the suggestion that rats learned the location 

of the platform with reference to the distal cues, as opposed to other unknown 

environmental cues, and that the brighter of the two cues acquired more salience 

during training.  
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3.6. General discussion 

The goal of this chapter was to examine the influence of cue salience and training on 

the type of allocentric spatial learning strategy used in the Morris water maze. 

Experiment 1 revealed that individual cue characteristics – in this case brightness – 

can become more salient, and thus acquire more control over animals’ searching 

behaviour, than relative proximity to the goal. Experiment 2 showed that reliance on 

the more salient (brighter) cue can be increased if this cue is also closer to the goal. 

This finding supports the idea that multiple components of cue salience can have an 

additive effect on behaviour (Bennett, 1996; Chamizo, Rodrigo, & Mackintosh, 

2006). Together, results also suggest that the presence of a brighter cue may have 

interfered with the amount of spatial information rats learned about the alternate cue 

throughout training (near cue in Experiment 1 and far cue in Experiment 2), i.e. an 

interference by salience effect (Crespo, Rodriguez, & Chamizo, 2012; Rodrigo et al., 

2014). Furthermore, we observed that greater disparity between the saliences of cues 

can lead to more interference. More specifically, rats navigating with a less luminous 

near cue misdirected their searching to regions (i.e. SE quadrant and area) 

appropriate for the bright cue (Experiment 1), whereas those navigating with a cue 

that was both dimmer and farther from the platform appeared to be completely 

impaired (Experiment 2). This disproportionate reliance on one cue relative to the 

other is indicative of an elemental strategy which was acquired quickly, i.e. after 

only twenty training trials in Experiment 1, which was less than half of the number 

administered by Rodrigo and colleagues (2014).  

When brightness was removed as a component of cue salience in Experiment 

3, a different pattern of results emerged. Rats trained with two equally bright cues for 

five days failed to find the correct platform area using either cue in isolation, 
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whereas after forty training trials, rats navigating with the far cue (in addition to 

Controls) displayed good recall (NE quadrant and area). The perceived change in 

navigational ability suggests that the cues initially acquired similar saliences, but that 

the far cue became more salient than the near cue over time. This may point towards 

the use of a configural strategy with the intact cue arrangement at first, followed by a 

shift towards elemental processing involving the far cue. Here, the interference by 

salience effect appears to have been dependent on additional training (Crespo et al., 

2012; Rodrigo et al., 2014). As mentioned, the delayed emergence of an elemental 

strategy in Experiment 3 compared with Experiments 1 and 2 could be due to the 

fact that cues were visually indistinguishable in this experiment. It is probable that 

the enhanced perceptual similarity of the cues made it difficult for rats to 

differentiate between them during the early stages of training, causing them to rely 

on both cues to orient towards the platform. This result is in line with Rodrigo and 

colleagues (2014), who showed that rats trained in the water maze with two cues of 

equivalent saliences navigated via a configural strategy.  

 Unexpectedly, the far cue acquired greater behavioural control after extended 

training, despite offering no obvious advantage over the near cue. One simple 

explanation for this is that rats made use of incidental room cues unknown to the 

experimenter. Indeed, it is difficult to determine the features of an environment that 

will be considered most salient to a rat (Young et al., 2006). However, unintentional 

visual cues were obscured from view by the addition of the surrounding curtain and 

by the administration of all training and testing in complete darkness. Further, it is 

doubtful that animals were relying on static auditory or olfactory cues (e.g. air 

conditioning) as, if this were the case, we would have expected groups to navigate 

equally well regardless of which cue was removed. Moreover, the results of 
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Experiment 4 – whereby rats altered their behaviour when the cue positions were 

rotated (i.e. increased searching in the SW quadrant and area) – suggest that animals 

were using the distal cues to navigate. One further straightforward suggestion is that 

rats were using an inertial sense of direction via their vestibular system to guide 

navigation, as previously shown by Cheng (1986). However, the use of multiple start 

positions during training as well as novel start positions during recall makes this, or 

the use of habitual or procedural responding (Packard & McGaugh, 1992), an 

unlikely explanation.  

Nevertheless, rats evidently learned to distinguish between the cues on some 

non-salient physical feature, which resulted in the far cue acquiring more salience. 

We propose that rats discriminated between the cues based on their spatial position 

relative to the platform. Furthermore, we suggest that the positioning of the distal 

cue allowed for a more reliable estimation of the platform location than the proximal 

cue, causing the former to become more salient. Research has shown that errors in 

estimating distance tend to increase more rapidly than directional errors as a cue gets 

farther from the goal (Kamil & Cheng, 2001; Kamil & Jones, 1997, 2000; Kelly, 

Kamil, & Cheng, 2010). Therefore, we can reasonably assume that the far cue in the 

current experiments was a better indicator of directional (rather than distance) 

information. Previous work with rats in the water maze has also demonstrated that a 

loss of directional information affects performance more negatively than a 

comparable loss of distance information, suggesting that the former is weighted more 

heavily (Diviney et al., 2013; see Forloines, Bodily, & Sturz, 2015; Kamil & Jones, 

2000, for similar evidence in humans and birds, respectively).  

In addition, research in desert ants has highlighted the importance of cue 

elevation for navigation, whereby cues of a lower elevation allow for a more precise 
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estimation of direction (Müller & Wehner, 2007). Crucially, the elevation of the 

farther cue (positioned 162cm from the platform) was lower than that of the closer 

cue (127cm from the platform) in the present set of experiments. Moreover, the 

elevation of the near cue would have increased as animals approached and mounted 

the platform (making it more difficult to gauge directional information), whereas the 

elevation of the far cue would have remained relatively stable. Therefore, taking the 

elevations of the cues into account, in combination with the importance of 

directional information, it seems reasonable that rats would regard the distal cue as 

more useful; however, future work exploring cue elevations systematically in the 

water maze is needed to confirm this suggestion.  

If rats had established the far cue as a primary source of directional 

information, the question of how they navigated without a second cue to provide 

distance information still remains. To account for this, we suggest that the perimeter 

of the maze played an important role in the estimation of distance, and ultimately in 

establishing the far cue’s higher salience. The use of the pool wall as an aid in 

locating the platform is well-documented (Austen, Kosaki, & McGregor, 2013; 

Hamilton, Akers, Weisend, & Sutherland, 2007; Harvey et al., 2009). Specifically, 

rats have been shown to swim in circles around the maze at a set distance from the 

pool wall in search of the platform, indicating that they can easily estimate distance 

information from the wall (Alvarado & Rudy, 1995; Artigas et al., 2005; Chamizo, 

Manteiga, et al., 2006; Maurer & Derivaz, 2000). Importantly, animals would be 

unable to obtain directional information from the shape of the maze in the current set 

of experiments, as has been illustrated previously (Pearce, 2009), due to its circular 

shape. We posit that in these experiments, the near cue could have been replaced by 



106 

 

the pool wall relatively easily as a result of its position close to and in the same 

quadrant as the platform.  

Although our results are indicative of an elemental learning strategy 

involving the more salient of two cues, we cannot definitively rule out the use of a 

configural strategy. As Rodrigo and colleagues (2014) state, the separation of 

elemental and configural learning strategies is not easily achievable. According to 

configural accounts, elemental representations are retained in memory, although they 

do not become directly associated with the goal (Pearce, 1987; 1994). Thus, once 

established, a configural representation can be proportionately activated by any of its 

original elements (Rodrigo et al., 2014; Sutherland & Rudy, 1989). As such, it is 

possible that rats established a configural representation with both cues (and the pool 

wall) which was then generated during testing with a single cue (Rodrigo et al., 

2014). However, if this were the case, we would have expected animals to find the 

correct platform location using either cue in isolation, i.e. with the near cue in 

Experiments 1, 3 and 4 and the far cue in Experiment 2. That is, the remaining cue 

should have triggered a representation of the overall configuration including the 

absent cue, allowing rats to navigate accurately (Rodrigo et al., 2014).  

In sum, findings from the current chapter lend support to the idea of an 

enhanced flexibility of spatial behaviour (Sturz & Katz, 2009). Rather than being 

mutually exclusive, it seems more likely that searching behaviour can come under 

the control of whichever strategy (elemental or configural) is most beneficial for 

navigating a particular environment (Biegler & Morris, 1999; Kamil & Jones, 1997, 

2000; Rodrigo et al., 2014). Our results provide novel evidence that the utility of a 

strategy is at least partially determined by the relative saliences of the cues and the 

length of training. When one cue is notably more salient than the other, rats quickly 
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learn to rely on the spatial information offered by this cue instead of the entire 

arrangement, which may be suggestive of a learning efficiency. Furthermore, rats’ 

ability to navigate using this strategy develops more slowly when the available cues 

are of similar saliences.  

Having investigated some of the key behavioural features associated with 

allocentric spatial learning in the water maze, we next explored the neurochemical 

and anatomical underpinnings of such behaviour. Specifically we investigated the 

role of NMDA and AMPA receptors in two key brain regions – the hippocampus 

and medial prefrontal cortex – during water maze acquisition. We also used IEG 

imaging to probe for evidence of plasticity in these areas. 
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Chapter 4 
 

Examining the Effects of Glutamate 

Receptor Blockade on Spatial Learning 

and Immediate Early Gene Expression in 

the Hippocampus and Prefrontal Cortex 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Parts of this Chapter have been published as Farina, F. R., & Commins, S. (2016). 

Differential expression of immediate early genes Zif268 and c-Fos in the 

hippocampus and prefrontal cortex following spatial learning and glutamate receptor 

antagonism. Behavioural Brain Research, 307, 194-198. 
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Abstract 

The hippocampus is critical for spatial memory encoding, and is facilitated by 

NMDA receptor activation. The medial prefrontal cortex is also involved in spatial 

processing; however, its specific role during early stages of memory formation 

remains unclear, as preceding research has yielded mixed results. Over two 

experiments, we investigated the contribution of glutamate receptor activation to 

spatial memory acquisition and IEG expression in the hippocampus and medial 

prefrontal cortex. In Experiment 1, the effects of glutamate antagonism on basal 

expression of two IEGs, Zif268 and c-Fos, in hippocampal and prefrontal sub-

regions were examined. Experimentally naïve rats received injections of NMDA 

channel blocker MK-801, AMPA receptor antagonist CNQX or saline (all i.p.) over 

five days. Results failed to show any significant differences between drug and saline 

groups, indicating that glutamate receptor blockade had no impact on baseline gene 

expression. In Experiment 2, rats received MK-801, CNQX or saline i.p. injections 

before water maze training each day for five days. Levels of Zif268 and c-Fos 

expression were quantified after training on day 5. Behaviourally, Saline and CNQX 

groups acquired the water maze task while MK-801-treated animals were impaired, 

as evidenced by significantly slower escape latencies on day 5. IEG imaging 

revealed different patterns for Zif268 and c-Fos across brain regions, with Zif268 

levels being more closely related to learning-related activation in the hippocampus 

and prefrontal cortex.  
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4.1. Introduction  

The dorsal hippocampus is widely accepted to be a crucial brain region for spatial 

memory encoding. Over the last 40 years, converging evidence from lesion, genetic, 

electrophysiological and neuroimaging studies has supported its central role in 

spatial processing (Burgess, Maguire, & O'Keefe, 2002; Moser, Moser, & Andersen, 

1993; Nakazawa, McHugh, Wilson, & Tonegawa, 2004; Silva, Giese, Fedorov, 

Frankland, & Kogan, 1998). Hippocampal involvement in spatial memory 

acquisition is mediated by NMDA receptors (Bliss & Collingridge, 1993; Martin et 

al., 2000). Research has shown that antagonism of these receptors within the 

hippocampus reliably impairs performance in the water maze (Bast et al., 2005; 

Davis, Butcher, & Morris, 1992; Morris, Halliwell, & Bowery, 1989; Pitkänen et al., 

1995; Whishaw & Auer, 1989). Encoding deficits have also been observed following 

hippocampal AMPA/kainate receptor antagonism (Cain, Saucier, Hall, Hargreaves, 

& Boon, 1996; Filliat, Pernot-Marino, Baubichon, & Lallement, 1998; Liang et al., 

1994; Riedel et al., 1999). However, because AMPA/kainate receptor blockade can 

reduce NMDA receptor activation, it is possible that these effects were NMDA 

receptor-related (Riedel, Platt, & Micheau, 2003). 

 The importance of the medial prefrontal cortex for successful way-finding is 

also well-established (Simons & Spiers, 2003). This region is thought to be involved 

in motivational aspects of spatial performance such as route planning and flexible 

responding (Hok et al., 2005; Rich & Shapiro, 2009). Recently, place cells have been 

identified within the prefrontal cortex (Hok et al., 2005). In addition, prefrontal cells 

which respond to hippocampal stimulation are activated by both NMDA and AMPA 

receptor agonists (Jay, Thierry, Wiklund, & Glowinski, 1992), and can be blocked 

by antagonists (Gigg, Tan, & Finch, 1994; Jay et al., 1992). These findings confirm 
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that neurotransmission between the hippocampus and medial prefrontal cortex is 

glutamate receptor-dependent (Laroche et al., 2000). 

Despite much research into the functioning of the medial prefrontal cortex, its 

significance – and that of its specific sub-regions – during the early stages of 

memory formation remains unclear (Wang & Cai, 2008). Lesion studies 

investigating prefrontal involvement in allocentric spatial learning have yielded 

mixed results. Some authors have reported no learning deficits in rats with whole or 

partial (prelimbic) lesions in water maze tasks (Compton et al., 1997; de Bruin et al., 

2001; de Bruin et al., 1994; Lacroix et al., 2002; Maaswinkel, Baars, Gispen, & 

Spruijt, 1996). In contrast, others have found mild or marked effects on spatial task 

acquisition in rats with lesions to the entire medial prefrontal cortex or to the anterior 

cingulate sub-region (Mogensen, Lauritsen, Elvertorp, Hasman, Moustgaard, & 

Wörtwein, 2004; Sutherland et al., 1988; Warburton, Aggleton, & Muir, 1998). 

While these contrasting findings might be explained by subtle procedural differences 

as Hok and colleagues (2005) suggest, it seems likely that they also reflect 

limitations of the lesion approach. Specifically, lesion site specificity is difficult to 

achieve; thus, variations in behavioural performance could be due to differences in 

the extent or location of cortical damage (Aggleton & Brown, 2005; Poirier, Amin, 

& Aggleton, 2008).  

Immediate early gene (IEG) imaging circumvents this problem, allowing for 

the non-invasive visualisation of neuronal activation patterns across multiple intact 

brain regions simultaneously (Sauvage, Nakamura, & Beer, 2013). As expected, 

considerable increases in Zif268 and c-Fos expression have been found in CA1, CA3 

and dentate gyrus areas of the dorsal hippocampus following short- and long-term 

water maze training (Feldman, Shapiro, & Nalbantoglu, 2010; Guzowski et al., 
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2001;Jenkins et al., 2003; Teather, Packard, Smith, Ellis-Behnke, & Bazan, 2005; 

Teather et al., 2005); although, this effect appears to be time-dependent. That is, 

while the abovementioned studies revealed heightened IEG expression up to ninety-

minutes post-training, Richter-Levin, Thomas, Hunt and Bliss (1998) failed to find 

any differences in Zif268 expression between trained and naïve rats in the dentate 

gyrus after three hours.  

To date, two studies have also examined IEG expression levels in the medial 

prefrontal cortex during spatial learning in the water maze (Jenkins et al., 2003; 

Woolley et al., 2013). Jenkins and colleagues (2003) trained two groups of rats in the 

water maze over twelve days; a landmark group and a place group. The landmark 

group were trained to locate a hidden platform using a beacon, which was rotated 

(along with the platform) for each trial. For the place group, matching-to-place 

training was used whereby rats learned to navigate to the platform using room cues, 

with the platform location changing on each training day. c-Fos expression for both 

groups was measured ninety-minutes post-training on day 12. Interestingly, the 

authors found greater levels of c-Fos expression in the anterior cingulate cortex, but 

not in the prelimbic cortex, for the landmark group compared to the place group 

(Jenkins et al., 2003). This increase could be explained by a key procedural 

difference between the groups; namely, the landmark group encoded twice as many 

platform positions as the place group (24 versus 12) during training. Therefore, these 

expression patterns could reflect an increased demand on goal representation. More 

recently, Woolley et al. (2013) examined Zif268 expression in the medial prefrontal 

cortex for mice trained in the water maze for three or thirty days. Zif268 levels 

quantified forty-five minutes after the final training session were significantly higher 

for the early (3-day) compared to the late (30-day) learning group, further indicating 
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the involvement of the prefrontal cortex in initial memory formation (Woolley et al., 

2013). 

 Collectively, the abovementioned data demonstrate that both glutamate 

receptor activation and IEG expression are strongly associated with spatial memory 

encoding. However, the way in which these processes interact during the formation 

of new spatial memories has yet to be investigated. Furthermore, the importance of 

these interactions within specific brain regions is unknown. Recently, Czerniawski 

and colleagues (2011) provided the first description of glutamate-IEG 

interdependency in hippocampal-dependent fear conditioning. Rats received bilateral 

dorsal hippocampus infusions of NMDA receptor antagonist APV before a single 

session of fear conditioning. Activation of the IEG Arc was examined one hour later. 

Results illustrated a significant attenuation of Arc expression in APV rats compared 

to cage controls, signifying that NMDA receptor activation and Arc expression are 

functionally coupled during memory for fear conditioning (Czerniawski et al., 2011).  

 The overarching aim of this chapter was to characterise the contributions of 

NMDA and AMPA receptors to spatial memory encoding and IEG expression in the 

hippocampus and medial prefrontal cortex. Existing evidence regarding the 

prefrontal cortex is largely mixed, and studies to date have provided IEG data as a 

single structure only (Woolley et al., 2013) or have failed to include all sub-regions 

(Jenkins et al., 2003). Here, we analysed Zif268 and c-Fos expression in all 

hippocampal and prefrontal sub-regions. This enabled us to quantify the relative 

contributions of individual areas for memory acquisition. Moreover, including all 

areas allowed us to directly compare expression across hippocampal and prefrontal 

regions. Two experiments were conducted. Experiment 1 examined the effects of 

NMDA and AMPA blockade on basal expression levels of Zif268 and c-Fos, relative 
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to saline-treated animals. We hypothesised that higher drug concentrations would 

lead to significant changes in IEG expression, and that lower doses would have no 

effect. Following on from Experiment 1, we compared levels of IEG activation in 

hippocampal and medial prefrontal areas following water maze training in saline and 

drug treatment groups. It was predicted that NMDA channel blockade would 

significantly impair rats’ ability to acquire the water maze task and cause a reduction 

in IEG expression, but that AMPA receptor antagonism would have little or no effect 

on either. 
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4.2. Experiment 1 

The goal of Experiment 1 was to establish the effects of NMDA channel blocker 

MK-801 and AMPA receptor antagonist CNQX on basal expression levels of Zif268 

and c-Fos in the hippocampus and medial prefrontal cortex. Previous research has 

shown that administration of MK-801 at high concentrations (between 0.3 and 3mg 

i.p.) results in a down regulation of basal hippocampal Zif268 expression (Gass et 

al., 1993), but also induces significant locomotor deficits (Hargreaves & Cain, 1992; 

Whishaw & Auer, 1989). Similar effects have been reported for high doses of 

CNQX (between 10 and 30µg i.c.v. infusions) (Cain et al., 1996). Increases in 

medial prefrontal Zif268 and c-Fos expression have been documented using a lower 

dose of MK-801 (0.1mg) one hour post-injection (as well as three hours post-

injection for Zif268) (Gao, Hashimoto, & Tamminga, 1998). These effects were 

amplified with a stronger dose (1mg); however, no differences in hippocampal 

expression were found between MK-801 and control animals (Gao et al., 1998). 

Accordingly, a secondary aim of this experiment was to determine if NMDA or 

AMPA receptor antagonism influenced expression of Zif268 of c-Fos in a dose-

dependent manner. 

 

4.2.1. Method.  

4.2.1.1. Subjects. 

Male Wistar rats (n = 25; Charles River, UK) were used as subjects (see Chapter 2 

for age and weight specifications). All were managed and housed in similar 

conditions as described previously. 
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4.2.1.2. Procedure.  

All animals were placed in the testing room for two hours prior to injections. Rats 

were randomly divided into five different groups (n = 5 per group). Four 

experimental groups were used; two MK-801 groups and two CNQX groups. The 

MK-801 groups were administered with MK-801 at one of two doses (Low: 0.05 

mg/kg or High: 0.1 mg/kg). The CNQX groups received injections of CNQX at a 

dose of 0.75 mg/kg (Low) or 1.5 mg/kg (High). Two concentrations of each drug 

were used to investigate potential dose dependent differences in IEG expression. 

Sterile saline was used as the vehicle for all drugs (0.3ml total volume per injection). 

As a control, a fifth group of animals were injected with a saline solution (0.1 ml/100 

g body weight of 0.9% NaCl). Each rat received one i.p. injection per day for a total 

of five days (matched to spatial learning conditions; see Section 4.3.1.3). All 

injections were administered in a separate experimental room, in order to minimise 

animals’ stress. After drug administration, animals were returned to their home cages 

and periodically monitored for drug-induced locomotive behaviours.  

 

4.2.1.3. Tissue preservation.  

Ninety minutes post-injection on day five, rats were terminally anaesthetised, 

perfused transcardially, and their brains were removed, post-fixed and cryoprotected 

as outlined in Chapter 2. Brains were sliced on a freezing microtome from -3.24mm 

to -4.08mm Bregma into 40-μm-thick coronal sections (four sections per IEG per 

region). The hippocampus and medial prefrontal cortex were included as regions of 

interest.  
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4.2.1.4. Immunohistochemistry.  

Immunohistochemical staining was performed for all groups in a single session, thus 

negating the need for subsequent normalisation of the cell counts. Staining was 

carried out in cohorts of five, with one animal from each group being processed 

simultaneously in the same well plate. Immunohistochemical protocol was 

completed as described previously in Chapter 2.    

 

4.2.1.5. Data analysis.  

Zif268 and c-Fos immunopositive cell counts in hippocampal and medial prefrontal 

sub-regions were automatically calculated using ImageJ software with pre-defined 

brightness intensity and particle size thresholds (see Chapter 2 for details). Raw 

counts from each section were averaged to produce a mean for each animal. Mean 

counts for each animal were then averaged to yield group means.   

 

4.2.1.6. Statistical Analysis.  

To compare levels of Zif268 and c-Fos expression across groups, a series of one-way 

between-groups ANOVAs were carried out on mean cell counts in each region. 

Tukey post hoc tests were employed where appropriate.  

 

4.2.2. Results  

4.2.2.1. Zif268 expression.  

One-way between-groups ANOVAs failed to yield any significant main effects of 

group for any region of the hippocampus or medial prefrontal cortex; CA1: F4,24 = 

1.63, P = 0.21, CA3: F4,24 = 1.96, P = 0.14, dentate gyrus (DG): F4,24 = 0.20, P = 
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0.93, prelimbic cortex (PLC): F4,24 = 1.21, P = 0.34, anterior cingulate cortex 

(ACC): F4,24 = 0.98, P = 0.44, and infralimbic cortex (ILC): F4,24 = 0.32, P = 0.86 

(see Figure 4.1). Sample sections of Zif268 expression in hippocampal and medial 

prefrontal sub-regions are shown in Figures 4.2 and 4.3, respectively.  

 

 

Figure 4.1: Mean cell counts of Zif268 positive neurons for Saline, Low MK-801, 

High MK-801, Low CNQX and High CNQX groups in (A) CA1, (B) CA3, (C) 

dentate gyrus, (D) prelimbic cortex (E) anterior cingulate cortex and (F) infralimbic 

cortex.  
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Figure 4.2: Representative images of Zif268 expression for Saline, Low MK-801, 

High MK-801, Low CNQX and High CNQX groups in CA1, CA3 and the dentate 

gyrus. Scale bar = 100µm. For ease of viewing, all representative images have been 

cropped from the overall cell area analysed.  
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Figure 4.3: Representative images of Zif268 expression for Saline, Low MK-801, 

High MK-801, Low CNQX and High CNQX groups in the prelimbic, anterior 

cingulate and infralimbic cortices. Scale bar = 100µm. 
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4.2.2.2. c-Fos expression.  

For c-Fos expression, no significant group differences were found in the 

hippocampus; CA1: F4,24 = 0.99, P = 0.44, CA3: F4,24 = 0.22, P = 0.92, DG: F4,24 = 

1.91, P = 0.15 (see Figure 4.4A-C). In the medial prefrontal cortex, main effects of 

group were not significant: PLC (F4,24 = 2.65, P = 0.06), ACC (F4,24 = 2.82, P = 

0.05) and ILC (F4,24 = 1.31, P = 0.30; see Figure 4.4D-F. Representative sections of 

c-Fos expression in sub-regions of the hippocampus and medial prefrontal cortex are 

illustrated in Figures 4.5 and 4.6, respectively.   
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Figure 4.4: Mean cell counts of c-Fos positive neurons for Saline, Low MK-801, 

High MK-801, Low CNQX and High CNQX groups in (A) CA1, (B) CA3, (C) 

dentate gyrus, (D) prelimbic cortex (E) anterior cingulate cortex and (F) infralimbic 

cortex.  
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Figure 4.5: Representative images of c-Fos expression for Saline, Low MK-801, 

High MK-801, Low CNQX and High CNQX groups in CA1, CA3 and the dentate 

gyrus. Scale bar = 100µm. 
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Figure 4.6: Representative images of c-Fos expression for Saline, Low MK-801, 

High MK-801, Low CNQX and High CNQX groups in the prelimbic, anterior 

cingulate and infralimbic cortices. Scale bar = 100µm. 
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4.2.3. Discussion 

No significant deviations from Saline animals’ Zif268 expression levels were found 

for any drug-treatment group. This result suggests that administration of MK-801 or 

CNQX had no effect on basal Zif268 activation in any sub-region of the 

hippocampus or medial prefrontal cortex at the doses used. Additionally, no 

differences in expression were observed between low and high doses of MK-801 or 

CNQX, indicating that these drugs did not influence expression of Zif268 in a dose-

dependent manner. Similarly that administration of MK-801 or CNQX failed to 

influence hippocampal or prefrontal c-Fos expression (relative to saline-treated rats), 

and no dose dependent changes were found. In contrast to preceding research (Gao et 

al., 1998), findings from this experiment support the hypothesis that NMDA and 

AMPA receptor antagonism has no effect on baseline IEG expression. The absence 

of drug effects here could be explained by the concentrations used, which were 

comparatively low (relative to Cain et al., 1996; Gass et al., 1993), as well as 

differences in the time at which IEG expression was measured, i.e. Gao and 

colleagues (1998) quantified activation one or three hours post-injection, while we 

used a ninety-minute protocol. 
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4.3. Experiment 2 

The purpose of Experiment 2 was to investigate the influence of NMDA and AMPA 

receptor blockade on spatial learning and post-learning expression of the IEGs 

Zif268 and c-Fos in the hippocampus and medial prefrontal cortex. Two control 

groups were employed for this experiment: a Cage Control group and a Saline group, 

to control for varying aspects of task acquisition such as stress and swimming, which 

may obscure the interpretation of results (Johnson & Besselsen, 2002; Shires & 

Aggleton, 2008). The Cage Control group were included to provide a direct 

comparison between IEG expression in trained and untrained animals. The Saline 

group acted as a trained comparison group, allowing us to contrast IEG activation 

between treatment conditions.  

 

4.3.1. Method.  

4.3.1.1. Subjects. 

Thirty-two male Wistar rats (Charles River, UK) were used as subjects in this 

experiment. Animals’ age and weight, housing conditions, handling and maintenance 

were as outlined in Chapter 2. 

 

4.3.1.2. Apparatus. 

The Morris water maze was used to spatially train animals. Dimensions of the maze 

and experimental set up were as described in Chapter 2, with a fixed hidden platform 

in the centre of the NE quadrant. Two 25 Watt Philips glass light bulbs were used as 

visual, distal cues, which were suspended from the ceiling in NE and NW positions, 

respectively.  
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4.3.1.3. Procedure. 

Animals were randomly divided into three experimental training groups; Saline, 

MK-801 and CNQX, and one Cage Control group (n = 8 per group). The 

experimental groups were trained in the water maze for five days (four trials per 

day), as per the training protocol described in Chapter 2. Rats in these groups 

received an i.p. injection of saline (0.1 ml/100g body weight of 0.9% NaCl), MK-

801 (0.1mg/kg body weight) or CNQX (1.5mg/kg body weight), 20-30 minutes 

before training each day (de Lima et al., 2005). Given that no evidence for dose 

dependent effects was found in Experiment 1, we chose to use the higher doses of 

MK-801 and CNQX for this experiment, to maximise the chances of observing any 

behavioural or cellular effects. The Cage Control group, included as a baseline IEG 

level comparison group, was not trained in the water maze. These animals were 

administered with i.p. saline injections (0.1 ml/100g body weight of 0.9% NaCl) 

once a day for each of the five training days. 

 

4.3.1.4. Tissue preservation. 

Ninety minutes post-injection on day five, all rats were terminally anaesthetised, 

perfused transcardially and their brains removed, post-fixed and sliced as described 

in Chapter 2. Hippocampal and medial prefrontal regions were, again, examined as 

regions of interest (four sections per region).  

 

4.2.1.5. Immunohistochemistry.  

Staining for all groups was carried out in a single session as documented in Chapter 

2, therefore normalisation of the data was not necessary. In this experiment, staining 

was performed in cohorts of four (one animal from each group).  
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4.3.1.6. Data analysis. 

Behavioural data was examined using four measures of water maze acquisition: 

escape latency (seconds), distance travelled (centimetres), velocity (centimetres per 

second), and percentage time spent in the outer corridor. Values from four trials were 

obtained and averaged for each animal on each training day to produce individual 

means. Mean values were then averaged according to group to yield group means. 

For the MK-801 group, values for all trials were also analysed to examine 

performance on a trial-by-trial basis. For IEG data, numbers of Zif268 and c-Fos 

immunopositive cells in the hippocampus and medial prefrontal cortex were 

automatically counted using ImageJ software as outlined before. Raw counts in each 

section were averaged to produce means for each animal. Group means for each 

region were then attained by averaging individual means.   

 

4.3.1.7. Statistical analysis. 

Escape latencies, distances travelled, velocities and percentage time spent in the 

outer corridor were examined using 3 x 5 mixed factorial ANOVAs, with group as 

the between-groups factor (Saline, MK-801 and CNQX group) and training day as 

the within-groups factor (days 1 to 5). A separate repeated measures ANOVA was 

also carried out for the MK-801 group, with trial as the within-groups factor (trials 1-

20). The Cage Control group were not included in behavioural analyses as they did 

not receive any behavioural training. Tukey and Bonferroni post hoc tests were 

included where appropriate. Post-training levels of Zif268 and c-Fos expression in 

each region were investigated using a series of one-way between-groups ANOVAs, 

with Tukey post hoc comparisons. Pearson product-moment correlations were also 

employed to examine the relationship between behavioural performance and IEG 
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expression levels. For correlational analyses, only those mean counts which were 

above a pre-defined value (minimum ten immunopositive cells) were included to 

minimise statistical artefacts, i.e. significant correlations for sub-regions with 

extremely low IEG expression levels. Limiting the number of correlations in this 

way also served to reduce the risk of type I errors (finding a significant correlation 

where none exists) which can occur when multiple correlations are performed 

together.  

 

4.3.2. Behavioural results.  

4.3.2.1. Escape latency. 

A 3 x 5 mixed factorial ANOVA revealed significant main effects of training day, 

F4,84 = 15.55, P = 0.001, partial eta
2
 = 0.43, and group, F1,21 = 50.42, P = 0.001, 

partial eta
2
 = 0.83, but no day x group interaction effect, F8,84 = 0.58, P = 0.80, 

partial eta
2
 = 0.06. Bonferroni post hoc comparisons indicated that overall mean 

escape latency on day 5 was significantly faster than on day 1 (P = 0.001). Tukey 

post hoc tests showed that the MK-801 group was significantly slower at escaping 

the maze compared to both Saline and CNQX groups (both P = 0.001; see Figure 

4.7).  

One-way repeated measures ANOVAs were then conducted to examine 

individual group performance across training days. A main effect of day was found 

for the Saline group, F4,28 = 17.02, P = 0.001, partial eta
2
 = 0.71, with mean escape 

latency decreasing significantly from 35.48 ± 4.74s (CI [24.28, 46.64]) on day 1 to 

12.04 ± 1.89s (CI [7.57, 16.50]) on day 5 (Bonferroni; P = 0.02). The main effect of 

day was also significant for the CNQX group, F4,28 = 6.22, P = 0.001, partial eta
2
 = 

0.47. Although this group were faster at escaping the maze on day 5 (15.29 ± 1.1s, 
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CI [12.63, 17.96]) compared to day 1 (32.81 ± 4.83s, CI [21.39, 44.22]), this 

difference was not significant (P = 0.11). In contrast, no main effect of day was 

observed for the MK-801 group, F4,28 = 2.35, P = 0.08, partial eta
2
 = 0.25. On 

average, MK-801-treated rats took 33.28 ± 14.24s (CI [21.37, 45.18]) to reach the 

platform on day 5, compared to 54.06 ± 8.31s (CI [47.12, 61.01]) on day 1.  

Next, one-way between-groups ANOVAs were used to compare mean group 

escape latencies on each day of training. Analyses produced significant main effects 

for all days; day 1: F2,23 = 7.40, P = 0.01, day 2: F2,23 = 9.02, P = 0.01, day 3: F2,23 = 

22.57, P = 0.001, day 4: F2,23 = 14.51, P = 0.001, and day 5: F2,23 = 13.00, P = 0.001. 

Tukey post hoc tests revealed that the MK-801 group were significantly slower at 

finding the platform relative to both Saline and CNQX groups on all training days 

(all P = 0.02).  

 

 

Figure 4.7: Mean escape latencies (± SEM) for Control, MK-801 and CNQX groups 

on days 1 to 5 of training.  
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4.3.2.2. Distance travelled. 

Analyses of distances travelled yielded comparable results. Main effects of training 

day, F4,84 = 9.85, P = 0.001, partial eta
2
 = 0.32, and group, F1,21 = 162.92, P = 0.001, 

partial eta
2
 = 0.94, were significant. However, the day x group interaction effect was 

not significant, F8,84 = 2.17, P = 0.06, partial eta
2
 = 0.17. Bonferroni pairwise 

comparisons showed that mean escape latency for all animals on day 5 was 

significantly faster than on days 1 (P = 0.001) and 2 (P = 0.01). In addition, Tukey 

post hoc tests illustrated that MK-801-treated animals travelled a significantly 

greater distance than Saline- and CNQX-treated rats (both P = 0.001; see Figure 

4.8).  

Groups were assessed individually with one-way repeated measures 

ANOVAs. A significant main effect of day was found for the Saline group, F4,28 = 

20.06, P = 0.001, partial eta
2
 = 0.74. Bonferroni post hoc tests indicated that this 

group travelled a significantly shorter distance on day 5 (232.34 ± 48.59, CI [117.45, 

347.24]) relative to day 1 (706.85 ± 83.14, CI [510.25, 903.45]; P = 0.02). A 

significant main effect of day was also noted for the CNQX group, F4,28 = 4.75, P = 

0.01, partial eta
2
 = 0.40. Mean distance travelled decreased from 675.06 ± 97.79cm 

(CI [431.81, 906.30]) on day 1 to 341.23 ± 27.09cm (CI [277.17, 405.28]) on day 5; 

however, this difference was non-significant (P = 0.13). For the MK-801 group, the 

main effect of day was non-significant, F4,28 = 2.25, P = 0.13, partial eta
2
 = 0.24. For 

these animals, mean distance travelled on day 5 was 723.19 ± 81.62cm (CI [530.19, 

916.19]), compared to 1096.67 ± 81.90cm (CI [903.00, 1290.33]) on day 1.  

To compare distances travelled by groups across training days, one-way 

between-groups ANOVAs were conducted. Significant main effects were found for 

all days; day 1: F2,23 = 7.13, P = 0.01, day 2: F2,23 = 25.27, P = 0.001, day 3: F2,23 = 
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32.25, P = 0.001, day 4: F2,23 = 22.78, P = 0.001, and day 5: F2,23 = 20.43, P = 0.001. 

Tukey multiple comparisons confirmed that the average distance travelled by the 

MK-801 group was significantly longer than both Saline and CNQX groups on day 1 

(both P = 0.01), day 2, day 3, day 4 and day 5 (all P = 0.001).  

 

 

Figure 4.8: Mean distances travelled (± SEM) for Control, MK-801 and CNQX 

groups for each training day.  

 

4.3.2.3. Velocity. 

Due to the inclusion of different drug groups in this experiment, mean velocities (i.e. 

swim speeds) were analysed as a measure of sensorimotor performance during task 

acquisition (Vorhees & Williams, 2006). A 3 x 5 mixed factorial ANOVA yielded a 

significant main effect of group, F1,21 = 47.44, P = 0.001, partial eta
2
 = 0.82, and day 

x group interaction effect, F8,84 = 3.17, P = 0.01, partial eta
2
 = 0.23, but no main 

effect of day, F4,84 = 2.00, P = 0.10, partial eta
2
 = 0.09. Tukey post hoc tests showed 

that the Saline group’s average swim speed was significantly slower than MK-801- 

and CNQX-treated animals (both P = 0.001; see Figure 4.9). The CNQX group also 
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had a significantly slower mean swim speed than the MK-801 group (P = 0.01). 

Bonferroni pairwise comparisons were non-significant. 

Mean velocity across days was then examined for each group individually. 

No main effect of day was found for the Saline group, F4,28 = 1.90, P = 0.14, partial 

eta
2
 = 0.21, or the CNQX group, F4,28 = 1.05, P = 0.40, partial eta

2
 = 0.13. In 

contrast, the main effect of day was significant for the MK-801 group, F4,28 = 5.46, P 

= 0.03, partial eta
2
 = 0.44. Bonferroni pairwise comparisons revealed that mean 

velocity for this group increased significantly on day 3 (27.01 ± 1.60, CI [23.23, 

30.79]) relative to day 1 (19.84 ± 1.02, CI [17.43, 22.25]) (P = 0.01). No other 

differences were noted. 

To explore group differences on each day further, one-way between-groups 

ANOVAs were carried out. The main effect of group was not significant on day 1, 

F2,23 = 0.22, P = 0.81. Significant main effects of group were discovered for days 2 

(F2,23 = 6.98, P = 0.01), 3 (F2,23 = 22.09, P = 0.001) and 4 (F2,23 = 9.82, P = 0.001). 

The main effect of group on day 5 was not significant, F2,23 = 3.31, P = 0.06. Tukey 

post hoc tests revealed that the MK-801 group swam significantly faster on average 

compared to the Saline group on days 1 (P = 0.01), 2 and 3 (both P = 0.001). The 

CNQX group also swam significantly faster than the Saline group on day 3 (P = 

0.001) and significantly slower compared to the MK-801 group on day 4 (P = 0.05). 
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Figure 4.9: Mean velocity (± SEM) for Control, MK-801 and CNQX groups across 

training days.  

 

4.3.2.4. Outer corridor. 

Finally, percentage time spent in the outer corridor of the maze was investigated as a 

general measure of stress during acquisition (Treit & Fundytus, 1988). A mixed 

factorial ANOVA produced significant main effects of day, F4,84 = 6.43, P = 0.001, 

partial eta
2
 = 0.23, and group, F1,21 = 77.02, P = 0.001, partial eta

2
 = 0.88. The day x 

group interaction effect was also significant, F8,84 = 2.09, P = 0.04, partial eta
2
 = 

0.17. Bonferroni post hoc tests illustrated that rats spent significantly less time in the 

outer corridor on day 5 compared to day 1 (P = 0.001). Additionally, Tukey post hoc 

comparisons showed that the Saline group spent less time in this zone than both drug 

groups (Tukey: both P = 0.001), and the CNQX group spent less time here than the 

MK-801 group (P = 0.001) (see Figure 4.10).  

One-way repeated-measures ANOVAs were carried out to examine groups 

individually across days. A significant main effect of day was found for the Saline 

group, F4,28 = 8.48, P = 0.001, partial eta
2
 = 0.55, whose time spent in the outer 

corridor was significantly reduced on day 5 (9.11 ± 2.54, CI [3.10, 15.13]) compared 
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to days 1 (30.51 ± 4.05, CI [20.95, 40.08]; P = 0.01) and 2 (30.61 ± 5.06, CI [18.65, 

42.57]; P = 0.03). Main effects were also noted for the CNQX group, F4,28 = 2.75, P 

= 0.40, partial eta
2
 = 0.28, and the MK-801 group, F4,28 = 2.88, P = 0.04, partial eta

2
 

= 0.29. Subsequent planned comparisons (Bonferroni-corrected) showed that time 

spent in the outer corridor decreased significantly from day 1 to day 5 for the CNQX 

group (58.87 ± 7.37, CI [41.46, 76.29] versus 37.92 ± 3.69, CI [29.20, 46.63]; t7 = 

2.97, P = 0.02), but not for the MK-801 group (64.59 ± 5.73, CI [51.06, 78.13] 

versus 45.41 ± 6.24, CI [30.65, 60.16]; t7 = 2.32, P = 0.06).  

One-way between-groups ANOVAs were then conducted for each day 

separately. Main effects of group were found on all days; day 1 (F2,23 = 9.67, P = 

0.001), day 2 (F2,23 = 19.11, P = 0.001), day 3 (F2,23 = 31.16, P = 0.001), day 4 (F2,23 

= 11.60, P = 0.001) and day 5 (F2,23 = 18.67, P = 0.001). Tukey post hoc analyses 

yielded a number of significant differences. On day 1, the Saline group spent less 

time in the outer corridor than the MK-801 and CNQX groups (both P = 0.01). On 

day 2, Saline- and CNQX-treated groups spent less time in this area than the MK-

801 group (both P = 0.001). On day 3, time in the outer corridor was significantly 

reduced for the Saline group relative to the CNQX (P = 0.01) and MK-801 groups (P 

= 0.001), and for the CNQX group compared to the MK-801 group (P = 0.001). On 

day 4, the MK-801 group spent longer in this corridor than the Saline (P = 0.001) 

and CNQX groups (P = 0.05). Lastly, on day 5, the Saline group, again, spent less 

time swimming in the outer corridor relative to the other groups (P = 0.001).  
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Figure 4.10: Mean percentage time (± SEM) spent in the outer corridor by Control, 

MK-801 and CNQX groups for each day of training.  

 

4.3.2.5. Trial-by-trial analysis 

Due to the increased variance of the MK-801 group relative to the other groups, an 

additional trial-by-trial analysis was carried out for these animals to further 

investigate their behaviour during training. Repeated measures ANOVAs (with trial 

as the within groups factor) failed to yield a significant main effect of trial for escape 

latency, F19, 133 = 1.41, P = 0.14, partial eta
2
 = 0.17, distance travelled, F19, 133 = 1.43, 

P = 0.13, partial eta
2
 = 0.17, and time spent in the outer corridor, F19, 133 = 1.99, P = 

0.11, partial eta
2
 = 0.22 (see Figure 4.11A, B and D). The main effect of trial was 

significant for velocity, F19, 133 = 3.30, P = 0.03, partial eta
2
 = 0.32. Bonferroni post 

hoc tests indicated that rats swam significantly faster on trial 13 compared to trials 3 

(P = 0.05) and 4 (P = 0.04; see Figure 4.11C).   
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Figure 4.11: Mean (A) escape latency, (B) distance travelled, (C) velocity and (D) 

percentage time spent in the outer corridor (± SEM) by the MK-801 group for each 

training trial.  

 

4.3.3. IEG results.  

4.3.3.1. Zif268 expression. 

One-way between-groups ANOVAs were carried out to compare Zif268 expression 

across groups. In the hippocampus, a significant main effect of group was noted in 

area CA1, F3,31 = 9.71, P = 0.001, with Tukey post hoc tests showing that levels of 

Zif268 expression for the Saline (40.51 ± 12.74, CI [10.39, 70.63]) and CNQX 

groups (56.04 ± 9.48, CI [32.84, 79.24]) were significantly higher compared to the 

Cage Control (4.86 ± 1.98, CI [0.18, 9.54]) (P = 0.02 and P = 0.001, respectively) 

and MK-801 groups (7.58 ± 1.72, CI [3.51, 11.65]) (P = 0.03 and P = 0.001, 

A          B 

 

 

 

 

 

 

 

 C         D 

 

 

 

 

 

 

 

 



138 

 

respectively) (see Figure 4.12A). No significant main effects of group were found in 

area CA3, F3,31 = 1.53, P = 0.23, or the DG, F3,31 = 1.55, P = 0.23 (Figure 4.12B-C). 

In the medial prefrontal cortex, the main effect of group was significant in the PLC, 

F3,31 = 5.44, P = 0.01. Here, significantly more Zif268 positive cells were present for 

the CNQX group (66.79 ± 19.13, CI [21.55, 112.03]) relative to the Cage Control 

(16.21 ± 5.76, CI [2.59, 29.83]; P = 0.02), Saline (15.29 ± 7.36, CI [2.72, 33.30]; P = 

0.02) and MK-801 groups (14.00 ± 5.29, CI [1.48, 26.52]; P = 0.02) (see Figure 

4.12D). No significant group main effects were discovered in the ACC, F3,31 = 2.01, 

P = 0.13, or ILC, F3,31 = 0.38, P = 0.77 (Figure 4.12E-F). Sample sections of 

hippocampal and medial prefrontal Zif268 expression are shown in Figures 4.13 and 

4.14.   
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Figure 4.12: Mean cell counts of Zif268 positive neurons for Saline, MK-801 and 

CNQX groups in (A) CA1, (B) CA3, (C) dentate gyrus, (D) prelimbic cortex (E) 

anterior cingulate cortex and (F) infralimbic cortex.  
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Figure 4.13: Sample images of Zif268 expression for Cage Control, Saline, MK-801 

and CNQX groups in area CA1, area CA3 and the dentate gyrus. Scale bar = 100µm. 
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Figure 4.14: Sample images of Zif268 expression for Cage Control, Saline, MK-801 

and CNQX groups in the prelimbic, anterior cingulate and infralimbic cortices. Scale 

bar = 100µm. 

 

4.3.3.2. c-Fos expression. 

One-way between-groups ANOVAs investigating c-Fos expression levels produced 

a different pattern of results. No main effect of group was found in area CA1, F3,31 = 

1.90, P = 0.15, or the DG of the hippocampus, F3,31 = 0.64, P = 0.60. Despite a low 

number of overall cell counts, a significant main effect was discovered in area CA3, 
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F3,31 = 4.14, P = 0.02, where the mean number of c-Fos positive cells was greater for 

the CNQX group (3.06 ± 1.12, CI [0.42, 5.70]) compared to the Saline group (0.15 ± 

0.07, CI [0.01, 0.32]; P = 0.02) (see Figure 4.15A-C). Within the medial prefrontal 

cortex, the main effect of group was not significant for the PLC, F3,31 = 2.45, P = 

0.08, and significant for the ACC, F3,31 = 3.15, P = 0.04, and ILC, F3,31 = 3.94, P = 

0.02 (see Figure 4.15D-F). Tukey post hoc comparisons illustrated that mean c-Fos 

counts in the ACC were significantly higher for MK-801-treated animals (57.63 ± 

17.23, CI [16.87, 98.38]) than the Cage Control group (9.63 ± 1.84, CI [5.27, 13.98]; 

P = 0.04). Mean counts were also greater in the ILC for the MK-801 group (38.88 ± 

8.47, CI [18.84, 58.91]) compared to Cage Controls (10.29 ± 2.70, CI [3.92, 16.67]; 

P = 0.02). Figures 4.16 and 4.17 illustrate sample sections of c-Fos expression levels 

in the hippocampus and medial prefrontal cortex. 
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Figure 4.15: Mean cell counts of c-Fos positive neurons for Saline, MK-801 and 

CNQX groups in (A) CA1, (B) CA3, (C) dentate gyrus, (D) prelimbic cortex (E) 

anterior cingulate cortex and (F) infralimbic cortex.  
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Figure 4.16: Sample images of c-Fos expression for Cage Control, Saline, MK-801 

and CNQX groups in CA1, CA3 and the dentate gyrus. Scale bar = 100µm. 
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Figure 4.17: Sample images of c-Fos expression for Cage Control, Saline, MK-801 

and CNQX groups in the prelimbic, anterior cingulate and infralimbic cortices. Scale 

bar = 100µm. 
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4.3.3.3 Correlations with behaviour 

Finally, mean counts of Zif268 and c-Fos in selected sub-regions for each group 

were correlated with each of the four behavioural measures on the final day of 

training (escape latency, distance travelled, velocity and time spent in the outer 

corridor) to determine the relationship between IEG expression and water maze 

performance (as per previous research, e.g. Guzowski et al., 2001). As mentioned 

above, certain regions were excluded from correlational analyses due to very small 

numbers of cell counts. A number of significant correlations were found between 

Zif268 expression and behaviour. For the Saline group, a significant negative 

correlation was found with time spent in the outer corridor in area CA1 (r = 0.75, P 

= 0.03; see Table 4.1 Top). In contrast, data from the MK-801 group produced a 

positive correlation with distance travelled in the ACC (r = 0.72, P = 0.04; see Table 

4.1 Middle). For the CNQX group, a significant negative correlation was noted with 

escape latency in the ACC (r = 0.82, P = 0.03; see Table 4.1 Bottom). Pearson 

product-moment correlations between c-Fos expression and behaviour failed to yield 

any significant results for the Saline group (see Table 4.2 Top) or CNQX group 

(Table 4.2 Bottom). For the MK-801 group, a significant positive correlation was 

found with time spent in the outer corridor (r = 0.75, P = 0.04; see Table 4.2 

Middle).  
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Table 4.1: Correlations between Zif268 expression and acquisition measures in the 

water maze for the Saline, MK-801 and CNQX groups. 

 

Group Brain region                              Behavioural Measure  

Saline 
 

Escape 

latency 

Distance 

travelled 
Velocity 

Outer 

corridor 

 CA1 -0.28 -0.13 0.12 -0.75* 

 ACC -0.57 -0.53 -0.21 -0.74 

MK-801     

ACC 0.38 0.72*       0.55  0.68 

CNQX     

CA1 0.16 0.13   -0.22 -0.32 

PLC 0.46 0.50    0.23 -0.08 

 ACC  -0.82* -0.27       0.37 0.04 
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Table 4.2: Correlations between c-Fos expression and acquisition measures in the 

water maze for the Saline, MK-801 and CNQX groups. 

 

Group Brain region                              Behavioural Measure  

Saline 
 

Escape 

latency 

Distance 

travelled 
Velocity 

Outer 

corridor 

 PLC 0.30 0.41 0.34 -0.40 

 ACC 0.61 0.70 0.35 -0.07 

 ILC 0.35 0.46 0.47 -0.29 

MK-801     

PLC  0.63 0.55 0.05 0.66 

ACC  0.65 0.63 0.13 0.73* 

ILC  0.46 0.45 0.06 0.39 

CNQX     

PLC  0.58   0.55 0.23   0.31 

ACC  0.36   0.33 0.17   0.35 

         ILC  0.36   0.35 0.23   0.40 

 

4.3.5. Discussion 

Results from this experiment revealed a number of important group differences on 

both behavioural and cellular levels. With regard to behaviour, findings demonstrate 

that Saline- and CNQX-treated rats successfully acquired the water maze task – as 

indicated by considerable decreases in mean time taken to reach the platform and 

path lengths. In contrast, the MK-801 group showed no change in escape latency or 

distance travelled across training; furthermore, these animals were slower to find the 

platform and took longer routes on all training days, relative to the other groups. In 

addition, locomotor effects (indexed by velocity) were most pronounced in the MK-

801 group, although no group differences were found on the final day of training. 
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Finally, results for the outer corridor indicate that administration of MK-801 (and to 

a lesser extend CNQX) influenced searching behaviour relative to Saline. Similar to 

previous work (Pitkänen et al., 1995), these findings support the suggestion that MK-

801 channel blockade impairs spatial memory acquisition, while AMPA receptor 

antagonism does not (at the doses used here). 

 Regarding IEG expression, different patterns emerged for Zif268 and c-Fos. 

Zif268 levels were upregulated in Saline and CNQX groups compared to Cage 

Control and MK-801 groups in area CA1. These group differences may be indicative 

of a learning-related increase in expression, not unlike previous findings (Feldman et 

al., 2010). The significant negative relationship between mean CA1 Zif268 counts 

and time spent in the outer corridor by saline-treated rats supports this suggestion. 

Higher Zif268 counts were also noted for the CNQX group in the PLC relative to the 

other groups, and ACC Zif268 counts for these animals were correlated with faster 

escape times. Conversely, ACC counts were positively correlated with distance 

travelled for the MK-801 group, and no significant results were observed for Saline-

treated animals. Thus, findings seem to suggest that AMPA and NMDA receptor 

blockade had differential task-related effects on Zif268 expression in the prefrontal 

cortex. In contrast to Zif268, c-Fos cell counts were consistently higher for impaired 

animals in prefrontal sub-regions (ACC and ILC) relative to Cage Controls, and 

increased expression was related to greater time in the outer corridor. Accordingly, it 

appears that prefrontal c-Fos expression may have been mediated by poor 

performance, or associated swim stress.   
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4.4. General discussion 

The goal of this chapter was to investigate the role of NMDA and AMPA receptors 

in spatial memory encoding and IEG expression in the hippocampus and prefrontal 

cortex. Previous research has highlighted that glutamate receptor antagonism can 

influence basal expression of IEGs, making it difficult to interpret results from 

behavioural training studies (Knapska & Kaczmarek, 2004; Tischmeyer & Grimm, 

1999). However, results from Experiment 1 failed to indicate any such significant 

effects following treatment with low or high doses of MK-801 or CNQX. Crucially, 

these findings showed that glutamate antagonism at the selected doses was not 

modulating gene expression, and thus, any cellular changes detected following water 

maze training were not merely caused by the drugs themselves.  

Pharmacological blockade of glutamate receptors, even at very low 

concentrations (e.g. MK-801 at 0.05mg), has also been shown to produce mild 

behavioural modifications such as hyper-activity (increased movement speed) and 

hyper-reactivity (vocalisation when handled) (Hargreaves & Cain, 1992). Although 

no formal assessment of locomotive behaviour was carried out here, visual 

inspection of all animals revealed some evidence of hyper-activity for the MK-801 

group in Experiment 2, who displayed faster swim speeds compared to the other 

groups. However, no effects on swimming ability were observed for these (or any) 

rats; thus, it is unlikely that their water maze performance or IEG expression levels 

were attributable to motor-dysfunctions. Instead, our results support the proposal that 

NMDA receptor activation is critical for efficient spatial memory encoding (Bast et 

al., 2005; Davis et al., 1992; Morris et al., 1989; Pitkänen et al., 1995; Whishaw & 

Auer, 1989). We found no evidence of a similar role for AMPA receptors, in contrast 

to earlier work (Cain et al., 1996; Filliat et al., 1998; Liang et al., 1994; Riedel et al., 
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1999). Rather, findings are consistent with more recent research suggesting that 

AMPA receptors are necessary for spatial memory retrieval but not encoding (Bast et 

al., 2005).  

  Interestingly, post-training IEG imaging highlighted very different patterns 

of expression for Zif268 and c-Fos. Zif268 expression in selective hippocampal and 

prefrontal sub-regions (CA1 and PLC) was associated with groups that acquired the 

task, i.e. Saline- and CNQX-treated rats. In particular, group differences in area CA1 

strongly support the importance of this region for spatial learning, and are in line 

with previous work which has shown that inactivation or deletion of CA1 NMDA 

receptors in mice attenuates LTP and impedes water maze acquisition (Shimizu, 

Tang, Rampon, & Tsien, 2000; Tsien, Huerta, & Tonegawa, 1996). Taken together, 

results indicate that Zif268 expression is tightly linked to CA1 NMDA receptor 

activation, LTP and spatial encoding. Conversely, Zif268 expression in CA3 and the 

DG did not appear to be mediated by water maze learning. Zif268 results also imply 

some interaction between hippocampal and prefrontal structures during encoding 

(i.e. high counts in CA1, PLC and ACC areas). This would not be entirely 

unexpected, given the known anatomical connections from CA1 to the medial 

prefrontal cortex (particularly to the PLC and ILC) (Hoover & Vertes, 2007); 

however, lack of significant differences in the ACC limits the conclusions which can 

be drawn here.    

Unlike Zif268 expression, levels of c-Fos in the hippocampus generally did 

not differ between learning- and non-learning groups, and expression in the medial 

prefrontal cortex (PLC and ACC) was highest for rats that failed to acquire the task. 

Moreover, the hippocampus and prefrontal cortex displayed markedly different 

patterns of c-Fos expression (low versus high); suggesting that expression across 
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regions was not synchronised. It is important to note that c-Fos counts were 

significantly higher for the MK-801 group compared to Cage Controls, and thus, 

increased expression was specifically related to task performance. One explanation 

for this result is that MK-801-treated animals experienced greater stress (relative to 

the other groups) as a result of prolonged swimming in the maze. Indeed, Duncan 

and colleagues (1993), demonstrated a similar effect on c-Fos expression in the 

medial prefrontal cortex (but not in the hippocampus) during the forced swim test. In 

addition, numerous studies have highlighted the importance of the prefrontal region 

for controlling the hypothalamo-pituitary-adrenal (HPA) stress response (Figueiredo, 

Bruestle, Bodie, Dolgas, & Herman, 2003; Spencer, Buller, & Day, 2005). Most 

recently, Radley, Arias and Sawchenko (2006) localised this inhibitory process to the 

dorsal (PLC) region, showing that lesions to this area resulted in a greater increase in 

stress-related c-Fos expression in the paraventricular nucleus of the hypothalamus 

(PVN) compared to ventral (ILC) lesions. However, it is also possible that the 

increase in prefrontal c-Fos expression was the result of diminished learning, or 

indeed a combination of impaired learning and stress.  

More generally, there are a number of reasons which might explain the 

differences in Zif268 and c-Fos expression seen in Experiment 2.  Firstly, c-Fos is 

known to be expressed at lower levels in the rat hippocampus (Hughes et al., 1992) 

than Zif268, particularly in area CA1 (Davis et al., 2003). c-Fos also has a higher 

induction threshold (Wisden et al., 1990; Worley et al., 1993). Thus, it is likely that 

the water maze acquisition task employed here (wherein the cue and platform 

positions remained constant throughout training) was not sufficiently complex to 

provoke high levels of c-Fos expression in the learning groups. This would explain 

the differences between our results and those of Jenkins and colleagues (2003), 
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whose procedure included multiple cue and platform rotations throughout training. 

In addition, c-Fos is thought to be more sensitive to stress than Zif268. More 

specifically, Cullinan, Herman, Battaglia, Akil, and Watson (1995) examined 

changes in c-Fos and Zif268 expression in rats following swim or restraint stress. 

The authors found that c-Fos expression was greatly elevated across multiple brain 

regions following both types of stress, whereas the effects for Zif268 were less 

pronounced. 

 Another factor which may have influenced our results is the time point at 

which IEGs were quantified. For example, Abraham et al. (1993) showed that 

Zif268 – but not c-Fos – continued to be expressed in the dentate gyrus for up to five 

days in response to stimulus-induced neuronal plasticity. It is therefore possible that 

c-Fos levels peaked earlier during our water maze training procedure, and were 

returning to baseline by day five. Indeed, previous studies demonstrating heightened 

c-Fos expression in the hippocampus employed much shorter water maze acquisition 

protocols, such as one day training, lasting 10 or 15 minutes in total, respectively 

(Feldman et al., 2010; Teather et al., 2005), or three day training (Guzowski et al., 

2001). On the other hand, Zif268 knockout mice have been shown to exhibit slower 

water maze acquisition relative to yoked controls (Jones et al., 2001), while c-Fos 

knockout mice only begin to show impairments during memory recall (Fleischmann 

et al., 2003). Therefore, it may be that the significance of c-Fos expression is more 

closely coupled with later stages of memory processing (i.e. retrieval).   

 Taken together, IEG imaging results from this chapter reveal that Zif268 and 

c-Fos are differentially expressed within hippocampal and prefrontal sub-regions 

during spatial memory encoding. This observation is particularly important given 

that these IEGs are often used interchangeably as markers of neuronal activation 
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throughout the literature, and are also thought to be somewhat coordinated during 

spatial learning (Guszowski et al., 2001); though it should also be noted that 

Guzowski et al. performed correlations on all animals as a single group (regardless 

of their experimental condition), which is likely to have affected their results.  

In summary, findings from this chapter show that NMDA and AMPA 

receptor blockade has no impact on baseline expression of Zif268 or c-Fos in 

hippocampal and prefrontal sub-regions at the selected doses (Experiment 1), 

contrary to previous work, thus highlighting the significance of drug concentrations 

used. Results from Experiment 2 highlight the importance of CA1 for spatial 

memory encoding and support the role of NMDA receptors in this process; however, 

they demonstrate little evidence for AMPA receptor involvement. Finally, trends 

from IEG imaging analyses indicate that Zif268 may represent a more appropriate 

index of spatial learning in the Morris water maze task. In the next chapter, we 

continue to explore the roles of hippocampal and prefrontal sub-regions during 

spatial navigation, this time by investigating neuronal changes associated with the 

retrieval phase of the task.  
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Abstract 

Animals use a range of allocentric strategies for memory recall. These include 

simple (non-spatial) stimulus-response strategies and more complex (spatial) place 

strategies, which are thought to have distinct neural substrates. The hippocampus is 

considered to be crucial for place, but not response strategies, while the opposite has 

been shown for the caudate nucleus. The medial prefrontal cortex has also been 

implicated in memory retrieval; however, evidence concerning its specific role is 

equivocal. Recent research suggests that both hippocampal and prefrontal regions are 

critical for flexible behavioural responding, e.g. when task demands change. The aim 

of this chapter was to further investigate the use of spatial and non-spatial strategies 

in the Morris water maze and their associated brain areas using IEG imaging of 

Zif268 and c-Fos. In Experiment 1, we charted hippocampal and prefrontal 

involvement during retrieval of spatial and non-spatial memories after standard (5 

day) and extended training (10 day). Behavioural flexibility was examined using 

intact and partial cue arrangements. Results indicated that specific sub-regions of the 

hippocampus (CA3) and prefrontal cortex (PLC and ACC) were preferentially 

engaged in spatial memory recall. In Experiment 2, the importance of NMDA 

receptor activation for memory retrieval, behavioural flexibility and IEG expression 

was examined. Results demonstrated that spatial and non-spatial memories were 

initially dependent of NMDA receptor activation; however, with increased training, 

spatial memory could be preserved under full cue conditions. Finally, results suggest 

that Zif268 is a more useful indicator of regional brain activation relating to memory 

retrieval than c-Fos.  
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5.1. Introduction 

Animals can employ a range of allocentric navigational strategies to reach a goal; 

from simple stimulus-response associations – such as approaching a prominent 

beacon – to the use of more complex spatial representations, which can be acquired 

through overt or latent learning (Rodrigo, 2002; Tolman, 1948; Whitlock, 

Sutherland, Witter, Moser, & Moser, 2008). Learning via a beacon strategy occurs 

rapidly, as the animal only needs to remember whether or not to move towards the 

cue. In his original study, Morris (1981) showed that rats navigating to a visible 

platform in the water maze could reach asymptotic performance after just three trials 

in both fixed and variable platform conditions. By comparison, animals navigating to 

a hidden platform using distal room cues (i.e. place learning) are thought to construct 

a ‘map’ of the overall environment, and therefore, take considerably longer to 

acquire the task (Morris, 1981; Tolman, 1948). Subsequent experiments utilising 

visible platforms (Carman & Mactutus, 2002; Sutherland & Dyck, 1984) and 

beacons (Harvey et al., 2009; Redhead et al., 1997; Roberts & Pearce, 1999) have 

reported similar findings, thus confirming the differing behavioural complexity of 

these strategies.  

 In addition to behavioural differences, evidence from the existing literature 

strongly indicates that response and place strategies are supported by distinct neural 

substrates. Specifically, the hippocampus is considered to be essential for the 

retrieval of newly acquired place memories, but not for beacon navigation 

(Broadbent, Squire, & Clark, 2006; de Bruin et al., 2001; McDonald & White, 1994; 

Morris et al., 1982; Save & Poucet, 2000; Simon, Stevens, Curtis, & Ramus, 2011; 

Sutherland & Rodriguez, 1989). For example, Save and Poucet (2000) established 

that dorsal hippocampal lesions administered pre-training impaired water maze recall 



158 

 

in rats using distal (room) and proximal (intramaze) cues; in contrast, lesions had no 

effect on navigation with a beacon (attached to the platform). Sutherland and 

colleagues (1989) showed that post-training lesions to the fornix also lead to poor 

recall in rats navigating to a hidden platform, but not to a visible platform. 

Comparable results were recently reported by Simon et al. (2011), who trained rats 

with fornix or sham lesions on a water maze task in which they had to discriminate 

between two visually distinct beacons; one which indicated the platform location and 

the other which acted as a foil. Rats’ memory was then tested in a probe trial without 

the platform. The authors found that both groups performed equally well during 

acquisition (i.e. correctly discriminating between the beacons to reach the platform) 

and recall (i.e. favouring the quadrant with the correct beacon) (Simon et al., 2011).  

 With regard to regions that are involved in response strategies, the dorsal 

striatum has been highlighted as an important area (Devan, McDonald, & White, 

1999; McDonald & White, 1994; Packard & McGaugh, 1996). McDonald and White 

(1994), for example, found that lesions to the caudate nucleus significantly impaired 

rats’ ability to navigate to a visual platform (but not to a hidden platform), indicative 

of a deficit in simple associative responding. The medial prefrontal cortex has also 

been implicated in response strategies. In a series of experiments de Bruin and 

colleagues (de Bruin et al., 2001; 1994), discovered that rats with medial prefrontal 

lesions were impaired at navigating to a visible platform in the water maze, but 

displayed normal recall on a hidden platform version of the task, suggesting that this 

area is involved in non-spatial strategies only. However, because all animals in these 

experiments performed the spatial task first and the non-spatial task second, the 

observed results may have reflected a failure to adapt their strategy in keeping with 

task demands, as opposed to a deficit in beacon navigation per se (de Bruin et al., 
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1994). Recent findings from Jo and colleagues (2007) support this suggestion. The 

authors found that rats with lesions to the medial prefrontal cortex, or to area CA3, 

were impaired at finding a hidden platform under partial, but not full, cue conditions 

(i.e. when some of the training cues were removed). Further, temporary inactivation 

of the medial prefrontal cortex with infusions of muscimol administered before 

testing produced similar impairments. Jo et al. (2007) also measured expression of 

the IEG c-Fos after recall and found that navigation with an incomplete cue 

arrangement elevated the number of immunopositive c-Fos cells in prefrontal and 

CA3 regions (but not in CA1 or the dentate gyrus).  

 Together with earlier findings, these results are consistent with the suggestion 

that both the hippocampus and prefrontal cortex are crucial for the flexible use of 

stored representations (Compton et al., 1997; Jo et al., 2007). Although limited, 

existing evidence from the spatial domain indicates that these processes are mediated 

by NMDA receptor activation (Kubik et al., 2007). Studies by Nakazawa and 

colleagues (2002) and Fellini, Florian, Courtney and Roullet (2009) found that 

mutant mice with specific ablation of NMDA receptors in area CA3 successfully 

acquired and retrieved spatial memories in the water maze task using distal cues, but 

were unable to navigate when presented with a sub-set of the original cue 

configuration. Gold and Kesner (2005) demonstrated an analogous effect in rats with 

lesions to area CA3 in a dry land version of water maze.  

 Zif268 and c-Fos have also been implicated in long-term memory recall, both 

in a functional capacity and as neuronal markers of regional activation (Fleischmann 

et al., 2003; Guzowski, 2002; Jones et al., 2001; Kubik et al., 2007; Lanahan & 

Worley, 1998; Renaudineau et al., 2009). Jones and colleagues (2001), for example, 

noted impaired memory in Zif268 knockout mice on spatial and non-spatial water 
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maze tasks. These memory deficits could, however, be rescued through extended and 

distributed training over ten days, suggesting that Zif268 plays a time-dependent 

functional role in memory retrieval (Jones et al., 2001). As markers of neuronal 

activity, changes in Zif268 and c-Fos expression levels have been reported under a 

variety of behavioural conditions (see Chapter 1; and also Kubik et al., 2007). 

However, research comparing IEG expression patterns associated with long-term 

spatial and non-spatial memory retrieval is limited. One study carried out by 

Guzowksi and colleagues (2001) examined place and response memory using hidden 

and visible platform water maze tasks, respectively. The authors measured 

hippocampal expression of Zif268, c-Fos and Arc in these groups and in a group of 

untrained rats. Interestingly, they found equivalent increases in hippocampal 

expression of all IEGs in spatial and non-spatial groups relative to caged controls. 

These results appear to indicate that rats processed spatial information about their 

surroundings even when it was not necessary for completion of the task (Clark, 

Broadbent, & Squire, 2007). However, rats in this study were trained for a relatively 

short period of time (three days), thus, it is possible that different patterns of 

expression would have emerged with longer training.  

 Importantly, IEG expression outside of the hippocampus has yet to be 

investigated with regard to spatial and non-spatial strategy use. In particular, patterns 

of expression in the medial prefrontal region during strategy switching are currently 

unknown. The main goal of this chapter is to further investigate the use of such 

strategies in the Morris water maze and their associated brain areas. Two 

experiments will be carried out. In Experiment 1, we aim to delineate specific sub-

regions of the hippocampus and medial prefrontal cortex implicated in the recall of 

place and response memories using IEG imaging. Extending on previous research 
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(Jo et al., 2007), we will characterise the expression of two IEGs, Zif268 and c-Fos, 

in all sub-regions of the dorsal hippocampus and medial prefrontal cortex. The 

behavioural flexibility of place memory will also be examined by testing rats under 

intact and partial cue conditions. Expanding on findings from Chapter 3, a final aim 

of this experiment is to characterise the effects of extended experience with the 

environment on the nature of these memories and their neural substrates. In 

Experiment 2, we aim to examine the importance of NMDA receptor activation for 

spatial and non-spatial memory retrieval and behavioural flexibility, and to 

determine how inactivation of these receptors influences the regional patterns of 

Zif268 and c-Fos expression documented in Experiment 1.  
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5.2. Experiment 1 

The purpose of this experiment was to investigate how spatial and non-spatial 

strategies utilise hippocampal and prefrontal brain regions over time via IEG 

imaging. Results from Chapter 3 of this thesis showed rats trained for an extended 

period (10 days) could rely on a partial cue arrangement (with the more salient cue); 

therefore, we predicted that longer training here would lead to similar behavioural 

effect for the spatial groups trained with distal cues, but not for rats navigating via a 

non-spatial beacon strategy. With regard to the brain regions involved, we predict an 

increase in hippocampal IEG expression for spatially trained rats after extended 

training, reflecting successful memory recall under both full and partial cue 

conditions. In addition, we hypothesise that IEG expression will be increased in CA3 

and in the medial prefrontal cortex for animals navigating under partial cue 

conditions relative to the other groups (Jo et al., 2007). For beacon-trained animals, 

we expect no changes in regional activation from five- to ten-day training conditions.   

 

5.2.1. Method 

5.2.1.1. Subjects.  

Subjects were 42 male Wistar rats obtained from Charles River, UK. Animals’ age 

and weight, housing conditions, handling procedures, and time of experimentation 

were as outlined in Chapter 2. 

 

5.2.1.2. Apparatus.  

The apparatus for this experiment was the water maze. Maze dimensions, position of 

the cues or beacon and platform location were as described previously in Chapter 2. 

Rats were trained with two cues of equal brightness; two 25 Watt light bulbs (NE 
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position; near cue and NW position; far cue), or a single beacon (directly above the 

platform). Cues of equal brightness were chosen based on the results of Chapter 3, 

where changes in learning strategies were observed across training lengths using 

these cues.   

 

5.2.1.3. Procedure. 

Rats were assigned to one of six experimental groups randomly; three groups were 

trained in the maze for five days (n = 21) and three groups were trained for ten days 

(n = 21). In the five-day training condition, two groups were trained to find the fixed, 

hidden platform (NE quadrant) using both cues (Control and One Cue groups), and 

the third group was trained with the beacon (Beacon group) (n = 7 per group). 

Animals in the ten-day training condition were divided into identical groups (n = 7 

per group). All groups were trained with four trials per day as described in Chapter 

2. Rats trained with the distal cues acted as spatial strategy groups, i.e. animals were 

required to learn the spatial relationships between the cue configuration and the goal 

in order to navigate effectively (Rodrigo, 2002). Conversely, rats trained with the 

beacon served as the non-spatial strategy groups, i.e. animals needed only to learn to 

associate movement towards the beacon with reaching the goal location (Chamizo, 

2002).  

 Memory recall was assessed 24 hours after the final day of training (day 6 or 

day 11) with one probe trial lasting sixty seconds. Twenty minutes before testing, all 

rats were administered with an i.p. injection of saline solution (0.1 ml/100g body 

weight of 0.9% NaCl), in order to match the experimental conditions of Experiment 

2 (see section 5.3.1.3). Control groups were tested with both near (NE) and far (NW) 

cues (full cue condition), One Cue groups were tested with the far cue only (partial 
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cue condition), and Beacon groups were tested with the beacon (non-spatial 

condition; see Figure 5.1). The far cue was chosen based on the results of Chapter 3, 

wherein a considerable performance difference was observed with this cue across 

five and ten day training lengths. All rats were placed into the maze near to and 

facing the wall from the centre of the SW quadrant.  

 

 

Figure 5.1: Top panel: representation of cue configuration during five- and ten-day 

training for (A) Control and One Cue groups, and (B) Beacon groups. Bottom panel: 

representation of cue configuration during testing for (C) Control, (D) One Cue, and 

(E) Beacon groups. Open circles outside maze denote 25 Watt bulbs, respectively. 

Open circle inside maze denotes beacon. 
 

5.2.1.4. Tissue preservation. 

Rats were terminally anaesthetised ninety minutes post-testing on the final day of 

training; they were perfused transcardially and their brains were removed, post-fixed 

and sliced as outlined in Chapter 2. Sub-regions of the hippocampus (CA1, CA3 and 

A                               B 

C                              D                             E 
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DG) and medial prefrontal cortex (PLC, ACC and ILC) were included in IEG 

imaging analyses (four sections per region).  

 

5.2.1.5. Immunohistochemistry.  

Staining procedures were carried out as documented in Chapter 2 (in cohorts of 

three; one animal from each group).  

 

5.2.1.6. Data analysis. 

Acquisition of the water maze task was measured by escape latency (seconds) and 

distance travelled (centimetres). Mean trial values for each rat were averaged to 

produce group means. Recall was examined as percentage time spent in quadrants, 

platform areas and the outer corridor of the pool for each group. Numbers of Zif268 

and c-Fos immunopositive cells in hippocampal and medial prefrontal sub-regions 

were automatically counted using ImageJ software and group means were obtained 

(see Chapter 2). Mean raw counts were then normalised. Because all 

immunohistochemistry could not be performed as a single batch (due to the 

difference in training lengths across groups), normalisation of the IEG data was 

required to control for any variability in staining specificity (see Jenkins et al., 2003, 

for similar procedures). Normalisation was carried out as follows. First, mean raw 

counts for each staining cohort of three were summed (one Control, one Bright and 

one Beacon rat). Counts for each individual rat were then divided by this total and 

expressed as a percentage; thus, all sets of normalised values summed to 100. 

Normalised values for each rat were then averaged, producing normalised group 

means.   

 



166 

 

5.2.1.7. Statistical analysis.  

Group differences in escape latencies and distances travelled in each training 

condition were analysed using mixed factorial ANOVAs, with group as the between-

groups factor (Control, One Cue and Beacon group) and training day as the within-

groups factor (days 1 to 5 and days 1 to 10, respectively). One sample t-tests were 

used to compare percentage time spent in quadrants to chance level; time spent in 

platform areas was assessed using 3 x 4 mixed factorial ANOVAs, and the outer 

corridor was examined with one-way between-groups ANOVAs. Tukey and 

Bonferroni post hoc tests were included in these analyses where appropriate. Zif268 

and c-Fos expression in the different regions were examined with a number of one-

way between-groups ANOVAs, with Tukey post hoc comparisons (carried out on 

normalised data).  

 Five and ten day conditions were directly compared in terms of behaviour 

(i.e. recall performance) and IEG expression to determine any changes across 

training using independent-samples t-tests. To assess IEG expression in the five and 

ten day training conditions, difference scores were computed using the normalised 

mean counts. Difference scores were calculated for each sub-region by subtracting 

the mean score for each group on day ten from the corresponding score on day five 

(time 2 – time 1); thus, difference scores represent a percentage increase or decrease 

from IEG expression on day five. Pearson product-moment correlations were also 

carried out to explore the relationship between memory performance and IEG 

expression (see Chapter 4; raw IEG counts used). Correlations were conducted for 

all brain areas to allow for comparisons across training lengths.  
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5.2.2. Behavioural results  

5.2.2.1. Acquisition. 

5.2.2.1.1. Escape latency. Mixed factorial ANOVAs yielded a significant main 

effects of training day after five days, F4,72 = 11.30, P = 0.001, partial eta
2
 = 0.40, 

and ten days, F9,162 = 39.29, P = 0.001, partial eta
2
 = 0.69 (see Figure 5.2). The main 

effect of group was also significant after five days, F1,18 = 18.95, P = 0.001, partial 

eta
2
 = 0.68, but not after ten days, F1,18 = 1.31, P = 0.30, partial eta

2
 = 0.13. The day 

x group interaction effects were not significant; five day: F8,72 = 1.26, P = 0.30, 

partial eta
2
 = 0.12, ten day: F18,162 = 0.60, P = 0.90, partial eta

2
 = 0.62. For five-day 

trained animals, post hoc comparisons showed that mean escape latency on day 5 

was significantly faster than on day 1 (Bonferroni: P = 0.001), and that the Beacon 

group was significantly faster at escaping the maze compared to the Control and One 

Cue groups (Tukey: both P = 0.001). Regarding rats trained for ten days, Bonferroni 

post hoc analyses showed that escape latency on day 10 was significantly shorter 

than on day 1 (P = 0.001).  

 One-way repeated measures ANOVAs conducted for each group separately 

produced a number of significant effects. A main effect of day was found for five- 

and ten-day trained Control groups; F4,24 = 7.15, P = 0.001, partial eta
2
 = 0.54, and 

F9,54 = 15.10, P = 0.001, partial eta
2
 = 0.72. Mean escape latency for the five-day 

group decreased from 42.54 ± 4.86s (CI [30.65, 54.42]) on day 1 to 19.91 ± 2.59s 

(CI [13.58, 26.25]) on day 5; however, this difference failed to reach statistical 

significance (P = 0.10). Post hoc tests for the ten-day group did produce a significant 

difference between day 1 (36.49 ± 3.56s, CI [27.79, 45.19]) and day 10 (10.12 ± 

1.66s, CI [6.06, 14.19]) (P = 0.03). The main effect of day was also significant for 

the One Cue groups; five day: F4,24 = 3.81, P = 0.02, partial eta
2
 = 0.39, ten day: F9,54 
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= 13.71, P = 0.001, partial eta
2
 = 0.70. Again, Bonferroni post hoc analyses indicated 

that rats were not significantly faster at escaping the maze on day 5 (21.19 ± 2.26s, 

CI [15.67, 26.71]) relative to day 1 (39.99 ± 3.62s, CI [31.14, 48.83]) (P = 0.14), but 

were significantly faster on day 10 (11.79 ± 2.28s, CI [6.22, 17.36]) compared to day 

1 (46.19 ± 5.18s, CI [33.51, 58.86]) (P = 0.02). For beacon groups, the main effect of 

day was not significant after five days, F4,24 = 2.27, P = 0.09, partial eta
2
 = 0.27, but 

was significant after ten days, F9,54 = 12.21, P = 0.001, partial eta
2
 = 0.67. For the 

five-day trained group, time taken to escape the maze on day 5 (17.31 ± 3.08s, CI 

[9.76, 24.85]) was similar to day 1 (25.24 ± 1.81s, CI [20.80, 29.67]). In contrast, 

escape latency for the ten-day group on the final day of training (11.62 ± 1.40s, CI 

[8.21, 15.03]) was significantly shorter than on day 1 (41.31 ± 3.56s, CI [32.63, 

50.00]) (P = 0.02).  

 One-way between-groups ANOVAs examining group differences on each 

day produced significant main effects for five-day trained animals. Specifically, 

main effects were found on day 1: F2,20 = 6.55, P = 0.01, day 2: F2,20 = 10.36, P = 

0.001, and day 4: F2,20 = 5.08, P = 0.02. Post hoc tests showed that the Beacon group 

were significantly faster at finding the platform than cue-trained groups on each of 

these days: day 1 (Control: P = 0.01; One Cue: P = 0.05), day 2 (both P = 0.01) and 

day 4 (both P = 0.05). No significant main effects were noted for ten-day groups (all 

P > 0.05). Importantly, all groups reached similar mean escape latencies by the final 

day of training. 
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Figure 5.2: Mean escape latencies (± SEM) for Control, One Cue and Beacon 

groups trained for (A) five and (B) ten days. 

 

5.2.2.1.2. Distance travelled. Similar results were found for distance travelled. 

Mixed factorial ANOVAs produced significant main effects of day for five-day, F4,72 

= 8.50, P = 0.001, partial eta
2
 = 0.32, and ten-day groups, F9,162 = 26.15, P = 0.001, 

partial eta
2
 = 0.59 (see Figure 5.3). Significant main effects of group were also found 

after five days, F1,18 = 7.76, P = 0.01, partial eta
2
 = 0.46, and ten days, F1,18 = 5.86, P 

= 0.01, partial eta
2
 = 0.39. Day x group interaction effects were not significant; five 

day: F8,72 = 0.54, P = 0.78, partial eta
2
 = 0.06, ten day: F18,162 = 1.20, P = 0.27, 

partial eta
2
 = 0.12. Bonferroni post hoc tests revealed that mean path length on day 5 

was significantly shorter than on day 1 (P = 0.01) and Tukey post hoc comparisons 

showed that the Beacon group travelled significantly shorter paths compared to the 

Control and One Cue groups (P = 0.01 and P = 0.02, respectively). Identical post hoc 

effects were found in the ten-day condition, i.e. distance travelled on day 10 was 

significantly less than on day 1 (P = 0.001) and that the mean path length of the 

Beacon group was shorter than cue-trained groups (P = 0.02 and P = 0.04, 

respectively).  

A                                          B 
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 A one-way repeated measures ANOVA yielded a main effect of day for both 

Control groups; F4,24 = 6.73, P = 0.001, partial eta
2
 = 0.53, and F9,54 = 14.02, P = 

0.001, partial eta
2
 = 0.70. Similar to escape latency results, path lengths on the first 

(1011.35 ± 119.93cm, CI [717.90, 1304.80]) and last day of training (504.73 ± 

55.05cm, CI [370.02, 639.44]) did not differ significantly in the five-day condition 

(P = 0.18). A significant post hoc difference was found for the ten-day Control 

group, with shorter distances travelled on day 10 (215.97 ± 33.91cm, CI [132.99, 

298.95]) relative to day 1 (963.03 ± 117.72cm, CI [674.99, 1251.07]) (P = 0.04). 

Main effects of day were noted for the One Cue groups; five day: F4,24 = 2.77, P = 

0.04, partial eta
2
 = 0.32, ten day: F9,54 = 14.51, P = 0.001, partial eta

2
 = 0.71. Again, 

post hoc tests did not indicate any significant differences between path lengths on 

day 1 (1025.64 ± 96.94s, CI [788.42, 1262.85]) and day 5 (586.41 ± 75.41cm, CI 

[401.89, 770.93]) (P = 0.32).  

 Distance travelled was, however, significantly shorter on day 10 (285.40 ± 

63.80cm, CI [129.29, 441.50]) compared to day 1 (1287.76 ± 161.44cm, CI [892.74, 

1682.78]) (P = 0.03). The main effect of day for the five-day Beacon group was not 

significant, F4,24 = 2.40, P = 0.08, partial eta
2
 = 0.29; mean distance travelled 

decreased from 887.92 ± 207.25cm (CI [380.80, 1395.04]) on day 1 to  464.19 ± 

81.99cm (CI [263.56, 664.81]) day 5 (P = 0.88). A significant main effect was found 

after ten days, F9,54 = 7.08, P = 0.001, partial eta
2
 = 0.54, where path length on day 9 

(256.90 ± 44.59cm, CI [147.78, 366.02]) was shorter than on day 1 (1518.42 ± 

190.05cm, CI [1053.40, 1983.44]) (P = 0.01). One-way ANOVAs investigating 

between-groups effects yielded no significant differences between groups on the 

final days of training (all P > 0.05).  
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Figure 5.3: Mean path lengths (± SEM) for Control, One Cue and Beacon groups 

trained for (A) five and (B) ten days. 

 

5.2.2.2. Recall. 

 5.2.2.2.1. Quadrants. Analyses of time spent in quadrants for five-day groups 

showed that – compared to chance level – the Beacon group spent significantly more 

time in the NE quadrant, t12 = 4.19, P = 0.01, and significantly less time in the NW, 

t12 = 2.78, P = 0.03, and SE quadrants, t12 = 5.42, P = 0.01 (see Figure 5.4A). No 

other significant deviations from chance were noted. After ten days of training, the 

Control and Beacon groups displayed a significant preference for the NE quadrant 

relative to chance, t12 = 3.04, P = 0.02, and t12 = 4.68, P = 0.01 (see Figure 5.4B). 

Time spent in the NE quadrant for the One Cue group was also significant (P = 

0.05). In addition, all three ten-day groups spent significantly less time in the SE 

quadrant compared to chance; Control: t12 = 4.67, P = 0.01, One Cue: t12 = 4.98, P = 

0.01, Beacon: t12 = 2.67, P = 0.05 (see Figure 5.4B).  

 

A                                          B 
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Figure 5.4: Mean percentage time (± SEM) spent in quadrants of the maze for 

Control, One Cue and Beacon groups after (A) five- and (B) ten-day training. 

Dashed line indicates chance level.  

 

5.2.2.2.2. Platform areas. 3 x 4 mixed factorial ANOVAs examining time spent in 

platforms after five and ten days of training yielded identical results. More 

specifically, significant main effects of area, F3,54 = 12.43, P = 0.001, partial eta
2
 = 

0.41, and F3,54 = 29.48, P = 0.001, partial eta
2
 = 0.62, as well as group x area 

interaction effects, F6,54 = 8.16, P = 0.001, partial eta
2
 = 0.48, and F6,54 = 3.50, P = 

0.02, partial eta
2
 = 0.28, were found for five and ten days of training, respectively. 

Both main effects of group were not significant, F1,18 = 3.50, P = 0.06, partial eta
2
 = 

0.28, and F1,18 = 2.15, P = 0.15, partial eta
2
 = 0.19. Bonferroni post hoc tests 

revealed that five and ten day groups spent longer in the NE area than in the NW (P 

= 0.01 and P = 0.001), SE (P = 0.01 and P = 0.001) and SW area (both P = 0.001).  

 Next, one-way repeated-measures ANOVAs were carried out to investigate 

within-groups differences. In the five-day training condition, main effects of area 

were noted for the Control group, F3,18 = 5.77, P = 0.01, partial eta
2
 = 0.49, and 

Beacon group, F3,18 = 19.99, P = 0.001, partial eta
2
 = 0.77, but not for the One Cue 

group, F3,18 = 1.21, P = 0.33, partial eta
2
 = 0.17 (see Figure 5.5A). Bonferroni post 

A                                          B 
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hoc comparisons failed to indicate any significant differences between areas for the 

Control group, however, the Beacon group spent more time in the NE area (10.62 ± 

1.33%, CI [7.36, 13.88]) compared to the SE (2.29 ± 0.71%, CI [0.56, 4.02]) and SW 

areas (2.38 ± 0.67%, CI [0.76, 4.01]) (both P = 0.01). In the ten-day training 

condition, main effects of area were, again, documented for the Control, F3,18 = 

26.07, P = 0.001, partial eta
2
 = 0.81, and Beacon groups, F3,18 = 8.31 P = 0.03, 

partial eta
2
 = 0.58 (see Figure 5.5B). No main effect was found for the One Cue 

group, F3,18 = 2.71, P = 0.08, partial eta
2
 = 0.31. Bonferroni post hoc tests showed 

that the Control group favoured the NE area (15.24 ± 2.27%, CI [9.70, 20.78]) over 

the NW (4.67 ± 0.82%, CI [2.66, 6.78]; P = 0.05), SE (4.05 ± 0.81%, CI [2.08, 6.02]; 

P = 0.05) and SW areas (2.19 ± 0.51%, CI [0.94, 3.45]; P = 0.01). 

 Lastly, one-way between-groups ANOVAs were used to compare groups in 

each area. After five days of training, the main effect of area was significant for the 

NE region only, F2,20 = 12.97, P = 0.001. The One Cue group (1.43 ± 0.76%, CI 

[0.43, 3.29]) spent less time here compared to the Control (6.76 ± 1.60%, CI [2.84, 

10.69]) and Beacon groups (P = 0.05 and P = 0.001, respectively) (see Figure 5.5A). 

After ten days, no main effect was found in the NE area, F2,20 = 3.25, P = 0.06, 

however, a main effect was noted in the SW area, F2,20 = 4.28, P = 0.03. Post hoc 

analyses indicated that the One Cue group spent more time in this area than the 

Control group (5.14 ± 1.19%, CI [2.24, 8.04] versus 2.19 ± 0.51%, CI [0.93, 3.45]) 

(P = 0.03; see Figure 5.5B). 
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Figure 5.5: (A-B) Mean percentage time (± SEM) spent in platform areas by 

Control, One Cue and Beacon groups trained for five and ten days. (C) Heat maps 

showing overall search distributions during the probe trial for five- and ten-day 

groups. Dashed lines indicate chance level. 

 

5.2.2.2.3. Outer corridor. One-way ANOVAs comparing time spent by groups in the 

outer corridor yielded no main effect after five, F2,20 = 2.27, P = 0.07, or ten days, 

F2,20 = 2.48, P = 0.06 (see Figure 5.6).  
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Figure 5.6: Mean percentage time (± SEM) spent in the outer corridor Control, One 

Cue and Beacon groups after five and ten days of training.  

 

5.2.2.3. Comparison between five and ten day training. 

Mean percentage time spent in the NE platform area by groups after five and ten 

days of training was compared using independent samples t-tests. Significant 

differences were found for the Control group, t12 = 3.06, P = 0.01, and the One Cue 

group, t12 = 5.99, P = 0.001, both of which spent more time in the NE area after ten 

days of training. No significant difference was noted for the Beacon group, t12 = 

0.91, P = 0.39 (see Figure 5.5). No other differences were found in any other 

platform area. Time spent in the outer corridor also decreased significantly from five 

to ten days for the Control, t12 = 2.16, P = 0.05, and One Cue groups, t12 = 2.75, P = 

0.02, but not for the beacon group, t12 = 0.19, P = 0.85 (see Figure 5.6). 

 

5.2.3. IEG results.  

5.2.3.1. Zif268. 

One-way between-groups ANOVAs were carried out to compare Zif268 expression 

across groups for each training condition. In the five-day training condition, 

significant main effects of group were found in all sub-regions. In area CA1 (F2,20 = 
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30.51, P = 0.001), Tukey post hoc tests yielded significant differences between all 

groups. Specifically, the mean count for the Beacon group (57.49 ± 5.73, CI [43.47, 

71.50]) was significantly greater than those of the Control (8.69 ± 3.80, CI [0.60, 

17.98]; P = 0.001) and One Cue groups (33.83 ± 3.37, CI [25.59, 42.07]; P = 0.01), 

and the One Cue group had a higher mean count than the Control group (P = 0.01) 

(see Figure 5.7A). In area CA3 (F2,20 = 8.76, P = 0.01), the Beacon group (61.43 ± 

12.46, CI [30.95, 91.91]) had a significantly higher mean normalised count 

compared to the Control group (5.37 ± 3.22, CI [2.51, 13.25]; P = 0.01) (see Figure 

5.7B). In the DG (F2,20 = 9.44, P = 0.002), mean counts for Beacon (41.12 ± 10.79, 

CI [14.72, 67.52]; P = 0.001]) and One Cue groups (56.57 ± 11.34, CI [28.86, 

84.28]; P = 0.02) were significantly higher than that of the Control group (2.32 ± 

1.87, CI [-2.25, 6.88]) (see Figure 5.7C).  

 In the PLC (F2,20 = 11.11, P = 0.001), the mean count for the Beacon group 

(61.70 ± 11.13, CI [34.45, 88.94]) was significantly higher than the Control group 

mean (5.48 ± 2.54, CI [0.74, 11.71]; P = 0.001) (see Figure 5.7D). In the ACC (F2,20 

= 9.18, P = 0.01), the Beacon group (61.16 ± 11.72, CI [31.49, 88.84]), again, had a 

higher mean Zif268 count compared to the Control group (4.41 ± 1.97, CI [0.41, 

9.22]; P = 0.01) (see Figure 5.7E). Finally, the same pattern emerged in the ILC 

(F2,20 = 9.54, P = 0.001), with a lower count for the Control group (7.50 ± 5.21, CI [-

5.23, 20.24]) relative to Beacon group (58.35 ± 10.52, CI [32.60, 84.10]; P = 0.01) 

(see Figure 5.7F). Sample sections of hippocampal and medial prefrontal Zif268 

expression are shown in Figure 5.8. For comparison, scatterplots depicting raw 

scores in each sub-region for all animals are shown in Figure 5.9. 
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Figure 5.7: Mean normalised cell counts of Zif268 positive neurons for five-day 

Control, One Cue and Beacon groups in (A) CA1, (B) CA3, (C) dentate gyrus, (D) 

prelimbic cortex (E) anterior cingulate cortex and (F) infralimbic cortex. 
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Figure 5.8: Representative images of Zif268 expression for five-day Control, One 

Cue and Beacon groups in CA1, CA3, the dentate gyrus, the prelimbic, anterior 

cingulate and infralimbic cortices. Scale bar = 100µm. 
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Figure 5.9: Scatterplots showing individual raw Zif268 counts for all animals in (A) 

CA1, CA3, dentate gyrus, and (B) prelimbic cortex, anterior cingulate cortex and 

infralimbic cortex after five days. Horizontal lines represent group means.  

 

 

 In the ten-day training condition, one extreme outlier (defined by SPSS) in 

the ACC sub-region was removed from the Beacon group. Significant main effects 

of group were found in area CA3 (F2,20 = 10.65, P = 0.001), the PLC, (F2,20 = 4.28, 

P = 0.03), and the ACC (F2,19 = 13.73, P = 0.001). Main effects were not significant 

in area CA1 (F2,20 = 3.00, P = 0.08), the DG, (F2,20 = 2.12, P = 0.15), or the ILC, 

(F2,20 = 1.76, P = 0.20) (see Figure 5.10). Tukey post hoc analyses showed that in 

area CA3, normalised mean counts for the Control (44.03 ± 3.42, CI [35.76, 52.40]) 

and One Cue groups (36.25 ± 4.26, CI [25.82, 45.68]) were significantly higher than 

that of the Beacon group (19.71 ± 3.69, CI [10.68, 28.74]) (P = 0.001 and P = 0.02, 

respectively) (see Figure 5.10B). In the PLC, the count for the Beacon group (13.80 

± 6.45, CI [2.00, 29.59]) was also lower than that of the Control group (45.28 ± 8.84, 

CI [23.63, 66.92]) (P = 0.04) (see Figure 5.10D). In the ACC, the count for the 

Beacon group (6.51 ± 2.47, CI [0.16, 12.86]) was, again, lower than those of the 

Control (55.73 ± 8.14, CI [33.82, 75.74]) and One Cue groups (38.70 ± 6.86, CI 

[21.91, 55.48]) (P = 0.001 and P = 0.01, respectively) (see Figure 5.10E). Sample 
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sections of hippocampal and medial prefrontal Zif268 expression are shown in 

Figure 5.11. For comparison, scatterplots depicting raw scores in each sub-region for 

all animals after ten-day training can be seen in Figure 5.12. 

 

 

 

Figure 5.10: Mean normalised cell counts of Zif268 positive neurons for ten-day 

Control, One Cue and Beacon groups in (A) CA1, (B) CA3, (C) dentate gyrus, (D) 

prelimbic cortex (E) anterior cingulate cortex and (F) infralimbic cortex. 
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Figure 5.11: Representative images of Zif268 expression for ten-day Control, One 

Cue and Beacon groups in CA1, CA3, the dentate gyrus, the prelimbic, anterior 

cingulate and infralimbic cortices. Scale bar = 100µm. 
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Figure 5.12: Scatterplots showing individual raw Zif268 counts for all animals in 

(A) CA1, CA3, dentate gyrus, and (B) prelimbic cortex, anterior cingulate cortex and 

infralimbic cortex after ten days. Horizontal lines represent group means.  

 

5.2.3.2. c-Fos 

One-way between-groups ANOVAs were conducted to compare c-Fos expression 

across groups after five and ten days of training. In the five-day condition, no 

significant main effects of group were found; CA1: F2,20 = 0.10, P = 0.90, CA3: F2,20 

= 0.20, P = 0.82, DG: F2,20 = 0.03, P = 0.97, PLC: F2,20 = 0.52, P = 0.60, ACC: F2,20 

= 0.17, P = 0.85, and ILC: F2,20 = 0.34, P = 0.72 (see Figure 5.13). After ten days of 

training, no significant main effects of group were noted in any area; CA1: F2,20 = 

0.61, P = 0.56, CA3: F2,20 = 0.05, P = 0.95, DG: F2,20 = 0.15, P = 0.86, PLC: F2,20 = 

0.06, P = 0.94, ACC: F2,20 = 0.38, P = 0.69, and ILC: F2,20 = 0.62, P = 0.55 (see 

Figure 5.14). Sample sections of hippocampal and prefrontal c-Fos expression are 

shown in Figures 5.15 and 5.16. Figures 5.17 and 5.18 depict scatterplots with 

individual raw scores in each sub-region.  
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Figure 5.13: Mean normalised cell counts of c-Fos positive neurons for five-day 

Control, One Cue and Beacon groups in (A) CA1, (B) CA3, (C) dentate gyrus, (D) 

prelimbic cortex (E) anterior cingulate cortex and (F) infralimbic cortex. 
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Figure 5.14: Mean normalised cell counts of c-Fos positive neurons for ten-day 

Control, One Cue and Beacon groups in (A) CA1, (B) CA3, (C) dentate gyrus, (D) 

prelimbic cortex (E) anterior cingulate cortex and (F) infralimbic cortex. 
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Figure 5.15: Representative images of c-Fos expression for five-day Control, One 

Cue and Beacon groups in CA1, CA3, the dentate gyrus, and the prelimbic, anterior 

cingulate and infralimbic cortices. Scale bar = 100µm. 
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Figure 5.16: Representative images of c-Fos expression for ten-day Control, One 

Cue and Beacon groups in CA1, CA3, the dentate gyrus, the prelimbic, anterior 

cingulate and infralimbic cortices. Scale bar = 100µm. 
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Figure 5.17: Scatterplots showing individual raw c-Fos counts for all animals in (A) 

CA1, CA3, dentate gyrus, and (B) prelimbic cortex, anterior cingulate cortex and 

infralimbic cortex after five days. Horizontal lines represent group means.  

 

 

 

Figure 5.18: Scatterplots showing individual raw c-Fos counts for all animals in (A) 

CA1, CA3, dentate gyrus, and (B) prelimbic cortex, anterior cingulate cortex and 

infralimbic cortex after ten days. Horizontal lines represent group means.  

 

5.2.3.3. Comparison between five and ten day training. 

Independent-samples t-tests revealed a number of significant differences in Zif268 

expression for the Control and Beacon groups (see Figure 5.19A). For the Control 

group, Zif268 expression increased significantly in all sub-regions across training 

conditions; CA1: t12 = 3.85, P = 0.01, CA3: t12 = 7.24, P = 0.001, DG: t12 = 7.83, P = 
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0.001, PLC: t12 = 4.11, P = 0.01, ACC: t12 = 5.76, P = 0.001, and ILC: t12 = 2.88, P = 

0.03. In contrast, significant decreases were observed for the Beacon group in all 

sub-regions; CA1: t12 = 2.94, P = 0.03, CA3: t12 = 3.16, P = 0.02, DG: t12 = 2.55, P = 

0.04, PLC: t12 = 3.45, P = 0.02, ACC: t12 = 4.88, P = 0.01, and ILC: t12 = 2.89, P = 

0.03. No significant differences were noted for the One Cue group. For c-Fos 

expression, no significant differences were found for any group (see Figure 5.19B). 

 

 

Figure 5.19: mean percentage increase or decrease in (A) Zif268 and (B) c-Fos 

expression from five- to ten-day training conditions for Control, One Cue and 

Beacon groups in all sub-regions.  
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5.2.4. Correlations with behaviour.  

Finally, mean counts of regional Zif268 and c-Fos for each group were correlated 

with percentage time spent in the target (NE) platform area to determine the 

relationship between IEG expression and water maze recall after five and ten days. 

All regions were analysed. Only one significant correlation was found; this result 

was for the Beacon group, for which a significant positive correlation between 

Zif268 expression in CA1 and time spent in the NE area after five days was 

identified (r = 0.81, P = 0.03; see Table 5.1 Bottom). All other correlations between 

Zif268 and c-Fos expression after five and ten days of training were not significant 

(see Tables 5.1 and 5.2 and Figures 5.20-5.23). 
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Table 5.1: Correlations between Zif268 expression and percentage time spent in the 

NE platform area for five- and ten-day Control, One Cue and Beacon groups. 

 

 

 

 

 

 

 

 

 

 

Group Brain region Training condition 

Control  Five days Ten days 

 CA1 

CA3 

DG 

PLC 

ACC 

ILC 

0.05 

-0.46 

-0.07 

-0.09 

0.23 

-0.05 

-0.44 

0.31 

0.50 

-0.08 

-0.36 

-0.34 

One Cue  Five days Ten days 

 CA1 

CA3 

DG 

PLC 

ACC 

ILC 

0.30 

-0.31 

0.22 

0.75 

0.56 

0.32 

0.18 

0.43 

-0.60 

-0.59 

-0.02 

0.02 

Beacon  Five days Ten days 

 CA1 

CA3 

DG 

PLC 

ACC 

ILC 

0.81* 

0.52 

0.62 

0.11 

0.67 

-0.09 

-0.31 

-0.06 

-0.34 

-0.04 

0.11 

-0.13 
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Table 5.2: Correlations between c-Fos expression and percentage time spent in the 

NE platform area for five- and ten-day Control, One Cue and Beacon groups. 

 

Group Brain region Training condition 

Control  Five days Ten days 

 CA1 

CA3 

DG 

PLC 

ACC 

ILC 

-0.29 

-0.70 

-0.05 

0.19 

-0.26 

-0.03 

0.21 

0.22 

-0.13 

-0.27 

0.64 

-0.17 

One Cue  Five days Ten days 

 CA1 

CA3 

DG 

PLC 

ACC 

ILC 

-0.25 

-0.30 

-0.32 

0.26 

0.12 

0.68 

-0.18 

0.58 

0.65 

-0.01 

-0.33 

-0.08 

Beacon  Five days Ten days 

 CA1 

CA3 

DG 

PLC 

ACC 

ILC 

0.55 

0.14 

0.21 

0.63 

0.47 

0.68 

0.70 

0.53 

0.68 

0.73 

0.70 

0.77 
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Figure 5.20: Scatterplots showing regional Zif268 counts (Y axis) and percentage 

time spent in the NE platform area (X axis) for Control, One Cue and Beacon groups 

after five days of training.  
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Figure 5.21: Scatterplots showing regional Zif268 counts (Y axis) and percentage 

time spent in the NE platform area (X axis) for Control, One Cue and Beacon groups 

after ten days of training.  
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Figure 5.22: Scatterplots showing regional c-Fos counts (Y axis) and percentage 

time spent in the NE platform area (X axis) for Control, One Cue and Beacon groups 

after five days of training.  
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Figure 5.23: Scatterplots showing regional c-Fos counts (Y axis) and percentage 

time spent in the NE platform area (X axis) for Control, One Cue and Beacon groups 

after ten days of training.  
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5.2.5. Discussion 

All animals learned to locate the hidden platform after five and ten days of training. 

Importantly, groups did not differ in average time taken to escape the maze or 

distance travelled on final days of training, signifying equivalent learning. Both 

Control and One Cue groups (trained with two cues) took less time and used shorter 

paths to reach the platform as training progressed, with performance (i.e. memory for 

the platform location) being strongest after ten days of training. Results for the 

Beacon groups (trained with a single cue) were less clear; that is, while the five-day 

group displayed a shallow learning curve – indicative of traditional beacon-type 

learning (Morris, 1981) – the ten-day group showed a similar pattern of learning to 

the Control and One Cue groups. Thus, it is difficult to determine from the 

acquisition results what type of learning strategy these animals were using.  

 During the probe test, only the Beacon group favoured the target quadrant 

after five days, while the Control and One Cue groups failed to show any 

preferences. After ten days of training, all groups favoured the correct quadrant, 

thereby demonstrating that more training improved memory recall for the Control 

and One Cue groups, but not for Beacon group. Results from the platform area and 

outer corridor analyses support this suggestion; specifically, performance of the 

Control and One Cue groups was significantly better after ten days (i.e. more time in 

the NE area and less time in the outer corridor), while the performance of Beacon 

group remained constant. Together, findings suggest that animals trained with the 

beacon were relying on a response-type strategy. In addition, time spent in the 

platform areas revealed that the One Cue group was considerably impaired relative 

to the other groups at five- but not at ten-day recall. These results are line with those 

of Chapter 3 (Experiment 3), whereby extended training can lead to increased 
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behavioural flexibility which, in turn, enables memory recall under diminished cue 

conditions (Jo et al., 2007; Rodrigo et al., 2014).  

On a cellular level, Zif268 cell counts were significantly higher for the 

Beacon group in all sub-regions relative to the other groups when tested after five 

days of training, with expression in area CA1 positively correlated with percentage 

time in the target platform area. This is consistent with behavioural findings, i.e. this 

was the only group to display accurate memory recall after five days. The One Cue 

group also exhibited greater Zif268 expression in the hippocampus (CA1 and DG) 

compared to the Control group, who had the lowest overall counts. Interestingly, the 

opposite pattern was seen at ten-day recall, with the Beacon group yielding the 

lowest levels of Zif268 expression across regions. Specifically, Zif268 expression in 

CA3 and ACC regions was increased for the both spatial groups.  

 These patterns were reflected in the difference scores; percentage Zif268 

expression in all sub-regions increased from five to ten days for the Control group, 

decreased for the Beacon group and remained the same for the One Cue group. 

Consequently, it would seem that changes in Zif268 expression reflect accurate 

memory recall by the spatially trained groups after extended training (which resulted 

in a comparative decrease for the beacon group). In stark contrast to Zif268, no 

group differences were found for c-Fos expression in any sub-region after five or ten 

days of training, and levels of expression did not appear change as a function of 

training length (unlike Jo et al., 2007). Together, findings imply that expression of 

Zif268 in the regions analysed is more sensitive to memory type (spatial or non-

spatial) than c-Fos.  
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5.3. Experiment 2 

The purpose of Experiment 2 was to investigate the effects of NMDA receptor 

blockade (via MK-801) on spatial and non-spatial memory processing over time, and 

on corresponding IEG expression in the hippocampus and medial prefrontal cortex. 

Due to the lack of effects observed following AMPA receptor antagonism in Chapter 

4, which may be explained by poor penetration of CNQX across the blood-brain 

barrier (Rogawski, 2011), a CNQX group was not included for this experiment. As 

MK-801 was administered i.p. (thus inactivating NMDA receptors throughout the 

brain), we anticipate gross memory deficits in all groups after five days of training. 

In addition, given the known association between NMDA receptor activation and 

IEG expression, we also expect widespread decreases in Zif268 and c-Fos (Chapter 

4; and also Gass et al., 1993; Vaccarino et al., 1992). Crucially, however, whether or 

not increased experience with the environment prior to spatial or non-spatial testing 

can protect against the effects of NMDA receptor blockade is unknown. If this is the 

case, we predict that spatially-trained rats in the full cue condition will show good 

memory recall and increased IEG expression, while the partial cue group will 

continue to be impaired (similar to Fellini et al., 2009; Nakazawa et al., 2004; 

Nakazawa et al., 2002). Based on the results of Experiment 1, we hypothesise that 

increased training will have no effect on performance of the non-spatial group; that 

is, if rats are impaired at five-day recall, these deficits will persist after ten days.   
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5.3.1. Method 

5.3.1.1. Subjects.  

Forty-two male Wistar rats (Charles River, UK) were used as subjects. Rats’ age and 

weight, housing conditions, handling procedures, and time of experimentation were 

the identical to those described previously. 

 

5.3.1.2. Apparatus.  

The apparatus, position of the platform, cues and beacon were identical to 

Experiment 1. Animals were trained with two cues or a single beacon.  

 

5.3.1.3. Procedure. 

Rats were, again, divided into six experimental groups (n = 7 per group); two 

Control and two One Cue groups trained with both cues for five or ten days (spatial 

strategy groups), and two Beacon groups trained with the beacon for five or ten days 

(non-spatial strategy groups) (all four trials per day). Sixty second probe trials were 

conducted on day 6 or day 11. Rats received an i.p. injection of NMDA receptor 

antagonist MK-801 (0.1mg/kg body weight) twenty minutes prior to testing. Sterile 

saline was used as the vehicle (0.3ml total volume per injection).  As per Experiment 

1, Control groups were tested with both cues, One Cue groups were tested with the 

far cue only, and Beacon groups were tested with the beacon only (see Figure 5.1).  

 

5.3.1.4. Tissue preservation and immunohistochemistry. 

As before, ninety minutes post-testing, rats were terminally anaesthetised and 

perfused, their brains were removed, post-fixed and sliced (see Chapter 2). Regions 
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of interest included CA1, CA3, DG, PLC, ACC and ILC. Staining procedures were 

followed as described in Chapter 2 and data were normalised as previously outlined.  

 

5.3.1.5. Data and statistical analyses. 

All data and statistical analyses were identical to those used in Experiment 1. 

 

5.3.2. Behavioural results  

5.3.2.1. Acquisition. 

5.3.2.1.1. Escape latency. For the five day condition, a 3 x 5 mixed factorial 

ANOVA produced a significant main effect of day, F4,72 = 11.39, P = 0.001, partial 

eta
2
 = 0.39, with rats escaping the maze significantly faster on day 5 than on day 1 

(Bonferroni: P = 0.001) (see Figure 5.24A). No significant main effect of group, 

F1,18 = 0.25, P = 0.79, partial eta
2
 = 0.03, or day x group interaction effect was 

found, F8,72 = 0.90, P = 0.52, partial eta
2
 = 0.09. A 3 x 10 mixed factorial ANOVA 

for the ten day condition also yielded a main effect of day,  F9,162 = 27.27, P = 0.001, 

partial eta
2
 = 0.60 (see Figure 5.24B), and day x group interaction effect, F18,162 = 

2.68, P = 0.01, partial eta
2
 = 0.23. Bonferroni post hoc tests showed that escape 

latency on day 10 was significantly shorter compared to day 1 (P = 0.001). The main 

effect of group was not significant, F1,18 = 1.22, P = 0.32, partial eta
2
 = 0.12.  

 Separate repeated-measures ANOVAs were then carried out for each group. 

No main effects were found for the five-day Control group, F4,24 = 2.26, P = 0.09, 

partial eta
2
 = 0.27, or One Cue group, F4,24 = 3.85, P = 0.07, partial eta

2
 = 0.39. The 

main effect of day was significant for the five-day Beacon group, F4,24 = 8.94, P = 

0.01, partial eta
2
 = 0.60; escape latency for this group was significantly shorter on 

day 5 than on day 1 (Bonferroni: P = 0.03). After ten days of training, main effects 
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were significant for all groups; Control: F9,54 = 8.02, P = 0.01, partial eta
2
 = 0.57, 

One Cue: F9,54 = 20.43, P = 0.001, partial eta
2
 = 0.77, Beacon: F9,54 = 6.98, P = 0.01, 

partial eta
2
 = 0.54. However, significant post hoc differences were noted for the One 

Cue and beacon groups only. Time taken to find the platform for the One Cue group 

was significantly reduced on day 10 (12.74 ± 1.75s, CI [8.46, 17.01]) than on day 1 

(45.59 ± 3.63s, CI [36.72, 54.47]). Similarly, escape latency for the beacon group 

was shorter on day 10 (10.94 ± 1.30s, CI [7.76, 14.11]) compared to day 1 (31.68 ± 

2.40s, CI [25.80, 37.55]).  

 One-way between-groups ANOVAs were then carried out to investigate 

group differences on each day. No main effects of group were discovered in the five-

day training condition; day 1: F2,20 = 0.96, P = 0.40, day 2: F2,20 = 0.10, P = 0.90, 

day 3: F2,20 = 0.52, P = 0.60, day 4: F2,20 = 1.14, P = 0.34, day 5: F2,20 = 0.13, P = 

0.88. For the ten-day trained groups, significant main effect were noted on day 1, 

F2,20 = 4.71, P = 0.02, day 6, F2,20 = 5.60, P = 0.01, and day 7, F2,20 = 17.12, P = 

0.001. Tukey post hoc tests highlighted a number of significant differences; on day 

1, the One Cue group were significantly slower at locating the platform than the 

Control group (P = 0.03), on day 6, escape latency for the Control group was longer 

than the Beacon group (P = 0.01), and on day 7, both One Cue and Beacon groups 

escaped the maze faster than the Control group (both P = 0.001). Importantly, no 

significant differences were noted between groups on the final day of training. 
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Figure 5.24: Mean escape latencies (± SEM) for Control, One Cue and Beacon 

groups over (A) five and (B) ten days of training. 

 

5.3.2.1.2. Distance travelled. A 3 x 5 mixed factorial ANOVA yielded a significant 

main effect of day, F4,72 = 24.38, P = 0.001, partial eta
2
 = 0.58, and day x group 

interaction effect, F8,72 = 4.68, P = 0.001, partial eta
2
 = 0.34 (see Figure 5.25A). The 

main of group was not significant, F1,18 = 1.62, P = 0.23, partial eta
2
 = 0.15. 

Bonferroni post hoc tests showed that distance travelled on day 1 was significantly 

slower than on day 5 (P = 0.001). Results from a 3 x 10 mixed factorial ANOVA 

were similar; the main of day, F9,162 = 25.50, P = 0.001, partial eta
2
 = 0.59, and day x 

group interaction effect were significant, F18,162 = 6.22, P = 0.001, partial eta
2
 = 0.41, 

but the main effect of group was not, F1,18 = 2.35, P = 0.12, partial eta
2
 = 0.21 (see 

Figure 5.25B). Again, post hoc analyses highlighted a significant difference between 

day 1 and day 10 (P = 0.001).  

 Individual main effects of day were found for both Control groups; five day:   

F4,24 = 4.40, P = 0.01, partial eta
2
 = 0.42, and ten day: F9,54 = 7.30, P = 0.001, partial 

eta
2
 = 0.55. Post hoc comparisons were not significant after five days of training; 

however, a significant difference between path lengths on day 1 (816.11 ± 72.82cm, 

CI [637.93, 994.30]) and day 10 (480.56 ± 74.98cm, CI [297.10, 644.01]) was found 

A                                          B 
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after ten days (P = 0.04). Main effects of day were significant for both One Cue 

groups; F4,24 = 7.10, P = 0.001, partial eta
2
 = 0.54, and F9,54 = 20.87, P = 0.001, 

partial eta
2
 = 0.78, for five and ten days, respectively. No significant post hoc 

differences were noted for the five-day group, but distance travelled was 

significantly shorter on day 10 (332.77 ± 38.03, CI [239.71, 425,83]) compared to 

day 1 (1532.01 ± 178.15, CI [1096.12, 1967.91]) (P = 0.02). Lastly, main effects 

were also significant for the Beacon groups; F4,24 = 18.50, P = 0.001, partial eta
2
 = 

0.76, and F9,54 = 7.11, P = 0.001, partial eta
2
 = 0.54, for five and ten days, 

respectively; however, post hoc tests between the first and last days of training for 

both groups failed to reach significance (five day: P = 0.06, ten day: P = 0.07).  

 With regard to between-groups differences, main effects of group for five-

day groups were noted on day 1, F2,20 = 7.39, P = 0.01, and day 4, F2,20 = 3.88, P = 

0.04. Tukey post hoc revealed that the Beacon group travelled longer routes to the 

platform compared to the cue-trained groups on day 1 (P = 0.01 and P = 0.02, 

respectively), and these animals took shorter routes than the Control group on day 4 

(P = 0.04). For the ten-day condition, main effects of group were significant for day 

1, F2,20 = 13.74, P = 0.001, day 6, F2,20 = 7.71, P = 0.01, and day 7, F2,20 = 25.31, P = 

0.001. On day 1, mean distance travelled by the One Cue group was longer relative 

to the Control and Beacon groups (both P = 0.001). On day 6 and day 7, the Control 

group travelled larger distances than the One Cue group (P = 0.05 and P = 0.001, 

respectively) and the Beacon group (P = 0.01 and P = 0.001, respectively).  
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Figure 5.25: Mean distance travelled (± SEM) for Control, One Cue and Beacon 

groups over (A) five and (B) ten days of training. 

 

5.3.2.2. Recall. 

 5.3.2.2.1. Quadrants. Twenty minutes pre-recall, animals in both conditions 

were administered with a single dose of MK-801 (0.01mg/kg, i.p.). After five days 

of training, the only significant result found was for the Beacon group, which spent 

less time in the SE quadrant than would be expected by chance level, t12 = 3.14, P = 

0.02 (see Figure 5.26A). After ten-day training, the Control group were shown to 

have spent significantly more time in the NE quadrant compared to chance, t12 = 

3.22, P = 0.02, whereas time spent in this region was significantly below chance for 

the One Cue group, t12 = 2.47, P = 0.04. Instead, the One Cue group appeared to 

favour the SW quadrant, t12 = 3.37, P = 0.02 (see Figure 5.26B). No other significant 

differences were noted. 

 

A                                          B 
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Figure 5.26: Mean percentage time (± SEM) spent in quadrants of the maze for 

Control, One Cue and Beacon groups after (A) five and (B) ten days of training. All 

animals were treated with MK-801 (0.01mg/kg, i.p.) approximately twenty minutes 

before recall. Dashed line signifies chance level.  

 

5.3.2.2.2. Platform areas. A 3 x 4 mixed factorial ANOVA generated for the five-

day condition did not produce any main of area, F3,54 = 2.75, P = 0.10, partial eta
2
 = 

0.13, main effect of group, F1,18 = 3.01, P = 0.08, partial eta
2
 = 0.25, or area x group 

interaction effect, F6,54 = 2.43, P = 0.09, partial eta
2
 = 0.21 (see Figure 5.27A). After 

ten days, main effects of area, F3,54 = 3.99, P = 0.04, partial eta
2
 = 0.18, and group, 

F1,18 = 4.38, P = 0.03, partial eta
2
 = 0.33, were significant. The area x group 

interaction effect was not significant, F6,54 = 2.01, P = 0.13, partial eta
2
 = 0.18. 

Bonferroni post hoc tests failed to indicate any differences across areas; however, 

Tukey post hoc comparisons did highlight a significant difference between the One 

Cue and Beacon groups (P = 0.04). 

 Repeated measures ANOVAs were carried out for the ten-day groups to 

investigate differences in time spent across areas; however, no main effects of area 

were found; Control group, F3,18 = 4.99, P = 0.06, partial eta
2
 = 0.45, One Cue 

group, F3,18 = 2.71, P = 0.22, partial eta
2
 = 0.22, Beacon group, F3,18 = 0.51, P = 

A                                          B 
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0.68, partial eta
2
 = 0.08 (see Figure 5.27B). Similarly, between-groups ANOVAs for 

each area did not yield any significant main effects: NE: F2,20 = 2.87, P = 0.08, NW: 

F2,20 = 3.32, P = 0.06, SE: F2,20 = 2.94, P = 0.08, SW: F2,20 = 1.23, P = 0.32 (see 

Figure 5.27B). 

 

 

Figure 5.27: (A-B) Mean percentage time (± SEM) spent in platform areas by 

Control, One Cue and Beacon groups trained for five and ten days. (C) Heat maps 

displaying overall search distributions during the probe trial for five- and ten-day 

groups. All animals were treated with MK-801 (0.01mg/kg; i.p.) approximately 

twenty minutes before recall. Dashed line signifies chance level (0.6%). Note 

difference in scale from Figure 5.5. 

 

5.3.2.2.3. Outer corridor. A one-way between-groups ANOVA comparing time 

spent in the outer corridor did not yield a significant main effect after five days of 

training, F2,20 = 2.40, P = 0.12. However, a main effect was found after ten days, 

F2,20 = 3.77, P = 0.04, with Tukey post hoc tests demonstrating that the One Cue 

A                                          B 
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group (91.43 ± 3.25, CI [83.49, 99.37]) spent significantly more time in the 

perimeter of pool than the Control group (66.57 ± 9.73, CI [42.77, 90.37]) (P = 0.04; 

see Figure 5.28).  

 

Figure 5.28: Mean percentage time (± SEM) spent in the outer corridor Control, 

One Cue and Beacon groups after five- and ten-day training. All animals were 

treated with MK-801 (0.01mg/kg; i.p.) approximately twenty minutes before recall. 

 

5.3.2.3. Comparison between five and ten day training. 

No significant differences between time spent in the NE platform area after five and 

ten days of training were found for any group; Control: t12 = 1.65, P = 0.13, One 

Cue, t12 = 0.29, P = 0.78, and Beacon, t12 = 0.55, P = 0.59 (see Figure 5.27). 

Similarly, time spent in the outer corridor did not decrease significantly from five- to 

ten-day training for any group; Control: t12 = 1.77, P = 0.11, One Cue, t12 = 0.18, P = 

0.86, and Beacon, t12 = 0.18, P = 0.86 (see Figure 5.28). 

 

5.3.3. IEG results  

5.3.3.1. Zif268. 

In the five-day training condition, one extreme outlier was removed from the Control 

group analyses in each of the CA1, PLC, ACC and ILC sub-regions. One-way 

between-groups ANOVAs produced significant main effects for all sub-regions of 
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the hippocampus; CA1: F2,19 = 15.89, P = 0.001, CA3: F2,20 = 7.13, P = 0.005, and 

DG: F2,20 = 6.51, P = 0.01 (see Figure 5.29A-C), with a number of significant Tukey 

post hoc differences. In CA1, the mean counts for the Control (32.38 ± 9.04%, CI 

[9.12, 55.64]) and Beacon groups (7.49 ± 3.36%, CI [0.74, 49.29]) were significantly 

smaller than the One Cue group (64.76 ± 23.25%, CI [28.64, 81.84]; P = 0.01 and P 

= 0.001, respectively). In CA3, the mean count for the Beacon group (6.06 ± 1.60%, 

CI [2.16, 9.97]) was significantly smaller than those of the Control (41.77 ± 10.82%, 

CI [15.29, 66.26]; P = 0.03) and One Cue groups (52.17 ± 11.24%, CI [24.66, 

79.67]; P = 0.01). In the DG, the mean count for the One Cue group (55.43 ± 

12.09%, CI [25.84, 85.02]) was, again, higher than the mean count for the Beacon 

group (6.39 ± 5.82%, CI [-7.85, 20.63]; P = 0.01).  

 No significant main effect of group was noted in the PLC: F2,19 = 2.98, P = 

0.08 (see Figure 5.29D). Significant main effects were found in the ACC, F2,19 = 

6.10, P = 0.01, and ILC: F2,19 = 4.32, P = 0.03 (see Figure 5.29E-F). Post hoc tests 

showed that in the ACC, the mean counts for the Control (27.23 ± 7.72%, CI [7.39, 

47.07]) and Beacon groups (20.40 ± 5.31%, CI [7.40, 33.40]) were significantly 

lower than the One Cue group (56.26 ± 9.79%, CI [32.32, 80.21]; P = 0.05 and P = 

0.01, respectively). In the ILC, the mean count for the Control group (19.80 ± 

4.87%, CI [7.28, 32.32]) was significantly lower than the One Cue group (53.12 ± 

10.33%, CI [27.84, 78.39]; P = 0.03). Sample sections of Zif268 expression in the 

hippocampus and prefrontal cortex are shown in Figure 5.30, and scatterplots 

depicting raw scores in all regions are shown in Figure 5.31. 
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Figure 5.29: Mean normalised cell counts of Zif268 positive neurons for five-day 

Control, One Cue and Beacon groups in (A) CA1, (B) CA3, (C) dentate gyrus, (D) 

prelimbic cortex (E) anterior cingulate cortex and (F) infralimbic cortex. 
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Figure 5.30: Representative images of Zif268 expression for five-day Control, One 

Cue and Beacon groups in CA1, CA3, the dentate gyrus, the prelimbic, anterior 

cingulate and infralimbic cortices. Scale bar = 100µm. 
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Figure 5.31: Scatterplots showing individual raw Zif268 counts for all animals in 

(A) CA1, CA3, dentate gyrus, and (B) prelimbic cortex, anterior cingulate cortex and 

infralimbic cortex after five days. Horizontal lines represent group means.  

 

One extreme outlier in the Beacon group for area CA1 was removed prior to 

analyses for the ten-day training condition. ANOVAs failed to yield any significant 

main effects of group for any sub-region sampled; CA1: F2,19 = 0.61, P = 0.56, CA3: 

F2,20 = 1.65, P = 0.24, DG: F2,20 = 0.45, P = 0.64, PLC: F2,20 = 1.29, P = 0.30, ACC: 

F2,20 = 3.26, P = 0.06, and ILC: F2,20 = 1.70, P = 0.21 (see Figure 5.32). Sample 

sections of Zif268 expression in the hippocampus and prefrontal cortex are shown in 

Figure 5.33, and scatterplots depicting raw scores in all regions are shown in Figure 

5.34. 
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Figure 5.32: Mean normalised cell counts of Zif268 positive neurons for ten-day 

Control, One Cue and Beacon groups in (A) CA1, (B) CA3, (C) dentate gyrus, (D) 

prelimbic cortex (E) anterior cingulate cortex and (F) infralimbic cortex. 
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Figure 5.33: Representative images of Zif268 expression for ten-day Control, One 

Cue and Beacon groups in CA1, CA3, the dentate gyrus, the prelimbic, anterior 

cingulate and infralimbic cortices. Scale bar = 100µm. 
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Figure 5.34: Scatterplots showing individual raw Zif268 counts for all animals in 

(A) CA1, CA3, dentate gyrus, and (B) prelimbic cortex, anterior cingulate cortex and 

infralimbic cortex after ten days. Horizontal lines represent group means.  

 

5.3.3.2. c-Fos. 

One extreme outlier was removed from area CA3 in the ten day condition (Beacon 

group). One-way between-groups ANOVAs comparing c-Fos expression in each 

sub-region after five and ten days of training failed to yield any significant main 

effects of group; five-day condition: CA1: F2,20 = 0.79, P = 0.47, CA3: F2,20 = 

1.12, P = 0.35, DG: F2,20 = 1.30, P = 0.30, PLC: F2,20 = 1.41, P = 0.27, ACC: 

F2,20 = 3.01, P = 0.07, and ILC: F2,20 = 1.28, P = 0.30 (see Figure 5.35); ten-day 

condition: CA1: F2,20 = 0.78, P = 0.47, CA3: F2,19 = 1.34, P = 0.29, DG: F2,20 = 

0.22, P = 0.80, PLC: F2,20 = 0.25 P = 0.78, ACC: F2,20 = 0.61, P = 0.56, and ILC: 

F2,20 = 0.02, P = 0.99 (see Figure 5.36). Sample sections of c-Fos expression in the 

hippocampus and prefrontal cortex after five and ten days are included in Figures 

5.37 and 5.38, respectively, and scatterplots depicting raw scores are shown in 

Figures 5.39 and 5.40, respectively. 
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Figure 5.35: Mean normalised cell counts of c-Fos positive neurons for five-day 

Control, One Cue and Beacon groups in (A) CA1, (B) CA3, (C) dentate gyrus, (D) 

prelimbic cortex (E) anterior cingulate cortex and (F) infralimbic cortex. 
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Figure 5.36: Mean normalised cell counts of c-Fos positive neurons for ten-day 

Control, One Cue and Beacon groups in (A) CA1, (B) CA3, (C) dentate gyrus, (D) 

prelimbic cortex (E) anterior cingulate cortex and (F) infralimbic cortex. 
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Figure 5.37: Representative images of c-Fos expression for five-day Control, One 

Cue and Beacon groups in CA1, CA3, the dentate gyrus, the prelimbic, anterior 

cingulate and infralimbic cortices. Scale bar = 100µm. 
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Figure 5.38: Representative images of c-Fos expression for ten-day Control, One 

Cue and Beacon groups in CA1, CA3, the dentate gyrus, the prelimbic, anterior 

cingulate and infralimbic cortices. Scale bar = 100µm. 
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Figure 5.39: Scatterplots showing individual raw c-Fos counts for all animals in (A) 

CA1, CA3, dentate gyrus, and (B) prelimbic cortex, anterior cingulate cortex and 

infralimbic cortex after five days. Horizontal lines represent group means.  

 

 

 

Figure 5.40: Scatterplots showing individual raw c-Fos counts for all animals in (A) 

CA1, CA3, dentate gyrus, and (B) prelimbic cortex, anterior cingulate cortex and 

infralimbic cortex after ten days. Horizontal lines represent group means.  

 

5.3.3.3. Comparison between five and ten day training. 

For Zif268 expression, significant decreases from five to ten days were found for the 

One Cue group in CA1, t12 = 4.08, P = 0.01, and ACC, t12 = 2.78, P = 0.03, while 

significant increases were found for the Beacon group in CA1, t12 = 4.82, P = 0.01, 

and DG sub-regions, t12 = 3.83, P = 0.01 (see Figure 5.41A). No differences were 
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noted for the Control group. Again, no significant differences in c-Fos expression 

were found for any group in any area (see Figure 5.41B). 

 

 

Figure 5.41: mean percentage increase or decrease in (A) Zif268 and (B) c-Fos 

expression from five- to ten-day training conditions for Control, One Cue and 

Beacon groups in all sub-regions.  
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5.3.4. Correlations with behaviour 

Correlations between Zif268 expression for five- and ten-day groups and percentage 

time spent in the NE platform area were yielded a number of significant results. For 

both Control group, Zif268 expression in CA1 was positively correlated with time 

spent in the NE area (r = 0.95, P = 0.001, and r = 0.81, P = 0.02; see Table 3.3 Top 

and Figure 5.42). Further, for the five-day Control group, significant positive 

correlations were noted between mean Zif268 counts in CA3 (r = 0.87, P = 0.01), 

PLC (r = 0.93, P = 0.002), ACC (r = 0.94, P = 0.002) and ILC (r = 0.94, P = 0.002) 

(see Table 3.3 Top and Figure 5.42). A significant positive correlation was also 

found for the One Cue group after ten days, with increased Zif268 expression in the 

PLC associated with more time spent in the NE area (r = 0.84, P = 0.02; see Table 

5.3 Middle and Figure 5.43). No significant correlations were documented between 

mean group c-Fos counts in any sub-region and time in the NE area after five or ten 

days of training (see Table 5.4 and Figures 5.44 and 5.45).  
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Table 5.3: Correlations between Zif268 expression and percentage time spent in the 

NE platform area for five- and ten-day Control, One Cue and Beacon groups. 

 

 

 

 

  

 

 

 

Group Brain region Training condition 

Control  Five days Ten days 

 CA1 

CA3 

DG 

PLC 

ACC 

ILC 

0.95** 

0.87* 

0.12 

0.93** 

0.94** 

0.94** 

0.81* 

-0.27 

-0.13 

-0.45 

0.25 

0.07 

One Cue  Five days Ten days 

 CA1 

CA3 

DG 

PLC 

ACC 

ILC 

-0.26 

-0.58 

0.36 

-0.24 

-0.30 

-0.22 

-0.39 

-0.41 

-0.54 

0.84* 

0.41 

0.71 

Beacon  Five days Ten days 

 CA1 

CA3 

DG 

PLC 

ACC 

ILC 

-0.01 

-0.32 

-0.13 

-0.16 

-0.27 

-0.43 

-0.23 

-0.07 

0.02 

-0.53 

0.60 

-0.06 
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Table 5.4: Correlations between c-Fos expression and percentage time spent in the 

NE platform area for five- and ten-day Control, One Cue and Beacon groups. 

 

 

 

 

 

 

 

Group Brain region Training condition 

Control  Five days Ten days 

 CA1 

CA3 

DG 

PLC 

ACC 

ILC 

-0.31 

-0.11 

-0.12 

-0.37 

-0.36 

0.31 

0.03 

-0.49 

-0.41 

-0.52 

-0.39 

0.44 

One Cue  Five days Ten days 

 CA1 

CA3 

DG 

PLC 

ACC 

ILC 

0.45 

0.33 

-0.51 

0.56 

0.72 

0.64 

-0.51 

-0.26 

-0.50 

-0.12 

-0.52 

-0.20 

Beacon  Five days Ten days 

 CA1 

CA3 

DG 

PLC 

ACC 

ILC 

0.10 

-0.43 

-0.50 

-0.34 

-0.30 

-0.44 

-0.23 

-0.13 

0.73 

-0.11 

-0.13 

0.04 
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Figure 5.42: Scatterplots showing regional Zif268 counts (Y axis) and percentage 

time spent in the NE platform area (X axis) for Control, One Cue and Beacon groups 

after five days of training. All animals were treated with MK-801 prior to testing. 
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Figure 5.43: Scatterplots showing regional Zif268 counts (Y axis) and percentage 

time spent in the NE platform area (X axis) for Control, One Cue and Beacon groups 

after ten days of training. All animals were treated with MK-801 prior to testing. 
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Figure 5.44: Scatterplots showing regional c-Fos counts (Y axis) and percentage 

time spent in the NE platform area (X axis) for Control, One Cue and Beacon groups 

after five days of training. All animals were treated with MK-801 prior to testing. 
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Figure 5.45: Scatterplots showing regional c-Fos counts (Y axis) and percentage 

time spent in the NE platform area (X axis) for Control, One Cue and Beacon groups 

after ten days of training. All animals were treated with MK-801 prior to testing. 
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5.3.5. Discussion 

Task acquisition was similar to Experiment 1, with equivalent performance between 

five and ten day conditions, i.e. escape latencies of ~20 seconds or lower. Again, no 

group differences were found on the final days of training (signifying analogous 

learning) and acquisition for all groups improved with increased training. As 

expected, none of the five-day groups showed a significant preference for the target 

NE quadrant after MK-801 administration, demonstrating that spatial and non-spatial 

memory recall were equally impaired. After ten days of training, only the Control 

group favoured the correct quadrant, indicating that spatial memory for the platform 

location was preserved under full cue conditions. However, analyses of time spent in 

platform areas highlighted that memory for the exact position of the goal was poor. 

Overall, results show that increased experience with the environment can partially 

protect against the effects of NMDA receptor channel blockade in rats trained and 

tested with an intact cue configuration, indicating that NMDA receptors may only be 

necessary early in training (Mei et al., 2011; Nakazawa et al., 2004). In contrast, 

extended training did not facilitate spatial memory recall with a single cue or beacon.  

 Additionally, although no differences were noted between groups with regard 

to time spent in platform areas, memory recall under partial cue conditions appeared 

to be the most affected by MK-801, consistent with our original hypothesis. More 

specifically, the ten-day One Cue group spent significantly less time in the target 

(NE) quadrant and more time in the starting (SW) quadrant compared to chance 

level, and spent more time at the edge of the pool relative to the Control group. 

Results therefore demonstrate that blockade of NMDA receptors negatively affected 

flexible use of stored spatial representations. Non-spatial memory was also impaired 
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after extended training. This result is in line with those of Experiment 1, where level 

of experience navigating the environment had no effect on performance.  

 Crucially, the patterns of Zif268 expression seen in Experiment 1 were 

largely erased following MK-801 administration, in line with previous studies (Gass 

et al., 1993). Here, the One Cue group exhibited significantly higher Zif268 

expression across multiple brain regions relative to the Control (CA1, ACC and ILC) 

and Beacon groups (CA1, CA3, DG and ACC) tested after five days. The Control 

group also exhibited greater expression in CA3 compared to the Beacon group. 

Moreover, Zif268 expression in the hippocampus decreased for the One Cue group 

(CA1) and increased for the Beacon group (CA1 and DG) across training conditions, 

and no group differences were found at the ten-day recall time point. Although it is 

difficult to interpret why activation was initially higher in the partial cue condition 

following NMDA receptor blockade, there appears to be an overall pattern of 

enhanced Zif268 expression during the use of spatial, as opposed to a non-spatial, 

strategies.  

 One further point of note is that, although the Control group failed to indicate 

successful recall after five days, mean Zif268 counts for this group in all regions 

examined (except for the dentate gyrus) were positively correlated with percentage 

time in the NE area; this relationship was maintained in area CA1 after ten days. 

Importantly, these findings highlight qualitatively different patterns of regional 

engagement across groups (akin to Poirier et al., 2008), which may otherwise have 

been overlooked. However, as mentioned in Chapter 4, results from the large number 

of correlations performed here must be interpreted with caution due to an increased 

risk of Type I error. Lastly, as per Experiment 1, no group differences were found for 
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c-Fos in any sub-region after five or ten days of training, and levels of expression did 

not change from five to ten days.  
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5.4. General discussion 

This chapter had four aims: (1) to delineate the involvement of hippocampal and 

medial prefrontal sub-regions during the retrieval of spatial and non-spatial 

memories using IEG imaging; (2) to examine how extended experience in an 

environment affects memory recall, behavioural flexibility, and activation in 

associated brain areas; (3) to establish the relative importance of NMDA receptors 

for spatial and non-spatial strategy use; and (4) to explore how NMDA receptor 

blockade during retrieval influences expression of Zif268 and c-Fos in the 

hippocampus and prefrontal cortex. To address these aims, we trained rats to use 

spatial (place) and non-spatial (response) strategies in the Morris water maze task. 

For the spatial strategy, rats learned to navigate to a hidden platform via a 

configuration of two distal cues (near and far). For the non-spatial strategy, rats 

learned to swim towards a beacon placed directly above the platform. Spatial and 

non-spatial memory recall was then tested in a probe trial without the platform.  

 Firstly, it is essential to establish whether or not these two distinct strategies 

did in fact emerge from our protocol. Overall acquisition results indicated that all 

groups learned at similar rates (with the exception of the five-day Beacon group in 

Experiment 1). Previous research using visible platforms has shown considerably 

faster learning in non-spatial compared to spatial groups (Carman & Mactutus, 2002; 

Morris, 1981; Sutherland & Dyck, 1984). However, studies that used hanging or 

standing cues as their beacon found that rats learned gradually across days (Chamizo 

& Rodrigo, 2004; Clark et al., 2007; Timberlake et al., 2007), consistent with our 

results. Collectively, these findings suggest that learning is less efficient with a 

beacon cue than with a visible platform; however, both can be used to establish a 

response strategy.  



232 

 

An alternate possibility is that rats in the Beacon groups were employing a 

spatial strategy to find the platform, having learned the spatial relationship between 

the beacon, platform and the edge of the maze (Harvey et al., 2009), in the same way 

as the One Cue group (Experiment 1). A number of studies have shown that rats can 

learn and remember the location of a hidden platform using a single cue only (see 

Chapter 3; and also Chamizo & Rodrigo, 2004; Harvey et al., 2009; Vorhees & 

Williams, 2014). However, analyses of the probe trial data indicate that this is 

unlikely. Specifically, the Beacon group displayed accurate recall after five days of 

training, whereas both Control and One Cue groups were not as accurate. Further, 

while increased training lead to better memory performance in the groups trained 

with two cues, the Beacon group showed no improvements. These distinctions 

strongly suggest that animals navigating with the beacon were using a different 

strategy to the other groups. More broadly, these results imply that increased 

experience aids spatial – but not non-spatial – memory recall, as originally 

hypothesised. Moreover, extended training appears to allow for more flexible use of 

spatial representations, i.e. where animals can switch between configural or 

elemental spatial strategies involving whole or partial cue arrangements, depending 

on task demands (see Chapter 3; Farina et al., 2015).  

 An additional aim of this experiment was to identify the specific 

hippocampal and prefrontal sub-regions implicated in the retrieval of these 

memories. Previous research has shown that the hippocampus is essential for spatial 

memory recall (Morris et al., 1982; Save & Poucet, 2000) and flexible responding 

(Jo et al., 2007) but not for non-spatial memory (Packard & McGaugh, 1992). 

Therefore, we expected to see overall increases in hippocampal IEG expression for 

both spatial groups relative to the Beacon group, and higher expression in area CA3 
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for the One Cue group compared to the other groups (Jo et al., 2007). The medial 

prefrontal cortex has also been implicated in behavioural flexibility, particularly with 

regard to strategy switching (de Bruin et al., 1994), although the role of specific sub-

regions in such processes remains unclear (Kubik et al., 2007). Accordingly, we 

predicted that the highest prefrontal IEG expression would also be found in the One 

Cue group.  

 Analyses of Zif268 expression revealed markedly different patterns of 

activation across groups, in line with the theory that animals were using distinct 

strategies. These results were generally well-matched with behavioural findings. The 

Beacon group (who demonstrated intact recall after five days) had higher Zif268 

expression in all sub-regions examined relative to the spatial groups (which showed 

poorer recall after five days). Expression in CA1 and DG was also higher for the One 

Cue group compared to the Control group. One possible explanation for this may 

have been the increased ambiguity of the environment in the partial cue condition. 

Bannerman and colleagues (2012) recently reported that mice lacking NMDA 

receptor sub-unit GluN1 selectively in CA1 and DG cells were unable to distinguish 

between two visually similar beacons in the water maze, implying that CA1 and DG 

facilitate visual discrimination. Thus, it is possible that the selection choice 

encountered by the One Cue group here (i.e. which cue is present?) resulted in 

increased engagement of these areas relative to the full cue condition, where no such 

choice was necessary.  

 Overall patterns of Zif268 expression were reversed following extended 

training (greater mean counts in the Control and One Cue groups relative to the 

Beacon group), likely reflecting the successful memory recall displayed by the 

spatial groups under both full and partial cue conditions. However, no differences 
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were found between spatial and non-spatial groups in CA1 or DG. This is somewhat 

surprising, as lesion studies have established that non-spatial memory recall can be 

accomplished in the absence of a functional hippocampus (McDonald & White, 

1994). One explanation for our finding could be that, although the hippocampus is 

not necessarily required for beacon responding, it will continue to be engaged in 

navigation tasks if intact (Jenkins et al., 2003; Simon et al., 2011). Importantly, a 

significant difference was noted between spatial and non-spatial groups in area CA3, 

consistent with its suggested role in flexible responding (Jo et al., 2007). Differences 

were also observed between these groups in the PLC and ACC. Given that few 

studies have investigated prefrontal IEG expression during spatial and non-spatial 

memory recall to date, results could signify that PLC and ACC sub-regions are 

particularly important for more complex, spatial responding.  

 In Experiment 2, we explored the effects of NMDA receptor blockade on 

spatial and non-spatial memory retrieval. As predicted, i.p. administration of MK-

801 before recall caused memory impairments (and greater performance variability) 

for all groups after standard five-day training. Together with results from Chapter 4 

of this thesis and previous research (Holahan et al., 2005), our findings demonstrate 

that NMDA receptor activation is critical for encoding and retrieval stages of 

memory processing. Importantly, we found that prolonged experience in the 

environment prior to NMDA receptor blockade protected against these memory 

deficits, but only under certain conditions. Specifically, memory was preserved in 

rats tested with the intact arrangement of training cues only. These results are 

consistent with reports from Shapiro and colleagues (Shapiro & Caramanos, 1990; 

Shapiro & O'Connor, 1992), who found intact spatial reference memory in well-

trained rats treated with MK-801 (i.p.; 0.06–0.1mg/kg) before testing in the radial 
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arm maze. Accordingly, we propose that NMDA receptor activation is 

predominantly engaged in memory recall in less familiar environments.  

 The deficits observed in the One Cue group indicate that NMDA receptors 

are also required for the flexible use of spatial representations, regardless of the 

animals’ experience. Previous research (Fellini et al., 2009; Nakazawa et al., 2002) 

has shown that deletion or inactivation of NMDA receptors in CA3 alone can impair 

recall under partial cue conditions; therefore, it is not surprising that blockade of 

NMDA throughout the brain resulted in comparable effects here. Equally, NMDA 

receptors appear crucial for non-spatial memory use, as evidenced by the poor 

performance of the five- and ten-day Beacon groups. Taken together, results 

highlight the significant role played by NMDA receptors in multiple types of 

navigation (Vorhees & Williams, 2014).  

 With regard to IEG expression, Zif268 activation patterns were drastically 

altered from Experiment 1. The One Cue group exhibited significantly higher levels 

of Zif268 in all hippocampal sub-regions and in the ACC and ILC. This could reflect 

a novelty response (Hall et al., 2001; Renaudineau et al., 2009). More specifically, 

animals navigating in the partial cue condition were the only group to experience an 

environmental change between training and testing, which may explain the increase 

in Zif268 expression. However, although these group differences were found, visual 

inspection of the raw data (Figures 5.9 and 5.12) indicated that Zif268 expression 

was considerably attenuated following drug administration, akin to previous research 

(Gass et al., 1993). Taken together, results therefore emphasise the complex 

relationship between memory, NMDA receptors and IEG expression (Veyrac et al., 

2014).   
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 In complete contrast to Zif268, no group differences in c-Fos expression were 

found in any sub-region after standard or prolonged training (similar to findings 

from Chapter 4). This result is in line with those of Guzowski and colleagues (2001), 

who also failed to find differences in hippocampal c-Fos expression between spatial 

and non-spatial groups. However, they are inconsistent with the results of Jo et al. 

(2007), which revealed higher c-Fos expression in CA3 and the prefrontal cortex in a 

partial cue condition. These divergent findings can most likely be accounted for by 

variations in the experimental procedures used, such as recall intervals (ranging 

between 30 minutes and 24 hours) or the number of cues present during initial 

training (between one cue and four cues). One further explanation is the small 

sample size used; for example, a power analysis on these data (G*Power Analysis 

Tool) indicated that a sample size of 60 (n = 20 per group) would be required to 

detect any significant effects. On the whole, however, it appears that although c-Fos 

is necessary for normal long-term memory retrieval (Fleischmann et al., 2003), its 

expression was not sensitive to differences underlying spatial and non-spatial 

strategies in the context of this study. 

 Additionally, because no changes in c-Fos were observed in either 

Experiment, the effects of NMDA receptor inactivation on c-Fos expression are 

unclear. That said, visual inspection of raw counts (Figures 5.27 and 5.30) in 

Experiments 1 and 2 revealed a similar overall reduction in c-Fos expression to that 

seen for Zif268. Therefore, it is reasonable to assume that NMDA receptor blockade 

leads to a general decrease in IEG activity (Vaccarino et al., 1992). Collectively, IEG 

results indicate that expression of Zif268 was a more useful indicator of regional 

activation during memory retrieval, and support the suggestion that Zif268 plays a 

functional role in the recall of long-term memories (Jones et al., 2001). Again, these 
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divergent patterns of IEG activation also highlight the importance of using multiple 

markers of neural activity in order to obtain a more informed understanding of 

regional activation.  

 In summary, findings from this Chapter indicate that, once established, 

spatial memories preferentially recruit specific sub-regions of the hippocampus 

(CA3) and medial prefrontal cortex (PLC and ACC), when compared with non-

spatial strategies (Experiment 1). These areas likely work in tandem to mediate 

flexible use of spatial representations between cues in their environment (Churchwell 

et al., 2010). Further, findings illustrate that both spatial and non-spatial memory 

retrieval is largely NMDA receptor dependent (Experiment 2); however, given 

sufficient experience with an environment, rats can recall spatial memory for a 

learned goal destination.  

 

 

 

 

 

 

 

 

 

 

 

 

 



238 

 

 

 

 

Chapter 6 
 

General Discussion 
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6.1. Summary of the findings from this thesis 

The main objectives of this thesis were to differentiate the use of discrete allocentric 

navigation strategies over the course of learning and recall in the Morris water maze, 

and to characterise the specific roles of hippocampal and medial prefrontal sub-

regions in these processes using IEG imaging. We first examined spatial strategy use 

during acquisition of the maze (Chapter 1). Although the Morris water maze is one 

of the most widely used tasks of spatial learning and memory (Vorhees & Williams, 

2014), precisely how animals encode information about their environment during 

this task remains unclear. Accordingly, we investigated two influencing factors 

which have yet to been studied in detail. These were cue salience and length of 

training.  

Results revealed that the determinants of cue salience are more complex than 

previously thought (Chamizo, 2002; Chamizo & Rodrigo, 2004). That is, proximal 

cues will not always become more salient than distal cues. Instead, we found that 

salience is at least partially dependent on the type of spatial information cues convey, 

i.e. a cue offering stable directional information (in this case the far cue) can be more 

useful than a cue positioned closer to the goal (near cue). This is in keeping with 

previous findings from our laboratory which showed that knowing the direction in 

which to travel is more important for accurate navigation than knowing the distance 

to the goal (Diviney et al., 2013). In addition, we found novel evidence that cue 

elevation – which has not yet been explored in rodent navigation – plays an 

important role in determining cue salience (Collett, 2010; Muller & Wehner, 2007). 

More specifically, our results indicate that cues whose elevation appears lower when 

viewed from the goal location allow for more precise estimations of distance and 

direction than those at a higher elevation. Finally, we demonstrated that relative cue 
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salience has a significant effect on whether animals learn to rely on individual cues 

(elemental learning) or groups of cues (configural learning) to navigate, but that 

increased experience in the environment can facilitate more flexible responding, i.e. 

strategy switching (in line with Rodrigo et al., 2014). Together, findings are largely 

consistent with associative learning theories of navigation and oppose cognitive 

mapping theory (discussed further in Section 6.2).  

Next, we investigated the neuronal underpinnings of spatial learning in the 

water maze (Chapter 4). Specifically, we aimed to determine the role of distinct 

classes of ionotropic glutamate receptors in spatial learning, and their effects on 

associated IEG expression in the hippocampus and medial prefrontal cortex. 

Successful encoding of spatial information is widely accepted to be hippocampal-

dependent, with activation of NMDA receptors being crucial to this process (Bast et 

al., 2005; Pitkänen et al., 1995). However, the involvement of AMPA/kainate 

receptors in spatial processing is less well understood (Riedel et al., 1999; Riedel et 

al., 2003). Moreover, existing evidence for the involvement of the prefrontal cortex 

in spatial learning is equivocal (Wang & Cai, 2008), and the specific contributions of 

its sub-regions during this initial stage are largely unknown.  

Extending on previous IEG imaging studies (Feldman et al., 2010; Guzowski 

et al., 2001; Teather et al., 2005), we charted the expression of two IEGs, Zif268 and 

c-Fos, in sub-regions of hippocampus and prefrontal cortex following spatial 

learning. IEG imaging confers the advantage of being able to observe patterns of 

activation in functional brain regions in parallel, thereby revealing functional 

connectivity between regions during a task (Aggleton et al., 2012). Finally, as little is 

known about how glutamate receptors and IEGs interact to influence spatial 
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behaviour and learning (or, more broadly, memory), our study was one of the first to 

explicitly investigate this.   

Results were consistent with previous reports that NMDA receptor activation 

is necessary for spatial learning (Bast et al., 2005), as evidenced by the poor 

performance of animals treated with MK-801. Conversely, AMPA/kainate receptor 

inactivation (via CNQX) had no effect on spatial encoding, contrary to previous 

work (Liang et al., 1994). This disparity may be attributable to differences in the 

administration routes used in the two experiments (hippocampal infusions versus i.p. 

administration). CNQX has been shown to penetrate the blood-brain barrier 

relatively poorly (Rogawski, 2011); therefore any effects may have been 

substantially diluted in our animals. Further, evidence suggests that AMPA receptor 

activation may be more critical to spatial memory retrieval, rather than encoding 

(Bast et al., 2005); this may also account for the lack of CNQX effect observed here. 

 We found that expression of Zif268 was associated with the successful 

encoding, where animals that learned the task displayed elevated levels of Zif268 

relative to those who did not. This was particularly evident in area CA1 of the 

hippocampus, which is consistent with previous research implicating this region as a 

critical area for spatial processing (Bartsch et al., 2010; Shimizu et al., 2000; Tsien, 

Huerta, & Tonegawa, 1996). In contrast, area CA3 and the dentate gyrus were not 

associated with task acquisition, while the prelimbic cortex only showed some 

evidence of involvement in learning. Overall, the data suggest minimal involvement 

of the prefrontal cortex in spatial learning, which may be expected given the relative 

ease of the task in the absence of any major environmental changes. Importantly, the 

observed patterns of Zif268 expression were reliably dissociable from the 

pharmacological effects of blocking NMDA and AMPA/kainate receptors – that is, 
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any increases in Zif268 expression cannot be attributed to drug effects – as drug 

administration at baseline had no observable effect on expression. In complete 

contrast to Zif268, c-Fos expression was associated with animals that performed 

poorly on the task (i.e. elevated levels in the MK-801 group), suggesting that c-Fos 

may be more closely linked to other, non-navigational aspects of the task such as 

stress induced by prolonged swimming (Duncan et al., 1993) or error-correction 

responses (Poirier et al., 2008).  

In Chapter 5, we investigated memory recall in the water maze. Specifically, 

we explored the potential benefits of extended training on retrieval of spatial and 

non-spatial memories (via distal cues and a beacon, respectively), and its effect on 

related hippocampal and medial prefrontal activation (i.e. does regional involvement 

change with increased experience in the environment?). Not unlike memory 

encoding, how and when discrete sub-regions within these structures contribute to 

memory recall are unclear at present, particularly with regard to the medial 

prefrontal cortex (Kubik et al., 2007). A final aim of this chapter was to establish 

whether or not NMDA receptor activation is equally important for spatial and non-

spatial strategy use, and how memory impairments are reflected in regional IEG 

expression. Again, this study represents one of the first investigations of this kind in 

the spatial domain.  

 Results revealed a clear behavioural distinction between non-spatial 

memories (which were accurately recalled following standard exposure to the 

environment) and spatial memories (which necessitated further training). Further, 

although both types of memory were initially impaired following NMDA receptor 

blockade, spatial memories could be preserved with sufficient training (in keeping 

with Shapiro & O'Connor, 1992). Similar to acquisition, Zif268 expression was 
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tightly coupled with successful performance; that is, expression was higher for the 

non-spatial group initially, but increased for the spatial groups once they 

remembered the goal location. Patterns of Zif268 expression indicated that CA1 and 

the dentate gyrus were involved in both spatial and non-spatial memory, likely 

reflecting the overall engagement of the hippocampus in navigation even when no 

spatial representations are required (Simon et al., 2011; Teixeira, Pomedli, Maei, 

Kee, & Frankland, 2006). Interestingly, however, we found that the prelimbic and 

anterior cingulate cortices were preferentially engaged in spatial processing, 

signifying differing roles of the prefrontal sub-regions during this task. After NMDA 

receptor blockade, Zif268 levels were highest in spatially-trained rats tested in 

diminished cue conditions, which may have been indicative of a novelty response 

(Renaudineau et al., 2009). Lastly, c-Fos levels were similar for all groups in all sub-

regions regardless of NMDA receptor functioning, which suggest that this marker is 

less sensitive to the type of memory being recalled.  

 

6.2. Significance of findings 

6.2.1. Navigation strategies: Cognitive map or associative learning? 

A central question explored in this thesis was: how do animals form allocentric 

representations of their environment? At present, there are a number of theories 

explaining how this might be achieved, the most prominent of which are cognitive 

mapping theory (O'Keefe & Nadel, 1978) and associative learning theory (Pearce & 

Hall, 1980). Cognitive mapping theory defines two types of navigation strategies: 

taxon, wherein the animal learns to directly approach a cue located at or near to the 

goal, and locale learning, which involves the formation of a cognitive map of the 

environment incorporating the spatial relationships between cues and the goal 
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(O'Keefe & Nadel, 1978). This representation is thought to automatically update as 

the animal navigates, incorporating any environmental changes in an all-or-nothing 

manner (Schinazi et al., 2013). Accordingly, cognitive maps are flexible by nature 

(i.e. allowing the animal to plan and execute novel routes). Associative learning 

theory also posits that cue representations become associated with the goal through 

repeated exposure during navigation (Honey et al., 2014; Pearce & Hall, 1980). 

However, such representations are thought to lie somewhere in between taxon and 

locale strategies, in that they necessitate more than a simple approach strategy but do 

not require a global representation.   

 Overall, results from this thesis (in particular those from Chapters 3 and 5) 

are not well accounted for by locale learning as defined by cognitive map theory. We 

found that animals do not appear to encode information about all cues equally; 

rather, certain cues proved more important for locating the goal than others. This is 

not predicted by cognitive map theory, which assumes that accurate navigation 

should be possible with any training cue (Morris, 1981; Sanchez-Moreno et al., 

1999). These data are more in line with associative learning accounts – that is, some 

cues acquired a higher salience than others, and remained essential for successful 

way-finding. Moreover, we observed effects consistent with cue competition, i.e. 

overshadowing (Chamizo, Rodrigo, & Mackintosh, 2006). Specifically, highly 

salient cues appeared to inhibit learning about other cues. We also found additive 

effects of cue salience (Crespo et al., 2012), whereby animals relied more on an 

already salient cue when its prominence was enhanced, i.e. using a cue which was 

both brighter and closer to the platform. These effects are hallmarks of associative 

learning, and as such our findings provide strong support for this theory.    
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 Equally, results could also be interpreted as supportive of the vector model of 

learning ( Collett et al., 1986; Kubie & Fenton, 2009). This theory states that the 

navigating animal uses the cues as vectors to compute distance and direction to the 

goal. The vector model is similar to associative learning theory in that cues are 

imbued with weighted salience, and again assumes less elaborate representations, i.e. 

the animal does not need to know its position relative to the overall layout of the 

environment, rather it only needs to update its progress along the vector (Kubie & 

Fenton, 2009). One further model which could potentially explain our results is 

view-based navigation theory, derived largely from studies of insect navigation 

(Cheung, Stürzl, Zeil, & Cheng, 2008; Collett, 2010). According to this theory, the 

animal navigates by searching for a location at which the current retinal image 

matches the remembered view (or ‘snapshot’) at the target position. While plausible, 

this would not have been the most efficient strategy for animals relying on distal 

cues in the present studies. More specifically, because the cues did not 

unambiguously define the goal location, retinal matching one its own would not have 

been sufficient to find the platform.  

 In Chapter 5, we also explored navigation using a beacon cue, which is 

classified by cognitive mapping theory as taxon learning. This type of strategy has 

also been defined as non-spatial or egocentric (Brown, 1992; de Bruin et al., 2001), 

as the animal encodes little information about their surroundings. Our results support 

the distinction between spatial and non-spatial strategies with regard to behavioural 

complexity (i.e. beacon-trained rats demonstrated rapid acquisition and recall of the 

task, with extra training offering no benefit). In line with previous work, we suggest 

that rats learn to relate movements towards the beacon with escaping the maze, 

which in turn reinforces this behaviour (Sheynikhovich, Chavarriaga, Strosslin, 
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Arleo, & Gerstner, 2009). With regard to navigational theories, findings are 

consistent with most models (e.g. cognitive mapping, associative learning and vector 

models), all of which predict a simple stimulus-response association between the 

beacon and the platform. Equally, these results could also be explained by the view-

based model of navigation; that is, matching their retinal image to the remembered 

image would, in this case, lead animals directly to the goal location. However, this 

model would be difficult to directly test in the water maze given the limited size of 

the environment.  

 Crucially, it is probable that many of the models discussed here (e.g. 

associative, vector and view-based models) are not mutually exclusive. Indeed, 

Kubie and Fenton (2009) have highlighted the difficulty in distinguishing between 

strategies based on performance alone, as there may be a large degree of overlap 

between the characteristics of these models. For example, our results strongly 

suggest that vector information (i.e. distance and direction) is incorporated into 

spatial representations. Further, we demonstrated that rats could adopt different 

strategies (i.e. using single or multiple elements) depending on the cues available and 

on their level of experience with the environment (Biegler & Morris, 1999; Harvey 

et al., 2008; Kamil & Jones, 1997; and in humans, Redhead & Hamilton, 2007). In 

particular, training length had a significant effect on rats’ navigational abilities, i.e. 

ten-day training lead to considerably improved performance relative to five-day 

training. This is an important point given that standard water maze procedure is five 

or six days (Vorhees & Williams, 2006). Thus, we suggest that similar studies in the 

future should employ longer training protocols to ensure that animals’ have acquired 

a robust spatial memory.  
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Finally, while our results appear to indicate increased behavioural flexibility 

(Jo et al., 2007; Sturz & Katz, 2009), exactly what this entails is difficult to 

determine as the term itself is generally not well defined. For example, greater 

efficiency may not necessarily lead to flexibility. Rather, animals may become 

increasingly reliant on the most useful cue at the expense of others, which, in turn, 

would imply that the representations employed are less elaborate. If this were case, 

these patterns would argue against the idea that configural cue representations can be 

activated by any single element (associative learning theory; Rodrigo et al., 2014) or 

that animals  acquire a global representation of the environment (cognitive map 

theory; O'Keefe & Nadel, 1978).  

 

6.2.2. Brain regions involved in navigation 

A second goal of this thesis was to delineate the involvement of the hippocampus 

and medial prefrontal cortex in facilitating the different types of strategies outlined 

above, i.e. spatial and non-spatial. Although both structures are strongly implicated 

in navigation (de Bruin et al., 2001; Simon et al., 2011), how and when specific sub-

regions contribute to these processes remains unclear (Aggleton, Vann, Oswald, & 

Good, 2000). Below, we review our findings with regard to the wider neuroscientific 

literature. 

 

6.2.2.1. Hippocampus 

We found that activity in area CA1 (indexed by Zif268) was strongly associated with 

spatial encoding, and as well as being negatively correlated with thigmotaxis, i.e. 

swimming around the edges of the pool (a measure of anxiety or stress; Treit & 

Fundytus, 1988). In contrast, no differences were noted between animals that learned 
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the task and those who did not in CA3 or dentate gyrus regions.  These results 

indicate that, within the hippocampus, CA1 is a key region for establishing an 

accurate spatial representation of the environment, consistent with the majority of 

human and non-human research (Bartsch et al., 2010; Goodrich-Hunsaker, 

Hunsaker, & Kesner, 2008; Okada & Okaichi, 2010). During spatial memory 

retrieval, both CA1 and the dentate gyrus were preferentially engaged when rats 

were required to make a visual discrimination (i.e. following removal of one of two 

similar cues), but only when exposure to the environment was limited. Given 

extended training, during which animals had sufficient time to establish a more 

robust memory representation, no differences were documented between rats 

navigating with intact or partial cue arrangements, or via a non-spatial beacon 

strategy.  

 Interestingly, similar patterns were seen when NMDA receptor functioning 

(and consequently memory recall) was inhibited; expression of Zif268 in CA1 and 

the dentate gyrus was initially highest in the partial cue condition, but these 

differences attenuated following further training. Results support the suggestion that 

CA1 and the dentate gyrus are critical for successful recall of newly formed spatial 

and non-spatial memories. Further, with regard to non-spatial memory, CA1 may be 

more important than the dentate gyrus, as Zif268 expression here was positively 

correlated with time spent in the target quadrant for the beacon-trained animals. With 

regard to CA3, activation of this region during recall was specific to spatial memory 

(regardless of cue condition or NMDA receptor blockade). This suggests that CA3 

plays a more substantial role in the retrieval of complex spatial representations as 

opposed to mediating stimulus-response type behaviours.  
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 Together, findings illustrate that CA1 is crucial for acquisition and recall 

stages of spatial and non-spatial navigation. This is consistent with previous research 

showing that lesions to this area result in impaired performance (Okada & Okaichi, 

2009; Stubley-Weatherly et al., 1996). More specifically, results support the 

suggestion that CA1 facilitates a range of behaviours including response selection 

(Bannerman et al., 2012) and adapting to task demands (Dillon et al., 2008). Area 

CA3 appears to be engaged in spatial strategies only, as is essential for flexible 

responding involving more complex representations (Jo et al., 2007). This is in line 

with preceding work which has also implicated CA3 in spatial learning (Florian & 

Roullet, 2004; Stubley-Weatherly et al., 1996) and memory (Steffenach, Witter, 

Moser, & Moser, 2005).  

 In particular, the results of Florian and Roullet (2004) add weight to our data; 

the authors demonstrated that temporary inactivation of CA3 impaired place learning 

in the water maze (using distal cues), but had no effect on beacon learning. In 

comparison, the role of dentate gyrus is less clear. Our results implicated this region 

in the retrieval but not the acquisition stage of memory processing. However, a 

previous study by Okada and Okaichi (2009) showed that both encoding and 

retrieval were impaired following dentate gyrus lesions, while Xavier, Oliveira-Filho 

and Santos (1999) found task acquisition was somewhat preserved in lesioned rats. 

One possible explanation for the discrepancy in findings is that dentate gyrus lesions 

could have led to disrupted functional connectivity with other regions (e.g. CA3), 

resulting in performance deficits (Jerman, Kesner, & Hunsaker, 2006); this would 

account for the absence of similar effects here.   

 More broadly, findings from this thesis indicate that an intact, functional 

hippocampus will be engaged by any task which includes a navigational element, 
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regardless of behavioural complexity. However, a hippocampal contribution is less 

important, and may not be necessary for simpler forms of non-spatial memory 

(Broadbent et al., 2006; McDonald & White, 1994; Morris et al., 1982; Packard & 

McGaugh, 1996; Save & Poucet, 2000). These memories are likely mediated by 

other cortical areas including the caudate nucleus and striatum (Devan et al., 1999). 

One simple explanation for the continued involvement of the hippocampus in the 

various navigation strategies examined here is the additional memory processing 

required during recall (Martin, de Hoz, & Morris, 2005; Teixeira et al., 2006). More 

specifically, remembering the goal location in the water maze when the platform is 

absent requires the animal to continually monitor and update their position relative to 

their environment, thus reengaging the hippocampus.  

 Studies have also shown that the hippocampus continues to be crucial for 

accurate performance in the water maze at a remote time point (30 days post-

learning) (Broadbent et al., 2006). In addition, while Winocur, Moscovitch, Fogel, 

Rosenbaum and Sekeres (2005) originally demonstrated that rats with hippocampal 

lesions could navigate a complex ‘village’ environment following extensive (three 

month) training, a follow up study revealed that when the optimal route was blocked, 

animals took significantly longer to reach the target relative to controls (Winocur, 

Moscovitch, Rosenbaum, & Sekeres, 2010). Therefore, it appears that ‘online’ 

processing in the hippocampus continues to be required for flexible use of spatial 

representations, in line with the role of place cells in this area (Muller & Kubie, 

1987; O'Keefe & Dostrovsky, 1971).  
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6.2.2.2. Medial prefrontal cortex 

In comparison to the hippocampus, the role of the medial prefrontal cortex in 

navigation is less well defined. During task acquisition, the prelimbic cortex was the 

only prefrontal sub-region that appeared to be associated with memory encoding (as 

evidenced by increased Zif268 expression). In contrast, levels of Zif268 in the 

anterior cingulate and infralimbic cortices were equivalent for animals that learned 

the task, those who were impaired and untrained controls, suggesting that these 

regions were not engaged in the formation of spatial representations. At the recall 

stage, higher activation in both prelimbic and anterior cingulate regions was linked 

to spatial strategy use (with a single cue or multiple cues), thereby demonstrating 

their importance for spatial (as opposed to non-spatial) responding. Not unlike the 

patterns observed in the hippocampus, memory disruption (via MK-801) resulted in 

greater activation for rats navigating under partial cue conditions. This was specific 

to anterior cingulate and infralimbic sub-regions, which may imply that these areas 

are sensitive to environmental changes. In support of this suggestion, a study by 

Granon, Save, Buhot and Poucet (1996), reported that prelimbic lesions did not 

impair rats ability to detect spatial changes in an environment, even when their 

surroundings were complex.  

Together, results from this thesis illustrate that the medial prefrontal cortex is 

more involved in memory recall than in acquisition. Although some research has 

demonstrated that lesions to the entire medial prefrontal area prevent rats from 

learning the location of a hidden platform in the water maze (Kolb, Pittman, 

Sutherland, & Whishaw, 1982; Mogensen, Lauritsen, Elvertorp, Hasman, 

Moustgaard, & Wortwein, 2004), others have failed to find such deficits (de Bruin et 

al., 1994; Lacroix et al., 2002). Rather than reflecting a role in place learning per se, 
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there is a growing body of literature which suggests that the prefrontal cortex is 

involved in more global processing such as monitoring behaviour (Miller, 2000), 

flexible use of strategies (Churchwell et al., 2010) and inhibitory control (i.e. 

inhibiting the use an ineffective strategy or response behaviour; Caetano et al., 

2013). In keeping with this, our results indicate that prefrontal regions were 

particularly implicated in the processing of complex spatial representations (akin to 

Churchwell et al., 2010; Jo et al., 2007). This would also explain previously 

documented deficits during reversal tasks, wherein the platform is moved to a new 

location, signifying a shift in task demands (de Bruin et al., 1994). Similarly, it has 

also been shown that rats with prefrontal lesions are unable to switch from using a 

spatial strategy to a non-spatial one (de Bruin, Swinkels, & de Brabander, 1997; 

Mogensen et al., 2005).  

Based on our results, we propose that the prelimbic and anterior cingulate 

regions are particularly important for behavioural monitoring and flexibility (i.e. 

when one of the training cues is removed), with the infralimbic cortex playing a 

limited role. This is in keeping with, but also extends, the suggestion by Jo et al. 

(2007), that the medial prefrontal cortex is crucial for successful navigation in a 

modified environment. Additionally, the prelimbic cortex in particular may also 

facilitate goal-directed behaviours. More specifically, Hok and colleagues (2005) 

found that place cells in the prelimbic/infralimbic region (and to a lesser extent the 

anterior cingulate cortex) were primarily distributed at goal locations and around 

cues, suggesting that these cells encode information about salient features of the 

environment.  

More generally, the anterior cingulate cortex has been implicated as a ‘hub-

like’ region which supports the integration of information from multiple sources 
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(Frankland & Bontempi, 2006; Frankland, Teixeira, & Wang, 2007). This would not 

be surprising given the variety of afferent connections this region receives (i.e. 

prelimbic cortex, CA1, entorhinal cortex, perirhinal cortex and subiculum; Hoover & 

Vertes, 2007), and consequently supports our finding that the anterior cingulate 

region was consistently engaged during recall. Recent findings by Rajasethupathy 

and colleagues (2015), which showed that optogenetic stimulation of a newly 

discovered anterior cingulate to CA1/CA3 projection in mice elicited memory 

retrieval, also add considerable weight to this suggestion. Finally, we noted limited 

involvement of the infralimbic cortex, indicating that this area may not be as 

important for spatial navigation as prelimbic and anterior cingulate regions. This 

region may be more involved in visceromotor functions (Wang & Cai, 2008) and 

anxiety-related behaviours (consistent with its heavy projections to amygdala; Jinks 

& McGregor, 1997; Vertes, 2004). 

 

6.2.2.3. Hippocampal-prefrontal interactions 

As outlined in Chapter 1, the hippocampus and medial prefrontal cortex are 

anatomically connected through direct (CA1 to prelimbic and anterior cingulate, and 

anterior cingulate to CA1/CA3) and indirect projections (via entorhinal cortex) 

(Hoover & Vertes, 2007; Rajasethupathy et al., 2015). Further, cell firing in the 

medial prefrontal cortex is phase locked to hippocampal theta oscillations during 

spatial tasks (Siapas, Lubenov, & Wilson, 2005), indicating functional connectivity. 

Therefore, it is reasonable to assume a high degree of interaction during the 

experiments employed in this thesis. In line with this assumption, we saw evidence 

of hippocampal-prefrontal interactions during both stages of memory processing. For 

acquisition, we observed similarly high expression of Zif268 (associated with 
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successful learning of the task) in CA1, prelimbic and anterior cingulate areas. 

During recall, we also saw coordinated activity between structures; specifically CA3, 

prelimbic and anterior cingulate regions (higher activation for spatial relative to non-

spatial strategy use). These patterns of activation are consistent with previous lesion 

and IEG studies showing hippocampal-prefrontal interactions support flexible 

encoding and retrieval of complex spatial memories (Churchwell et al., 2010; Jo et 

al., 2007; Lee & Kesner, 2003). Furthermore, they support the current consensus 

within the field that the hippocampus and prefrontal cortex comprise part of a wide 

network of brain regions subserving navigation (i.e. entorhinal, perirhinal, postrhinal 

and retrosplenial cortices) (Aggleton, Vann, Oswald, & Good, 2000; Kubie & 

Fenton, 2009; Spiers & Barry, 2015). In the future, it will be important to 

characterise the functions of all areas within this network for different types of 

navigation strategies using IEG imaging, and further, how regional patterns of 

activation change over time (e.g. with increasing experience). The application of 

structural equation modelling (SEM) to these data would also be particularly 

informative here, as it would allow for the characterisation of functional interactions 

between regions in the network (Aggleton & Brown, 2005; Kinnavane, Albasser, & 

Aggleton, 2015). 

 

6.2.3. Glutamate receptors and memory  

Synaptic plasticity (e.g. LTP) is widely accepted to be the physiological mechanism 

by which memories are encoded and stored in the brain (Martin et al., 2000). 

Glutamatergic signalling (including both NMDA and AMPA/kainate receptors) is 

implicated in LTP (Bannerman et al., 1995; Castillo et al., 1997; Collingridge, 

Herron, & Lester, 1988; Wozny, Maier, Schmitz, & Behr, 2008; Wu, Rush, Rowan, 
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& Anwyl, 2001; Yu et al., 2008). We therefore investigated the effects of glutamate 

receptor inactivation on the encoding and retrieval of spatial (and non-spatial) 

memories. Our results strongly support the view that NMDA receptors underpin 

learning and memory, and that NMDA receptor plasticity is crucial to these 

processes (Barker, Bird, Alexander, & Warburton, 2007; Barker & Warburton, 2008; 

Liang et al., 1994; Morris et al., 1986).  

Findings are consistent with previous research indicating that NMDA 

receptors in areas CA1 and CA3 of the hippocampus are particularly important for 

encoding and retrieval (Adams et al., 2001; Bannerman et al., 2012). For example, 

inactivation or genetic deletion of these receptors in CA1 has been shown to result in 

unstable place fields in mice (Kentros et al., 1998; McHugh, Blum, Tsien, 

Tonegawa, & Wilson, 1996). Our results are also in line with the more recent 

suggestion that NMDA receptors in these sub-regions facilitate flexible behavioural 

responding (i.e. choosing between competing response options) through synaptic 

modification (Bannerman et al., 2014; Jo et al., 2007; Taylor et al., 2014). In 

contrast, NMDA receptors in the dentate gyrus may not be required for memory 

recall, as demonstrated by Niewoehner and colleagues (2007). Interestingly, the 

acquisition deficits observed following NMDA receptor inhibition can be eliminated 

by non-spatial pre-training, although rats remain impaired during reversal testing 

(when the platform is moved to a new location) (Bannerman et al., 1995; Vorhees & 

Williams, 2014). Thus, the influence of NMDA receptor activation on spatial 

learning – but not flexible memory retrieval – appears to be dependent on experience 

with the environment.  

On the other hand, we failed to find evidence that AMPA receptors were 

required for encoding in the water maze, similar to Filliat et al. (1998) but in contrast 
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to Liang and colleagues (1994). Although this may have been due to drug 

administration routes, as discussed, an alternate explanation is that AMPA receptors 

(in the hippocampus and prefrontal cortex) are more tightly coupled to the retrieval 

stage of memory processing (Barker et al., 2006; Bast et al., 2005; Teixeira et al., 

2006; Tse et al., 2011). Importantly, Teixeira et al. (2006) found that AMPA 

inhibition in the anterior cingulate region caused impaired navigation to a hidden 

platform in the water maze at a remote time point (one month); thus, these receptors 

may become increasingly import as memories age. Lastly, it should be noted that 

although our findings indicate differing roles for distinct sub-regions, the global 

administration of drugs used somewhat limits the conclusions which can be drawn 

here. Therefore, further studies which utilise direct infusion or region-specific 

genetic knockout methods are needed to confirm the precise functions of these 

regions for the acquisition and recall of spatial and non-spatial memories.  

 

6.2.4. IEGs as markers of neuronal activity 

IEG imaging is a popular approach for measuring brain activity in response to 

behavioural experience (Aggleton et al., 2000; Dragunow & Faull, 1989; Kubik et 

al., 2007; Tischmeyer & Grimm, 1999). Although they are often used 

interchangeably within the literature, different IEGs may be associated with distinct 

processes (e.g. learning-related plasticity, general neuronal activity or physiological 

stress). Therefore, a key aim in this thesis was to chart the expression of two widely 

used IEGS – Zif268 and c-Fos – in the hippocampus and prefrontal cortex during 

memory encoding and retrieval. Overall results demonstrated that these two IEGs 

were in fact related to task performance in different ways. During encoding, 

increased Zif268 expression in CA1 was associated with successful task acquisition, 
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indicating that Zif268 was a useful marker of learning-related plasticity (Feldman et 

al., 2010). In contrast, c-Fos counts in the hippocampus and prefrontal cortex were 

elevated in poorer learners. This suggests that c-Fos expression was associated with 

encoding under conditions where the task demands were high (i.e. when MK-801-

treated rats were prevented from learning) (Okuno, 2011), when stress levels were 

consistently elevated (as a result of prolonged swimming) (Cullinan et al., 1995), or 

both.  

During recall, Zif268 expression proved to be a valuable indicator of 

successful performance, as illustrated previously (Hall et al., 2001; Knapska & 

Kaczmarek, 2004). Zif268 levels in the hippocampus and prefrontal cortex were also 

highly sensitive to the type of memory being retrieved (i.e. spatial or non-spatial) 

and to spatial changes in the environment (i.e. modifications to the cue arrangement). 

This is in line with previous findings from Ribeiro and colleagues (2007), which 

showed that Zif268 was upregulated following a novel spatial experience. On the 

other hand, expression of c-Fos was not associated with memory-related neuronal 

activity; that is, counts did not differ between groups that remembered the task and 

those who did not. Further, stress as a result of impaired performance did not appear 

to be a factor in c-Fos expression at the recall stage (i.e. expression was not higher in 

rats with poor memory). Thus, it seems that c-Fos may not be a suitable marker of 

post-learning neuronal activation at the retention interval examined here. Rather, we 

suggest that the expression patterns of c-Fos occur more rapidly, i.e. early in training 

and shortly after recall. This would account for the discrepancies between our results 

and those of previous researchers who employed shorter training protocols (one day 

training; Feldman et al., 2010; Teather et al., 2005) and retention intervals (thirty 

minutes post-training; Jo et al., 2007).  
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  On the whole, our results demonstrate that Zif268 is a superior marker of 

neuronal activation relating to allocentric navigation in the water maze, relative to c-

Fos. Based on previous research, we propose that this is largely due to the differing 

functions of these IEGs (Davis, Bozon, & Laroche, 2003; Knapska & Kaczmarek, 

2004). A number of studies have demonstrated that Zif268 activation is tightly 

linked to neuronal plasticity underlying learning and memory. More specifically, 

Zif268 knockout mice demonstrate reliably diminished LTP, and impaired 

acquisition and retention of the water maze (Bozon et al., 2002; Jones et al., 2001), 

and exhibit unstable place fields (Renaudineau et al., 2009). However, these deficits 

can be overcome with extended and distributed training (Jones et al., 2001), 

indicating that Zif268 plays a time-dependent role in memory processing. This is 

supported by our findings, i.e. that group differences in Zif268 expression 

disappeared after ten days of training (Chapter 5; Experiment 2). Conversely, 

evidence of a role for c-Fos in these processes is currently equivocal. For example, 

Zhang, McQuade, Vorhees and Xu (2002) showed that deletion of c-Fos from the 

hippocampus had no effect on water maze acquisition, while Fleishmann and 

colleagues (2003) found that mice lacking c-Fos from the entire nervous system were 

impaired at spatial learning. Thus, it seems that c-Fos activation outside of the 

hippocampus (and medial prefrontal cortex, according to our findings) may be 

necessary for spatial processing.  

 Importantly, results from this thesis highlight the importance of careful 

interpretation with regard to IEG imaging data, as IEG expression can reflect a 

number of processes, e.g. learning-related plasticity, task performance or stress. 

Crucially, the patterns observed will likely depend on the IEG, task and stage of 

memory processing investigated. The level of experience will also have a significant 
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influence on IEG expression (similar to NMDA receptor activation); thus, future 

studies should aim to investigate a number of IEGs at multiple time points 

throughout training, ranging from a single trial to one month of training. This would 

allow for a more complete characterisation of IEG expression patterns associated 

with navigation.  

 

6.2.5. Long-term memory 

With regard to more general long-term memory processing, our results contribute to 

the limited existing literature on pattern separation and completion in navigation, and 

the role of the hippocampus and medial prefrontal cortex in these phenomena 

(Bannerman et al., 2014; Jo et al., 2007). Pattern separation – the ability to 

differentiate between overlapping memories – is thought to rely mainly on the 

dentate gyrus, and activation of NMDA receptors therein (Bannerman et al., 2012; 

Bannerman et al., 2014; Gilbert et al., 2001; Marr, 1971; McHugh et al., 1996). 

Here, we demonstrated this effect in a spatial context with rats navigating via two 

visually identical cues, whereby animals were initially unable to distinguish between 

the cues (likely due to the overlap in spatial information provided by them) and 

exhibited elevated Zif268 expression in the dentate gyrus. Thus, our findings support 

existing theory that the dentate gyrus plays a fundamental role in separating 

overlapping inputs to create distinct memory traces (Leutgeb, Leutgeb, Moser, & 

Moser, 2007; Yassa & Reagh, 2013).  

 Pattern completion – defined as the reactivation of a stored representation 

when presented with degraded information – is mediated by NMDA receptor-

dependent activity in area CA3 (Gold & Kesner, 2005; Jo et al., 2007; Marr, 1971; 

Nakazawa et al., 2002; Yassa & Reagh, 2013). Our findings showed that CA3 and 
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anterior cingulate regions were preferentially engaged in spatial memory retrieval 

(full and partial cue conditions); that is, expression of Zif268 was not higher in rats 

navigating with an incomplete cue arrangement than those using the full 

arrangement, in contrast to previous work. One possible explanation for our finding 

is the reduced number of cues utilised here (two cues) compared to earlier studies 

(four cues) (Gold & Kesner, 2005; Jo et al., 2007; Nakazawa et al., 2002). 

Specifically, because the degree of environmental change was smaller in our 

experiments, it is reasonable to assume that retrieval of the intact representation was 

easier for these animals, which in turn required less synaptic modification of 

recurrent connections in area CA3 (Marr, 1971; Nakazawa et al., 2002). 

 An alternate possibility is that animals had learned to rely completely on a 

single (far) cue by day ten, and thus, did not need to recall the overall cue 

arrangement to navigate, i.e. no pattern completion was required. One way to test 

this idea would be to carry out a probe trial with the other (near) cue only. More 

specifically, because this cue was less salient, pattern completion would be required 

for accurate navigation; thus, we would expect to see higher activation in CA3 for 

these animals. In terms of the anterior cingulate cortex, this result is in keeping with 

the suggestion by Jo et al. (2007) that the prefrontal cortex mediates complex 

memory retrieval by integrating information from other cortical areas with that of the 

hippocampus, which is facilitated by direct projections from the anterior cingulate 

cortex to areas CA1/CA3 (Rajasethupathy et al., 2015).  

  

6.3. Concluding remarks  

A final emergent conclusion from this thesis is that overall experience in an 

environment has a significant impact on navigational behaviour and its neural 
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underpinnings. Specifically, the amount of training will influence: how animals learn 

about cues in their environment (i.e. forming individual or group cue associations); 

the specific brain regions involved in representing and recalling spatial (and non-

spatial) memories; and the neural mechanisms that mediate these processes (i.e. 

NMDA receptor synaptic transmission). Therefore, we propose that future research 

following on from this thesis should focus on a systematic investigation of 

environmental experience. 

In sum, the experiments in this thesis have provided an in-depth analysis of 

allocentric navigation in the Morris water maze, and have investigated the relative 

contributions of hippocampal and medial prefrontal regions during the acquisition 

and recall of spatial and non-spatial memories. We have provided novel evidence 

that cue salience plays a crucial role in determining the type of type of strategy an 

animal will use to locate a goal, and that increased experience in the environment 

allows for greater flexibility of responding. These findings strongly support 

associative learning and vector model theories of learning, and refute cognitive 

mapping theory. We have shown that ionotropic glutamate receptors contribute 

differently to spatial learning, whereby NMDA receptor activation is necessary for 

successful encoding but AMPA receptors are not.  

We have also demonstrated that Zif268 expression in the hippocampus (area 

CA1) is tightly coupled to learning-related plasticity, while c-Fos in the prefrontal 

cortex (anterior cingulate and infralimbic cortices) was associated with poorer 

performance and/or physiological stress. In addition, we have shown that NMDA 

receptor activation is also required for successful memory recall – but that extended 

training can partially protect against spatial memory deficits caused by NMDA 

receptor inhibition. Finally, we have revealed that elevated activity in the 
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hippocampus (CA3) and prefrontal cortex (prelimbic and anterior cingulate cortices) 

is strongly associated with flexible spatial memory retrieval.  
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