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Abstract 

The neurotransmitter dopamine (DA) has shown to play a very important role in the 

functioning of the central nervous system. Thus, the determination of DA is of great 

importance in the fields of neurochemistry and biomedical chemistry. In this thesis, a 

number of carbon paste electrodes modified with macrocycles for the electrochemical 

detection of DA is reported. The different macrocycles employed were based on 

cyclodextrin derivatives and consist of sulfated β-CD (S-β-CD), carboxymethyl β-CD 

(CM-β-CD), Ferrocene complex β-CD (Fc-β-CD), Heptakis 6-deoxy-6-(1-(4,5-

dicarboxyl)-1,2,3-triazolyl)-β-CD (CD6.6) and Heptakis (6-(4-hydroxymethyl-1H-[1, 2, 

3] triazol-1-yl)-6-deoxy)-β-cyclodextrin (CD6.7). The fabricated electrodes were 

characterized by using surface techniques and electrochemical methods such as energy 

dispersive X-ray (XRD), scanning electron microscopy (SEM), electrochemical 

impedance spectroscopy (ESI) and cyclic voltammetry (CV). The detection of DA at all 

modified electrodes (except for CD6.7) resulted in an enhancement of the oxidation 

signal response over that of the bare electrode. High performance of the electrochemical 

detection of DA was obtained at S-β-CD modified CPE such as a wide concentration 

range (from 5 × 10
-7

 M to 5 × 10
-4

 M) and low detection limit (1.33 × 10
-7 

M). It was 

shown that the sensitivity of the developed sensor towards the detection of DA depends 

on the amount of S-β-CD incorporated within the paste. The optimum sensor 

architecture was made by impregnating 0.545 g S-β-CD in a carbon paste containing 

0.71 g graphite and 200 μL silicone oil. In addition, graphite was replaced by graphene 

and the electrochemical behaviour of DA at the S-β-CD modified graphene electrode 

was investigated by DPV. The results showed that the S-β-CD modified graphene 

electrode exhibited excellent electrochemical oxidation of DA in phosphate buffer 

solution (pH 6.8) compared to the bare graphite paste electrode. CD6.6 and CD6.7 were 

synthesised in order to exhibit further increase in the signal responses of DA. The 

formation of inclusion complexes of CD6.6 and CD6.7 with DA was studied by 
1
H-NMR 

spectroscopy. A 2:1 and 1:1 stoichiometry was obtained in the case of CD6.6:DA and 

CD6.7:DA, respectively. The bare GPE was modified with CD6.6 and the electrode was 

miniaturised from macro to micro-size level. This configuration also was shown to 

improve the detection of DA (3 × 10
-7

 M). 

This thesis also aimed to utilise these modified electrodes to enhance the selectivity for 

DA over two interferents, ascorbic acid (AA) and serotonin (5-HT). Improvements in 

the selectivity of DA were obtained at the S-β-CD modified GPE as AA was excluded 
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at the electrode surface. Moreover, the results showed that DA, AA and 5-HT in 

coexisting solutions can be simultaneously oxidised at significantly different potentials 

in the presence of S-β-CD modified CPE. The voltammetric response of the three 

compounds could be completely separated at the modified electrode using both cyclic 

voltammetry (CV) and differential pulse voltammetry (DPV) techniques at optimal 

conditions. DPV provided larger peak potential separations and higher response 

sensitivities of DA, AA, and 5-HT compared to CV. 
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1.1  Carbon Paste as an Electrode Material 

Carbon paste electrodes (CPEs) are composite electrodes because they result from the 

combination of two or more materials. They consist of a mixture of, at least, an 

electrically conducting carbon powder and an organic liquid (binder). They have been 

widely applied in electrochemistry due to their advantages: inexpensive, easy to prepare, 

easy to handle and low background currents. They possess an added advantage in that 

the surface can be renewed rapidly. The choice of carbon paste components (carbon 

powder and binder), their ratio of mixture, and the way in which the CPEs are prepared 

(homogenisation of the paste, packing of the paste in the electrode body, etc.) are 

important aspects that determine the properties, characteristics and behaviour of CPEs. 

1.1.1    The Invention of Carbon Paste 

The development of carbon paste is closely connected with classical dropping mercury 

electrode (DME). The linking point had appeared in the late 1950s, when Adams [1] 

and his students were testing a new “dropping carbon electrode” (DCE) as an alternative 

to the DME for anodic oxidations of organic compounds, where the mercury drop could 

not be used. Although this concept finally failed, a thicker mixture of softer consistency, 

carbon paste, was found to be capable of satisfactorily replacing the originally intended 

DCE configuration. 

1.1.2    Carbon Powder (Graphite) 

Powdered carbon (graphite), as the main carbon paste component of a CPE electrode, is 

an ideal material to use in electrochemical measurements. Typical carbon electrode 

materials generally obey criteria such as particle size in micrometres, uniform 

distribution of the particles, high chemical purity, and low adsorption capabilities. 

Naturally, the type and quality of graphite used, as well as the overall amount in the 

carbon paste mixture, are reflected in all typical properties of the respective mixture. 

The most often selected carbon powder is spectroscopic graphite with particles in the 

low micrometric scale (typically 5 – 20 µm). 

1.1.3    Binder (pasting liquid) 

Traditional carbon pastes contain a binder which mechanically links the individual 

graphite particles. However, beside this main function, the binder co-determines the 

properties of the carbon paste. Typical parameters required for binders are: (i) chemical 
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inertness and electro-inactivity, (ii) high viscosity and low volatility, (iii) minimal 

solubility in aqueous solutions and (iv) immiscibility with organic solvents. 

The most popular binder used for preparation of carbon pastes are mineral (paraffin) 

oils such as Nujol. However, the spectrum of potentially applicable binders is relatively 

wide. Indeed, carbon pastes reported in the literature employ various types of binders 

including  aliphatic and aromatic hydrocarbons and their halogenated derivatives, 

silicone oils and greases [1], and nearly solid silicone rubbers [2]. In contrast to 

ordinary pasting liquids, some binders capable of acting in some chemical processes 

have been used. This is the case of organic esters (organophosphate and dialkyl 

phthalate) [3] or ionic liquids [4]. Solidifying substances, such as Phenathrene [5]  and 

paraffin wax [6] are types of binders that undergo a physical state transformation during 

carbon paste preparation. At known temperatures, such a substance occurs as a liquid 

which can be properly homogenised with graphite; when cooled down, it becomes 

compact and acts as a solid binder. 

Because of the presence of lipophilic binder in common mixtures, carbon pastes have 

typically a hydrophobic surface which, in aqueous solution, repels hydrophilic species 

involved in the electrode transformations of a great number of redox systems. This 

effect can enhance specificity at CPEs which, in turn depends upon the carbon paste 

composition and the quality of graphite and binder components. 

1.1.4    Modifying Carbon Pastes 

A diversity of modification procedures applicable to the carbon paste electrode material 

is arguably the most important features of carbon pastes. According to literature reviews 

[7, 8], chemically modified carbon paste electrodes and carbon paste biosensors can be 

prepared by various ways.   

Modification in situ is a simple and widely used approach applicable to the bare carbon 

paste, similarly as with other common electrodes [7-9]. In contrast to compact solid 

materials such as glassy carbon, pyrolytic graphite, platinum or gold, the hydrophobic 

surface of carbon paste mixtures may markedly enhance the entrapment of some 

lipophilic modifiers. Mechanical mixing of modifiers into the carbon paste bulk is 

another frequent way of modification which is done with substances in solid state. [10, 

11]. This body of work will detail the mechanical binding of macrocyclic carbohydrate 

derivatives into carbon paste. Impregnated macrocycles promote interaction between the 

electrode and analyte through “supramolecular chemistry”, and can be termed 

‘molecular recognition elements’. Dissolution in the binder is feasible with some ion 
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exchangers (such as Aliquat 336 [12], Amberlite LA-2 [13-15], Dowex 50W [16]), or 

other lipophilic compounds (trioctyl phosphine-oxide, TOPO [17] or fatty acids [18]). 

Impregnation of carbon powder can also be achieved by soaking graphite particles with 

a solution containing dissolved modifier. After evaporation of the solvent, carbon 

powder pre-treated in this way is then normally mixed and homogenized with the liquid 

binder chosen. This modification provides effective delivery of modifier into the carbon 

paste bulk.  

Electrolytic activation (anodization / cathodization) can be classified as a specific type 

of modification [7, 19] feasible via electrode oxidation / reduction at certain potentials, 

which can give rise to hydrophilic functional groups at the carbon paste surface.  

The use of additional membranes can be applied to carbon paste sensors in order to 

prevent undesirable interference in samples with more complex matrices [20-22]. The 

protective layer of choice for a bare carbon paste electrode can be either thick 

polycarbonate membrane used in combination with biosensors [23] and gas probes [24], 

or a thin film of ethanolic Nafion applied onto the surface of a chemically modified 

electrode [25]. 

1.1.5    Conductivity of Carbon Paste 

The excellent conductivity of carbon paste is still one of the puzzling questions within 

the field of CPEs [26]. Some images of the carbon paste microstructure, taken by 

scanning electron - and optical microscopic observations [27-30], have revealed that 

carbon pastes represent mixtures with a rather unconsolidated structure in which the 

graphite particles are all covered with a very thin film of the non-conducting binder. 

Nevertheless, the individual graphite particles are apparently in some physical contact 

beneath the binder layer, which may explain a very low ohmic resistance of most carbon 

pastes [11].  A typical morphology for carbon paste is shown in Figure 1.1. 



Chapter 1                                                                     Introduction and Literature Review 

  
5 

 
  

 

Figure 1.1: Microstructure of carbon paste with spherical particle (left) and the corresponding 

cross-section (right). a) carbon paste bulk revealing graphite particle coated with binder, b) the 

respective outer layer, c) graphite particle alone, d) thin film of binder [27].  

 

1.2   Supramolecular Chemistry 

The term “supramolecular chemistry” was introduced by Lehn to define the chemistry 

of “intermolecular bonds” [31, 32]. The “guest” molecule is held in the internal cavity 

of the “host” only by non-covalent forces [33]. The way from simple molecules to 

complex supramolecular structures implies the primary stage of molecular recognition, 

followed by self-reorganisation and generation of supramolecular architectures in the 

final stage [34]. Over the last three decades, supramolecular chemistry has gradually 

become a new independent interdisciplinary science, at the interface between biology, 

synthetic and physical chemistry [32, 35]. 

The cage-like organic molecules such as cyclodextrins, cryptands, calixarenes, 

cyclophanes, spherands and crown ethers, available with accessible internal cavities, 

can serve as host [36, 37] and fit well in the area of supramolecular chemistry. Among 

these macrocycles, cyclodextrins (CDs) are the most important and promising hosts 

because they are water-soluble natural products, inexpensive, commercially available, 

non-toxic and readily functionalised. The use of CDs as receptors or hosts in 

supramolecular chemistry has a variety of applications such as drug delivery [38-41], 

food industry [42, 43], solubilisation of environmental pollutants [44], molecular reactor 
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for the mediation of organic reactions [45], fluorescence [46] and electrochemical 

sensors [47-49]. 

1.2.1 Click Reaction as an Efficient Tool in Supramolecular 

Chemistry 

Azides and alkynes display high mutual reactivity and they have been termed 

bioorthogonal because of their stability and inertness towards the functional groups 

typically found in biological systems [50].  

Recent reports have dealt with the study and synthesis of rigid macrocycles using 

copper-catalysed azide-alkyne cycloaddition (CuAAC) click chemistry, and the 

characterization of their host-guest binding properties [51, 52]. A prototypical example 

is the highly preorganized, shape-persistent macrocycle displayed in Figure 1.2. The 

four triazole units are perfectly positioned for the recognition of a spherical anion such 

as chloride [53]. This example demonstrates that the use of CuAAC click chemistry not 

only allows the rapid, orthogonal and high yielding construction of macrocycles, but 

can also utilise triazoles as molecular recognition agents. 

  

 

Figure 1.2: Triazole-containing macrocycle for the binding of chloride anion. In Red: triazole 

groups as the key functionalities responsible for binding. 
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1.3  Cyclodextrins (CDs) 

1.3.1  History 

CDs were first isolated in 1891 by Villiers, when he noted formation of a crystalline 

substance from a Bacillus amylobacter culture grown on starch [19, 20, 54]. He found 

the elemental composition to be (C6H10O5)2•3H2O, and named this compound 

“cellulostine”. The first inclusion chemistry involving these “cellulostines” was 

observed by Schardinger, when the author noted that they formed complexes with 

iodine [54]. In 1904, Schardinger isolated a new organism capable of producing acetone 

and ethyl alcohol from sugar and starch-containing plant material [55]. In 1911, he 

described that this strain, called Bacillus macerans, also produces large amounts of 

crystalline dextrins from starch. Schardinger named his crystalline products ‘crystallised 

dextrin α’ and ‘crystallised dextrin β’ [55]. It took until 1935 before ‘dextrin γ’ was 

isolated. Several fractionation schemes for the production of CDs [56, 57] were also 

developed. At that time, the structures of these compounds were still uncertain, but in 

1942 the structures of α and β-CD were determined by X-ray crystallography [58]. In 

1948, the X-ray structure of γ-CD followed and it was recognised that CDs can form 

inclusion complexes. 

In 1961, evidence for the existence of δ-, ζ-, ε- and even η-CD (9–12 residues) was 

provided. The main interest in CDs lies in their ability to form inclusion complexes with 

several compounds [59-62]. 

1.3.2    Structure and Physicochemical Properties 

The most common types of CDs are α-CD, β-CD and γ-CD, referred to as first 

generation or parent CDs. α-CD, β-CD and γ-CD are composed of six, seven and eight 

α-(1,4)-linked glycosyl units, respectively [63]. The chemical structure of each CD is 

given in Figure 1.3.  
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(a) 

 

(b) 

Figure 1.3: Chemical structure of CDs, n = 1(α-CD), n = 2(β-CD), n = 3(γ-CD) (a) and toroid 

shape of CDs showing interior cavity, n = 6(α-CD), n = 7(β-CD), n = 8(γ-CD) (b). 

 

CDs form “bucket-like” structures, thus they display a wide and narrow entrance. Both 

the narrow and wide cavity rim of CDs bears hydroxyl groups. 

The macrocyclic ring is a conical cylinder, which is frequently characterized as a 

doughnut or wreath-shaped truncated cone. The cavity is lined with hydrogen atoms and 

glycosidic oxygen bridges. The nonbonding electron pairs of the glycosidic oxygen 

bridges are directed towards the cavity centre, producing a high electron density and 

lending to it a Lewis-base character [64]. Therefore, the exterior of the CD is 

hydrophilic, while the interior is hydrophobic in nature. Within the macrocycle, the 

hydroxyl group at C2 position from one glucopyranose ring and the hydroxyl group at 

C3 position from the adjacent ring can form a hydrogen bonding. Some general 

structural properties of CDs are presented in Table 1.1 [54]. 

 

Table 1.1: Cyclodextrin characteristics [54] 

Properties α-CD β-CD γ-CD 

Number of glucopyranose units 6 7 8 

Molecular weight (g / mol) 972 1135 1297 

Solubility in water at 25°C 

(g / 100 mL) 
14.5 1.85 23.2 

Outer diameter (Å) 14.6 15.4 17.5 

Cavity diameter (Å) 5.7 7.8 9.5 

Height of torus (Å) 7.9 7.9 7.9 

Approximate cavity volume (Å
3
) 174 262 427 

 

H
O

O
H

n
2

nHydrophobic cavity

Hydrophilic exterior 
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1.3.3    Cyclodextrin Inclusion Complexes 

As mentioned earlier, the most important property of CDs is their ability to partially or 

fully complex a wide range of hydrophobic guest molecules into their cavity in the 

aqueous phase as shown in Scheme 1.1. Generally, in an aqueous solution, the CD 

cavity (slightly apolar) is occupied by water molecules, which is thermodynamically 

unfavourable (polar-apolar interaction). Therefore, water molecules inside the cavity 

have fewer tendencies to form hydrogen bonds in the same way as in solution which 

result in a higher enthalpy and higher energy. When hydrophobic guest molecules are 

incorporated into the cavity, the energy of the system is lowered by substituting these 

enthalpy-rich water molecules with those hydrophobic guest molecules to form the 

complex of CDs and guest molecules [65]. 

 

 

Scheme 1.1: Schematic illustration of inclusion complexation of p-xylene by CD [54]. 

 

Guest molecules may form inclusion complexes with different stoichiometries. 

Cyclodextrin:guest (CD:G) ratios may be 1:1, 2:1, 1:2, 2:2,  etc [54, 66-69]. When an 

inclusion complex is formed in solution, equilibrium between the dissociated species 

and the associated complex is established. The measure of the strength between a guest 

complexation with CD is defined as Ka, the binding constant. The complexation (CD:G) 

can be described as shown in Equations 1.1, 1.2 and 1.3 for 1:1, 1:2 and 2:1 

stoichiometry, respectively [70].  

 G + CD ⇋ G   CD Equation 1.1 

 G   CD + CD ⇋ G   CD2 Equation 1.2 

 G   CD + G ⇋ G2   CD Equation 1.3 
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These equilibria summarise the formation of CD:G 1:1, 1:2 or 2:1 complexes with the 

following association constants (shown in Equations 1.4, 1.5 and 1.6, respectively): 

 

 K1:1 = 
      

       
 

 

Equation 1.4 

 K1:2 = 
       

          
 

 

Equation 1.5 

 K2:1 = 
       

         
 

 

Equation 1.6 

 

 

[G] and [CD] represent the concentrations of the dissociated guest and CD species, and 

[G‒CD] is the inclusion complex concentration. In general, the formation of more 

complicated complexes Gm‒CDn can be described by the following equilibrium: 

 

 
mG + nCD ⇋ Gm─CDn Equation 1.7 

 

An equation for the overall association constant Km:n: 

 Km:n = 
        

         
 

 

Equation 1.8 

 

There is a variety of interactions considered important in the complexation process of 

CDs. The major driving forces are hydrophobic interactions which consist largely of 

London dispersion forces [71]. Other factors also believed to contribute to interaction 

include enthalpy-driven displacement of water molecules from the CD cavity (briefly 

discussed above); Van der Waals between CD and the guest; electrostatic, polar and 

ionic interactions [72, 73] including dipole-dipole and hydrogen-bonding. The 

understanding of these driving forces involved in the molecular recognition of CDs is 

fundamentally important, not only for CD chemistry but also for supramolecular 

chemistry as a whole. 

1.3.4    Non-covalent Interactions 

Non-covalent interactions are the driving force of supramolecular chemistry. As already 

mentioned, Lehn has defined supramolecular chemistry as “chemistry of the 

intermolecular bond” due to the crucial role of these interactions in holding 

supramolecular systems together. In this section the different common types of 

intermolecular forces, which can be facilitated by CDs structure, are briefly discussed. 
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1.3.4.1 Hydrogen Bonding 

Hydrogen bonding involves donor-acceptor interactions between two atoms. One atom, 

X-H, will act as a proton donor, while another atom, Y, will act as a proton acceptor [74] 

resulting in the hydrogen bond X-H···Y. In general, the atom X should be sufficiently 

electronegative to withdraw electron density from the proton so that atom Y may donate 

electron density to the proton. Atom Y should have a lone pair or polarizable π electrons 

in order to act as a hydrogen bond acceptor. The strength of H-bonds can vary 

considerably in biological systems, ranging from 10-20 kJmol
-1

[74].  

1.3.4.2 Van der Waals Interactions 

Van der Waals interactions refer to intermolecular interactions between molecules that 

have an instantaneous dipole and an induced dipole. They are typically very weak (2-4 

kJmol
-1

). These interactions are electrostatic in nature, although they are due normally 

to partial charges within a molecule rather than Coulombic interactions between ions. 

Instantaneous dipole-induced dipole interactions are also sometimes called London 

forces or dispersion forces [75]. Because electrons are constantly moving, the electron 

density is not homogenously distributed in a bond at a given instant of time, so that at 

one moment the electron density may be congregated more at one side of the molecule 

than the other, even if the molecule is non-polar. Van der Waals forces can be either 

attractive or repulsive, depending on the distance between the atoms involved [76-78]. 

The interaction can be attractive from a distance and become more attractive as the 

molecules approach each other, but as the molecules become very close together, the 

interactions become repulsive due to repulsion between the electron clouds of the two 

molecules. 

1.3.4.3 The Hydrophobic Effect 

The hydrophobic effect is the observed tendency of non-polar substances to aggregate 

in aqueous solution and exclude water molecules [79]. The name, literally meaning 

“water-fearing” describes the segregation and apparent repulsion between water and 

non-polar substances. 

In terms of supramolecular chemistry, complexation of a nonpolar guest into the 

hydrophobic receptor site of a host molecule is favourable due to the release of water 

molecules from the host’s receptor pocket, with a resulting increase in entropy [80]. 

Also, the complexation of a non-polar guest into a host’s hydrophobic receptor may be 

enthalpically favourable, as the water that is released from the hosts receptor can then 

more readily form hydrogen bonds with other water molecules in the solvent [80]. 
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1.3.4.4 The π-π Stacking Interactions 

The π-π stacking interactions generally involve aromatic systems, whose planar rings 

contain delocalized π-electrons above and below the plane of the ring. The C‒H bond is 

slightly polar (C
δ-
‒H

δ+
), so that the outer edge of the aromatic group tends to be slightly 

electropositive while the π-electrons near the carbon atoms have a slight negative 

charge [81]. 

Two common arrangements between π-stacked aromatic rings are the edge-to-face and 

the offset face-to-face arrangements. In the edge-to-face arrangement, the slightly 

negatively charged π-electrons in one ring are attracted to the slightly positive hydrogen 

atoms on the edge (in the plane) of another ring, so that the two rings are arranged 

perpendicular to each other. With the offset face-to-face arrangement, the rings are 

parallel to each other but are offset from each other in order to allow oppositely charged 

regions of the molecules to align with each other [81]. 

1.3.4.5 Electrostatic Interactions 

Electrostatic interactions are Coulombic (charge-based) interactions that result in an 

attraction between two oppositely charged molecules. These can generally include ion-

ion, and ion-dipole interactions, as well as dipole-dipole interactions and permanent 

dipole-induced dipole interactions. The strength can vary, ranging from  5-15 kJmol
-1

 

[80, 82]. Electrostatic interactions, especially ion-ion, are often among the strongest 

non-covalent interactions available. Permanent dipole-dipole interactions involve 

interactions between molecules that have a permanent dipole, being partially negative at 

one end and partially positive at the other end. These molecules will interact so that the 

partially positive end of one molecule will attract the partially negative end of the other 

molecule. Permanent dipole-induced dipole interactions may occur when a molecule 

with a permanent dipole and a non-polar molecule approach each other. 

1.3.5    Characterization of Inclusion Complexes 

A number of techniques, including spectrophotometry and fluorescence spectroscopy, 

are commonly used to study the formation of host-guest complexes in supramolecular 

chemistry. The most direct evidence for the inclusion of a guest into a host cavity in 

solution is obtained by 
1
H-NMR spectroscopy [83-85]. This technique relies on changes 

in the chemical shifts of protons’ NMR signals of the guest and the host upon 

complexation. A complex between CDs and a guest can be characterised by the 

stoichiometry of the complex and its stability constant, Ka. The stoichiometry of the 
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complex can be determined with Job’s plot, also called the method of continuous 

variation. In this method, experimentally observable spectral parameters (usually 

chemical shifts that are sensitive to complex formation) are followed upon varying host 

to guest ratios, where the sum of their concentration is kept constant. The differences in 

chemical shifts (Δδ) induced from complexation are plotted as a function of the mole 

fraction of the guest (or the host). The ratio of the molar fraction at the position of 

maximum indicates the stoichiometry of the complex. The changes in δ of certain 

protons of the guest upon addition of CD are numerically analysed to afford the binding 

constant (Ka) of the CD-guest complex. This is known as the NMR chemical shift 

titration method [86]. 

1.3.6    Cyclodextrin Derivatives 

Numerous CD derivatives have been synthesized for a number of purposes, including, 

to increase aqueous solubility, to increase selectivity of a host/guest combination, or to 

control the release rate and bioavailability of a drug. The three natural CDs contain 18 

(α), 21 (β), and 24 (γ) hydroxyl groups that can be chemically modified. Modification 

reactions with CDs are governed by two important issues, the nucleophilicity of the  

hydroxyl groups at the C2-, C3-, and C6-positions, and the ability of the CD to form an  

inclusion complex with the reagents used [87]. 

The primary hydroxyl groups at the C6-positions are the most nucleophilic and basic. 

Secondary hydroxyl groups at the C2-positions are the most acidic, while the hydroxyl 

groups at the C3-position are the most inaccessible [87, 88]. Electrophilic reagents will 

preferentially react with C6-positions, while very reactive reagents will attack all 

positions. Due to the differences in reactivity between the three types of hydroxyl 

groups, substitution reactions with cyclodextrins are not totally random, and in some 

cases can be controlled with success [54, 61, 88-90]. In cases where exact position and 

number of substituents are not important, water-soluble CD derivatives are easily 

achieved through the random modification of hydroxyl groups to hydroxylpropyl, 

sulfopropyl, carboxymethyl, or sulfate groups [54, 91, 92]. 

1.3.7    Application of Cyclodextrins 

CDs are widely used in a variety of areas. In the food industry (generally the largest 

industry consumers of β-CD), CD as stabilizing or thickening agents could retain some 

aroma compounds in food matrices during thermal processes (cooking, pasteurization) 

[93]. CDs also have applications in the agro-industry through complex formations with 
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pesticides, herbicides, insect repellents [94, 95]. CDs can play a major role in 

environmental science in terms of solubilisation of organic contaminants, enrichment 

and removal of organic pollutants and heavy metals from soil, water and atmosphere 

[96-98]. β-CD can be incorporated onto textile by means of spraying, printing, padding, 

grafting, surface coating, impregnation, inkjet printing or via sol-gel [99-101]. 

In the pharmaceutical industry, in which often drugs are sparingly soluble in water, CDs 

are of vital importance. The conventional drug formulation systems are not enough to 

attain drug formulations without adverse effects and irritations. However, formulations 

involving CDs increase solubility, enhance stability, improve bioavailability, reduce 

dose and volatility of the so-called drugs and masking the unpleasant odours and bitter 

tastes [102]. CDs have also been subject of intensive electrochemical research including 

both their behaviour in homogeneous solutions and in thin films attached to the 

electrode surfaces [103-105]. They are employed in electrochemical sensing devices for 

the determination of selected analytes. The electrochemical measurements can prove the 

formation of CD complexes either from a decrease of the diffusion-limited currents 

resulting from a change of the diffusion coefficient or as a rather subtle shift of the 

redox potential [106, 107]. The latter effect is a safe criterion for the reversible redox 

systems [108], whereas the irreversible electron transfer reactions may bring 

complications due to the coupling of electron transfer kinetics to the subsequent 

chemical steps or due to the influence of the adsorptive inhibition of CDs accumulated 

at the electrode surface [109, 110]. 

1.4     Dopamine 

Dopamine (DA), also called 3,4-dihydroxyphenylethylamine is a catecholamine. It 

consists of a benzene ring with two hydroxyl groups (catechol) connected to a primary 

amine through an aliphatic ethylene linker (Figure 1.4). At physiological pH values for 

human blood, DA and other catecholamines occur in their protonated form [111, 112] 

with protonation occurring at the terminal amino group of the alkylamine side chain. 

The conformational flexibility due to rotations about the C–N and the two C–C bonds of 

the ethylamine side chain of protonated DA is expected to be an important factor for 

molecular recognition phenomena in host–guest interactions. 
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Figure 1.4: Chemical structure of DA. 

 

1.4.1    Function and Biological Importance of DA 

DA is an essential neurotransmitter in cerebral functions. Dysfunction in the 

dopaminergic transmission influences a variety of neurological and psychiatric 

disorders such as Parkinson's disease (deficit in the dopaminergic system) and 

schizophrenia (hyperactivity of dopaminergic system) [111]. In addition, DA plays an 

important role in motor control and “reward”. It is related to addiction, and affects brain 

processes that control emotional response [112]. As a hormone in vesicles of the adrenal 

medulla, it regulates the heart beat rate and the blood pressure [112, 113]. 

DA is biosynthesized from tyrosine (a naturally occurring amino acid) in a two-step 

process taking place in dopaminergic neurons located in few discrete regions of the 

brain. Tyrosine is converted into L-Dopa by the enzyme tyrosine hydroxylase. L-Dopa 

can then be converted to DA, which subsequently can be converted to norepinephrine 

and finally epinephrine by a series of enzymes (Scheme 1.2 [114]). 

 

 

 

 

 

  

  

Benzene ring 

Hydroxyl groups 

Aliphatic chain 

Amine group 
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Scheme 1.2: The biosynthetic pathway of DA [114] 
 
 

Figure 1.5 illustrates an example of a typical dopaminergic synapse [115]. DA is 

packaged into synaptic vesicles and, on nerve firing, is released into the synaptic space, 

where it can activate postsynaptic DA receptors as well as presynaptic DA auto-

receptors. In this example, DA binds to the D1 and D2 postsynaptic receptors. D2 auto 

receptor would regulate the amount of DA released in the synapse, while the DA 

transporter (DAT) would control the reuptake of neurotransmitter from the extracellular 

space. 

 

Figure 1.5: Synaptic Neurotransmission. Illustration of a generalized DA synapse (a). Synaptic 

exocytosis events (b). The arrows represent the secretion of neurotransmitters into the 

extracellular space. The active docking zone for neurotransmitter-containing vesicles is indicated 

by the bar [115]. 
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1.4.2    Electrochemical Detection of DA 

As mentioned above, DA plays a very important role in the functioning of the central 

nervous system, thus, fluctuations in levels of DA in the cerebrospinal fluid (CSF) are 

linked to many neurological disorders. The accurate quantification of DA becomes more 

and more important in clinical tests, serum and urine [116]. Therefore, it is essential to 

develop rapid and simple methods to detect it. 

There has been considerable interest in developing new electrochemical methods to 

measure the concentration of this neurotransmitter in biological samples [117, 118]. A 

major problem of electrochemical detection of DA in real biological matrixes is the 

coexistence of many interfering compounds such as ascorbic acid (AA). AA usually 

coexists with DA in extracellular fluid at a high concentration level, nearly 10
3
 times 

higher than DA [119, 120]. Moreover, DA and AA are oxidized at nearly the same 

potential at the electrode, which results in an overlapped voltammetric response. It is 

thus futile to discriminate DA from AA by electrochemical methods at a bare electrode. 

It is therefore very important to take into account both selectivity and sensitivity in the 

development of new voltammetric sensors for the determination of DA. Several works 

in the literature describe the development of new methodologies that employ chemically 

modified electrodes for the determination of DA in the presence of AA. The intensive 

use of chemically modified electrodes has gained much attention recently because of 

their interesting features for analytical use, such as good sensitivity, high selectivity, 

reproducibility, better stability and anti-fouling behaviour [121]. 

More specific chemically modified electrodes for electrochemical detection concern the 

use of CDs or their derivatives. A number of examples have been published in this 

regard. Chen et al [122] reported the use of GNPs/CDSH-Fc/nafion modified electrode 

for the detection of DA in the presence of AA. The sensor was fabricated by forming 

the inclusion complex between mono-6-thio-β-cyclodextrin (CD-SH) and ferrocene (Fc) 

functionalized gold nanoparticles (GNPs) films on a platinum electrode. The sensor 

provided a suitable environment to accelerate the electron transfer between DA and the 

electrode and also minimised leakage of the mediator during measurements. This 

resulted in the substantially enhanced stability and reproducibility of the modified 

electrode. At the same time, the presence of AA had no effect on the detection of DA. A 

linear calibration graph was obtained over the DA concentration range from 2 × 10
-6

 M 

to 5 × 10
-5

 M with a detection limit of 9 × 10
-8

 M. 

Another sensor using β-CD as molecular receptor in the determination of DA has been 

developed by Alarcon-Angeles et al [123]. The authors utilised a combination of β-CD 
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and multiwall carbon nanotubes (MWCNT) drop-cast on a glassy carbon electrode. The 

integrated sensor showed improved analytical performance characteristics in catalytic 

oxidation of DA compared with non-modified electrode. The guest DA molecule was 

entrapped inside the cavity of immobilized β-CD. β-CD then acts as a mediator that 

ensures a better electrical contact between the GCE and the bulk DA solution. Moreover, 

the MWCNT adjacent to the β-CD enhances the electron transfer improving the overall 

electrochemical response of the DA. The detection of DA was obtained over the range 

from 1 × 10
-5

 to 8 × 10
-5

 M by amperometric method with a detection limit of 6.7 × 10
-6

 

M. 

On consideration of the aforementioned, the present research work aimed at designing a 

reliable method for the electrochemical detection of DA, in the presence of AA and 5-

HT. Initially CPE modified with macrocyclic compounds such as sulfated β-

cyclodextrin (S-β-CD), carboxymethyl β-CD (CM-β-CD) and Heptakis 6-deoxy-6-(1-

(4,5-dicarboxyl)-1,2,3-triazolyl)-β-CD (CD6.6) were fabricated as new type of electrodes 

for the sensitive electrochemical detection of DA in an aqueous solution. Also, it is 

proposed that the simultaneous determination of DA, AA and 5-HT is feasible using the 

S-β-CD modified CPE in phosphate buffer solution at pH 6.8. The proposed sensor has 

been applied to the determination of DA and AA in artificial cerebrospinal fluid (aCSF) 

with satisfactory results. 

1.5     Objectives and Outline of Thesis 

In this Ph.D. study, the feasibility of a number of chemically modified CPEs for 

electrochemical detection of DA and its interferents, (ascorbic acid, and serotonin), was 

investigated. Compared to noble metal electrodes, CPEs are endowed with many good 

qualities such as low background current, low cost, possibility to incorporate different 

substances during the paste preparation, easy preparation, simple renewal of their 

surface and possibilities of miniaturisation. These important advantages have made the 

use of carbon pastes a very important material in electrochemical analysis. The work 

presented herein describes carbon paste as a ‘support material’, which has been 

modified mainly with different cyclodextrin derivatives for selective and sensitive 

detection of DA.  There is only limited number of reports on using cyclodextrin in the 

sensing of DA. Moreover, most cyclodextrins used are neutral β-CDs. Therefore, part of 

this study aims at synthesising cyclodextrin derivatives capable of enhancing the 

detection of DA.  
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The research content includes the description of electrochemical and analytical 

techniques employed throughout this study, which are detailed in Chapter 2. This 

chapter also gives the procedure for the synthesis of cyclodextrin derivatives and their 

characterisation by nuclear magnetic resonance (NMR), infrared (IR) and mass 

spectrometry. In addition, the experimental procedure for the preparation of graphene 

from graphite is given. Chapter 3 is concerned with the physical and electrochemical 

properties of chemically modified electrodes. Scanning electron microscope (SEM) was 

used to obtain information about the surface morphology of the modified electrodes.  

In Chapter 4, the electrochemical performance of the chemically modified CPEs 

towards the detection of DA was examined. This also includes the mechanism (or mode 

of sensing) of DA electrochemical oxidation at each electrode and kinetics. Chapter 5 

details the electrochemical study of DA in presence of interferents ascorbic acid and / or 

serotonin. The calibration curves and relevant limit of detection for DA (ascorbic acid 

and serotonin) are detailed. Chapter 6 presents a discussion of synthesised cyclodextrin 

derivatives and reports the complexation study of DA with the cyclodextrin derivatives. 

In this chapter, the use of microelectrodes in order to improve the sensitivity towards 

the detection of DA is also addressed. Each chapter comprises a separate introduction, 

results and discussion section while Chapter 7 provides a general conclusion of this 

thesis, possible applications and recommendations for future research. 
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2.1 Introduction 

This chapter outlines the experimental techniques and procedures carried out during this 

study. A description of all the chemicals, material composites and instrumentation 

employed in the experiments is given. The theoretical background of each experiment 

and related equations are also described. In addition, the methodology for the synthesis 

of cyclodextrin derivatives is provided. 

2.2 Experimental Techniques 

This section gives a brief overview of electrochemical / analytical techniques employed 

in this study. The techniques used throughout this study include cyclic voltammetry 

(CV), potentiostatic measurements, linear sweep voltammetry (LSV), differential pulse 

voltammetry (DPV), rotating disc voltammetry (RDV), ultraviolet–visible spectroscopy 

(UV-Vis), scanning electron microscopy (SEM) coupled with energy dispersive x-ray 

analysis (EDX), electrochemical impedance spectroscopy (ESI), infrared spectroscopy 

(IR), mass spectrometry and nuclear magnetic resonance (NMR).  

2.2.1 Voltammetry 

In this Ph.D. study, a number of techniques focused on current measurement 

(voltammetry), therefore, before the different voltammetry techniques used are 

discussed, it is imperative to understand the concept of the word voltammetry.  

Voltammetry is a category of electroanalytical methods used in analytical chemistry and 

various industrial processes. In voltammetry, information about an analyte is obtained 

by measuring the current as the potential is varied [1, 2]. Most experiments control the 

potential (Volts) of an electrode in contact with the analyte while measuring the 

resulting current (Amperes) [3]. 

2.2.2 Cyclic Voltammetry 

Cyclic voltammetry (CV) is the most widely used electrochemical technique. The 

technique can be used to study electron transfer mechanisms in reactions, providing 

information on the reversibility, kinetics, and formal reduction and oxidation potentials 

of a system [3]. During the CV experiment, the solution is kept stationary in order to 

avoid movement of ions to the electrode surface by mechanical means. The initial 

applied potential, Ei, is swept to a vertex potential, Ev, where the scan is reversed and 

swept back to the final potential, Ef, which usually equals the original potential, Ei. This 
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process creates a cyclic effect and is typically repeated a number of times. The 

magnitude of the Faradaic current, Ipa (anodic peak current) or Ipc (cathodic peak 

current), is an indication of the rate at which electrons are being transferred between the 

redox species and the electrode. 

A plot of applied potential versus current is used to depict the generated cyclic 

voltammogram. A typical voltammogram is shown in Figure 2.1. The scan shown starts 

at a slightly negative potential, ‒0.2 V, up to some positive switching value, +0.4 V, at 

which the scan is reversed back to the starting potential. The current is first observed to 

peak at Epa = 0.169 V (with value Ipa) indicating that an oxidation is taking place and 

then drops due to depletion of the reducing species from the diffusion layer. During the 

return scan the process is reversed (reduction is now occurring) and a peak current is 

observed at Epc = 0.142 V (with corresponding value, Ipc). The current is recorded as a 

function of the applied potential. 

Unless otherwise stated, all peak currents were determined in the form Ip ‒ IBg, where Ip 

is the observed peak current and IBg is the background current. As shown in Figure 2.1, 

the intersection of the two lines gives the IBg, and this is then subtracted from Ip to give 

the background corrected DA peak current (Ipa). This method of Ipa determination was 

also employed in differential pulse voltammetry (DPV) and rotating disc voltammetry 

(RDV) experiments.  

 

Figure 2.1: Typical current-potential profile of a cyclic voltammogram for a reversible redox 

species.  
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The CV technique was firstly used to characterise the prepared carbon paste materials. 

Secondly, it was used as an investigative tool to study the electrochemical behaviour of 

DA and 5-HT. Finally, the interfering compound AA on DA signal was analysed at 

different carbon paste material composites under CV. 

2.2.3 Linear Sweep Voltammetry 

Linear sweep voltammetry (LSV) is a voltammetric method where the current at a 

working electrode is measured while the potential between the working electrode and a 

reference electrode is swept linearly in time. Oxidation or reduction of species is 

registered as a peak or through in the current signal at the potential at which the species 

begins to be oxidized or reduced [3]. 

LSV was used as a preliminary technique to examine the electrochemical behaviour of 

bare CPE in the electrolyte solution (0.1 M PBS). 

2.2.4 Differential Pulse Voltammetry 

Differential pulse voltammetry (DPV) is one of the most suitable techniques to 

characterize electrochemical systems since it presents a peak-shaped response with the 

nonfaradaic contribution and the ohmic drop effect significantly reduced as compared to 

alternative procedures [3, 4]. Improved detection limits are achieved by eliminating the 

double layer capacitance so that the current recorded is totally faradaic [5]. The 

potential wave form for DPV, shown in Figure 2.2, consists of small pulses (of constant 

amplitude) superimposed upon a staircase wave form. The current is sampled twice in 

each pulse period (once before the pulse, and at the end of the pulse). The difference 

between these two current values is recorded and plotted as a function of the applied 

potential. 

DPV was used to improve the detection limit of DA and investigate the voltammetric 

response of a ternary mixture containing DA, AA and 5-HT solution. 
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Figure 2.2: Schematic of differential pulse voltammetry technique, showing the step method applied 

and the parameter setting required. 

2.2.5   Rotating Disc Voltammetry 

A rotating disc electrode (RDE) is a hydrodynamic working electrode in a three 

electrode system [3]. RDE provides an efficient and reproducible mass transport, and 

hence the analytical measurement can be made with high sensitivity. The convective 

nature of the electrode results in very short response time. The detection limits of the 

electrode can be lowered via periodic changes in the rotation speed. The more useful 

descriptor of rotation rate is the angular velocity, ω (s
-1

), where ω = 2πf. Electrical 

connection is made to the electrode by means of a brush contact. 

The RDE as shown in Figure 2.3 was constructed from carbon paste composite 

imbedded in a rod of an insulating material (Teflon). The paste was firmly packed into 

the cavity of the Teflon in order to provide sufficient coverage of the conical part of 

aluminium. The aluminium itself was attached to a motor which provided electrical 

contact to the paste. 
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(a) 

 

 

(b) 

Figure 2.3: Schematic illustration of constructed electrode for Rotating disc voltammetry 

experiments. Side view (a) and bottom view (b).  

 

During the experiment, the electrode was concentrically rotated in the solution, creating 

convection path flowing perpendicular to the electrode and then radially out from the 

surface as shown in Figure 2.4. This rapid mixing of the solution enables constant 

replenishment of the detected species to the electrode surface. A potential was applied 

relative to a SCE reference electrode while a platinum (Pt) wire served as an auxiliary 

electrode.  

 

Figure 2.4: Flow profile at a rotating disc electrode.  

 

In general, for the RDE, the limiting current, IL, produced by oxidation or reduction of 

DA at the different electrode surface can be described by the Levich equation (Equation 

2.1), where n is the number of electron transferred per molecule, F is the Faraday 

constant, A is the electrode surface area, C is the analyte concentration, D is the analyte 

diffusion coefficient, ν is the kinematic viscosity of the solution and ω is the angular 

velocity of the rotating disk.  

 IL = 0.62nFACD
2/3

ν
-1/6
ω

1/2
 Equation 2.1 
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The current is measured as a function of the potential and the resulting voltammograms 

generally exhibit a sigmoid shaped wave as shown in Figure 2.5. A schematic 

representation of the set-up is shown in Figure 2.6 [6]. 

RDV was used to determine the heterogeneous rate constant for electron transfer 

between electrode surface and DA. 

 

Figure 2.5: Typical rotation disc response.  
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Figure 2.6: Schematic illustration of the rotation disc voltammetry set-up, with three-cell 

electrode system [6].   

 

2.2.6 Microscopy and Spectroscopy Techniques 

2.2.6.1 Microscopy  

Microscopy is the technical field of using microscopes to view samples or objects. 

There are three well-known branches of microscopy: optical, electron and scanning 

probe microscopy. Optical and electron microscopy involve the diffraction, reflection, 

or refraction of electromagnetic radiation / electron beam interacting with the subject of 

study, and the subsequent collection of this scattered radiation in order to build up an 

image. This process may be carried out by wide-field irradiation of the sample 

(transmission electron microscopy) or by scanning of a fine beam over the sample 

(scanning electron microscopy). Scanning probe microscopy involves the interaction of 

a scanning probe with the surface or object of interest [7].   
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2.2.6.1.1 Optical microscopy 

Optical microscope remains the fundamental tool for phase identification. The optical 

microscope magnifies an image by sending a beam of light through the object. The 

condenser lens focuses the light on the sample and the objective lens magnifies the 

beam, which contains the image, to the projector lens so the image can be viewed. 

Optical microscopy was employed to observe the surface of S-β-CD modified CPE after 

an electrochemical measurement in order to describe whether or not the paste was 

stable.  

2.2.6.1.2 Scanning Electron Microscope (SEM) 

Scanning electron microscope (SEM) is a powerful microscope that images the sample 

surface by scanning it with a high-energy beam of electrons in a faster scan pattern. The 

electrons interact with the atoms that make up the sample producing signals that contain 

information about the sample's surface topography, composition and other properties 

such as electrical conductivity [7]. Since the SEM is operated under high vacuum the 

specimens that can be studied must be compatible with high vacuum (~ 10-5 mbar). 

This means that liquids and materials containing water and other volatile components 

cannot be studied directly. Also fine powder samples need to be fixed firmly to a 

specimen holder substrate so that they will not contaminate the SEM specimen chamber. 

Non-conductive materials need to be attached to a conductive specimen holder and 

coated with a thin conductive film by sputtering or evaporation. Typical coating 

materials are Au, Pt, Pd, their alloys, as well as carbon. Applications include physical 

and chemical characterization of surfaces, microstructural analysis, corrosion damage, 

particle analysis and foreign materials. 

SEM was employed for the characterisation of the carbon paste material composites. 

EDX was used for elemental analysis of the surface of carbon paste composite.    

2.2.6.2 Spectroscopy 

Spectroscopy is the study of the interaction between radiation and matter as a function 

of wavelength, frequency or energy which is usually in the form of photon of light and 

represented as E = hν where h is the Planck constant [8]. A plot of the response as a 

function of wavelength - or more commonly frequency - is referred to as a spectrum.   
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2.2.6.2.1 Energy dispersive X-ray spectroscopy (EDX) 

Energy dispersive X-ray spectroscopy (EDX) is an analytical technique used for the 

elemental analysis or chemical characterization of a sample. As a type of spectroscopy, 

it relies on the investigation of a sample through interactions between electromagnetic 

radiation and matter, analysing X-rays emitted by the matter in response to being hit 

with charged particles.  The characterisation capabilities using EDX are due in large 

part to the fundamental principle that each element has a unique atomic structure 

allowing unique set of peaks on its X-ray spectrum [9-11]. All elements from atomic 

number 4 (Beryllium) to 92 (Uranium) can be detected in principle, though not all 

instruments are equipped for 'light' elements (Z < 10). Qualitative analysis involves the 

identification of the lines in the spectrum and is fairly straightforward owing to the 

simplicity of X-ray spectra. Quantitative analysis (determination of the concentrations 

of the elements present) entails measuring line intensities for each element in the sample 

and for the same elements in calibration Standards of known composition. By scanning 

the beam in a television-like raster and displaying the intensity of a selected X-ray line, 

element distribution images or 'maps' can be produced. Also, images produced by 

electrons collected from the sample reveal surface topography or mean atomic number 

differences according to the mode selected. As already mentioned, EDX was used to 

determine the elemental composition at the surface of the different carbon paste 

composites. 

2.2.6.2.2 Infrared spectroscopy 

Infrared (IR) spectroscopy is a well-known analytical technique which deals with the 

infrared region of the electromagnetic spectrum. It can be used to identify compounds or 

investigate sample composition. Infrared spectroscopy exploits the fact that molecules 

have specific frequencies at which they rotate or vibrate corresponding to discrete 

energy levels (vibrational modes). These resonant frequencies are determined by the 

shape of the molecular potential energy surfaces, the masses of the atoms and, by the 

associated vibronic coupling. Infrared spectroscopy is widely used in both research and 

industry as a simple and reliable technique for measurement, quality control and 

dynamic measurement.  

In this study, IR was used for the characterisation of graphene and the synthesised 

macrocycles. As all compounds were in solid state, the method utilised to prepare the 

sample consisted of grinding a quantity of the compound with potassium bromide finely 

(to remove scattering effects from large crystals). The powder mixture was then pressed 
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in a mechanical press to form a translucent pellet through which the beam of the 

spectrometer can pass [12]. 

2.2.6.2.3 Ultraviolet-visible spectroscopy 

Ultraviolet-visible spectroscopy (UV-Vis) involves the spectroscopy of photons in the 

UV-visible region. The absorption in the visible ranges directly affects the colour of the 

chemicals involved. In this region of the electromagnetic spectrum, molecules undergo 

electronic transitions.  Absorption of photons of light measures transitions from the 

ground state to the excited state [12].  

Molecules containing π-electrons or non-bonding electrons can absorb the energy in the 

form of ultraviolet or visible light to excite these electrons to higher anti-bonding 

molecular orbitals. The more easily excited the electrons, the longer the wavelength of 

light it can absorb. 

This analytical technique can be used to determine the amount of substance present in a 

sample. This is because the absorbance is proportional to the concentration of the 

absorbing species given by the Beer-Lambert law, A = ε l c, where A is the absorbance, 

ε is the molar absorptivity, l is the path length and c is the concentration of the 

absorbing species. UV-Vis spectroscopy is routinely used in the quantitative 

determination of solutions of transition metal ions and highly conjugated organic 

compounds [13]. 

In this study, UV-Vis was employed for the characterisation of Fc-β-CD and graphene 

oxide. 

2.2.6.2.4 Electrochemical Impedance Spectroscopy (EIS) 

Electrochemical impedance spectroscopy (EIS) is a relatively new and powerful method 

of characterizing many of the electrical properties of materials and their interfaces with 

electronically conducting electrodes. It may be used to investigate the dynamics of 

bound or mobile charge in the bulk or interfacial regions of any kind of solid or liquid 

material: ionic, semiconducting, mixed electronic–ionic and even insulators (dielectrics) 

[14]. It is also used to explore the properties of porous electrodes, and for investigating 

passive surfaces [15]. EIS technique has been shown to be effective for probing the 

redox and structural features of a surface-confined species [16]. Other advantages 

include: (i) rapid acquisition of data such as ohmic resistance, capacitance, inductance, 

film conductivity, as well as charge or electron transfer at the electrode-film interface, 
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(ii) the ability to obtain accurate, reproducible measurement, and (iii) characterize 

interfacial properties in the absence of redox reactions. Impedance is measured by 

applying a sinusoidal potential V (t), of small amplitude to an electrochemical cell and 

measuring resultant sinusoidal current I (t), through the cell [17, 18]. The applied 

sinusoidal potential and current are represented as a function of time. These 

measurements are done over a suitable frequency range and the results can be related to 

the physical and chemical properties of the material [17, 18]. The relationship is shown 

in Equation 2.2:  

 Z = V (t) / I (t) Equation 2.2 

where V (t) and I (t) are the sinusoidal applied voltage and sinusoidal current at time t, 

respectively. The sinusoidal applied voltage V (t) can be expressed as shown in 

Equation 2.3, where Vo is the maximum potential amplitude, ω is the radial frequency 

(in rad.s
-1
) and can be related to frequency f (Hz) as ω = 2πf.  

 V (t) = Vo sinωt Equation 2.3 

At the same frequency as the applied sinusoidal potential, the current response I (t) is 

also sinusoidal but with a shift in phase (Equation 2.4),  

 I (t) = Iosin(ω+θ) Equation 2.4 

where Io is the maximum current applied and θ is the phase shift by which the voltage 

lags the current [18]. Therefore, impedance is a vector quantity where the quantity Z = 

V (t) / I (t) represents the magnitude and θ represent the direction. The complex notation 

of impedance is shown in Equation 2.5.  

 Z = Z’ + jZ’’ Equation 2.5 

where Z’ and Z’’ are the real and imaginary parts of the impedance respectively and j is 

a complex number [18]. If the real part is plotted on the X-axis and the imaginary part is 

plotted on the Y-axis of a chart, a Nyquist plot is obtained. The Nyquist plot has several 

advantages. The primary one is that the plot format makes it easy to see the effects of 

the ohmic resistance. At sufficiently high frequencies, it is easy to extrapolate the 

semicircle toward the left, down to the x axis to read the ohmic resistance. EIS data are 

commonly analysed by fitting to an equivalent electrical circuit model. Most of the 

circuit elements in the model are common electrical elements such as resistors, 

capacitors, and inductors. The electrochemical properties of graphene paste electrode 

(compared to that obtained at bare CPE) were examined using ESI. 
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2.2.6.2.5 Nuclear magnetic resonance (NMR) spectroscopy 

Nuclear Magnetic Resonance (NMR) spectroscopy has become the dominant method of 

analysis for organic compounds [19], because in many cases it provides a way to 

determine an entire structure. 

The NMR spectroscopy phenomenon is based on the fact that nuclei of atoms have 

magnetic properties that can be utilised to yield chemical information. In many atoms 

such as 
1
H, 

13
C, 

31
P, 

15
N, 

19
F, the nucleus does possess an overall spin of ½. For spin ½ 

nuclei, the angular momentum can have two possible values: +½ or –½. Therefore, 

these nuclei align either with or against the applied magnetic field. Depending on the 

type of nucleus, there is a characteristic resonance frequency [20]. 

1
H-NMR is the most frequently used and can provide information on a wide variety of 

factors including the number of different hydrogens present in a molecule and the 

electronic environment of the different types of hydrogen. 

In conjunction to an applied magnetic field, there is a local magnetic field surrounding 

the molecule. This is due to the electron clouds surrounding each atom. These local 

fields can then shield the molecule from the applied magnetic field [19]. As each atom 

of a molecule has a varying arrangement of electrons, the degree of shielding can differ. 

This is then translated onto a 
1
H-NMR spectrum with a unique signal, known as a 

chemical shift (δ), measured in parts per million (ppm). 

1
H-NMR spectra were typically recorded from 0 to 10 ppm. The greater the effect of 

shielding, the smaller the chemical shift, thus the closer the 
1
H-NMR signal is to 0 ppm. 

Thus, a highly shielded molecule appears upfield on a 
1
H-NMR spectrum. The reverse 

is the case for a poorly shielded molecule; it has a larger chemical shift and appears 

downfield on the spectrum. 

In this study, NMR spectroscopy was used to characterise the synthesised cyclodextrin 

derivatives. In addition, 
1
H-NMR was employed to investigate the complexation of 

these cyclodextrins with DA. This was achieved by monitoring the chemical 

environment of the individual DA protons which were most affected by complexation. 

The chemical shift of these protons were also used to evaluate the binding or association 

constant (Ka) and the stoichiometry of the complex. 
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2.3 The Electrochemical Cell Set-up 

All electrochemical techniques were carried out using a conventional three-cell 

electrode system, as shown in Figure 2.7 [19]. This system consists of a working 

electrode (WE), a counter or auxiliary electrode (CE/AE) and a reference electrode (RE 

or REF). In this study, The REF was a saturated calomel electrode (SCE) and the CE 

consisted of a platinum (Pt) wire. The WE was mainly modified CPE. Some details on 

its construction are discussed in Chapter 3. 

 

Figure 2.7: Schematic of the electrochemical cell used for electrochemical measurements [21]. 

 

The cell was then connected to a potentiostat and the results were recorded by a 

computer in the manner shown in Figure 2.8 [21]. In general, the potential is measured 

between the REF and the WE and the current is measured between the WE and the CE. 
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Figure 2.8: Experiment set-up of a potentiostat connected to a three-cell electrode and the data 

recorded using computer software [21]. 

 

2.4 Chemicals and Solutions 

The chemicals used throughout this study were purchased from Sigma-Aldrich or its 

subsidiary company Fluka and used as received. The electrochemical electrolytes were 

prepared in milli Q water. In general, for electrochemical analysis, 0.1 M Phosphate 

Buffer Solution (PBS) was used as the supporting electrolyte. PBS was made of 

K2HPO4 and KH2PO4. KCl (0.1 M) was only used for comparative purposes. Artificial 

cerebrospinal fluid (aCSF) was used to simulate the salts concentration in the brain.  All 

DA, AA or 5-HT solutions were prepared freshly before each experiment. In the event 

that a change in pH was required, it was adjusted accordingly with appropriate amount 

of an acidic or a basic solution using H2SO4 and NaOH respectively. 

2.5 Instrumentation 

Potentiostatic, Linear sweep voltammetry (LSV) and cyclic voltammetry (CV) were 

carried out using a Solartron potentiostat (Model SI 1285A). Differential pulse 

voltammetry (DPV) was carried out using a Chi440 potentiostat (Model 400). The 

software package for the Solartron potentiostat was Scribner Associates Corrware for 

Windows Version 2.2 and in the case of the CHi440 potentiostat, Chi440 software, 

Version 2.0.6 was employed. From each of these software packages, data were then 

transferred and further analysed using Scribner Associates CorrView Version 2.3a. 
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During the rotary disc voltammetry (RDV) experiments, the working electrode was 

rotated using the Princeton Applied Research Model 636 Ring-Disc Electrode System 

apparatus. 

Electrochemical impedance spectroscopy (ESI) was carried out using a Solartron 

potentiostat (Model SI 1287) coupled to a Solartron frequency response analyser 

(Model 1255A). Further analysis was performed with Zplot (Version 2.1). 

Scanning electron microscopy (SEM) was carried out on a Hitachi S-3200-N with a 

tungsten filament electron source, maximum magnification of 300,000x and a resolution 

3.5 nm. This microscope was equipped with an Oxford Instrument INCAx-act EDX 

system with a silicon drift detector. The sample analysed were sputtered with a very thin 

gold film using an AGAR Automatic Sputter Coater in order to obtain a better 

resolution images. 

The NMR spectroscopy experiments were carried out using a Shielded Bruker Avance 

AV 300 high performance digital NMR spectrometer complete with Bruker Avance 300 

digital single bay AV NMR console, Ultrashield 300 MHz magnet and QNP 5 mm 

probe. 

Mass spectroscopy was performed on an Agilent-LC 1200 Series coupled to a 6210 

Agilent Time-Of-Flight (TOF) mass spectrometer equipped with an electrospray source 

both positive and negative (ESI +/‒). 

UV-Vis spectroscopy experiments were carried out on Varian Cary 50 UV-Vis 

spectrometer. 

Conductivity measurements were performed using equipment Jenway 4510. 

General analysis of data and plotting of graphs were performed in Sigmaplot 12.0. A 

linear regression equation is given as f = y0 + a*x. 

2.6 The Working Electrodes 

Carbon paste electrode (CPE) is the main type of electrode used throughout this study.  

Details on its fabrication are given in Chapter 3. Glassy carbon electrode (GCE) was 

only used for comparative purposes.  
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2.6.1 Modification of Carbon Paste Electrodes 

As mentioned in Chapter 1, CPEs can be modified using a number of methods and with 

different compounds [22, 23] to achieve the desired chemical, electrochemical, catalytic, 

photochemical or optical properties [24]. CPEs are useful to construct electrochemical 

sensors. They can be utilised in a large potential interval and offer several interesting 

possibilities when studying compounds that are soluble in aqueous media. In this study, 

various techniques were used to modify CPEs such as the composite, the dip coating 

and the drop-casting technique.    

2.6.1.1 Composite technique 

This process consisted of impregnating the carbon paste material with a chemical 

modifier.  In this study, appropriate amount of the chemical modifier was added to the 

graphite (or graphene) prior to mixing. The modifiers employed based on this technique 

are sulfated β-cyclodextrin (S-β-CD), carboxymethyl β-cyclodextrin (CM-β-CD), 

neutral β-cyclodextrin (β-CD), Nafion, Heptakis6-deoxy-6-(1-(4,5-dicarboxyl)-1,2,3-

triazolyl)-β-CD 6.6 (CD6.6), Heptakis(6-(4-hydroxymethyl-1H-[1,2,3]triazol-1-yl)-6-

deoxy)-β-cyclodextrin 6.7 (CD6.7). 

2.6.1.2 Dip Coating 

It involves the immersion of the bare electrode in solution of a catalyst or a modifier for 

a period of time to allow for surface adsorption of the material. The electrode is later 

withdrawn and the solvent is allowed to dry [25, 26]. In this study, dip coating was 

carried out using nafion as modifier for electrochemical detection of DA. 

2.6.1.3 Drop-Casting 

The bare electrode is modified by placing a (or few) drop(s) of the catalyst or modifier 

on its surface and allowing the solvent to dry off [27, 28]. Nafion was drop-cast on bare 

CPE for electrochemical detection of DA.  

2.6.2  Carbon Composite Microelectrodes 

Carbon composite microelectrodes were prepared (courtesy of Dr Niall Finnerty) by 

trimming approximately 4.5 cm lengths of 200 µm coated Teflon-insulated silver wire 

(200 µm bare diameter, 270 µm coated diameter (8T), Advent Research Material, 

Suffolk, UK). The wire was carefully cut at both ends using a sharp scalpel to create an 

even disk surface. 3 mm of the wire was exposed by removing the Teflon from one end 
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of the wire and the Teflon was carefully pushed up the wire to create a 2mm cavity. The 

cavity was then packed with carbon composite by dipping the tip of the electrode into 

the paste. This process was repeated until the cavity was completely packed. A flat 

active surface at the tip of the electrode was obtained by gently tapping the electrode off 

a hard, flat surface. The 3 mm of exposed wire was soldered into a gold clip for 

electrical conductivity and rigidity. A schematic representation of the microelectrode is 

shown in Figure 2.9. 

 

Figure 2.9: Schematic representation of a carbon paste microelectrode. 

 

2.7 Synthesis of Cyclodextrin Derivatives 

2.7.1 General Procedure and Instrumentation 

All chemicals purchased were reagent grade and used without further purification unless 

stated otherwise. Toluene was distilled over Na wire and benzophenone. Anhydrous 

DMF and Pyr were purchased from Sigma Aldrich. Reactions were monitored with thin 

layer chromatography (TLC) on Merck Silica Gel F254 plates, using mixtures of Pet 

Ether/EtOAc unless otherwise stated. Detection was effected either by visualisation in 

UV light and/or charring in a mixture of 5% sulphuric acid-EtOH or 

phosphomomolybdic acid-EtOH. Evaporation under reduced pressure was always 

affected with the bath temperature kept below 40 
o
C. 

NMR spectra were obtained on a Bruker Avance 300 MHz spectrometer operated at 300 

MHz for 
1
H NMR analysis and 75 MHz for 

13
C analysis at 298 K. Proton and carbon 

signals were assigned with the aid of 2D NMR experiments (COSY) and DEPT 

experiments. Chemicals shifts for 
1
H NMR acquired in CDCl3 are reported in ppm 

relative to residual solvent proton (δ 7.26 ppm). Flash chromatography was performed 

according to the method of Still et al. with Merck Silica Gel 60, using adjusted mixtures 

of Pet Ether/EtOAc unless otherwise stated. High resolution mass spectra (HR-MS) 
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were performed on an Agilent-L 1200  Series coupled to a 6210 Agilent Time-of-Flight 

(TOF) mass spectrometer equipped with an both a positive and negative electrospray 

source. Infra-red spectra were obtained in the region 4000-400 cm
-1

 on a Nicolet Impact 

400D spectrophotometer or using a Perkin Elmer 2000 FTIR spectrometer. 

2.7.2   Synthesis of Heptakis(6-iodo-6-deoxy)-β-cyclodextrin 

(β-CD-I7) 6.1 [29] 

O

I

HO
OH

O

7  

6.1 

 

I2 (10.9 g, 43 mmol) and Ph3P (11.28 g, 43 mmol) were mixed in dry DMF ( 0 mL). 

The solution increased in temperature from room temperature to about 60   C after 

addition was complete. Then, oven-dried β-cyclodextrin (2 g, 1.76 mmol) was added to 

the dark brown solution. The reaction mixture was stirred for 20 h at 90   C under N2 

atmosphere. It was concentrated under reduced pressure to 
1
/3 of its original volume and 

the pH was adjusted to 9-10 by addition of sodium methoxide (3 M, 13 mL), with 

simultaneously cooling on ice-water bath. The brown orange precipitate obtained was 

filtered, washed with excess methanol and dried under high vacuum to yield 

Heptakis(6-iodo-6-deoxy)-β-cyclodextrin (2.784 g, 83 %) as a light brown solid. 

1
H-NMR (300 MHz, DMSO-d6): δ = 3.1  – 3.54 (m, 21H, Ha-6, H-4 and H-2), 3.54 – 

3.75 (m, 14H, H-3 and H-5), 3.81 (d, J = 9.3 Hz, 7H, Hb-6), 4.98 (br s, 7H, H-1), 5.72 – 

6.47 (br s, 14H, OH-2 and OH-3). 

IR (KBr, cm
-1

): 3383 (O-H), 2915 (C-H), 1047 (C-O-C). 

The data is in agreement with the literature values [29]. 
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2.7.3  Synthesis of Heptakis(6-azido-6-deoxy)-β-cyclodextrin 

(β-CD-(N3)7) 6.2 [29] 

 

O

N3

HO
OH

O

7  

6.2 

 

Compound 6.1 (1.416 g, 0.74 mmol) was dissolved in anhydrous DMF, followed by 

addition of NaN3 (1.93 g, 29.7 mmol). The resulting suspension was stirred at  0   C for 

24 h under N2 atmosphere. The suspension was then concentrated under reduced 

pressure to 
1
/3 of its starting volume and washed with distilled water. After filtration, the 

residue was washed with water and dried under high vacuum to yield Heptakis(6-azido-

6-deoxy)-β-cyclodextrin (0.6 g, 62 %) as a slight brown powder. 

1
H-NMR (300 MHz, DMSO-d6): δ = 3.19 – 3.47 (m, 14H, H-4 and H-2), 3.47 – 3.68 (m, 

14H, H-3 and H-5), 3.68 – 3.94 (m, 14H, H-6), 4.91 (br s, 7H, H-1), 5.78 (br s, 7H, OH-

3), 5.93 (br s, 7H, OH-2). 

13
C-NMR (300 MHz, DMSO-d6): δ =  1. 2 (C-6), 70.28 (C-5), 71.95 (C-2), 72.54 (C-

3), 83.14 (C-4), 101.99 (C-1). 

IR (KBr, cm
-1

): 3380 (O-H), 2927 (C-H), 2107 (N3), 1049 (C-O-C). 

The data is in agreement with the literature values [29]. 

2.7.4  Synthesis of Acetylated-per-azido-β cyclodextrin 6.3 [30] 

O

N3

AcO
OAc

O

7  

6.3 

 

To a solution of β-CD-(N3)7 6.2 (0.3 g, 0.23 mmol) in dry pyridine (6 mL), acetic 

anhydride (6 mL) was added. The mixture was stirred for 24 h at room temperature 

under N2 atmosphere. Then, the mixture was concentrated and the residue was dissolved 
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in CH2Cl2 (10 mL) and washed with 0.1 N HCl solution (2 × 10 mL) followed by brine 

(2 × 10 mL) and water (2 × 10 mL). The organic layer was dried over MgSO4 and 

concentrated to give a crude orange product. The crude product was purified by column 

chromatography (EtOAc / Pet. Ether 3:1). The proper fractions were collected and 

concentrated to give Acetylated-per-azido-β-cyclodextrin 6.3 (0.31 g, 70 %) as white 

solid. 

1
H-NMR (300 MHz, DMSO-d6): δ = 1.92 – 2.16 (s, 42H, COCH3), 3.55 – 3.70 (m, 14H, 

H-6), 3.75 – 3.93 (m, 7H, H-4), 3.94 – 4.07 (m, 7H, H-5), 4.82 (dd, J =  3.0, 6.0 Hz, 7H, 

H-2), 5.10 (d, J = 3.0 Hz, 7H, H-1), 5.30 (t, J =  9.0 Hz, 7H, H-3). 

13
C-NMR (300 MHz, DMSO-d6): δ = 20. 1 (COCH3), 50.78 (C-6), 69.68 (C-5), 69.82 

(C-2), 76.85 (C-3), 96.29 (C-4), 169.32 (C-1), 170.00 (COCH3), 170.34 (COCH3). 

ESI-MS (m/z): calculated for (M+Na)
+
 C70H91N21O42Na: 1920.5602; Found: 1920.5502. 

IR (KBr, cm
-1

): 3631 (OH), 2942 (C-H), 2104 (N3), 1742 (CO), 1375 (CH3), 1025 (C-

O-C). 

The data is in agreement with the literature values [30]. 

2.7.5  Synthesis of Dimethyl Acetylenedicarboxylate 6.4 [31] 

 

H3CO2C CO2CH3  

6.4 

 

Acetylenedicarboxylic acid (1 g, 8.77 mmol) was dissolved in absolute methanol (3 mL) 

and concentrate H2SO4 (0.5 mL) was added to the solution. The flask was stoppered and 

the reaction mixture was allowed to stand with intermittent shaking for 72 h at room 

temperature during which a layer of ester separated. Then, the mixture was poured over 

crushed ice and extracted with two 5 mL portions of ether. The combined ether extract 

was dried over CaCl2 and evaporated under reduced pressure to yield the title compound 

6.4 (0.769 g, 62 %) as a clear, colourless liquid. It was used without further purification. 

1
H-NMR (300 MHz, CDCl3): δ = 3.  6 (s, 6H, CO2CH3) 

The data is in agreement with the literature values [31]. 
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2.7.6  Synthesis of Acetylated Heptakis-6-deoxy-6-(1-(4,5-

dicarboxyl)-1,2,3-triazolyl)-β-CD 6.5 [32] 

O

N

AcO
OAc

O

7

N

N
H3CO2C

CO2CH3

 

6.5 

 

The acetylated azido compound 6.3 (0.235 g, 0.12 mmol) was dissolved in toluene (5 

mL). Dimethyl Acetylenedicarboxylate (0.32 mL, 2.60 mmol) was added to the 

solution, which was refluxed for 17 h at 110   C under argon atmosphere. The mixture 

was concentrated under reduced pressure, yielding a crude oil product. The crude 

product was purified by column chromatography (Toluene / Ethanol 9:1). The correct 

fractions were collected and concentrated to afford the title compound 6.5 (0.35 g, 85 %) 

as white solid. 

1
H-NMR (300 MHz, CD3CN): δ = 2. 01 (s, 21H, COCH3), 2.12 (s, 21H, COCH3), 3.55 

– 3.67 (m, 7H, H-4), 3.82 (s, 21H, CO2CH3), 3.86 (s, 21H, CO2CH3), 4.42 – 4.62 (m, 

14H, H-2 and H-5), 4.82 – 5.01 (m, 14H, H-6), 5.42 – 5.55 (m, 14H, H-1 and H-3). 

13
C-NMR (300 MHz, DMSO-d6): δ = 20.00 (COCH3), 48.88 (C-6), 51.97, 53.08 

(CO2CH3), 68.79, 69.48, 69.84 (C-2, C-3, C-5), 76.28 (C-4), 95.94 (C-1), 132.27, 

139.09 (CC), 158.89, 160.10 (COCH3), 169.37, 169.99 (COCH3). 

IR (KBr, cm
-1

): 3464 (OH), 1747 (CO), 1372 (CH3), 1049 (C-O-C). 

The data is in agreement with the literature values [32]. 
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2.7.7  Synthesis of Heptakis-6-deoxy-6-(1-(4,5-dicarboxyl)-

1,2,3-triazolyl)-β-CD 6.6 [32] 

O

N

HO
OH

O

7

N

N
HO2C

CO2H

 

6.6 

 

Compound 6.5 (0.1 g, 0.035 mmol) and KOH (0.108 g, 1.92 mmol) were mixed in 

dioxane-CH3OH-H2O (17:2:1). The mixture was allowed to stir at room temperature for 

24 h. After this time, a white precipitate was formed all around the flask. The solvent 

was carefully decanted, and the crude product was triturated in ethanol (5 mL). The 

crude product was filtered, re-dissolved in water and acidified to pH 2 by a strong cation 

exchanger under H
+
 form (Dowex 50W). The solution was concentrated and dried under 

high vacuum to yield the title compound 6.6 (0.55 g, 74 %) as a white solid. 

1
H-NMR (300 MHz, D2O): δ = 3.30 (t, 7H, J = 9.0 Hz,  H-3), 3.35 – 3.45 (m, 7H, H-2), 

3.83 (t, 7H, J =  9.0 Hz, H-4), 4.09 – 4.24 (m, 7H, H-5), 4.29 – 4.47 (m, 7H, Ha-6), 4.56 

– 4.75 (m, 7H, Hb-6), 5.01 (d, J = 3.0 Hz, 7H, H-1). 

13
C-NMR (300 MHz, D2O): δ = 49.14 (C-6), 69.53, 71.65, 72.35 (C-2, C-3, C-5), 82.86 

(C-4), 101.74 (C-1), 133.53, 139.37 (CC), 160.76, 163.23 (CO2H). 

The data is in agreement with the literature values [32]. 

2.7.8  Synthesis of Heptakis(6-(4-hydroxymethyl-1H-[1,2,3] 

triazol-1-yl)-6-deoxy)-β-cyclodextrin 6.7 [33] 

O

N

HO
OH

O

7

N

N

HO

 

6.7 
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Azide 6.3 (0.5 g, 0.038 mmol ) and CuI (0.36 g, 0.19 mmol) were dissolved in 50 % 

MeOH and DMF (1 mL) to which propargyl alcohol (15.8 µL, 0.27 mmol) and DIEA 

(33 µL, 0.19 mmol) were added by syringe and the mixture was stirred at rt for 24 h. 

The resulting green suspension was clarified using aqueous NH4OH (30 %, 2mL), and 

Chelex 100 sodium form was added to the deep blue solution to complex copper ions. 

The solution was allowed to stir vigorously overnight, and the yellow supernatant 

obtained was concentrated to give the crude product which was triturated with absolute 

ethanol to yield the title compound 6.7 (0.13 g, 18 %) as a beige powder. 

1
H-NMR (300 MHz, D2O): δ = 3.3  (t, 7H, J = 9 Hz, H-4), 3.51 – 3.62 (m, 7H, H-2), 

3.95 (t, 7H, J = 9 Hz, H-3), 4.06 – 4.46 (m, 35H, H-6, H-5 and CH2OH), 5.07 (d, 7H, H-

1), 7.85 (s, 7H, triazole H).  

13
C-NMR (300 MHz, DMSO-d6): δ = 49.29 (COH, triazole), 54.59 (C-6), 69.65 (C-5), 

71.72 (C-3), 72.44 (C-2), 82.50 (C-4), 101.51 (C-1), 124.11, 147.58 (CC). 

ESI-MS (m/z): calculated for (M+H)
+
 C63H91N21O35H: 1702.6144; Found: 1702.6118. 

 The data is in agreement with the literature values [33]. 

2.7.9 Synthesis of Heptakis(6-amino-6-deoxy)-β-cyclodextrin 

(β-CD-NH2) 6.8 [34] 

O

NH2

HO
OH

O

7  

6.8 

 

The azido compound 6.3 (0.5 g, 0.38 mmol) was dissolved in DMF (10 mL) and PPh3 

(1.58 g, 6.01 mmol) was added. The evolution of N2 can be observed by the formation 

of bubbles in the reaction flask. After about 1 h, during which time the evolution of N2 

ceased, concentrated aqueous NH3 (1.5 mL, approximately 35 %) was added dropwise 

to the solution. Shortly after the addition of the NH3 solution was completed, the 

reaction mixture turned into an off-white suspension. It was stir at rt for 24 h, and the 

resulting suspension was concentrated under reduced pressure. The product was then 

precipitate by addition of EtOH (25 mL). The precipitate was washed with EtOH and 
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dried under high vacuum to yield the title compound 6.8 (0.38 g, 89 %) as a light brown 

solid. 

To allow characterisation of 6.8 by NMR spectroscopy, the HCl salt form of 6.8 was 

prepared by suspending compound 6.8 in a small volume of H2O followed by addition 

of dilute HCl until the pH had reached about 6. At this pH, a clear solution formed 

which gave a yellow glass when evaporated under reduced pressure.  

1
H-NMR (300 MHz, D2O): δ = 3.10 – 3.26 (m, 7H, Ha-6), 3.30 – 3.44 (m, 14H, H-2 

and H-4), 3.45 – 3.67 (m, 7H, H-3), 3.91 (t, 7H, J = 9 Hz, H-5), 4.06 – 4.19 (m, 7H, Hb-

6), 5.08 (d, J = 3 Hz, 7H, H-1). 

13
C-NMR (300 MHz, D2O): δ = 40.07 (C-6), 67.66, 71.45, 71.99 (C-2, C-3, C-5), 82.05 

(C-4), 101.24 (C-1). 

ESI-MS (m/z): calculated for (M+H)
 +

 C42H77N7O28H: 1128.4917; Found: 1128.4911. 

IR (KBr, cm
-1

): 3370 (OH and NH), 2942 (C-H), 1050 (C-O-C). 

The data is in agreement with the literature values [34]. 

2.7.10 Synthesis of Ferrocene β-CD (Fc-β-CD) complex 

Ferrocene (2 g, 10 mmol) and an excess of neutral β-CD (4 g, 3.53 mmol) were added 

into ethylene glycol (100 mL), followed by stirring at room temperature for 24 h. Then, 

the mixture was laid up motionlessly for more than 8 h so as to allow the inclusion 

reaction conducting completely. The solvent was carefully decanted and the precipitate 

was washed with distilled water (100 mL) to allow the insoluble complex separate from 

solution. After filtration, the precipitate was washed with THF (100 mL) to remove 

excess Ferrocene and distilled water (3 × 100 mL). Fc-β-CD inclusion complex was 

obtained as light yellow powder, and characterised by IR and UV-Vis spectroscopy. 

Figure 2.10 shows the IR spectra of neutral β-CD and Fc-β-CD inclusion complex. The 

frequencies for β-CD observed at 3389.58 cm
-1

, 2927.29 cm
-1

, and 1157.63 cm
-1 

correspond to the symmetric and antisymmetric stretching of OH, CH2, and C–C, 

respectively. Meanwhile the respective functional groups from Fc-β-CD inclusion 

complex were recorded at 3368.45 cm
-1

, 2927.29 cm
-1

, 1156.58 cm
-1

. Table 2.1 shows 

the difference in frequencies between β-CD and the inclusion complex. The shift 

difference observed might be owing to the effect of Ferrocene included in the cavity of 



Chapter 2                                                                                           Experimental Details 

  
54 

 
  

β-CD. In addition, the absorption peak at 423 nm observed from the UV-Vis spectrum 

of Fc-β-CD inclusion complex (Figure 2.11) was assigned to the characteristic peak of 

ferrocene [35]. 

 

 

Figure 2.10:  IR spectra of β-CD (−) and Fc-β-CD (−). 

 

Table 2.1: Comparison between characteristic functional groups intensity of βCD and the inclusion 

complex 

Functional groups 

Wavenumber (cm
-1

) 
Changes 

Δδ βCD 
FcβCD inclusion 

complex 

ν[OH] 3389.58 3368.45 +21.13 

ν[CH2] 2927.29 2924.82 +2.47 

ν[C−C] 1157.63 1156.58 +1.05 

 

 

 

Date: 25 February 2014

4000.0 3000 2000 1500 1000 450.0

cm-1

%T 

3368.45

2924.82

1638.74

1413.40

1368.51

1333.25

1244.94

1156.581030.51

945.45

828.57

756.53

704.36

579.01

529.66

493.14

3389.58
2927.29

1644.70

1416.28

1157.63 947.25

857.76

756.21

707.67

578.86



Chapter 2                                                                                           Experimental Details 

  
55 

 
  

 

Figure 2.11: UV-Vis spectrum of Fc-β-CD 

 

2.7.11 Synthesis of Graphene 

Graphene was synthesised based on the Hummers method [36, 37]. 

(i) Oxidation of graphite 

Graphite powder (4 g) was added to sulphuric acid (92 mL) and the mixture was stirred 

at room temperature for about 8 h. KMnO4 (12 g, 0.076 mol) was added and the 

reaction mixture was stirred for 30 min while maintaining the temperature at 36   C. The 

mixture was then heated at  0   C in a water bath for 1 h, followed by addition of water 

(200 mL). The reaction temperature was increased to 9    C for 30 min. Another portion 

of water (200 mL) and H2O2 were added. The mixture was then filtered while it was still 

hot. The cake obtained was washed with 5 % HCl and a large quantity of deionised 

water to give Graphite Oxide, which was re-dispersed in water by sonication for 1 h. 

The product was filtered through a Buchner funnel to give graphene oxide (GO) as a 

brown solid.  

(ii) Reduction of Graphene Oxide (GO) 

GO (100 mg) was loaded into a 250-mL round bottom flask and water (100 mL) was 

then added, yielding a dark brown dispersion. The dispersion was sonicated until no 

particulate matter was visible. Hydrazine hydrate (1 mL, 32.1 mmol) was then added 

and the solution heated in an oil bath at 95 ° C under a water cooled-condenser for 24 h 

over which the reduced GO precipitated out as a black solid. This product was isolated 
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by filtration over a Buchner funnel and washed copiously with water (5 × 100 mL), and 

dried over the funnel under a continuous air flow through the solid product cake. 

(iii)  Understanding chemical preparation of Graphene 

GO shows good hydrophilicity and dispersibility in water because it contains a large 

number of hydrophilic functional groups, such as OH, COOH and epoxide (as 

demonstration through IR spectroscopy) introduced during oxidation process of 

graphite. Thus, hydrophilic GO is readily exfoliated in water [38]. Ideally, GO must be 

rigorously reduced after exfoliation to recover the desirable properties of graphene. GO 

can be chemically reduced  with various reducing agents, such as hydrazine 

monohydrate [39-41] sodium borohydride [42, 43] hydroquinone [44] strongly alkaline 

[45] sulfur-containing compounds [46, 47] amines [48]. Among the reducing agents 

described above, hydrazine monohydrate is most widely used, mainly due to its strong 

reduction activity to eliminate most oxygen-containing functional groups of GO [41]. 

Hydrazine monohydrate was chosen in this study and its reaction with GO results in 

stable aggregate Graphene, insoluble in water as shown in Figure 2.12, whereas GO was 

well dispersed into water to form a stable dark brown suspension. This is evidence that 

most of the oxygen functional group have been removed during treatment of hydrazine 

monohydrate with GO. In addition, all attempts to disperse the as-prepared Graphene in 

organic solvents such a toluene, ether or chloroform failed. An illustration of the 

synthesis of Graphene is shown in Figure 2.13. 

 

 

Figure 2.12: Photographic images of (A) Graphene Oxide and (B) reduced Graphene in water. 

 

 

(A) (B) 
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(a) (b) 

(c) (d) 

Figure 2.13: Schematic of the procedure followed for the production of graphene. (a) Graphite, the 

starting material. (b) Graphite Oxide obtained by oxidative treatment of graphite, (c) exfoliation of 

Graphite Oxide by ultra-sonication generating Graphene Oxide, (d) reduction of GO using 

hydrazine monohydrate to produce graphene. 

 

 

(iv) Characterisation of graphene oxide and reduced graphene 

 

Figure 2.14 shows IR spectra of graphene oxide and graphene. As observed, the 

presence of different oxygen functionalities in graphene oxide (Figure 2.14(a)) was 

confirmed at 3400 cm
-1

 (O‒H stretching vibration), at 1720 cm
-1

 (stretching 

vibration from C=O), at 1620 cm
-1

 (skeletal vibrations from unoxidised graphitic 

domains), at 1220 cm
-1

 (C‒OH stretching vibrations), and at 1060 cm
-1

 (C‒O 
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stretching vibrations). This result is in agreement with the work reported by Xu et al 

[49]. The functional groups observed are responsible for the water solubility, 

making the dispersion of graphene oxide stable. In comparison, peaks due to oxygen 

functional groups are almost entirely removed in reduced graphene as shown in 

Figure 2.14(b).  

 

 

(a) 

 

(b) 

Figure 2.14: IR spectra of graphene oxide (a) and reduced graphene (b). 

 

Graphene oxide was further characterised using UV-Vis spectroscopy. As shown in 

Figure 2.15, the spectrum of graphene oxide exhibits a maximum absorption peak about 

230 nm, corresponding to π-π* transition of C‒C bonds [41]. 
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Figure 2.15: The UV-Vis absorption spectrum of graphene oxide. 

 

As already mentioned, this second chapter includes the description of all 

electrochemical/analytical techniques employed in this thesis. It also gives the 

experimental procedures for the synthesis of graphene, cyclodextrin derivatives CD6.6, 

CD6.7 and Fc-β-CD. These materials, including commercially available compounds such 

as S-β-CD, CM-β-CD or nafion were used to fabricate the composite CPEs for the 

electrochemical detection of DA. It has to be noted that the different working electrodes 

were prepared mainly by mixing the modifiers into carbon paste. Before considering the 

electrochemical performance of the fabricated electrodes towards the sensing of DA, 

their characterisation was undertaken using surface techniques and electrochemical 

methods such as SEM, EDX, EIS, DPV, and CV, which is discussed in the following 

chapter. 
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3.1 Introduction 

Since their invention in 1958, the use of CPEs has evolved and developed, particularly 

in the field of electrochemistry. In contrast to commercially available solid electrodes 

for which basic electrochemical characteristics are comparable for almost all products 

of renowned manufacturers, each carbon paste represents an individual material where 

the physico-chemical and electrochemical properties may markedly differ from case to 

case (regardless of the fact whether carbon pastes are hand-made in laboratories or 

purchased as ready-prepared mixtures) [1]. Electrochemical properties of various types 

of CPEs can then be predicted only approximately and a more detailed characterization 

requires appropriate testing measurements [1, 2]. Therefore newly prepared carbon 

pastes need to be tested and the procedures chosen for testing measurements should also 

reveal some specific characteristics of CPEs [2]; potential limits and background 

currents, investigations on the surface characteristics by means of reaction kinetics and  

reproducibility measurements [2]. 

Generally, the reasons for the characterisation of an electrode are to find an efficient 

electrode for a given purpose, or, to propose an optimal employment of an electrode. A 

number of authors have characterised CPEs. Adam et al [3, 4] have characterised CPEs 

with respect to their applicability in anodic and cathodic voltammetry. Farsang [5] 

studied the optimisation of the carbon paste composition via the chemical structure of 

the binder by observing the behaviour of several CPEs prepared from silicone oils with 

different molecular weight. Lindquist [6] carried out a systematic comparison of the 

properties of carbon pastes when investigating mainly the effect of binders with respect 

to their content in the paste mixture. Studies concerning detailed surface 

characterisation of various carbon pastes were published again by Adams et al [7]. 

Based on a combination of previous procedures [3, 4] with experimental approaches, a 

scheme illustrating a possible way to formulate the sequence of individual steps for 

testing CPEs is given in Figure 3.1 [8]. It worth noting that the scheme structure is 

general and it can therefore be adapted for any electrochemical technique. 
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Figure 3.1: General scheme for testing CPEs [8]. 

 

In this chapter, the electrochemical characterisation of the carbon paste electrodes was 

carried out in a typical three electrode cell, with a saturated calomel electrode (SCE) 

used as a reference electrode. Different modified carbon paste electrodes were used as 

working electrodes and prepared with graphite powder, a suitable liquid binder (silicon 

oil) and a modifier. Moreover, the modification of carbon paste electrodes was 

performed on the surface or in the bulk paste. For instance, in nafion modified carbon 

paste electrode, 0.05% nafion 117 solution was drop-cast on the surface of a bare carbon 

paste electrode. In the case of sulfated β-cyclodextrin, carboxymethyl β-cyclodextrin or 

Ferrocene β-cyclodextrin complex, the modifier was mixed to the bulk carbon paste. 

The physical properties of these carbon paste electrodes were studied using a variety of 

techniques such as optical microscopy, scanning electron microscopy, energy dispersive 

X-ray spectroscopy and electrochemical impedance spectroscopy. 
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3.2  Results and discussion 

3.2.1  Fabrication of Composite Carbon Paste Electrodes 

The modified carbon paste electrode was prepared by thoroughly hand-mixing the 

desired amount of sulfated β-cyclodextrin (S-β-CD) with 0.71 g graphite powder (< 20 

µm) and 200 µL silicon oil in an agate mortar for about 30 minutes to get a 

homogeneous S-β-CD modified carbon paste (S-β-CDCPE). To facilitate the 

homogeneity of the paste, both dry powders (graphite and sulfated β-cyclodextrin) were 

mixed within a vial before grinding. The resulting composite material was then packed 

into the end of Teflon (2 mm diameter) and electrical contact was made by means of 

copper rod. The Teflon was packed in small portions, each layer being compressed 

before adding the next. The surface was smoothened on a piece of weighing paper until 

a shiny appearance was obtained. The freshly made carbon electrodes were left unused 

for few hours to allow final homogenisation. This process of “self-homogenisation” has 

been reported in the literature [8]. All sensors: Carboxymethyl β-cyclodextrin modified 

CPE (CM-β-CDCPE), Neutral β-cyclodextrin modified CPE (β-CDCPE), Nafion 

modified CPE (NCPE), Heptakis 6-deoxy-6-(1-(4,5-dicarboxyl)-1,2,3-triazolyl)-β-CD 

6.6 (CD6.6CPE), Heptakis (6-(4-hydroxymethyl-1H-[1,2,3] triazol-1-yl)-6-deoxy)-β-

cyclodextrin 6.7 (CD6.7CPE). An illustration for the construction of the modified carbon 

paste electrode is shown in Figure 3.2. The unmodified CPEs were fabricated using the 

same process (without addition of a modifying agent). 

A drop-cast method was also used to modify the CPE. This technique was related to the 

fabrication of Nafion and Ferrocene-β-cyclodextrin modified CPE. In this case, a drop 

(or few drops) of Nafion solution and Ferrocene- β-cyclodextrin (Fc-β-CD) suspension 

was placed, respectively, on the surface of a previously prepared (bare) carbon paste 

electrode and the solvent was allowed to evaporate.   
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Figure 3.2: Schematic representation for preparation of carbon paste electrode. 

 

3.2.2  Storage of Modified Carbon Paste (Electrodes) 

Once prepared, the composite carbon paste was kept in a vial as shown in Figure 3.3. 

Carbon paste mixture may undergo significant changes in time. This feature (“ageing of 

carbon paste”), is characteristic for carbon pastes made from more volatile binders such 

as organo-phosphates [9]. Due to desiccation, these mixtures age more rapidly than 

ordinary carbon paste composites and have a shelf-life of two to three weeks only [2, 9]. 

Such undesirable behavior has confirmed assumptions that ageing of carbon paste is 

associated solely with the properties of the binders unless the modifying agent itself 

shows some stability issues overtime. Graphite (carbon) is very stable and ageing of 

CPE has not been reported previously. Silicon oil and Paraffin oil used in this study are 

two well-known and frequently used binders for the preparation of CPE. These non-

conducting substances have minimal volatility, immiscible with aqueous solutions and 

exhibit a chemical and electrochemical inertness [4, 10]. Carbon paste composites made 

from such binders could be used for several months or few years. Such a long-term 

stability was demonstrated experimentally in a literature report [4], when a silicone oil 

made CPE employed for measurement at the beginning of 2001 was found usable in 

2005 (after 4 years of storage). For storage of the unemployed electrodes, it is 

recommended to place them in a beaker with distilled water where the electrode end 

filled with paste is completely dipped into the waterline [2, 4].  

In this study, all voltammetry measurements were obtained using ready-constructed 

electrodes; and thus, electrode storage in water was not an issue. However, it is 
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important to keep the vial of carbon paste closed when not in use. Like most forms of 

graphite it may absorb contaminants from the laboratory environment. 

 

Figure 3.3: Photographic image of a composite carbon paste. 

 

3.2.3  Electrochemical Characterisation of Composite Carbon 

Paste Electrodes 

The electrochemical properties of composite CPEs were examined using cyclic 

voltammetry, linear sweep voltammetry, differential pulse voltammetry and 

electrochemical impedance spectroscopy. The purpose of the voltammetry experiments 

was to investigate the electrochemical properties of composite CPEs in supporting 

electrolyte (0.1 M PBS) and to some extent in DA solutions. Electrochemical 

impedance spectroscopy was used to study the charge transport processes occurring at 

surface of composite CPEs. 

3.2.3.1  Electrochemical properties of composite CPEs in supporting 

electrolyte 

The voltammetric behaviour of the carbon paste electrodes (modified and unmodified) 

was examined using cyclic voltammetry. When bare CPE or S-β-CDMCPE was run in 

0.1 M PBS, an unexpected redox process was observed as shown in Figure 3.4. A 

distinct anodic peak observed at 0.058 V vs. SCE and a cathodic peak at 0.018 V vs. 

SCE. A characteristic of the redox peak shown is that it is variable in intensity, but most 

importantly, it occurs at redox potential close to that of DA. 
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Figure 3.4: Cyclic voltammogram of S-β-CD (0.095g) modified CPE in PBS (0.1 M), pH 6.8; scan 

rate 50 mV / s. 

 

There is no diminution in the peak size with cycle number as shown in Figure 3.5, 

which suggests that potential scanning does not remove species responsible for the 

redox peak from the electrode surface. A steady state is obtained after the fourth cycle. 

It was reported in the literature [11] that oxygen adsorbs onto the carbon electrode and  

the functional groups can form very stable oxide species. 

 

Figure 3.5: Cyclic voltammograms of S-β-CD (0.095g) modified CPE in PBS (0.1 M), pH 6.8, 

showing different cycle numbers; scan rate 50 mV / s.  

 

Linear Sweep Voltammetry was also employed to confirm the presence of oxidation 

peak within the potential range studied (from ‒0.2 V to +0.6 V). This technique is used 

for recording voltammograms for primary diagnostic purposes due to its simplicity 
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although its sensitivity is rather poor as an analytical technique [12, 13]. However, 

when the electrode behaviour was examined in supporting electrolyte, an intense anodic 

wave at 0.068 V vs. SCE was clearly observed (Figure 3.6). This is evidence of some 

definite oxidation process occurring at the electrode surface. 

 

Figure 3.6: Linear sweep voltammetry for S-β-CD (0.095g) modified CPE in PBS (0.1 M), pH 6.8; 

scan rate 50 mV /s.  

 

3.2.3.2  Removal of oxides from CPEs surfaces 

Several attempts were made to remove the oxide redox peak in order to achieve 

featureless background currents for CPE. This consisted of varying the electrochemical 

window and scan rate, packing the carbon paste into the Teflon holder relatively tight to 

avoid considerable pockets of air within the paste, using different sources of polishing 

papers or changing the electrolytes (KCl or aCSF instead of PBS), conditioning the 

electrode or using deaerated PBS. None of these methods helped in the removal of the 

redox “pre-peak”. Generally, oxides on carbon electrodes surfaces are removed with 

UHV heat treatment [14-16] or specific blocking of surface carbonyls. It has also been 

proposed that anodisation causes the removal of organic molecules from the carbon 

surface, rendering the electrode cleaner and therefore more accessible to solution 

species [7].  

In this study, potentiostatic treatment was performed which consisted of applying a 

constant potential of +1 V vs. SCE to the working electrode and the current flowing 

through the circuit measured. The resulting voltammograms is displayed in Figure 

3.7(a). The working electrode was then removed from the cell, a very thin layer of paste 

was extruded from the Teflon holder, and the electrode surface was polished. The 
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electrode was quickly transferred back into the PBS. Finally, a cyclic voltammetry was 

run which resulted in successful removal of oxide species from the electrode surface, 

with a lower background current as shown in Figure 3.7(b).  

 

 

 

 

 

 

 

 

 

(a)  

 

 

 

 

 

 

 

 

 

(b)  

Figure 3.7: Potentiostatic measurement of S-β-CD (0.095g) modified CPE (a) and corresponding 

cyclic voltammograms (b), in PBS (0.1 M), pH 6.8; scan rate 50 mV / s. 

 

3.2.3.3  Understanding surface structure of oxide electrodes 

A literature search was carried out for a better understanding of the redox system 

observed. In fact, it is well known that interaction of oxygen-containing gases with 

carbon surfaces produces stable oxygen containing surface species [11]. The surface 

oxides form spontaneously on most carbon surfaces, and are unavoidable without 

special effort. It also has to be noted that for the preparation of the composite carbon 

pastes, grinding was conducted in air, therefore the combination of heat and surface 

energy could provide an environment favorable for oxidation of carbon by atmospheric 
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oxygen. The nature and formation of oxygen-containing functional groups on carbon 

have been studied extensively, and identified as carbonyls, phenolic OH, lactones, 

ethers, and carboxylates. On carbon surfaces, they are referred to collectively as 

“surface oxides” or merely “oxides” [17]. Examples of surface oxides that form at a 

graphitic edge are shown schematically in Figure 3.8. These functional groups are those 

encountered in traditional organic chemistry reactions. They are formed by 

chemisorption of oxygen on carbon surfaces. Chemisorption of oxygen on carbon 

surfaces depends on the surface structure, the availability of reactive sites, such as 

graphitic edge planes or defects, and also on the surface temperature. 

 

Figure 3.8: Schematic representation of structure of surface oxides configuration on graphite. 

 

Two independent reaction mechanisms have been proposed for the oxidation of graphite 

surfaces: (1) reaction from the direct collisions of 2O  molecules with the reactive 

carbon sites (Eley-Rideal [ER] mechanism) and (2) the surface migration mechanism, 

for example, the reaction with the migrating oxygen molecules that are first adsorbed on 

nonreactive sites (Langmuir-Hinshelwood [LH] mechanism). The ER mechanism is 

initiated by the direct collision of the oxygen molecules with the graphitic defect sites. 

The reaction mechanism according to the LH formalism consists of two distinct steps: 

the physisorption of molecular oxygen on the graphitic basal surfaces, and the diffusion 

of these species to defect sites that subsequently results in the formation of carbon-

oxygen surface functional groups. The graphite surface sites involved in these two steps 

are illustrated in Figure 3.9 as basal plane and edge plane, respectively. 
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Figure 3.9: Schematic illustration of basal and edge plane in graphite: basal plane is part of 

electron rich. Edge planes are very reactive due to partial saturation of valences [18]. 

 

This interaction of molecular oxygen with a basal plane of graphite is physisorption in 

nature, without any charge-transfer. The second step of the oxidation reaction involves 

the surface diffusion of the physisorbed molecular oxygen to vacancies or edge sites, 

where it then undergoes a reduction to form species such as super peroxide


2O , or 

peroxide 
2

2O  and finally makes stable covalent bonds with the carbon atoms. 

The strong covalent sp
2
 hybridized bonds within the carbon basal planes, and weak 

delocalized π-bonds between planes, result in the high affinity of oxygen to the 

unsaturated bonds of edge carbon atoms. Thus oxygen chemisorption occurs only on the 

edge planes [19]. 

As already mentioned, the multitude of functional groups formed on carbon surfaces is 

due to different reactivity of the two different types of edge sites (Figure 3.9), and the 

introduction of these functional groups on the carbon surfaces drastically alters the 

physico-chemical surface properties. Most importantly, these functional groups directly 

take part in surface reactions and therefore play a crucial role in heterogeneous 

oxidation catalysis. The ratio Ipa to Ipc of the redox activity which is equal to 0.89, from 

Figure 3.4, is not far away from unity, suggesting a fairly reversible process. From the 
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electrochemical standpoint, it is notable that the only known reversible oxygen gas 

electrode at room temperature involves carbon as the conducting substrate and requires 

the presence of HO and 


2HO  in solution. There is some evidence that the oxygen 

involved may be adsorbed as a peroxidic complex  
2yOC  [20]. The electrode reaction 

is probably as follows: 

   2y OC   ⇋  
2yOC  Equation 3.1 

  
2yOC  + OH2  + e2  ⇋  yC  + 



2HO  + HO  Equation 3.2 

 

The overall reaction rate is proportional to the concentration of  
2yOC  formed. 

3.2.3.4  Background (residual) current at CPEs 

Background current represents probably one of the most important parameters of carbon 

pastes in voltammetry and related techniques. The level of the background current 

cannot be exactly defined; it strongly depends on the composition of the carbon paste as 

well as upon the type of measurement. Despite the presence of typically insulating 

binders of silicone oil type, common carbon paste mixtures exhibit a very low ohmic 

resistance. This phenomenon was firstly studied in detail by Beilby and Mather [21]. 

The graphite particles are practically covered with a very thin film of the binder. 

Nevertheless, the individual graphite particles are apparently in some physical contact 

beneath the binder layer, which may explain a very low ohmic resistance of most carbon 

pastes. One of the main advantages of carbon paste electrodes in electrochemical studies 

is their low background current, compared to solid graphite or noble metal electrodes. 

Such a low background current levels permits the electrochemical detection of very low 

concentrations of electroactive material at low current densities. The residual current of 

glassy carbon is fifteen times higher than that obtained using bare carbon paste 

electrode, as shown in Figure 3.10. GC and bare CPE background currents of 4.073 × 

10
-7

 A and 2.793 × 10
-8

 A, respectively. Such a difference is in accordance with the 

literature report [22]. GC is a gas impermeable material which effectively combines the 

characteristics of carbon and glass. It is a hard solid prepared by heat-treatment at 

elevated temperature. Unlike GC, CPEs are softs and made by simple mixture of 

graphite with binder. The absolute magnitude of the background in CPEs is given by a 

variety of factors such as the quality of graphite used [7], the carbon-to-binder ratio and, 

to a certain extent, to the individual polarizability in the supporting medium. In this 
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example (Figure 3.10), the low background current is probably related to the 

hydrophobic nature of the binder. Although both electrodes belong to the same family 

(carbon based electrodes), the hydrophobic properties at the surface of the carbon paste 

electrode may promote a lower residual current. It has to be noted that this 

hydrophobicity can result in moderately reversible or totally irreversible behavior of 

numerous compounds and the redox couple at CPEs whereas the same substances 

measured at ordinary solid electrodes may exhibit a fair reversibility [7, 23]. This is 

why the oil-to-graphite ratio is significantly important. 

 

 

 

 

 

 

 

 

 

 

Figure 3.10: Cyclic voltammograms of bare GC electrode (─) and bare CPE (─) in 0.1 M PBS, pH 

6.8; scan rate 50 mV / s. 

 

3.2.3.5  Carbon-to-liquid ratio 

It is quite a complicated task to choose a suitable carbon-to-binder ratio for the 

measurement of a specific analyte [11]. A more general recommendation is 1 g carbon 

powder for 0.3 mL binder. This figure appears to be optimal with respect to stability and 

electrochemical behavior [8]. For example, too “dry” as well as too liquid carbon paste 

can have some important consequences on the electrochemistry of the analyte studied. 

The surface of such pastes is usually not renewable or reproducible [24]. The 

determination of the optimum ratio of graphite to organic liquid is essentially an 

empirical process. Therefore, an evaluation of the ratio from test measurements was 

necessary in this study. Preliminary voltammetry tests on DA (5 × 10
-5

 M in 0.1 M PBS) 

were performed to determine a suitable graphite-to-silicon oil ratio. In this work, carbon 

paste was prepared using constant amount of graphite powder (0.71 g) and S-β-CD 

(0.095 g) while varying the concentration of silicon oil as shown in Table 3.1. Clearly, 
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there is an inverse relationship between the amount of silicon oil and dopamine peak 

current: DA peak currents decrease as oil concentration increase. Moreover, background 

currents increase as oil concentration decrease. In a fundamental study, Adam et al [7] 

concluded that the lesser content of oil in the paste the more rapid charge transfer (lesser 

irreversibly), the more lipophilic binder (via the increased alkyl chain of hydrocarbon 

like pasting liquid) the lower the rate constant and the slower the charge transfer. 

Lowering the quantity of binder in the paste has a positive effect on the electrochemical 

signal of dopamine, with 200 μL silicon oil found as the optimal value (Table 3.1). A 

lower oil quantity (than 200 μL) with respect to total powder weight (0.095 g S-β-CD + 

0.71 g graphite) may result in loss of paste from the electrode due to inefficient binding. 

This effect is similar enough to the behaviour of the carbon paste electrode when 

applying a constant potential higher than 2.0 V vs. SCE or less than ‒1.5 V vs. SCE in 

order to remove oxide species from the electrode surface as demonstrated previously. 

Table 3.1: Effect of silicon oil on DA peak current at S-β-CD (0.095g) modified CPE. 

Oil amount (μL) 
DA oxidation peak 

current (A) 
Background current (A) 

200 1.255 × 10
-6

 5.643 × 10
-7

 

300 8.715 × 10
-7

 4.919 × 10
-7

 

400 8.385 × 10
-7

 4.050 × 10
-7

 

500 8.206 × 10
-7

 2.736 × 10
-7

 

600 5.891 × 10
-7

 1.569 × 10
-7

 

 

3.2.3.6  Electrochemical window dependence of DA peak current at 

untreated CPE 

Differential pulse voltammetry (DPV) technique was employed to analyse the effect of 

electrochemical window on DA peak signal at CPE with oxide layer. In this experiment, 

the electrochemical window chosen was [‒0.20 V to +0.27 V], which normally shows 

redox behaviour of oxide containing electrode around 0.00 V vs. SCE. As shown in 

Figure 3.11, when successive increasing concentrations of DA in the range of 5 × 10
-7

 

M to 1.1 × 10
-5

 M were used in such a window, the corresponding peaks from 9 × 10
-6

 

M to 1.1 × 10
-5

 M DA were the only concentrations clearly observed. DA could not 

efficiently be quantified below 9 × 10
-6

 M. This demonstrates the strong influence of 

oxides in the determination of relatively low concentrations of DA using the 

electrochemical window [‒0.20 V to +0.27 V]. Given the reactivity of carbon surfaces 
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toward oxygen, it is difficult to maintain an oxide-free carbon surface in an aqueous 

electrochemical environment, particularly with DPV, which is a “pulse” technique as 

opposed to CV. A simple approach consisting of shortening the electrochemical 

window was employed to minimise the influence of oxide and enhance electrode 

sensitivity towards DA. This was discussed in detail in Chapter 4.  

 

Figure 3.11: Differential pulse voltammograms of DA at S-β-CD (0.545g) modified CPE at different 

concentrations in 0.1 M PBS (pH 6.8):  (─) 5 × 10
-7

 M, (─) 8 × 10
-7

 M, (─) 1 × 10
-6

 M, (─) 3 × 10
-6

 M, 

(─) 6 × 10
-6

 M, (─) 9 × 10
-6

 M
 
and 1.1 × 10

-5 
M (─). 

 

To further investigate the influence of oxides on DA peak current, the oxide covered 

electrode was run in 0.1 M PBS only, with 2 minutes accumulation time between each 

voltammogram without potentiostatic treatment of electrode or purging PBS with 

nitrogen gas, prior to measurement. The results are shown in Figure 3.12(a). It was 

observed that the oxide peak developed continuously with time. The corresponding 

graph in Figure 3.12(b) shows linearity between oxide peak current and time. Therefore 

only a relatively high concentration of DA could be detected. As opposed to CV, where 

an oxidation and reduction wave of oxides is observed, DPV only shows the anodic 

process. The pulsed waveform generated using DPV stimulates a pronounced oxide 

peak response and, thus, masks the DA signal.  
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(a)  

 

 

 

 

 

 

 

 

 

(b)  

Figure 3.12: Differential pulse voltammograms of S-β-CD (0.545g) modified CPE recorded in 0.1 

M PBS, pH 6.8 (a) and resulting graph of oxides peak current as a function of time (b). 

 

3.2.3.7 Electrochemical Impedance Spectroscopy (EIS) Studies 

Since the resistance for an electrode is one of the most important factors which affect 

electrochemical behaviour, the characterisation of electrode responses can give 

information about the interface and consequently the nature of the reaction between the 

analyte and the electrode. The property of electrode interface can be investigated by EIS 

[25, 26].  

The EIS study was aimed at comparing the electrochemical behaviour of the synthesised 

graphene with that of graphite and glassy carbon. ESI experiments for bare graphene 

paste electrode (GPE), glassy carbon electrode (GCE) and carbon paste electrode (CPE) 

I 
(A

) 

Oxides oxidation peak current as a function of time

Time (secs)

0 10 20 30

C
u
rr

e
n
t 

(A
m

p
s)

1e-7

2e-7

3e-7

4e-7

5e-7

6e-7

7e-7

8e-7

9e-7

R  0.9972

t (s) 

E (V) vs. SCE 

I 
(1

 ×
 1

0
-6

 A
) 

oxides 

2 mins 

30 mins 



Chapter 3                                                                                      Sensor Characterisation                                  

  
80 

 
  

made with graphite were carried out in 1 × 10
-3

 M K3[Fe(CN)6] / K4[Fe(CN)6] by 

applying an AC frequency range from 65000 to 0.1 Hz under a +0.2 V (vs. SCE) open 

circuit potential condition. Figure 3.13 shows the typical Nyquist plots for GPE, GCE 

and CPE. In the Nyquist plot (Zʹʹ vs. Zʹ), the semi-circle part correspond to the electron 

transfer limiting process. Thus, the charge transfer resistance (Rct) for the redox probe 

was measured as the diameter of the semi-circle [27]. Figure 3.13(a) indicates that the 

kinetics of the electrodes reaction with K3[Fe(CN)6] / K4[Fe(CN)6] depend considerably 

on the nature of electrode surface as it is clear that the impedance responses of GPE, 

CPE and GCE show great difference in Rct. Compared with GCE, CPE has a much 

larger Rct ( 0000 Ω), which indicates that GPE has much more rapid electron transfer 

ability in this aqueous system than CPE. Another factor that may contribute to the Rct 

difference is the rough nature of the surface of the bare CPE (SEM images, Figure 3.15). 

At bare GCE, in the Nyquist plot, both the semicircle and linear regions exist, but in 

case of GPE, the semicircle almost disappeared (Rct ~ 2000 Ω) and only a clear linear 

region, attributed to a Warburg impedance, is observed (Figure 3.13(b)). As the semi-

circle diameter of the impedance spectrum represents the charge transfer resistance  

which controls the electron-transfer kinetics of the redox probe at the electrode interface 

(Rct), diminished or absence of semi-circle region indicates the dramatic decrease of Rct 

at GPE, which is due to excellent conductivity of graphene. 

Due to the presence of a binder (silicone oil), the GPE surface possesses a high 

hydrophobicity that may hinder the access of the probe analyte to the electrode surface. 

However, the experimental results suggest that the hydrophobic surface of GPE does 

not influence the kinetics of highly polar species such as K3[Fe(CN)6] / K4[Fe(CN)6].  

The presence of defects at the GPE may facilitate the electron transfer between the 

probe analyte and the electrode. 
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(a) 

 

(b) 

Figure 3.13: The electrochemical spectra of CPE (─), GCE (─) and GPE (─) (a). Enlarged 

spectra to observe clearly the response of GPE (b). 

 

3.2.4 Physical characterization of CPEs 

The optical microscopic image of a surface of a carbon paste modified electrode shows 

a remarkable stability after a potentiostatic measurement recorded at +1.00 V vs. SCE 

as shown in Figure 3.14(a). The composite material remained packed in the Teflon 

holder. In contrast, when 3.00 V vs. SCE was applied to the electrode in order to 

remove oxides from the electrode surface, the paste was extruded from the holder and 

spread all over the Teflon surface as shown in Figure 3.14(b). 
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(a) (b) 

Figure 3.14: Optical microscopic images of modified CPE after holding electrode 

at +1 V vs. SCE (a), and +3 V vs. SCE (a) for 5 minutes. 

 

3.2.4.1  SEM of bare carbon (graphite) paste electrode  

SEM was used to characterise the morphology of the bare and modified CPEs. It is 

obvious that the morphology of the investigated surfaces is different. Figure 3.15 

represents the SEM image of the bare CPE, which shows conglomerations of flat 

graphite sheet domains over the whole surface.  

 

Figure 3.15: SEM micrograph of bare CPE. 
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3.2.4.2  SEM and EDX of sulfated β-cyclodextrin modified carbon paste 

electrode 

Figure 3.16(a) shows the SEM image of the modified electrode when 0.545 g S-β-CD 

was added into the carbon paste. Despite the presence of oil binder (200 μL for 1.2   g 

total powder weight), non-uniform flakes are observed. It is important to emphasize 

here that it is possible to adjust the oil content in order to obtain a more compact paste 

without considerably affecting the electrochemical properties of the paste. What is 

interesting here is the stability of the S-β-CD modified electrode when 200 μL of silicon 

oil is used and the related electrochemical results. The electrochemical properties of the 

composite, evaluated by cyclic voltammetry, showed a reversible behaviour with 

respect to dopamine / dopamine-o-quinone. Leaching of the redox mediator, 

cyclodextrin, or the paste itself was not observed. A magnified SEM image (Figure 

3.16(b)) shows several spots which may be related to S-β-CD and suggested a 

homogeneous distribution of S-β-CD throughout the paste. 

For quantitative representation of the components into the S-β-CD modified carbon 

paste electrode, EDX was employed. The presence of C, O, Si, Na and S are shown in 

the spectrum Figure 3.16(c). It is worth mentioning that the strong peaks of Na and S 

are related to cyclodextrin. C comes from graphite. Si and O are part of silicon oil.  
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(a)

 

(b)

 

(c) 

 

Figure 3.16: SEM micrograph of S-β-CD (0.545 g) modified CPE at 60 μm (a) and 5μm (b). 

Below, EDX spectrum of S-β-CD (0.545 g) modified CPE (c). 

 

3.2.4.3  SEM and EDX of carboxymethyl β-cyclodextrin modified carbon 

paste electrode 

The SEM image of carboxymethyl β-cyclodextrin modified carbon paste (CM-β-

CDCPE) displayed in Figure 3.17(a) shows a rough surface morphology. Although, the 

same amount of cyclodextrin (0.545 g) was added into the paste, it is not obvious to 

distinguish the surface of CM-β-CDCPE from the surface of S-β-CDCPE. However, the 

difference between the two cyclodextrin modifiers are observed using EDX. Atomic 

composition analysis of the composite shows that carboxymethyl β-cyclodextrin 
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modified electrode does not contain S atom but also shows the Na element as shown in 

Figure 3.17(b). In fact, carboxymethyl β-cyclodextrin is in a sodium salt form.  

(a) 

(b) 

Figure 3.17: SEM micrograph (a) and EDX spectrum (b) of CM-β-CD (0.545g) modified CPE. 

 

3.2.4.4  SEM and EDX of Ferrocene β-cyclodextrin modified carbon paste 

electrode 

The SEM morphology of Fc-β-CD modified carbon paste electrode is shown in Figure 

3.18(a). Several spots are found homogeneously distributed on the electrode surface, 

which are due to the presence of Fc-β-CD molecules. This also demonstrates that the 

modifier was perfectly dispersed in the paste. The relatively darker areas are related to 

the graphite conducting micro-structure. In addition, EDX spectrum shown in Figure 

3.18(b) indicates the presence of iron. 
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(a) 

(b) 

Figure 3.18: SEM micrograph (a) and EDX spectrum (b) of Fc-β-CD modified CPE. 

 

3.2.4.5  SEM and EDX of graphene paste electrode 

Compare with bare carbon paste electrode, graphene paste electrode displays a more 

compact, uniform and smoother surface as shown in Figure 3.19(a). This could 

effectively increase the apparent electroactive surface areas of the electrode and 

significantly improve the electrochemical performance on analyte. EDX image of 

graphene paste electrode in Figure 3.19 (b) shows the same elemental composition 

found in bare graphite paste electrode. 
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(a) 

(b) 

Figure 3.19: SEM micrograph (a) and EDX spectrum (b) of bare GPE. 

 

3.2.4.6  SEM and EDX of sulfated β-cyclodextrin modified graphene paste 

electrodes 

In Figure 3.20(a), it can be clearly seen that graphene containing S-β-CD aggregate and 

stack to multilayers with numerous edges. It is important to note that the surface of the 

modified graphene is smoother than corresponding modified graphite (S-β-CD). EDX 

spectrum shown in Figure 3.20(b) demonstrates that S-β-CD was well incorporated 

within the carbon paste. 
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(a) 

(b) 

Figure 3.20: SEM micrograph (a) and EDX spectrum (b) of S-β-CD (0.545g) modified GPE. 

 

3.2.4.7  SEM and EDX of nafion modified carbon paste electrode 

Nafion is a commonly used ion-exchanger polymer with characteristics such as good 

film forming ability. While the surface of the bare CPE was found to have a slight 

roughness, it became smoother when the surface of the electrode was coated with nafion 

film as shown in Figure 3.21(a). Nafion itself has almost ideal properties to be a 

modifier. It is electrochemical inert, insoluble in water, and possesses hydrophobic 

character. Hence it mingles perfectly with the graphite, giving a uniform electrode 

surface. EDX spectrum of nafion modified carbon paste electrode displayed in Figure 

3.21(b), shows trace amount of F and S atoms, which are some of fundamental elements 

forming the polymer. Nafion unique ionic properties are a result of incorporating 

perfluorovinyl ether groups terminated with sulfonate groups on tetrafluoroethylene 

(Teflon) backbone. 
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(a) 

(b) 

Figure 3.21: SEM micrograph (a) and EDX spectrum (b) of Nafion modified CPE. 

 

As already mentioned, this chapter is concerned with the fabrication and 

characterisation of the modified electrodes. The following chapter focus on the 

electrochemical capabilities of the modified electrodes towards the sensing of DA. 
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4.1 Introduction 

Carbon paste electrodes (CPEs) have received special attention in electroanalysis due to 

their simplicity and rapid preparation [1-3]. They undoubtedly represent one of the most 

convenient materials for the preparation of modified electrodes. A modifier can be 

loaded onto the surface of the CPE, dissolved in a binder, or admixed mechanically to 

the paste during its homogenisation. In voltammetry, CPEs having a wider anodic 

potential range [4], with an ease of surface renewal and reproducible peak current 

measurement, have proven to be the most suitable electrode for a variety of analytes 

when compared to other metal or glassy carbon electrodes [4, 5]. Carbon materials are 

very useful components to study the electrochemical behaviour of several biomolecules. 

In bio-sensing, researchers are keen to develop materials capable of detecting 

neurotransmitters, enzymes, proteins, DNA, cells, tissues, and many others biological 

molecules. In the case of neurotransmitters, CPEs have been used to detect or 

characterize acetylcholine [6, 7], dopamine [8, 9], serotonin [10, 11], norepinephrine 

[12, 13] and nitric oxide [14].  

These neurotransmitters are packaged into synaptic vesicles clustered beneath the 

membrane in the axon terminal, on the presynaptic side of a synapse. They are released 

and diffuse across the synaptic clefs, where they bind to specific receptors in the 

membrane on the postsynaptic side of the synapse. 

As a catecholamine neurotransmitter, DA has a key physiological role in transmitting 

chemical signals from a neuron to a target cell across a synapse [15]. DA is linked to a 

number of neurological disorders such as Parkinson’s disease (decrease level of DA) 

and schizophrenia. It is related to addiction, HIV infection [16-18] and affects brain 

processes that control emotional response. Monitoring DA levels in vitro or in vivo 

could provide valuable information on the efficacy of various treatments aiming at 

healing or controlling diseases. Therefore, electrodes that are capable of sensing DA, 

rapidly, accurately and reliably, are of great medical importance.   

Various techniques such as fluorimetry, chemiluminescence, capillary electrophoresis, 

and ion chromatography [19-22] have been developed for detection of DA. Compared 

with these above approaches, an electrochemical method has received considerable 

interest. It is widely employed owing to its fast detection, simplicity, reproducibility, 

impressive cost-effectiveness, and potential for miniaturization [23-25]. Thus, 

electrochemistry is a powerful method for monitoring DA, both in vitro and in vivo. In 

order to facilitate the detection of DA, a modifier is needed, more specifically a 

chemical that would catalyse its chemical transformation. 
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Researchers have developed different types of electrodes for DA measurement based on 

the modification of gold, glassy carbon, diamond or carbon nanotubes. The DA sensors 

developed in this Ph.D. thesis are mainly based on the modification of CPE with 

different cyclodextrin derivatives such as Sulfated β-cyclodextrin, Carboxymethyl β-

cyclodextrin or Ferrocene β-cyclodextrin complex. Electrochemical studies were 

performed using SCE as auxiliary electrode and PBS as supporting electrolyte. 

Electrochemical techniques such cyclic voltammetry and differential pulse voltammetry 

were employed to determine qualitative characteristics of DA. In general, the results 

have demonstrated that modified CPEs are better than bare CPE as biosensor electrode 

materials for the detection of DA. 
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4.2  Results and discussion 

4.2.1  Bare CPE 

Carbon paste based-sensors utilised in this study are made primarily from a mixture of 

graphite powder and a binder such as silicone oil and are commonly referred to as CPEs. 

The details for the preparation of CPE were described in Chapter 3. The electrochemical 

study of bare CPE towards the redox process of DA in aqueous media is presented.  

4.2.1.1 DA electrochemical redox process at bare CPE 

The voltammetric behaviour of DA at the bare carbon (graphite) paste electrode (CPE) 

was examined using cyclic voltammetry. Figure 4.1 shows typical cyclic 

voltammogram of 5 × 10
-5

 M DA solution in 0.1 M PBS (pH 6.8) using the potential 

range [‒0.2 V; +0.6 V]. The cyclic voltammogram is characterized by the appearance of 

distinct anodic peak at +0.225 V and a cathodic peak at +0.092 V vs. SCE. The 

separation in peak potential between the anodic peak potential and the cathodic peak 

potential, ΔEp, was 0.133 V, and the ratio of redox peak currents (Ipa / Ipc) was 1.20. The 

oxidation and reduction peak current are 2.25 × 10
-7

 and 1.88 × 10
-7

 A, respectively, and 

represent typical current responses for 5 × 10
-5

 M DA  at bare CPE. These results are 

characteristic of a quasi-reversible electrode process [26]. The anodic peak can be 

ascribed to the oxidation of DA to dopaminoquinone (DOQ) and the coupled cathodic 

peak to the reduction of DOQ back to DA [27]. 

 

 

 

Figure 4.1: Cyclic voltammograms of DA (5 × 10
-5

 M) at bare CPE in 0.1 M PBS (pH 6.8);  

scan rate: 50 mV / s. 
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4.2.1.2  Effect of scan rate on DA peak current 

As shown in Figure 4.2, the effect of scan rate on DA oxidation at bare CPE was 

investigated by cyclic voltammetry. At scan rates in the range of 10 to 100 mV / s, the 

oxidative peak current of the bare CPE in DA solution increases linearly with the scan 

rate. Further analysis of the data reveals DA redox behaviour is under both diffusion 

and adsorption control. The graph of current Ip vs. scan rate (ν) and square root of scan 

rate (ν
1/2

) were plotted and are displayed in Figure 4.3.  In the range of 10 to 100 mV / s, 

the anodic peak current is proportional to ν
 
and ν

1/2
 with correlation coefficients 0.9979 

and 0.9688, respectively. It is more likely that the charge transfer is under a partially 

adsorption control process at the first three highest scan rates (100, 80 and 60 mV / s). 

Epa for these specific scan rates is constant as shown in Table 4.1. This indicates a 

quasi-reversible nature of the electrode reaction. The lower scan rate (40, 20 and 10 mV 

/ s) seemed to show a more diffusion-controlled process. With exception of the highest 

scan rate employed, the peak potential for DA oxidation shifted slightly to a more 

positive potentials with increasing of the scan rate. Similarly the reduction peak Epc 

values shifted anodically to a more negative potential with increasing scan rate as 

displayed in Table 4.1. 

 

Figure 4.2: Cyclic voltammograms for the effect of variation of scan rates of DA (5 × 10
-5

 M) at 

bare CPE from 100 to 10 mV / s, in 0.1 M PBS (pH 6.8). 
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(b) 

Figure 4.3: The variation of oxidation peak current for DA (5 × 10
-5

 M) at bare CPE as a 

function of (a) scan rate, and (b) square root of scan rate. 

Supporting electrolyte 0.1 M PBS (pH 6.8). 
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Table 4.1: Effect of scan rate on peak potential  

recorded at bare CPE. 

Scan Rate  

(mV / s) 

Oxidation Peak 

Potential (V) 

100 0.26 

80 0.26 

60 0.26 

40 0.24 

20 0.23 

10 0.20 

 

The diagnosis of an adsorption-controlled oxidation of DA at the bare CPE is more 

difficult to rationalise but we infer that the nature of the electrode surface plays an 

important role in the electron transfer process. In aqueous solution, the hydrophobic 

surface of CPE repels hydrophilic species [28]. Although DA has a hydrophobic moiety 

(benzene ring), it is essentially a hydrophilic molecule. A diffusion-controlled process 

of DA at bare CPE was reported experimentally [29]. On the other hand, the apparent 

accumulation of DA at bare CPE remains unclear. Only few sources quote that the 

hydrophobic layer of binder at the carbon paste surface may promote the adsorption of 

some molecules, particularly lipophilic compounds [30].Therefore, it was assumed that 

a weak adsorption of DA to the bare CPE surface is possible through a π‒π interaction 

of the benzene moiety with graphite. Further supporting that two regime processes 

occurred at the bare CPE, the log of oxidation peak currents was plotted against the log 

of scan rate. A linear relationship was obtained (as shown in Figure 4.4) with a slope of 

0.506. This value, comprised in the range from 0.5 to 1 indicated that the electron 

transfer at bare CPE is simultaneously under a diffusion and adsorption process 

according to Laviron [31]. 
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Figure 4.4: The variation of logarithm of oxidation peak current for DA (5 × 10
-5

 M) at bare CPE 

as a function logarithm of scan rate. Supporting electrolyte 0.1 M PBS (pH 6.8). 
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oxidation of DA. This was demonstrated by comparing the electrochemical behaviour 

of DA at bare CPE with a modified electrode prepared with an optimal amount of S-β-

CD (0.545 g). The cyclic voltammograms of 5 × 10
-5 

M DA in a 0.1 M PBS at S-β-CD 

modified CPE is shown in Figure 4.5. The oxidation peak potential occurs at +0.172 V 

and the reduction peak potential at 0.153 V, respectively, giving a peak potential 

separation (ΔEp) of +0.019 V. The oxidation and reduction peak currents were 2.44 × 

10
-6

 and 2.45 × 10
-6 

A, respectively, yielding an Ipa / Ipc ratio of unity. In addition, the 

oxidation peak potential of DA shifts in the negative direction at S-β-CD modified CPE 

when compared to bare CPE. These results indicate that the S-β-CD modified electrode 

is able to accelerate the rate of DA electron transfer. It was shown previously that the 
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oxidation peak current of DA at bare CPE was 2.25 × 10
-7

 A. This tremendous 

enhancement (>10 times) of the DA oxidation signal at the modified electrode is 

attributed to the chemical properties of S-β-CD. The effect of S-β-CD on the 

performance of the modified electrode is discussed in details in section 4.2.2.5. 

 

Figure 4.5: Cyclic voltammograms of 5 × 10
-5

 M DA at S-β-CD modified CPE, in 0.1 M PBS (pH 

6.8); scan rate: 50 mV / s. 
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dopaminochrome (second step E). 

From Figure 4.6, the pair of redox peaks observed at the positive potentials corresponds 

to the redox process described in Equation 4.1, whereas the pair of redox peaks 

observed at the negative potentials relates to Equation 4.3. The peak currents are 
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considerably smaller for this second redox couple. The peak currents increase as the 

concentration of DA rises, as expected. Since the pKa of DA is 8.9 [34], below this pH 

value DA exists mainly in its protonated form and shows weak nucleophilic activity for 

intramolecular 1,4-Michael addition. However, in a solution of pH 6.8 the amount of 

unprotonated DOQ is sufficient for the cyclization reaction to occur. The product 

obtained (leucodopaminechrome) is next reversibly oxidized to dopaminechrome which 

manifests as a small redox pair. Similar result at a glassy carbon electrode modified 

electrode was obtained experimentally [35]. Although, a detailed mechanism for the 

electrochemical oxidation of DA was described above, DA detection is often simplified 

by using a potential window that encompasses the redox region for the DA / DOQ. 

Therefore, an electrochemical window excluding redox couple Leucodopaminechrome 

(LC) / Dopaminechrome (DC) is chosen throughout this study (unless otherwise 

mentioned).  

 

Figure 4.6: Cyclic voltammograms obtained for different concentrations of DA (5 × 10
-5

, 1 × 10
-4

,  

5 × 10
-4

 and 1 × 10
-3

 M) at S-β-CD modified CPE in 0.1 M PBS; scan rate: 50 mV / s. 

 

 

Equation 4.1 

 

Equation 4.2 

 

Equation 4.3 

Scheme 4.1: Proposed DA reaction at S-β-CD modified CPE in 0.1 M PBS at pH 6.8. 
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To generate further support that an ECE mechanism correctly describes the 

electrochemical redox process of DA, the first five voltammogrammetric cycles for a 5 

× 10
-4

 M DA solution are shown in Figure 4.7(a). The oxidation of 

Leucodopaminechrome (LDC) to Dopaminechrome (DC) was observed only after the 

first cycle as shown in Figure 4.7(b) (highlighted oxidation wave of LDC / DC from 

Figure 4.7(a)). This is consistent with the mechanism outlined in Scheme 4.1. 

 (a)  

(b) 

Figure 4.7: Cyclic voltammograms of 5 × 10
-5

 M DA at S-β-CD modified CPE (a), highlighted 

oxidation peaks of LC to DC (b), in 0.1 M PBS (pH 6.8); scan rate: 50 mV / s. 
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peak current in 5 × 10
-5

 M DA solution increased linearly with the scan rate (Figure 

4.8(b)) in the range of 10 to 80 V vs. SCE, suggesting the oxidation of DA is under 

adsorption-control at the modified electrode. Unlike bare CPE, the peak potential 

remains constant with increasing scan rate, which is characteristic of reversible redox 

process for an adsorbed species at a modified electrode. It has to be noted that the 

background current increased considerably as the scan rate increased. This is probably 

caused by mass transport of supporting electrolyte (0.1 M PBS) from the bulk to the 

double layer region, and non-faradaic current increase from the double layer which 

undergoes charging and discharging processes during the electron (and chemical) 

transfer. 

 

 

 

 

 

 

 

 

 

(a) 

 

 

 

 

 

 

(b) 

Figure 4.8: Cyclic voltammograms for the effect of variation of scan rates of DA (5 × 10
-5

 M) at 

S-β-CD modified CPE from 10 to 80 mV / s (a) and corresponding variation of oxidation peak 

current as a function of scan rate (b). Supporting electrolyte 0.1 M PBS (pH 6.8). 
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4.2.2.4  DA adsorption characteristics of bare CPE and S-β-CD modified 

CPE 

To demonstrate further the adsorption ability of S-β-CD modified CPE, a 

preconcentration experiment was performed by immersing bare CPE and S-β-CD 

modified CPE separately in 5 × 10
-5

 M DA solutions for five minutes. After rinsing both 

electrodes with distilled water, cyclic voltammograms were recorded in a fresh PBS. 

The resulting voltammograms are shown in Figure 4.9. No DA signal was obtained at 

bare CPE, while DA redox peaks were clearly observed at S-β-CD modified CPE. This 

proves that DA is significantly adsorbed onto the surface of the modified electrode due 

to the presence of S-β-CD, possibly through host-guest or ionic interactions. It is worth 

mentioning that the modified electrode, here, contains the optimal amount of S-β-CD 

(0.545 g) in terms of DA detection. Thus, the value of the peak current is highly 

dependent on the concentration of S-β-CD within the paste, and the optimisation 

process is detailed in Section 4.2.2.5. The voltammogram traces chosen for comparison 

(in Figure 4.9) are the first cycles obtained from the unmodified and S-β-CD modified 

electrodes. The oxidation peak current in the case of S-β-CD modified CPE was 2.21 × 

10
-6

 A. Interestingly, ΔEp for this first cycle is 0.027 V (vs. SCE), confirming the 

reversibility of electron transfer process at the modified electrode. It has to be noted that 

with successive cycling, a reduction and subsequent disappearance of the redox peaks is 

observed at the modified electrode. 
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(b) 

Figure 4.9: Cyclic voltammograms of S-β-CD modified CPE (─) and bare CPE (─) in 0.1 M PBS 

(a), after both electrodes were dipped in DA (5 × 10
-5

 M) for 5 minutes. Highlighted cyclic 

voltammogram of bare CPE (b); scan rate 50 mV / s. 
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current of DA increased remarkably by increasing the amount of S-β-CD from 0.145 g 

to 0.495 g. An apparent steady state current response for DA oxidation is then obtained 

from 0.495 g to 0.695 g. However, the oxidation peak current of DA decreased greatly 

when the amount of S-β-CD exceeded 0.695 g. These experimental results suggest that 

an amount of S-β-CD, lower than 0.495 g is not sufficient to promote an optimum 

oxidation peak current of DA, and a higher amount than 0.695 g can inhibit the 

electrical conductivity of carbon paste. The range from 0.495 to 0.695 g was considered 

to be the optimal amount for detection of DA. Consequently, 0.545 g of S-β-CD was 

chosen to modify the carbon paste for electrochemical detection of DA. 

 

Table 4.2: The effect of S-β-CD on DA oxidation peak current. The composition of S-β-CD modified 

CPE was made by varying the amount of S-β-CD and silicone oil while keeping the amount of 

graphite constant. 

Graphite (g) Silicone oil (µL) S-β-CD (g) 
DA oxidation peak 

current (A) 

0.71 136 0.145 1.4751 × 10
-6

 

0.71 144 0.195 1.4796 × 10
-6

 

0.71 152 0.245 1.5100 × 10
-6

 

0.71 160 0.295 1.5892 × 10
-6

 

0.71 168 0.345 1.5760 × 10
-6

 

0.71 176 0.395 1.6771 × 10
-6

 

0.71 184 0.445 1.8276 × 10
-6

 

0.71 192 0.495 2.3676 × 10
-6

 

0.71 200 0.545 2.4006 × 10
-6

 

0.71 208 0.595 2.3478 × 10
-6

 

0.71 216 0.645 2.3408 × 10
-6

 

0.71 224 0.695 2.2988 × 10
-6

 

0.71 232 0.745 1.9841 × 10
-6

 

0.71 240 0.795 1.7911 × 10
-6

 

0.71 248 0.845 1.5876 × 10
-6

 

0.71 256 0.895 1.5917 × 10
-6
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Figure 4.10: Effect of the amount of S-β-CD on DA oxidative peak current. 
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10
-5

 M DA, with 0.1 M PBS as supporting electrolyte at bare CPE and S-β-CD modified 

CPE. Another important parameter to be considered is that DPV was performed after 2 

minutes accumulation time at both the modified and bare electrodes. As shown in 

Figure 4.11, oxidation peaks were observed at 0.132 V and 0.136 V vs. SCE, for bare 

CPE and S-β-CD modified CPE, respectively, corresponding to the oxidation of DA to 

DOQ. A peak current enhancement, nearly 10 fold, at S-β-CD modified CPE (6.14 × 10
-

6
 A) compared to bare CPE (6.53 × 10

-7
 A) was observed. Thus the results confirm that 

the presence of S-β-CD improved the sensitivity of the carbon paste for the 

electrochemical detection of DA.  

 

Figure 4.11: Differential Pulse Voltammograms of DA (5 × 10
-5

 M) at S-β-CD modified CPE (─) 

and bare CPE (─) in 0.1 M PBS, pH 6.8.  

 

When the solution pH was equal to 6.8, the –OSO3Na group of cyclodextrin is likely to 

dissociate leaving a negative charge group –OSO3
-
 (pKa of –OSO3H is about 1.6 [41] ). 

Under these conditions, the –NH2 group on DA could obtain a proton and form the 

cation of DA (pKa = 8.9). Therefore, the negative charge group –OSO3
-
 on the surface 

of S-β-CD modified CPE has a great (electrostatic) affinity to the DA positive ions, 

promoting the oxidation of DA in the neutral buffer solution (pH 6.8). An illustration of 

such a mode of DA sensing is shown in Scheme 4.2. 
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A higher voltammetric background current at the S-β-CD modified CPE compared to 

bare CPE was also observed. As already mentioned, this large background current could 

be caused by the complex charging current at the modified electrode / electrolyte 

interface compared to the non-modified electrode. 

 

  

Scheme 4.2: Schematic representation of the DA oxidation process at S-β-CD modified CPE. 

 

4.2.3    Electrode Pre-treatment 

It is important to condition the electrodes before detection of DA. Among several 

methods, cyclic voltammetric sweeping from ‒0.2 to +0.4 V in PBS prior to DA 

detection was chosen for bare CPE. As can be seen from Figure 4.12(a), when bare CPE 

was run directly in DA solution, steady-state oxidation currents were not observed. 

Particularly, DA oxidation signal decreases as cycle numbers increase. However, when 

using pre-treated electrodes, a stable DA response was obtained on continuous cycling 

(steady state). This is characterised by overlapping DA redox peak obtained after 1
st
 

cycle (Figure 4.12(b)). In the case of S-β-CD modified CPE, voltammograms obtained 

when electrode was run directly in DA solution is characterised by unstable, increasing 

cycles as shown in Figure 4.13(a). Stable cycles are obtained when the modified 

electrode was placed in DA solution at least five minutes before cyclic voltammograms 
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were recorded (Figure 4.13(b)). These simple pre-treatment methods were used 

throughout the thesis unless otherwise stated. 
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(b) 

Figure 4.12: Cyclic voltammetry of DA (5 x10
-5

 M) at bare CPE, (a) electrode placed directly in DA 

solution, (b) electrode run in PBS prior DA solution. 
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(b) 

Figure 4.13:  Cyclic voltammetry of DA (5 x10
-5

 M) at bare S-β-CD modified CPE, (a) electrode 

placed directly in DA solution, (b) electrode run in PBS prior DA solution. 
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better oxidation peak current for 5 × 10
-5

 M DA compared with corresponding electrode 

free oxide.   

4.2.4.1  DA response at oxide / S-β-CD modified CPE and oxide / bare 

CPE 

Cyclic voltammograms at oxide containing and oxide free S-β-CD modified CPE were 

recorded in 5 × 10
-5

 M DA solution as displayed in Figure 4.14. As can be seen, the 

peak potential separation of 0.016 V vs. SCE and a peak current increase (1.50 × 10
-6

 A) 

were observed at oxide / S-β-CD modified CPE, showing that the electron transfer rate 

is possible and even enhanced at oxide / S-β-CD containing electrode. ΔEp and Ipa for 

DA at oxide free S-β-CD modified CPE being respectively 0.016 V vs. SCE and 8.44 × 

10
-7

 A. So, based on ΔEp, the rate of electron transfer rate is the same in both cases. 

However, DA signal is much more improved at oxide containing S-β-CD modified CPE 

due to some interactions between DA and oxides at the modified electrode surface. It is 

important to mention that the modified electrode in both cases contain the same 

relatively small amount of S-β-CD (0.095 g). Therefore, the difference between the 

intensity of DA signal is clearly dependent on the presence of oxide species. 

 

Figure 4.14: Cyclic voltammetry of DA (5 × 10
-6

 M) at oxide covered S-β-CD modified CPE (─) and 

oxide free S-β-CD modified CPE (─). Supporting electrolyte PBS (0.1 M);  

scan rate 50 mV / s. 
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transfer mechanisms. A variety of possible mechanisms have been identified for carbon 

surfaces including, but not limited to, (1) outer sphere [40], (2) bridging by either a 

ligand or a surface group [41, 42], (3) redox mediation [43, 44], (4) adsorption to 

surface sites [45], (5) electrostatic effects [46] and (6) proton and electron transfer [47]. 

Although, the mechanism must involve some interactions between surface electrode and 

the redox systems, and based on the diversity of surface oxides, the nature of the 

specific interactions is not obvious. In the case of DA, the enhancement of peak current 

at S-β-CD modified CPE may result from a combination of both S-β-CD and oxides 

ability to interact with DA molecules. The inclusion complex formed between DA and 

S-β-CD and a probable electrostatic interaction or bonding sites of surface oxides may 

permit enhancement of DA signal. The redox behaviour of DA at oxide / bare CPE 

(without S-β-CD) was also examined. Figure 4.15(a) shows the voltammograms at 

oxide free and CPE with oxide layer, run in 5 × 10
-5

 M DA in the potential range [0.0 V, 

+0.6 V] vs. SCE at 50 mV / s. Two main observations can be made. Firstly, clear 

oxidation and reduction peaks for DA located at 0.154 V and 0.125 V vs. SCE, 

respectively, were observed yielding a ΔEp value of 0.029 V. When the same 

concentration of DA and electrochemical window were considered for oxide free bare 

CPE, and a ΔEp value of 0.208 V vs. SCE was obtained (Figure 4.15(b)). Next, the 

residual current was considerably increased at oxide covered electrode, due to the 

presence of oxide species at the electrode surface. These observations suggest that the 

presence of oxides at the CPE surface helps to promote electron transfer and / or 

charging processes at the electrode / solution interface. The issue with oxide-containing 

electrodes arise when lower DA concentrations are used. From the voltammograms 

presented, oxidation peak current of oxide and DA are very close, therefore DA signal is 

masked by the oxide peak when relatively smaller DA concentration is used. This is 

discussed in detail in Chapter 5. 
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(b) 

Figure 4.15: Cyclic voltammetry of DA (5 × 10
-5

 M) at CPE with oxide layer (─) and bare CPE (─) 

(a), highlighted voltammogram at bare CPE (b).  

Supporting electrolyte PBS (0.1 M); scan rate 50 mV / s. 
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procedures, such as polishing, significantly modified the surface structure and this can 

have dramatic effects on reactivity. After exploring several parameters, it was found that 

accumulation time slightly improved reproducibility of voltammograms, although DA 

response was not really reproducible. Figure 4.16(b) shows that cyclic voltammograms 

of 5 × 10
-5

 M DA at oxide containing S-β-CD modified CPE almost overlap, when 

electrode is allowed to stand in DA solution for 2 minutes before recording the 

voltammograms. Difficulties in efficient reproducibility probably arise from the type 

and distribution of oxide functional groups at electrode surface. Although, the 

importance of particular surface oxides to electrode kinetics at carbon electrodes is well 

recognized [49], their surface coverage is hard to control. The type of carbon material, 

its pre-treatment, exposure to air or electrolyte, can all affect the total oxide coverage on 

a particular carbon surface. 
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(b) 

Figure 4.16: Cyclic voltammetry of DA (5 × 10
-5

 M) at oxide containing S-β-CD modified CPE, 

(a) with 2 seconds accumulation time, (b) 120 seconds accumulation time. 

 Supporting electrolyte PBS (0.1 M); scan rate 50 mV / s. 
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4.2.4.3  Effect of scan rate on DA response at oxide containing S-β-CD 

modified CPE 

The influence of scan rate on DA oxidation at oxide containing S-β-CD modified CPE 

was investigated by cyclic voltammetry (Figure 4.17(a)). The oxidative peak current of 

5 × 10
-5

 M DA solution increases linearly with scan rates in the range of 10 to 80 V vs. 

SCE. It was therefore assumed that the electrode reaction of DA at oxide containing S-

β-CD modified CPE was typically of an adsorption controlled process. In addition, the 

positive oxidation peak potential Epa (0.173 V) is constant with increase of the scan rate. 

This indicates the reversible nature of the oxide containing S-β-CD modified CPE 

reaction. The enhancement on the remarkable adsorption characteristics of oxide 

containing electrodes may be probed by interaction of specific oxide functional groups 

such as carboxylate with protonated DA or some interactions such as hydrogen bonding. 

It is known that DA oxidation is significantly slower at diamond than glassy carbon 

electrodes, most likely because of adsorption effects [50]. DA can be catalysed by 

hydrogen bonding of surface carbonyls to adsorb DA molecules, and diamond does not 

provide necessary adsorption sites unless specifically treated. 
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Figure 4.17: Cyclic voltammograms for the effect of variation of scan rates of DA (5 × 10
-5

 M) at 

oxide containing S-β-CD modified CPE from 10 to 80 mV / s (a) and corresponding variation of 

oxidation peak current as a function of scan rate (b). Supporting electrolyte 0.1 M PBS (pH 6.8). 
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4.2.4.4  Potentiostatic removal of DA species from electrode surface  

One of the main advantages of CPEs is the comfortable renewal of their surface.  This is 

done in few seconds by wiping off the used surface layer on a weighing paper to obtain 

a fresh surface. Although, this characteristic method of CPE was mostly used in this 

thesis, another way of regenerating the CPE surface was also examined. Firstly, a 

background current was obtained, using S-β-CD modified CPE (Figure 4.18(a)). Then, 

the electrode was placed in 5 × 10
-5

 M DA solution for 2 minutes and the peak current 

recorded to be 6.12 × 10
-6

 A as shown in Figure 4.18(b). The electrode was removed 

from the DA solution, rinsed thoroughly with distilled water, and immersed in the 

supporting electrolyte solution. The resulting voltammograms (in Figure 4.18(c)) shows 

an intense peak (9.23 × 10
-7

 A) corresponding to oxidation of adsorbed species at the 

electrode surface. The electrode was subjected to potentiostatic treatment (Figure 

4.18(d)) by holding it at +1.0 V vs. SCE in the blank PBS for one minute to give a fresh 

electrode surface which is displayed in Figure 4.18(e). Finally the ‘cleaned’ electrode 

was immersed back in the initial DA solution for 2 seconds before the voltammograms 

recorded. The Ipa value obtained was 6.03 × 10
-6

 A as shown in Figure 4.18(f). This 

value is close to that obtained with a fresh CPE surface, confirming an alternative way 

to obtain a ‘new’ surface. This cleaning process not only allows the oxidation products 

of DA to exclude away from the electrode surface, but strongly suggests that S-β-CD 

molecules at the surface of the electrode are active after removal of DA species. The 

turnover characteristics of S-β-CD in the paste enable repeated interaction between S-β-

CD and DA molecules to produce peak current intensities similar in magnitude to those 

obtained before potentiostatic treatment.  It has to be noted this experiment was done in 

triplicate and gave an acceptable mean ratio of 0.998 between DA Ipa values before and 

after potentiostaic treatment as shown in Table 4.3.   
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Figure 4.18: Differential pulse voltammograms recorded at S-β-CD modified CPE. 

Voltammograms recorded in 0.1 M PBS (a) and 5 × 10
-5

 M DA (b). Electrode rinsed and 

voltammogram obtained in 0.1 M PBS (c). Potentiostatic treatment of the modified electrode in 

0.1 M PBS (d) and voltammogram obtained in 0.1 M PBS showing removal of oxidation peak (e) 

and subsequent detection of 5 × 10-5 M DA (f). 
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Table 4.3: potentiostatic treatment for removal of DA species from S-β-CD modified CPE surface 

DA Ipa before 

potentiostaic 

treatment (A) 

DA Ipa after 

potentiostaic 

treatment (A) 

DA Ipa ratio 
Mean value of DA 

Ipa ratio 

6.12 × 10
-6

 6.03 × 10
-6

 1.015 

0.998 5.89 × 10
-6

 5.97 × 10
-6

 0.987 

6.07 × 10
-6

 6.11 × 10
-6

 0.993 

 

4.2.5  Protonated S-β-CD Modified CPE 

Sulfated cyclodextrin can be obtained as single isomers or as randomly sulfated 

mixtures. Most of the commercially available sulfated cyclodextrin are mixture of 

randomly sulfated species [51, 52]. For randomly substituted cyclodextrins in general, 

only the average degree of substitution is known with certainty while the actual 

isomeric heterogeneity and / or charge distribution are not conclusively determined. 

Commercially available sulfated cyclodextrin used in this thesis was obtained from 

Sigma-Aldrich. It has approximately 7 to 11 sulfated groups per cyclodextrin. Meaning 

between 7 and 11 negative charges associated with it, which are counterbalanced with 

sodium ions as illustrated in Figure 4.19. Sulfated ends are at position 2 and 6, with 

position 3 intact with OH group [51]. 

In general, H
+
 ion conducts better than metal ion such as Na

+
. In addition, H

+
 ion has a 

smaller size compared to Na
+
. Therefore H

+
 has a higher mobility in water. 

In an attempt to increase sensitivity, the H
+
 form of S-β-CD was obtained by 

recrystallisation after adjusting the pH of commercially available S-β-CD (using 0.1 M 

HNO3 solution). 

 

Figure 4.19: Chemical structure of β-Cyclodextrin, sulfated sodium salt (S-β-CD). 
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4.2.5.1  Conductivity measurements 

Conductivity measurements were performed on both forms of sulfated cyclodextrin 

(commercially available S-β-CD and prepared H
+
 form of S-β-CD). Typically, 0.211 g 

of each form was dissolved in 10 mL Milli Q water and conductivity recorded in 

triplicate. The average value of conductivity and corresponding pH and temperature are 

displayed in Table 4.4. Clearly, the prepared H
+
 form of S-β-CD has conductivity two 

times higher than that of commercially available sulfated. 

Table 4.4: Conductivity measurements of H-S-β-CD and Na-S-β-CD 

CD 

compound 

Conductivity 

(μS) 
pH 

Temperature 

(   C) 

H-S-β-CD 555 2.53 23.6 

Na-S-β-CD 274 5.37 23.6 

 

4.2.5.2  DA electrochemical redox process at protonated S-β-CD modified 

CPE 

A modified CPE containing as-prepared H-S-β-CD (0.545 g) was fabricated using 

similar conditions and method utilised for S-β-CD modified CPE, which was described 

in Chapter 3. Cyclic voltammograms were obtained by placing H-S-β-CD modified 

CPE in 5 × 10
-6

 M DA at 50 mV / s. This relatively small concentration was chosen to 

test the sensitivity of the electrode. As shown in Figure 4.20, the voltammograms do not 

show distinct DA redox peaks. Under identical conditions, an oxidation peak current of 

2.79 × 10
-7

 A was determined at commercially available sulfated cyclodextrin (Na-S-β-

CD). H-S-β-CD was expected to have a better dissociation of sulfonic acid group at pH 

6.8 to give corresponding sulfate anion, which would result in a strong electrostatic 

interaction with protonated DA. However this was not the case. The poor response at H-

S-β-CD modified CPE requires further investigations. 
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Figure 4.20: Cyclic voltammetry of DA (5 × 10
-6

 M) at H-S-β-CD modified CPE (─) and Na-S-β-CD 

modified CPE (─) (a) and their highlighted anodic peak (b). Supporting electrolyte PBS (0.1 M);  

scan rate 50 mV / s. 
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4.2.6.1  DA electrochemical redox process at CM-β-CD modified CPE 

CM-β-CD modified CPE was prepared the same way as the S-β-CD modified CPE. 

Typically, 0.595 g CM-β-CD (corresponding to the optimal amount of S-β-CD) was 

inserted into the carbon paste. A redox peak of DA was observed when the modified 

electrode was placed into DA solution and analysed using cyclic voltammetry. It was 

observed that CM-β-CD modified CPE exhibited excellent electron transfer 

characteristics in the oxidation of DA. To demonstrate this, DA signal intensity at CM-

β-CD modified CPE was compared to that at S-β-CD modified CPE. Figure 4.21 shows 

the cyclic voltammograms of 5 × 10
-5

 M DA in a pH 6.8 PBS at S-β-CD modified CPE 

and CM-β-CD modified CPE. The anodic peak current obtained at CM-β-CD modified 

CPE was 2.99 × 10
-6

 A, marginally higher than that of S-β-CD modified CPE (2.43 × 

10
-6

 A). The anodic peak potential and corresponding cathodic peak appeared at 0.170 

V and 0.140 V (vs. SCE). ΔEp is 0.030 V, which suggests a reversible reaction process, 

is occurring at the CM-β-CD modified CPE. Yang et al [53] reported on similar 

reversibility for CM-β-CD in a polymer film composite. Moreover, the oxidation peak 

currents of DA at CM-β-CD modified CPE were far greater than those obtained at the 

bare CPE. The reason for the high peak current may originate from the structure of CM-

β-CD and consequent interaction with DA. Commercially available CM-β-CD utilised 

in this study has an average degree of substitution of 3 carboxylic groups per molecule. 

It is in a sodium salt form as shown in Figure 4.22. At pH 6.8, the carboxylic group at 

the primary or secondary site of the cyclodextrin should be negatively charged (pKa of 

COOH group being around 4.6 [54]). DA may be electrostatically attracted to CM-β-

CD via carboxylate moiety and facilitate inclusion of DA into cyclodextrin cavity. 

 

Figure 4.21: Cyclic voltammetry of DA (5 × 10
-5

 M) at CM-β-CD modified CPE (─) and S-β-CD 

modified CPE (─). Supporting electrolyte PBS (0.1 M);  scan rate 50 mV / s. 

 

I 
(A

) 

E (V) vs. SCE 
-0.250 -0.125 0 0.125 0.250 0.375

-1.0e-5

-7.5e-6

-5.0e-6

-2.5e-6

0

2.5e-6

5.0e-6

7.5e-6

1.0e-5

E (Volts) vs. SCE

I (
A

m
ps

)

GG1645_Cy05.cor
GG4_Cy05.cor



Chapter 4                                                                                               Sensor Application 

  
123 

 
  

 

 

Figure 4.22: Chemical structure of Carboxymethyl β-Cyclodextrin sodium salt (CM-β-CD). 

 

4.2.6.2  Effect of scan rate on peak current 

The effect of scan rate on the peak current of DA was investigated, using cyclic 

voltammetry as shown in Figure 4.23(a). It showed that Ipa increased gradually with 

increasing the scan rates. The oxidation peak current of DA was directly proportional to 

the scan rates in the range of 10 to 80 mV / s, which suggested that an adsorption-

controlled process of DA on the modified CM-β-CD modified CPE. The linear 

regression equation is such as Ipa (A) = 3.065 × 10
-8

 ν + 6. 33 × 10
-7

 with a correlation 

coefficient, R
2
, 0.9871 (Figure 4.23(b)). 
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Figure 4.23: cyclic voltammograms for the effect of variation of scan rates of DA (5 × 10
-5

 M) at 

CM-β-CD modified CPE from 80 to 10 mV / s (a) and corresponding variation of oxidation peak 

current as a function of scan rate (b). Supporting electrolyte 0.1 M PBS (pH 6.8). 
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modified CPE, CM-β-CD modified CPE and mixed (S-β-CD / CM-β-CD) modified 

CPE are highlighted and shown in Figure 4.24(b). The peak is perfectly symmetrical in 

the case of CM-β-CD modified CPE and mixed (S-β-CD / CM-β-CD) modified CPE. 

The shape of peak wave in this case suggests a stronger adsorption process for CM-β-

CD modified CPE compared to the corresponding S-β-CD modified CPE. The effect of 

CM-β-CD modified CPE in the mixture seems to predominate in the sensing of DA (as 

reflected through its ‘own’ DA signal). Although, the background current of CM-β-CD 

modified CPE is higher than that of S-β-CD modified CPE, the oxidation peak potential 

remains the same (0.17 V vs. SCE). Additionally, the background current, recorded fall 

between that of S-β-CD modified and the S-β-CD / CM-β-CD mixture. Although, the 

results indicated that CM-β-CD modified CPE gives a higher oxidation peak current of 

DA compared to mixed (S-β-CD / CM-β-CD) modified CPE, the combination of both 

charged form of cyclodextrin may have a better application in interference studies, 

when DA is detected in presence of serotonin, as discussed in Chapter 5. 
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Figure 4.24: Cyclic voltammograms of DA (5 × 10
-5

 M) in PBS (0.1 M), pH 6.8 with different scan 

rates, from 10 to 80 mV / s at (a) S-β-CD / CM-β-CD modified CPE, (b) oxidation peak at CM-β-

CD modified CPE (─), and S-β-CD / CM-β-CD modified CPE (─), S-β-CD modified CPE (─). 

 

E (V) vs. 

SCE 

I 
(A

) 

0 0.1 0.2 0.3
0

2.5e-6

5.0e-6

7.5e-6

1.0e-5

E (Volts) vs. SCE

I (
Am

ps
)

GG12_Cy05.cor
GG2179_Cy05.cor
GG4_Cy05.cor

E (V) vs. SCE 

I 
(A

) 

-0.250 -0.125 0 0.125 0.250 0.375
-8.0e-6

-5.5e-6

-3.0e-6

-5.0e-7

2.0e-6

4.5e-6

7.0e-6

E (Volts) vs. SCE

I (
A

m
ps

)

GG12_Cy05.cor
GG13_Cy05.cor
GG14_Cy05.cor

GG15_Cy05.cor
GG16_Cy05.cor

10 mV/s 

80 mV/s 



Chapter 4                                                                                               Sensor Application 

  
126 

 
  

 

 

Figure 4.25: The variation of oxidation peak current for DA (5 × 10
-5

 M) at S-β-CD / CM-β-CD 

modified CPE as a function of scan rate. Supporting electrolyte 0.1 M PBS (pH 6.8). 
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3
 M

-1
 [56]. Therefore, 

it is necessary to compare the electrochemistry of DA at neutral β-CD modified CPE 
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CD modified CPE in 5 × 10
-5

 M DA solution was investigated by cyclic voltammetry. 
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Figure 4.26 shows an oxidation peak located at 0.150 V and a corresponding reduction 

peak at 0.098 V vs. SCE. The peak potential separation was 0.052 V, indicative of a 

quasi-reversible system. The oxidation peak current, Ipa, was 1.50 × 10
-6

 A, higher than 

that of bare CPE (2.25 × 10
-7

 A). Thus, Neutral β-CD modified CPE exhibits an 

enhanced electrochemical response to DA oxidation. However, the oxidation peak value 

at Neutral β-CD modified CPE is much smaller than that obtained at S-β-CD modified 

CPE and CM-β-CD modified CPE, respectively. These results also indicate that the 

negative charge on cyclodextrin plays an important role in recognising DA. The charged 

cyclodextrin derivatives facilitate the insertion of DA into their cavity via electrostatic 

interaction between −OSO3
-
 and −COO

-
 groups with protonated DA. The response 

mechanism of Neutral β-CD modified CPE for DA is only based on the inclusion 

interaction of Neutral β-CD for DA; the main driving force for complex formation being 

hydrophobic interaction. However, for both S-β-CD modified CPE and CM-β-CD 

modified CPE, it is a combination of electrostatic and inclusion interactions. 

 

Figure 4.26: Cyclic voltammogram of DA (5 × 10
-5

 M) at Neutral β-CD modified CPE in PBS (0.1 

M), pH 6.8; scan rate 50 mV / s. 
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modified CPE, the influence of scan rate on the voltammetric response of DA was 

studied. Figure 4.27(a) shows the cyclic voltammograms of DA at different scan rate 

ranging from 10 to 100 mV / s vs. SCE. It is clear that the oxidation peak currents are 

enhanced with increasing of the scan rate and linearly proportional to the scan rate 

(Figure 4.27(b)). The regression equation is Ipa (A) = 5.404 × 10
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a correlation coefficient of 0.9898. This suggests that the electrode reaction corresponds 

to an adsorption-controlled process in the studied scan rate range. The electron transfer 

process was identical to the one observed at both S-β-CD modified CPE and CM-β-CD 

modified CPE. Although, the peak currents are different in all three types of modified 

electrodes, it is clear that DA oxidation at the modified electrodes is enhanced by DA 

interaction with cyclodextrin recognition elements. 

 

 

 

 

 

 

 

 

 

 

(a)  

 

 

 

 

 

 

 

 

 

 

 

(b)  

Figure 4.27: Cyclic voltammograms for the effect of variation of scan rates of DA (5 × 10
-5

 M) at 

Neutral β-CD modified CPE from 100 to 10 mV / s (a) and corresponding variation of oxidation 

peak current as a function of scan rate (b). Supporting electrolyte 0.1 M PBS (pH 6.8). 
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4.2.8  Fc-β-CD modified CPE  

In order to verify the possibility of using the Fc-β-CD inclusion complex as an efficient 

electron-transfer mediator, studies in presence of DA were carried out. Ferrocene is 

widely used as effective mediator for electron transport in bioelectrocatalysis [57, 58], 

electro-oxidants in electrosynthesis [59], and electrochemical probes in electrochemical 

determination [60]. However, the use of Ferrocene as a electrochemical mediator in 

aqueous media is restricted due to sublimation and solubility of ferrocinium ion (Fc
+
) 

[61], which may result in poor response to many electroactive substances. This problem 

can be solved by forming an inclusion complex of Ferrocene with β-CD.  

In this study, an inclusion complex of Ferrocene with β-cyclodextrin (Fc-β-CD) was 

prepared and used to construct Fc-β-CD modified CPE. The results obtained and 

discussed in this section show that Ferrocene incorporated in β-CD cavity mediates 

electron transfer reaction of DA oxidation and can be used as an electrochemical sensor 

in aqueous solution. 

4.2.9   Chemical Properties of Fc-β-CD complex 

Ferrocene, namely bis-cyclopentadienyl iron (II), is a molecule with a sandwich-type 

structure in which the iron atom is sandwiched between two five-membered carbon 

rings. Ferrocene can form inclusion complex with β-CD in a 1:1 ratio. The structure of 

such complex formation is represented in Scheme 4.3. The complex has been shown to 

be stable, such that there are examples where the complex has been crystallised from 

water and is thermally stable up to the melting point of cyclodextrin ~200 °C [62]. The 

binding constant Ka has been reported to be in the range of 1 × 10
-3

 – 1 × 10
-4

 M
-1

 [63]. 

The main driving forces for the complex formation have been attributed to hydrophobic 

interactions, Van der Waals interactions, hydrogen bonding, and release of ring strain in 

the β-CD cavity [64-66]. 

In order to probe the possibility of using the Fc-β-CD inclusion complex as an efficient 

electron-transfer mediator, studies in presence of DA were carried out.  
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Scheme 4.3: Schematic representation of host-guest interaction between Ferrocene and Neutral β-

CD. 

 

4.2.9.1  Fc-β-CD modified CPE in phosphate buffer solution 

The electrochemical behaviour of Fc-β-CD modified CPE was investigated in 0.1 M 

PBS (pH 6.8) by cyclic voltammetry at scan rate of 50 mV in the potential window 

ranging from +0.  to −0.25 V vs. SCE. In the first part of this work, Fc-β-CD was drop-

cast on bare CPE surface. A solution of nafion (0.05 % in ethanol) was added to Fc-β-

CD (0.006g) and sonicated for one minute. 10 μL of the obtained mixture was loaded on 

the CPE surface, which was dried at room temperature for two hours before cyclic 

voltammetry was performed. The resulting voltammogram presented in Figure 4.28(a) 

shows clearly an oxidation and reduction peak occurring respectively at 0.230 V and 

0.160 V vs. SCE. In the second part of the work, Fc-β-CD (0.006 g) was added to the 

bulk carbon paste. The voltammogram obtained when this modified electrode was run 

in 0.1 M PBS under similar conditions as the drop-cast method is shown in Figure 

4.28(b). The oxidation and reduction peak potential (for bulk method) occur at 0.287 V 

and 0.220 V vs. SCE, respectively. In both cases, Ferrocene, from the complex, was 

oxidised to ferrocenium cation in a standard one electron process [67, 68] as illustrated 

in Equation 4.4. Ferrocene exhibits a reversible oxidation in PBS. The potential peak 

separation, ΔEp, was found to be 0.063 V and 0.067 V vs. SCE respectively for drop-

cast and bulk method.  

 Fc  ⇋ Fc  + e   Equation 4.4 
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Figure 4.28: Cyclic voltammograms of PBS (0.1 M), pH 6.8 at Fc-β-CD modified CPE; (a) drop-

cast method, (b) bulk composite method; scan rate 50 mV / s. 

 

4.2.9.2  DA electrochemical redox process at Fc-β-CD modified CPE 

The electrochemical behaviour of Fc-β-CD modified CPE (drop-cast method) in a DA 

solution was examined. In this experiment, the cyclic voltammograms of 7.1 × 10
-5

 M 

DA in 0.1 M PBS (pH 6.8) at Fc-β-CD modified CPE was obtained and compared to 

that of the bare CPE, under similar conditions. Figure 4.29 shows a higher peak current 

for the oxidation of DA at Fc-β-CD modified CPE (8.483 × 10
-7

 A) compared to the 

bare CPE (4.044 × 10
-7

 A). This current could be attributed to the catalytic activity of 

Ferrocene moiety from complex Fc-β-CD at the surface of the carbon paste. The 

resulting oxidative peak current relies on the reaction between ferrocenium ion and DA. 

A catalytic mechanism is given in Equation 4.2 and Equation 4.3.  
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Figure 4.29: Cyclic voltammograms of DA (7.1 × 10
-5

 M) in PBS (0.1 M), pH 6.8 at Fc-β-CD 

modified CPE (─) and bare CPE (─). The modified electrode was prepared following the drop-cast 

method; scan rate 50 mV / s. 

 

 

 Fc2  ⇋ Fc2  + e2  Equation 4.5 

 
Fc2  + DA  ⇋ Fc2  + DOQ  Equation 4.6 

 

It is also important to mention that the oxidation and reduction peak potentials at bare 

CPE occurred at 0.332 V and 0.048 V vs. SCE, respectively. Under identical conditions, 

Fc-β-CD modified CPE gave well defined redox wave of DA, with the anodic peak 

potential at 0.205 V and the corresponding cathodic peak potential at 0.095 V vs. SCE. 

So, the peak separation for DA redox at Fc-β-CD modified CPE (ΔEp = 0.110 V) was 

smaller than that at the bare CPE (ΔEp = 0.280 V). Therefore, the role of the modifier is 

not only to enhance the peak current, but also to decrease the overpotential for oxidation 

of DA. Consequently, reversibility of DA is enhanced using Fc-β-CD.  

The composite method, where Fc-β-CD (0.006g) impregnated with the carbon paste was 

also employed to examine electrocatalytic activity for DA. Figure 4.30 shows cyclic 

voltammograms for 5 × 10
-5

 M DA at both the modified CPE and bare CPE at 100 mV / 

s. The anodic peak potential and the cathodic peak potential at Fc-β-CD modified CPE 

were located at 0.273 V and 0.076 V vs. SCE. The potential difference, ΔEp, was found 

to be 0.197 V. This value is higher than that obtained when Fc-β-CD was drop-cast on 

E (V) vs. SCE 

I 
(A

) 

-0.250 -0.125 0 0.125 0.250 0.375 0.500 0.625 0.750
-1.20e-6

-9.50e-7

-7.00e-7

-4.50e-7

-2.00e-7

5.00e-8

3.00e-7

5.50e-7

8.00e-7

1.05e-6

E (Volts) vs. SCE

I 
(A

m
p
s
)

naf618_Cy05.cor
naf631_Cy05.cor



Chapter 4                                                                                               Sensor Application 

  
133 

 
  

CPE. However, the modified electrode still exhibits an enhanced electrochemical 

response towards DA detection. The enhancement is explained in terms of increasing in 

both Ipa and Ipc compared with bare CPE. For instance, Ipa for Fc-β-CD modified CPE 

and bare CPE at 100 mV / s are 6.16 × 10
-7

 A and 4.13 × 10
-7

 A respectively. 

All these experimental results confirmed that Fc-β-CD modified CPE effectively 

enhances the oxidation of DA. 

 

 

Figure 4.30: Cyclic voltammograms of DA (5 × 10
-5

 M) in PBS (0.1 M), pH 6.8 at Fc-β-CD modified 

CPE (─) and bare CPE (─). The modified electrode was prepared following the bulk composite 

method; scan rate 100 mV / s. 

 

4.2.9.3  Effect of scan rate on peak current 

To study the effect of scan rate, cyclic voltammograms were recorded at the Fc-β-CD 

modified CPE at different scan rates in 5 × 10
-5

 M DA (pH 6.8). The voltammograms of 

Fc-β-CD drop-cast at CPE surface was displayed in Figure 4.31(a). As can be seen, the 

increase in potential scan rate induced a corresponding increase in peak current, 

resulting in a shift to more cathodic values for the oxidation of DA. Furthermore, the 

peak current varies linearly with the square root of the scan rate (Figure 4.31(b)), 

indicating that the electron transfer process at the electrode surface is under diffusion-

controlled. The linear equation between peak currents and the square root of the scan 

rate is presented as follows: Ipa (A) = 2.231 × 10
-6

 ν
1/2

 + 5.153 × 10
-10

 with a linear 

relative correlation coefficient of 0.9962, indicating that regression line is very well 

fitted with experimental data.  
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It is important to note that, in this type of electrode, Nafion was added to Fc-β-CD in 

order to obtain a good dispersion of Fc-β-CD and facilitate its stability at the surface of 

CPE. As will be seen in the next section, Nafion itself was used as a modifier. However, 

its role here in terms of enhancement the oxidation response of DA was negligible. As 

indicated in the following section the redox behaviour of DA at CPE modified with 

Nafion was under adsorption-controlled process. The fact that a diffusion process was 

observed at Fc-β-CD modified CPE, even with the presence of Nafion at the electrode 

surface strongly suggests that Nafion (an electrochemically inert polymer) facilitates Fc-

β-CD stabilisation. 
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Figure 4.31: Cyclic voltammograms for the effect of variation of scan rates of DA (5 × 10
-5

 M) at 

Fc-β-CD modified CPE from 100 to 10 mV / s using a drop-cast method (a) and corresponding 

variation of oxidation peak current as a function of square root of scan rate (b). Supporting 

electrolyte 0.1 M PBS (pH 6.8). 
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shown in Figure 4.32(a). However, there is a slight deviation from linearity compared to 

the drop-cast method, with correlation coefficient of 0.9804 (Figure 4.32(b)). Overall, 

these results demonstrated that the Fc-β-CD modified CPE can effectively be used for 

the determination of DA. 
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(b)  

Figure 4.32: cyclic voltammograms for the effect of variation of scan rates of DA (5 × 10
-5

 M) at 

Fc-β-CD modified CPE from 100 to 10 mV / s using a bulk composite method (a) and 

corresponding plot of oxidation peak current as a function of square root of scan rate (b). 

Supporting electrolyte 0.1 M PBS (pH 6.8). 
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cyclodextrin cavity. Therefore, the oxidation of DA is only possible when DA 

molecules, approaching the surface of the modified electrode are oxidised through 
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4.2.9.4   The amount of Fc-β-CD complex (Drop-cast method) 

The amount of Fc-β-CD on the surface of bare CPE can have a significant influence on 

the voltammetric response of DA. This is shown more distinctly in Figure 4.33. As this 

figure illustrates, the oxidation peak current for 7.1 × 10
-5

 M DA results in a well-

defined anodic and cathodic peaks when the concentration of Fc-β-CD, 2.66 × 10
-4

 g / 

mL, was cast at surface of bare CPE. However, using higher concentration (1.33 × 10
-3

 

g / mL) leads to two distinct reduction waves at 0.118 V and 0.193 V vs. SCE, 

corresponding to reduction of DOQ to DA and Fc
+
 to Fc respectively. The anodic and 

cathodic peak at lower concentration Fc-β-CD is attributed to the redox activity of DA, 

so the oxidation and reduction peaks of Ferrocene (particularly the reduction peak) are 

masked by the redox activity of DA. Moreover, the reduction peak potential is shifted to 

a negative value at a lower concentration of Fc-β-CD. 

 

Figure 4.33: cyclic voltammograms of DA (7.1 × 10
-5

 M) in PBS (0.1 M), pH 6.8 at 2.66 × 10
-4

 g / mL 

Fc-β-CD modified CPE (─) and 1.33 × 10
-3

 g / mL Fc-β-CD modified CPE (─); scan rate 50 mV / s. 

 

4.2.9.5  Stability of Fc-β-CD complex  

One of the important requirements for application of sensor is its stability. It has been 

found that the oxidized forms of Ferrocene, Fc
+
, and its derivatives are soluble in 

aqueous solution [69]. This presents a problem in that Fc
+ 

tends to leach. Strategies to 

prevent Fc
+ 

leaching from CPE have been reported by several groups. Ferrocene can be 

linked covalently with polymer or with high molecular weight compounds before 

immobilization on the surface of electrode [70, 71]. Gorton et al [72] studied ferrocene-

containing siloxane polymer modified electrode surface with a poly (ester-sulphuric 
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acid) cation-exchanger to improve the stability of the mediator. Another alternative 

method is to synthesize a few Ferrocene derivatives with specific functional groups [73, 

74], in a complicated preparation procedure. For instance, Jönsson et al [73] used 

hydroxymethyl Ferrocene and anthracene carboxylic acid to synthesize anthracene 

substituted ferrocene. 

The other alternative method to increase the stability of Ferrocene is the formation of 

inclusion complex with cyclodextrin, which makes the solubility of ferrocenium ion 

decrease. For instance Zhang et al [75] used β-cyclodextrin-ferrocene inclusion 

complex modified CPE for amperometric determination of Ascorbic Acid. The 

approach used by those authors was followed in this study. The problem related to 

ferrocenium ion leaching (from the paste) improved, when Ferrocene was changed to 

Fc-β-CD inclusion complex. The guest molecule (Fc) was held in the hydrophobic 

cavity of β-CD (host molecule) by noncovalent interactions. This greatly decreased the 

water-solubility of the Fc
+
 and correspondingly improved the stability of the modified 

electrode. 

Figure 4.34(a) shows highlights of the anodic peak currents of Ferrocene. The anodic 

peak currents decrease continuously with repeated potential scans until a steady state 

was obtained after the 5
th

 cycle. This figure illustrates the behaviour of Fc-CPE in 0.1 M 

PBS at 50 mV / s. Although, ferricinium ion is soluble in aqueous solution, cyclic 

voltammetry experiments shows that Fc-CPE is stable enough in aqueous solution and it 

can be used as an electrochemical sensor. This unusual observation was also reported by 

Kamyabi et al [76].  

Under similar conditions, Fc-β-CD inclusion complex shows that anodic peak currents 

almost overlap with increasing cycle numbers as shown in Figure 4.34(b). 

It is demonstrated that the stability of Fc-β-CD modified CPE is slightly better than Fc-

CPE. 
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(a)  (b)  

Figure 4.34: Enlarged Ipa for cyclic voltammograms of (a) Fc modified CPE and (b) Fc-β-CD 

modified CPE in PBS (0.1 M), pH 6.8; scan rate 50 mV / s. 

 

The electrochemical behaviour of Fc-β-CD remains similar compared to Fc itself in 0.1 

M PBS. As seen in Figure 4.35. The peak potential separation for Fc-β-CD modified 

CPE and Fc-CPE are 0.072 and 0.073 V vs. SCE respectively, which is characteristic of 

a quasi-reversible system. Although, an amount of 0.006 g was utilised in both cases for 

the fabrication of the electrodes, the actual peak currents cannot be compared 

appropriately as the concentration of Fc in each electrode is not the same. However, the 

reversibility and remarkable symmetrical peak wave in Fc-CPE is probably related to 

the electron mediation action of Ferrocene. Therefore, Ferrocene ‘non-included’ may 

have an ability to mediate electron transfer much easier compared to Fc-β-CD inclusion 

complex.   

 

 

Figure 4.35: Cyclic voltammograms of  Fc modified CPE (─) and Fc-β-CD modified CPE (─) in 

PBS (0.1 M), pH 6.8; scan rate 50 mV / s. 
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The stability of Fc-β-CD was further investigated at room temperature. Carbon pastes 

containing respectively Fc (0.006g) and a relatively higher amount of Fc-β-CD (0.695g) 

were stored separately into a vial. The vials were tightly closed over a period of 2 days. 

During this length of time, a yellow colour was formed (clearly visible) at the lid of the 

vial due to sublimation of Ferrocene (as shown from Figure 4.36). The yellow 

coloration is a result of gaseous Ferrocene which developed overtime. This 

phenomenon may result in a poor reproducibility and short lifetime of the modified 

electrode. Generally, Ferrocene can be purified by sublimation and gaseous Ferrocene 

are very pure compared to the bulk solid Ferrocene. It should be notice that commercial 

Ferrocene used in this work is 98 % pure; therefore, most of Ferrocene molecules may 

sublime if time is increased to more than 2 days. As already mentioned in chapter 3, the 

prepared carbon paste could be unused for at least 12 hours to allow ‘self-

homogenisation’, which is required for consistent material composite. During this time 

frame, Ferrocene can sublime slowly at room temperature. It is also remarkable to 

observe sublimation of Ferrocene from carbon paste in the presence of a relatively high 

content of binder (200 μL silicon oil). In contrast, vial (B), composed of Fc-β-CD shows 

a stable paste as the lid retains its initial colour after 2 days. It is clear that the 

sublimation and release of complexed ferrocene molecules have been protected by the 

cyclodextrin cavity in which they were ‘encapsulated’. 

 

Figure 4.36: Photographic images of carbon paste composite containing (A) 0.006 g Ferrocene, (B) 

0.695 g Fc-β-CD. 

 

(A) (B) 
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4.2.10  Nafion Modified CPE 

Nafion, a perfluorosulfonated cation-exchange polymer, is a perm-selective polymer 

known for its ability to incorporate positively charged ions and reject anions [77-79] 

[80-82]. It is highly stable in aqueous solution [83] and electrochemically inert. Nafion 

contains two different regions: the hydrophobic polymer backbone and the ionized 

hydrophilic sulfonate groups outside the hydrophobic region as shown in Figure 4.37. 

The structure of Nafion unit illustrates the variability of the material; for example, the 

most basic monomer contains chain variation between the ether groups (z subscript). 

The special amphiphilic structure makes Nafion to be widely used in the field of 

electrochemistry. 

In this study, Nafion was used as a modifier for DA sensing. Two methods for the 

preparation of the electrode were carried out. Nafion was incorporated into the carbon 

paste during the mixing of the graphite and silicone oil, and it was also drop-cast onto 

the surface of the CPE. These methods are simple and effective for the detection of DA. 

 

 

Figure 4.37: Chemical structure of Nafion unit. 

 

4.2.10.1  DA electrochemical redox process at Nafion modified CPE 

A portion of the composite mixture was then used to construct the modified electrode. 

In the second method, a concentration of nafion was dropped on the surface of CPE. In 

both cases, cyclic voltammetry were performed on 5 × 10
-5

 M DA in PBS (pH 6.8). 

Figure 4.38(a) shows the recorded voltammograms when Nafion (200 μL) was 

incorporated within CPE and dried at room temperature for three hours; no detection of 

DA was observed at all. The commercially available Nafion
®
 117 solution employed 

here is 5% concentrated in ethanol. Therefore, the high background current observed 

may result from insufficient time to dry fully the carbon paste composite. Experimental 

evidences have confirmed that alcohols penetrate into the non-polar regions of Nafion 

[84]. Although, three hours seems to be sufficient to allow evaporation of ethanol 
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contained into Nafion solution, this experiment demonstrates that higher amount of time 

was required to get a carbon paste composite free from ethanol. To improve the 

electrochemical response of DA, the carbon paste material composite was spread in a 

petri dish and allowed to dry overnight at room temperature. The fabricated electrode 

based on such material composite was tested in 5 × 10
-5

 M DA using cyclic 

voltammetry. As shown in Figure 4.38(b), a well-defined redox peak centred at 0.160 V 

was observed, indicating that ethanol was completely removed from the paste. 

Consequently, Nafion with its negatively charged sulfonic group was able to enhance 

the adsorption of DA. The resulting DA signal shows an anodic and a cathodic peak 

value of 1.94 × 10
-6

 A and 1.96 × 10
-6

 A, respectively. The ratio Ipa / Ipc was 0.99 and 

the peak potential separation 0.01 V vs. SCE. All these experimental results indicate a 

reversible electron transfer process at Nafion modified CPE. The presence of a pre-peak 

is also observed (midpoint 0.02 V vs. SCE), which describes the redox behaviour of 

oxide species. 
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(b)  

Figure 4.38: Cyclic voltammograms of  DA (5 × 10
-5

 M) at (a) Nafion modified CPE with paste 

composite dried for 3 h (─) and Nafion modified CPE with paste composite dried for 24 h (─) in 

PBS (0.1 M), pH 6.8 (b) Enlarged cyclic voltammograms for Nafion modified CPE with paste 

composite dried for 24 h; scan rate 50 mV / s.  

 

The second type of Nafion modified CPE was prepared by drop-casting of undiluted 10 

μL of 5% Nafion
®

 117 on the surface of CPE. The electrode surface was then allowed 

to dry at room temperature until a visible film was observed. The cyclic voltammogram 

obtained when the modified electrode was placed in 5 × 10
-5

 M DA is displayed in 

Figure 4.39. As can be seen, no redox activity of DA was observed. A concentration of 

0.05 % Nafion solution was then prepared from 5% Nafion
®

 117 solution, and 10 μL of 

it was drop-cast onto CPE surface, and allowed to dry at room temperature. Cyclic 

voltammetry was performed, which resulted in oxidation signal of DA, similar to that 

obtained previously at Nafion incorporated within the carbon paste. Here, the oxidation 

peak current was 2.43 × 10
-6

 A, higher than that obtained in the previous method. 
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However, the peak potential separation, ΔEp (0.01 V vs. SCE) remained the same, 

characteristic of an adsorption controlled redox process. It is also noted that the 

oxidation peak potential were much the same. Epa was found to be 0.150 V compared to 

0.160 V in Nafion mixed with carbon paste. 

It can be concluded that the effect of reducing Nafion concentration (from 5 % to 

0.05 %) showed that 0.05% was favourable, as it resulted in a maximum peak current at 

a peak potential well separated from the non-faradaic current. A thicker Nafion coating 

(for instance 5 %) may result in Nafion molecules obstructing the mass transport of the 

analyte molecules and reducing considerably the electrode conductivity. This effect was 

also observed by White et al [85] and Hoyer et al [86]. 

 

 

Figure 4.39: Cyclic voltammograms of  DA (5 × 10
-5

 M) at Nafion modified CPE from 5 % Nafion 

solution (─) and Nafion modified CPE from 0.05 % Nafion solution (─), in PBS (0.1 M), pH 6.8; 

scan rate 50 mV / s. 

 

4.2.10.2     Rate-controlling process within the Nafion membrane 

A study of the effect of varying the scan rate allowed the determination of the rate 

controlling process within the Nafion layer. This study was carried out in DA (5 × 10
-5

 

M) at Nafion incorporated in CPE.  As seen in Figure 4.40(a), both the cathodic and 

anodic peak currents increased with increase in scan rate from 10 to 100 mV / s. A plot 

of DA oxidation peak current versus scan rate was linear (Figure 4.40(b)), indicating 

that the rate controlling process to be an adsorption of DA through the Nafion layer.  
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(b)  

Figure 4.40: Cyclic voltammograms for the effect of variation of scan rates of DA (5 × 10
-5

 M) at 

Nafion modified CPE from 100 to 10 mV / s (a) and corresponding variation of oxidation peak 

current as a function of scan rate (b). Supporting electrolyte 0.1 M PBS (pH 6.8). 

 

4.2.10.3  Mode of sensing 

As already mentioned, Nafion is a member of perfluorosulfonate cation-exchange resins, 

which is highly stable in aqueous solution [83]. It is electrochemically inert and can be 

used as modifier. One important reason for the widespread application of Nafion 

modified electrodes in electroanalytical chemistry are their ability to preconcentrate 

positively charged molecules [80-82]. 
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The accumulation mechanism of Nafion can be explained through an electrostatic 

interaction due to the negatively charged sulfonate groups in the polymer structure. In 

addition, Nafion ionic selectivity for hydrophobic organic cations is achieved through 

hydrophobic interactions with the hydrophobic fluorocarbons of the film [87]. 

At pH values below 7, DA exists predominantly in the cationic form. Because of this, 

the DA signal can be enhanced in the presence of Nafion. The adsorption of DA at 

Nafion modified CPE may be explained via the following Equation 4.7 [88]. 

 

  film3 HSONafion  +  solution
DA ⇋   film3 DASONafion  +  solution

H  Equation 4.7 

 

4.2.10.4  S-β-CD / Nafion modified CPE 

A combination of S-β-CD and Nafion, two modifiers having separately an enhancing 

effect on DA signal was of interest as no reports have been previously released showing 

an electrochemical detection of DA using S-β-CD / Nafion modified CPE. Some 

authors such as Huong et al [89] used a conductive poly (3-methylthiophene) / Nafion 

modified glassy carbon electrode as a chemical sensor for the voltammetric analysis of 

DA. Lee et al [90] employed Nafion coated hybrid macroporous gold modified 

electrode with Platinum Nanoparticles for the selective detection of DA. The 

combination of Nafion and a chemical compound to form a complex material composite 

for the detection of DA appears a subject of interest. To achieve this goal; S-β-CD and 

Nafion were mixed in carbon paste. Typically, 0.545g S-β-CD and 200 μL Nafion (  %) 

were mixed with graphite powder containing silicon oil (200 μL). The resulting 

composite material was dried overnight at room temperature. The cyclic voltammetry 

obtained from such material when used to detect 5 × 10
-5

 M DA at scan rate 50 mV / s 

was displayed in Figure 4.41 (red voltammogram). A pair of redox peaks is observed 

with anodic peak current equal to 1.29 × 10
-6

 A. Under the same conditions, the bare 

CPE only returned an anodic peak current of 2.25 × 10
-7

 A as demonstrated previously. 

Clearly, S-β-CD / Nafion modified CPE enhance the DA peak current and facilitate DA 

detection. This is also observed through the oxidative peak separation (ΔEp = 0.020 V 

vs. SCE) compared to that of bare CPE (0.133 V vs. SCE). In order to increase 

furthermore the signal of DA using the modified electrode, the material composite was 

dried in the oven at  0   C for two days. The paste was mixed again to ensure 

homogeneity, before constructing the electrode. The cyclic voltammetry acquired at this 

type of modified electrode is given in Figure 4.41 (black voltammogram). As can be 

seen, the intensity of the oxidation peak current is greatly increased, with the anodic 
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peak current corresponding to 2.45 × 10
-6

 A. The ratio of the cathodic peak current over 

the anodic peak current is close to 1, suggesting a reversible redox process. The drying 

process may have enhanced the ability of Nafion to pre-concentrate DA molecules. 

Nagy et al [91] have shown that Nafion loaded at an electrode surface can be dried 

using a domestic hair-dryer; and such a heat-treatment step improves both the 

electrochemical performance and the stability of Nafion-coated electrode. 

 

 

Figure 4.41: cyclic voltammograms of DA (5 × 10
-5

 M) S-β-CD / Nafion modified CPE (─) and S-β-

CD / Nafion modified CPE with paste composite heated at 50   C (─) in PBS (0.1 M), pH 6.8;  

scan rate 50 mV / s. 

 

In the second part of this study, Nafion mainly served as a binder to improve dispersion 

of S-β-CD at the surface of CPE, and in addition with S-β-CD to enhance redox activity 

of DA. To prepare the modified electrode, 0.057 g of S-β-CD was dispersed in 1 mL 

Nafion (0.05 %) solution with the aid of sonication to form a viscous solution. Then, 10 

μL was loaded on the surface of a previously prepared CPE. The modified electrode 

was allowed to dry at room temperature for three hours to dry. The cyclic 

voltammogram obtained with the modified electrode in 5 × 10
-5

 M DA is shown in 

Figure 4.42. The oxidation peak current (1.08 × 10
-6

 A) is also higher than that obtained 

at the bare CPE. However, this value is lower than the oxidation peak current at Nafion 

modified CPE (using identical drop-cast method). Perhaps a dispersion of S-β-CD and 

Nafion involved a much more important repulsive force between S-β-CD and Nafion, as 

they are both negatively charged at neutral pH. A possibility of electrostatic repulsion of 

sulfate group of the cyclodextrin against the sulfonate group of Nafion is likely to 
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hinder inclusion of DA into the cavity S-β-CD or reducing its accumulation into the 

Nafion film.    

 

Figure 4.42: Cyclic voltammograms of  DA (5 × 10
-5

 M) at S-β-CD / Nafion modified CPE,  

in PBS (0.1 M), pH 6.8 using a drop-cast method; scan rate 50 mV / s. 

 

Alternatively, the modified electrode was dipped into the dispersive solution of S-β-CD 

and Nafion for 5 seconds and allowed to dry at room temperature. The cyclic 

voltammetry of DA at this type of modified electrode is shown in Figure 4.43. 

Although, a higher background current was observed, the redox pair was found to be 

similar to that obtained by drop-cast method. The intensity of the oxidation peak 

current, 1.07 × 10
-6

 A, remained the same. It can also be concluded that the bulk 

composite afforded a better DA response compared to the drop-cast method.  

 

Figure 4.43: Cyclic voltammograms of  DA (5 × 10
-5

 M) at S-β-CD / Nafion modified CPE in PBS 

(0.1 M), pH 6.8 using a dip drop method; scan rate 50 mV / s. 
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The stability of S-β-CD / Nafion modified CPE (dip-drop method) was checked by 

repetitive potential sweeps in 0.1 M PBS (pH 6.8) at 50 mV / s. Figure 4.44 shows that 

the voltammograms reach steady-state after the third cycle, indicating that S-β-CD / 

Nafion modified CPE is stable. S-β-CD is maintained at the surface of electrode by 

Nafion, which is insoluble in water. Therefore, S-β-CD / Nafion modified CPE by drop-

cast method can be applied in aqueous system. Although, this type of modified 

electrode gives a fairly enhancement effect in the detection, it might have a better 

application for DA detection in aqueous media if an optimum ratio is developed. 

 

 

Figure 4.44: Cyclic voltammograms of S-β-CD / Nafion modified CPE in PBS (0.1 M), pH 6.8; scan 

rate 50 mV / s. 

 

Based on a possible electrostatic interaction between the negatively charged group both 

from S-β-CD and Nafion, it was decided to lower the concentration of S-β-CD and 

compare the effect on DA to result obtained from the voltammogram in Figure 4.42. 

The concentration of S-β-CD was reduced to 1.04 × 10
-2

 g / mL (in 0.05 % Nafion). 

Again, 10 µL of the mixture was loaded on the surface of CPE. The resulting 

voltammogram displayed in Figure 4.45 gave a much lower DA signal (3.80 × 10
-7

 A). 

In addition, a more diffusion profile of redox peak was observed, suggesting that the 

ratio S-β-CD / Nafion at the surface of CPE was important. Therefore, the effect of 

increasing the concentration of S-β-CD (in the mixture S-β-CD / Nafion) on CPE 

surface was then studied. The mixture was prepared by dispersing S-β-CD in Nafion 

(0.05%) with aid of ultrasonic bath for 10 minutes. Different concentrations of S-β-CD 

in Nafion were made: 9.64 × 10
-3

 g / mL, 1.04 × 10
-2

 g / mL, 1.11 × 10
-2

 g / mL and 
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1.22 × 10
-2

 g / mL. Each homogeneous mixture was placed separately in different vials. 

Then, an aliquot of 10 μL from each solution was drop-cast on bare CPE and allowed to 

dry at room temperature. The electrochemical behaviour of the modified electrodes was 

recorded using cyclic voltammetry in 5 × 10
-5

 M DA. Figure 4.46 shows there is an 

inverse relationship between DA oxidation peak current and Nafion concentration at the 

electrode surface. Otherwise, DA oxidation peak current increase with increasing 

concentration of S-β-CD. As displayed in Table 4.5, Ipa increases as the amount of 

Nafion is lowered, indicating that Nafion membrane ratio directly controls the electrode 

performance. In fact, the higher the amount of S-β-CD, the lower the amount of Nafion 

at the CPE surface (and vice versa). In addition, oxidation peak potential shifts slightly 

to a more anodic value as Nafion concentration is lowered. These experimental results 

suggest that a relatively higher Nafion ratio may form a thicker film at the electrode 

surface, therefore, acting as a diffusion barrier to the uptake of DA from the analyte 

solution and also preventing effective interaction between S-β-CD and DA. As already 

mentioned, the electrochemical response could be the sum of contributions both from S-

β-CD and Nafion. So, the effect of S-β-CD may be inhibited by such a high Nafion 

content. The effect of Nafion in the modified film is very significant for the 

voltammetric response of DA. From Table 4.5, 1.22 g / mL appeared to give the 

maximum value for peak current, but it cannot be considered as the optimal mixture. 

These experimental results simply describe the successful combination of S-β-CD and 

Nafion in order to provide S-β-CD / Nafion coated CPE. Further work needs to be done 

to develop an optimal mixture of S-β-CD / Nafion and consequently a maximum 

loading onto the CPE surface. 

To conclude this section, there was a considerable increase in peak current using S-β-

CD / Nafion-modified CPE over an unmodified CPE. A combination of S-β-CD and 

Nafion, particularly in bulk carbon paste, proved to exhibits excellent electrocatalytic 

activity towards the oxidation of DA. 
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Figure 4.45: Cyclic voltammetry for DA (5 × 10
-5

 M) at S-β-CD / Nafion (1.04 × 10
-2

 g / mL) 

modified CPE in PBS (0.1 M), pH 6.8; scan rate 50 mV / s. 

 

 

 

 

 

Figure 4.46: Cyclic voltammetry for DA (5 × 10
-5

 M) at (─) S-β-CD / Nafion (9.64 × 10
-3

 g / mL) 

modified CPE, (─) S-β-CD / Nafion (1.04 × 10
-2

 g / mL) modified CPE, (─) S-β-CD / Nafion (1.11 

× 10
-2

 g / mL) modified CPE, (─) S-β-CD / Nafion (1.22 × 10
-2

 g / mL) modified CPE,  

in PBS (0.1 M), pH 6.8; scan rate 50 mV / s. 
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Table 4.5: Effect of S-β-CD / Nafion concentration on the redox DA. 

S-β-CD 

concentration 

(g / mL) 

DA oxidation peak 

current  

(A) 

DA oxidation peak 

potential  

(Volt) 

9.64 × 10
-3

 2.99 × 10
-7

 0.24 

1.04 × 10
-2

 3.80 × 10
-7

 0.21 

1.11 × 10
-2

 4.29 × 10
-7

 0.19 

1.22 × 10
-2

 4.82 × 10
-7

 0.18 

 

4.2.11 Bare Graphene Paste Electrode 

Graphene is now considered as a ‘rising star’ material and has received much popularity 

because of its physical and chemical properties [92]. Based on its reported properties, it 

was hypothesized that graphene would have a significantly better performance as 

compared to common CPEs and glassy carbon electrodes. Therefore, the aim of this 

section was to replace graphite by graphene and assess its performance for detection of 

DA in comparison of graphite based CPE used throughout this thesis. Graphene was 

successfully prepared and it was found that it exhibits a superior sensing performance 

than graphite towards DA detection.  

4.2.11.1  Preparation of Graphene paste electrode (GPE) 

GPE was fabricated the same way as CPE. Typically, 0.71 g Graphene and 200 μL 

silicone oil were thoroughly hand-mixed in an agate mortar using a pestle to obtain a 

homogeneous paste. A portion of the resulting paste was packed into one end of a 

Teflon tube (internal diameter of 2 mm) and a copper rod was inserted through the 

opposite end to establish an electrical contact. The modified GPE was prepared 

similarly by addition of appropriate amount of the modifier. Prior to use the surface of 

the electrode was polished on a weighing paper. 

4.2.11.2  DA electrochemical redox process at bare GPE 

In order to evaluate the ability of bare GPE for DA determination, the electrochemical 

behaviour of DA was studied using Differential Pulse Voltammetry (DPV). DPV has 

higher current sensitivity and better resolution than cyclic voltammetry (CV). In the 

DPV mode, charging current contribution to background current is negligible leading to 

more accurate measurements. Therefore, this technique was employed to compare 

graphite and graphene based electrodes and later, in Chapter 5, for the trace level 

detection of DA. Figure 4.47 shows the DPV curves of 5 × 10
-5

 M DA at bare graphite 
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paste electrode (CPE) and bare graphene paste electrode (GPE). Clearly, the 

voltammogram obtained at bare GPE shows a higher oxidation peak current of DA 

compared with bare CPE. Ipa for GPE and CPE are 1.65 × 10
-6

 A and 6.53 × 10
-7

 A 

respectively. This means that GPE is up to three times more efficient than 

corresponding CPE towards the detection of DA. In addition, the oxidation of DA 

occurs at 0.132 V at CPE, whereas it is 0.116 V at GPE.  This negative-shift of the 

overpotential at GPE confirms the eletrocatalytic effect of GPE on DA. This is also 

reflected in the sharper peak obtained at GPE. All these effects may be attributed to the 

larger surface area and the larger number of defects such as kinks, steps, and vacancies 

[93] that have great affinity toward DA. The defects in graphene result from its 

oxidation-reduction preparation process [94] and serve as highly active sites in the 

electrochemical reactions at GPE. Moreover, the interaction and electron 

communication between graphene and (benzene ring of) DA can be further strengthened 

via π-π stacking force [95]. The redox activity DA has been improved by replacing 

graphite for graphene.  

 

Figure 4.47: Differential pulse voltammograms of DA (5 × 10
-5

 M) at bare GPE (─) and bare CPE 

(─) in 0.1 M PBS, pH 6.8.  
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4.2.11.3 DA electrochemical redox process at S-β-CD modified GPE 

The good electrochemical behaviour of DA at bare GPE has encouraged the study of 

DA determination at S-β-CD modified GPE. The electrode was made using optimum 

amount of S-β-CD (0.545 g) into the GPE. Under identical conditions described for bare 

GPE, DPV curve for S-β-CD modified GPE shows a higher oxidation peak current 

compare to bare GPE as shown in Figure 4.48. The value of oxidation peak current was 

7.22 × 10
-6

 A. As already mentioned S-β-CD at the surface of the electrode can 

recognize protonated DA molecules and facilitate their insertion into the cyclodextrin 

cavity. This increased peak current was attributed to the combined effect of high 

conductivity of graphene and complexation ability of S-β-CD with DA. Graphene acts 

as a semi-metal or a zero-band semiconductor with remarkably high electron mobility at 

room temperature [93]. Therefore it could accelerate the electron transfer on the 

electrode surface to amplify the electrochemical signal due to its outstanding electric 

conductivity. It is also characterised by an abundance of surface defects which could 

enhance electron transfer process. On the other, S-β-CD can form an electrostatic 

interaction and an inclusion complex with DA molecule. Graphene paste modified with 

S-β-CD is a remarkable sensor toward the detection of DA. An illustration of S-β-CD 

modified GPE is displayed in Figure 4.49. 

 

Figure 4.48: Differential pulse voltammogram of DA (5 × 10
-5

 M) at S-β-CD modified GPE in 0.1 M 

PBS, pH 6.8.  
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Figure 4.49: Simplified schematic representation of S-β-CD modified GPE 

 

4.2.12 Rotating Disc Electrode Voltammetric studies 

RDE voltammetry was used to elucidate the kinetics of S-β-CD modified CPE. The 

RDE voltammograms were recorded for 1 × 10
-5

 M DA solution in 0.1 M PBS (pH 6.8) 

at various rotation rates (from 500 to 2000 rpm). Typical current–potential curves are 

shown in Figure 4.50. As observed, the hydrodynamic voltammograms show that a 

steady-state condition is not attained fully. However, under similar experimental 

conditions, the bare CPE show defined limiting currents, which increase with an 

increase of the rotating rate (Figure 4.51). This unexpected results obtained at S-β-CD 

modified CPE may be related to the modifier − S-β-CD − which interact specifically 

with DA. In this case, the diffusion layer is more likely to be dependent on time and the 

species at the electrode surface. Even at a higher rotation speed such as 2000 rpm a peak 

shape wave was observed. When Nafion modified CPE was used a steady state was 

observed (Figure 4.52). This probably indicates that there is complexation event at the 

S-β-CD modified CPE/DA interface. DA is oxidised to DOQ, and DOQ is probably 

released from the cavity and diffused away from the electrode surface before another 

DA molecule interacts with CD. The space of time taken for DA to interact with CD 

and get oxidised is more likely responsible for the peak shape wave. Although, kinetic 

informations could not be obtained, it is worth mentioning that the RDE voltammetric 

studies are at a preliminary stage and further experiments are required to get a better 

understanding of the system.  
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Figure 4.50: RDV of S-β-CD modified CPE in 1 × 10
-5

 M DA at various rotation rate from 500 to 

2000 rpm.  

 

 

Figure 4.51: RDV of bare CPE in 1 × 10
-5

 M DA at various rotation rate from 500 to 2000 rpm. 
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Figure 4.52: RDV of Nafion modified CPE in 1 × 10
-5

 M DA at various rotation rates from 500 to 

2000 rpm. 

 

All the modified electrodes employed until now (S-β-CDCPE, CM-β-CDCPE, Fc-β-

CDCPE, β-CDCPE and NCPE) exhibit a remarkable enhancement in DA oxidation 

peak current compared to that obtained at the bare CPE. The presence of the modifiers 

at the electrode surface plays a key role in the attraction of DA molecules, resulting in 

an improved DA current response. The proposed sensors can effectively be employed to 

detect of DA using different electrochemical techniques such as CV, DPV or RDV. 

However, as already mentioned, DA coexists with compounds such as ascorbic acid and 

serotonin in biological samples. These three chemicals mutually influence their 

respective determination at bare electrodes. Therefore, it is important to analyse the 

behaviour of the modified CPE in a mixture solution containing DA, ascorbic acid and 

serotonin. This approach is dealt with in the next chapter.  
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5.1 Introduction 

Determination of DA levels in the cerebrospinal fluid is of paramount medical 

importance due to its significant role as a neurotransmitter [1]. Monitoring the changes 

in DA levels has proven to be a very effective route toward understanding brain 

function. DA is linked to learning and memory formation, and the physiological and 

pathological process of Parkinson’s Disease, Alzheimer’s Disease, schizophrenia, 

depression and numerous other neurological disorders  [1, 2]. Therefore, there is a 

continued and pressing interest in the development of simple and sensitive methods for 

the quantification of DA in the CSF. Several methods can be employed for 

determination of DA, including electrochemical techniques. The problem with 

electrochemical determination of DA at common solid electrodes is the presence of a 

myriad of other redox active species that populate the cerebrospinal fluid. For example 

Ascorbic acid (AA) or vitamin C is the main electroactive interferent. AA is used in 

large scales as an antioxidant in food, animal feed, beverages, pharmaceutical 

formulations and cosmetic applications [3, 4]. It has been investigated for the 

prevention and treatment of the common cold, mental illness, infertility and cancer [5].  

Serotonin (5-hydroxytryptamine, 5-HT) plays a vital role in the regulation of mood, 

sleep, sexuality, and appetite. Low levels of 5-HT are associated with several disorders, 

including depression, anxiety, and migraines [6, 7]. Extremely high levels of 5-HT can 

cause toxicity and fatal effects known as serotonin syndrome [8]. These three 

substances influence each other in their respective determination from biological 

systems [9]. 

In the extra-cellular fluid of the central nervous system, AA concentration is generally 

higher than that of DA. Usually, the concentration of DA is 10
-8

 to 10
-6

 M while AA is 

as high as 10
-4

 M in biological systems [10]. Moreover, AA oxidized at nearly same 

potential as DA at bare electrodes [11, 12]. The voltammetric response is generally 

characterised by an overlapping signal [13-15]. In addition, the oxidation products of 

DA can homogeneously catalyse the oxidation of AA, which may lead to the inaccurate 

detection of DA and AA [16]. AA is therefore a major interfering compound in the 

detection and analysis of DA. On the other hand, it is well known that 5-HT and DA 

influence each other in their respective brain functions, and determination, from 

biological systems [9]. The direct oxidation of these three species at the bare electrodes 

occurs at very similar potentials. Further redox products can cause a pronounced fouling 

of the electrode surface, which results in rather poor selectivity, sensitivity, and 

reproducibility. So, the ability to selectively detect DA, 5-HT and AA, has been a 
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matter of great interest in electrochemical research. Up to now, there are a few reports 

in the literature about the simultaneous electrochemical determination of DA, 5-HT and 

AA, particularly with the use of carbon materials.  

Simultaneous electrochemical determination requires an electrode material capable of 

resolving these oxidation processes. The situation can be resolved by using chemically 

modified electrodes. As already mentioned, CPE is one of the convenient conductive 

matrixes to prepare chemically modified electrodes by simple mixing of graphite / 

binder paste and modifier [17]. These kinds of electrodes are inexpensive and possess 

many advantages such as low background current, wide range of used potential, easy 

fabrication, and rapid renewal [18, 19].  

Carbon paste electrodes modified with TX-100 [20], carbon nanotubes dispersed in 

polyethylenimine [21] and non-ionic polymer films [22] have been employed for the 

voltammetric determination of DA and 5-HT in the presence of AA.  

The main objective of this study encompasses the use of carbon paste modified 

electrodes, detailed in Chapter 4, for selective or simultaneous determination of DA, 

AA and 5-HT in 0.1 M PBS (pH 6.8). In Chapter 4, it was shown that modifiers such as 

S-β-CD, CM-β-CD and Nafion are charged and gave enhancement effect on the DA 

oxidation peak currents. Therefore, the major consideration of the present study is based 

on the difference in ionic forms of DA, AA and 5-HT at pH 6.8. AA exists in the 

anionic form (pKa = 4.10), while DA and 5-HT are in the cationic form [23]. 

Consequently, the carbon paste electrode modified with S-β-CD, CM-β-CD or Nafion, 

may act as an ion exchanger to repel the negatively charged AA, thus enabling the 

selective sensing of DA and 5-HT. As a result, the discrimination between voltammetric 

response of DA and 5-HT in the presence of AA was achieved. Initially, data pertaining 

to the voltammetric responses of DA, AA and 5-HT, at the CPE with the different 

modifiers are presented. Calibration curves, the limits of detection, and comparative 

data tables, are presented in the latter part of this chapter. 
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5.2  Results and Discussion 

5.2.1  Electrochemical Study of a Mixture of AA and DA 

The successful route to overcome the problem of selectivity is to modify the electrode 

surface. Modified electrodes, when compared to unmodified electrodes, can   decrease 

analyte overpotentials and improve mass transfer velocity profiles, which, effectively, 

enrich analyte concentrations at the electrode / solution interface [24, 25]. In this study, 

the electrochemical behaviour of a mixture of AA (1 × 10
-3

 M) and DA (5 × 10
-5

 M) 

was investigated on various type of electrodes, including,  S-β-CD modified CPE, CPE 

with oxide layer (CPE/O), Nafion modified CPE, Fc-β-CD modified CPE, bare GPE 

and S-β-CD modified CPE using cyclic voltammetry and differential pulse voltammetry. 

The resulting voltammograms were compared to those obtained at bare CPE. 

5.2.1.1  Electrochemical investigation of AA at bare CPE 

The electrochemical behaviour of AA (1 × 10
-3

 M) in 0.1 M PBS (pH 6.8) at bare CPE 

was investigated by cyclic voltammetry and typical data are presented in Figure 5.1. 

From the voltammetric trace we observe an oxidation peak (Ipa = 1.087 × 10
-6

 A), which 

occurs at +0.150 V vs. SCE, and an absence of a reduction wave on the reverse sweep. 

Therefore, direct oxidation of AA at an unmodified CPE shows an irreversible oxidation 

wave at a positive potential. This experimental result is in agreement with those 

presented in the literature [26]. In fact, the oxidation of AA at bare electrodes is 

generally believed to be totally irreversible. 
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Figure 5.1: Cyclic voltammogram of AA (1 × 10
-3

 M) at bare CPE in 0.1 M PBS (pH 6.8);  

scan rate: 50 mV / s.  

 

The electrochemical oxidation of AA has been extensively studied [12, 27, 28], and a 

mechanism proposed by Ruiz using a mercury electrode for the reaction below pH 8 is 

widely accepted [27]. According to this mechanism, two-electron oxidation from AA to 

dehydro-ascorbic acid (DHA) consists of two consecutive one-electron transfers, the 

second of which is the rate determining step. It is well known that the electrochemical 

oxidation of AA proceeds similarly on carbon electrodes without any metal catalyst [12]. 

Scheme 5.1 illustrates the reaction mechanism from AA to DHA. This mechanism 

involves a pre-dissociation of a proton to give the monoanionic species (Equation 5.1) 

followed by a 1 e
-
, 1 H

+
 oxidation of the monoanionic species to form a radical anion 

(Equation 5.2), which then undergoes a second irreversible 1 e
-
 oxidation to DHA 

(Equation 5.3). The latter species can be protonated and then dehydrated to yield the 

final product of 2,3-diketogulonic acid (Equation 5.4) [29]. This final product is readily 

adsorbed on the electrode surface and could cause electrode fouling [30]. A high 

overpotential for AA oxidation may then be required. 
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Equation 5.1 

 

 

Equation 5.2 

 

 

Equation 5.3 

 

 

Equation 5.4 

 

Scheme 5.1: Proposed AA reaction at bare CPE in 0.1 M PBS (pH 6.8). 

 

5.2.1.2  Electrochemical investigation of a mixture of AA and DA at bare 

CPE 

The investigation into the electrochemical behaviour of AA and DA at bare CPE was 

performed using cyclic voltammetry in AA / DA solution mixtures ([AA] = 1 × 10
-3

 M, 

[DA] = 5 × 10
-5

 M in 0.1 M PBS), and single analyte only solutions. As observed in 

Figure 5.2(a), the oxidation peak potential for AA at the bare CPE electrode surface 

occurs at +0.150 V, which is fairly close to that of DA (+0.225 V vs. SCE). Therefore, 

the oxidation of the two species results in an overlapping voltammetric response. A 

typical trace obtained in a solution mixture is shown in Figure 5.2(b). The 

voltammograms obtained exhibit only one anodic oxidation peak due to overlapping 

signal for DA and AA. In addition, a small reduction peak corresponding to the 

reduction of DOQ is observed. Through this interference, AA hinders the accurate 

detection of DA. In addition, the oxidised DA product, DOQ, can be catalytically 

reduced to DA by AA [1] that again becomes available for oxidation according to 

equation shown in Scheme 5.2. The mechanism for DA oxidation at bare CPE in the 

presence of AA, resulting in a  homogeneous catalytic oxidation of AA, regenerating 

DA to the electrode has been reported by Dayton et al and Domenech et al [16, 31], and 

corresponds to the above observations. Furthermore, the products of AA oxidation foul 

the electrode surface, thus complicating the determination of both AA and DA. These 
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observations clearly indicate that the existence of AA detrimentally interferes with the 

determination of DA at bare CPE electrode. These experimental results are in agreement 

with those reported in literature [23, 30] and show that simultaneous electrochemical 

detection of DA and AA is not feasible at bare CPE. 

 

(a)  

(b)  

Figure 5.2: Typical cyclic voltammograms obtained in solutions of 1 × 10
-3
 M    (   ) and 5   10

-5
 

M DA (   ) (a), and the DA, AA  mixture (b)  at bare CPE in 0.1 M PBS (pH 6.8);  

scan rate: 50 mV / s.  
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Scheme 5.2: Proposed mechanism for simultaneous oxidation of DA and AA at bare CPE. 

  

5.2.1.3  Experimental Timescale in Simultaneous Detection of AA and DA 

at bare CPE 

In order to observe whether or not experimental timescale has an effect on the behaviour 

of the mixture of DA and AA at bare CPE, a scan rate study was performed. Figure 5.3 

shows the variation of scan rate (from 10 to 80 V vs. SCE) in a mixture of DA (5 × 10
-5

 

M) and AA (1 × 10
-3

 M). As can be seen, the overlapping signal of DA and AA 

increased with increasing scan rate. However, the signals were not resolved by 

experimental timescale, thus, signal separation of the two species is not dependant on 

scan rate. 
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Figure 5.3: Cylic voltammetric responses obtained in a mixture of AA (1 × 10
-3

 M) and DA 

5 × 10
-5

 M DA at bare CPE at scan rates ranging from 10 to 80 mV / s, in 0.1 M PBS (pH 6.8). 

 

5.2.1.4  Electrochemical behaviour of AA at S-β-CD modified CPE 

The electrochemical behaviour of S-β-CD modified CPE in AA (1 × 10
-3

 M) solution 

was studied by cyclic voltammetry and a typical voltammogram is displayed in Figure 

5.4(a). A defined peak corresponding to the oxidation of AA to DHA was obtained at a 

peak potential of 0.018 V vs. SCE. This value indicates that the oxidation of AA shifted 

to less positive potential compared to that obtained at bare CPE. In addition, compared 

to CPE, an enhancement of peak current was observed (Ipa = 3.515 × 10
-6

 A).  

Overall, the anodic potential shift and the improved value of peak current of AA at S-β-

CD modified CPE indicate that an affinity exists between the modified electrode and 

AA. A probable explanation is related to charge carried by AA and S-β-CD at pH 6.8. 

The modified electrode is negatively charged due to dissociation of sulfonic acid groups 

present on the rims of cyclodextrin. Therefore, in theory, the sulfate groups should 

prevent the AA anions from approaching the electrode surface. However, some amount 

of AA should reach the electrode surface, overcoming the repulsion. At close proximity 

to the electrode AA is then oxidised easily, probably facilitated through hydrogen 

bonding at the surface. It is important to recall that S-β-CD modified CPE used in this 

study is a mixture of cyclodextrin with 7 to 11 sulfated groups per molecule. A 

repulsive force may occur between the negatively charged sulfates. Hence, allowing 

hydrogen bonding between AA and several hydroxyl groups at the primary and 

secondary rims of S-β-CD. This phenomenon was observed by T. Thomas et al [32]. 
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The author showed that graphite oxide bulk modified CPE could be used for selective 

detection of DA in the presence of large excess of AA at physiological pH. The 

modifier, graphite oxide, contained some carboxylic acid and phenolic groups. 

Therefore, it was negatively charged at pH 7.4. However, AA was easily oxidised at the 

electrode surface by overcoming the repulsive force of negatively charged functional 

groups through hydrogen-bonding. The resulted peak potential of AA was lower than 

that observed at the bare CPE.  

(a)  

 

(b)  

Figure 5.4: Cyclic voltammograms of AA(1 × 10
-3

 M) at S-β-CD (0.345 g) modified CPE (a) and 

at  S-β-CD (0.545 g) modified CPE (b) in 0.1 M PBS (pH 6.8); scan rate: 50 mV / s. 

 

It is worth mentioning that the modified electrode used from Figure 5.4 (a) contains a 

relatively low amount of 0.345 g S-β-CD. When 0.545 g S-β-CD (which the optimum 
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amount for detection of DA) was used, a different peak shape of AA was observed as 

shown in Figure 5.4 (b). Although, the oxidation peak potential remained nearly 

unchanged, the voltammogram shows a more steady-state type character with a limiting 

current plateau. Even though a limiting current behaviour would indicate that the 

surface is saturated with AA, it was also observed that the peak response (2.43 × 10
-6

 A) 

declined slightly when 0.545 g S-β-CD was employed. This can be justified in that a 

larger amount of S-β-CD, through the increased coulombic repulsion, restricts AA 

access to the electrode surface, but the bulk solution concentration ensures active site 

saturation. In effect the number of active sites, available to AA for oxidation, decreases 

with an increase in amount of S-β-CD. Since the oxidation of AA is shifted to a less 

positive potential at the S-β-CD modified CPE, the electrode should, in principle not 

interfere with the measurement of DA.  

5.2.1.5  Electrochemical behaviour of a mixture of AA and DA at S-β-CD 

modified CPE 

One of the main objectives of this study was to achieve the selective determination of 

AA and DA. This was investigated using S-β-CD modified CPE as working electrode. 

Figure 5.5 shows the cyclic voltammogram of a mixture AA (1 × 10
-3

 M) and DA (5 × 

10
-5

 M) in 0.1 M PBS (at pH 6.8) at S-β-CD modified CPE. The voltammogram 

exhibits two clear oxidation peaks for both analytes, which corresponds to AA and DA 

oxidation, respectively. The (broad) oxidation peak for AA observed ~0.014 V and that 

for DA oxidation at 0.161 V vs. SCE. So, compared to bare CPE, S-β-CD modified 

CPE resolved the voltammetric response of AA and DA into two distinct signals. AA 

can form hydrogen bonds with the hydroxyl groups of cyclodextrin as the electrostatic 

repulsion between the AA anions and the negatively charged sulfate groups on the 

electrode surface is partial. AA is readily oxidised and consequently hydrogen-bonding 

diminishes, releasing DHA. The separation between the oxidative peak potential of DA 

and AA was approximately 0.147 V vs. SCE. This difference is large enough for the 

simultaneous determination of DA in the presence of AA at S-β-CD modified CPE. 

Interestingly, the redox activity of DA in the mixture was still reversible as 

demonstrated by a ΔEp value of 0.016 V. A peak separation of this magnitude usually 

denotes an adsorption regime, indicating that DA molecules are electrostatically 

attracted to sulfate groups, and probably included in the cyclodextrin cavity.  
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Figure 5.5: Cyclic voltammogram for a mixture of AA (1 × 10
-3

 M) and DA (5 × 10
-5

 M) at S-β-CD 

modified CPE in 0.1 M PBS (pH 6.8); scan rate: 50 mV / s. 

 

The attraction and exclusion properties of S-β-CD modified CPE toward DA and AA is 

related to the charge carried by the S-β-CD at pH 6.8. Further supporting this evidence, 

the electrochemical behaviour of a mixture of AA (1 × 10
-3

 M) and DA (5 × 10
-5

 M) at 

neutral β-CD modified CPE was carried out and typical data are shown in Figure 5.6(a). 

It can be seen that a broad oxidation peak appeared at neutral β-CD modified CPE, 

rendering the oxidation peak potentials of AA and DA indistinguishable. In fact, the 

hydrophobic cavity of neutral β-CD can serve as perfect host cavity, not just for DA, but 

also for AA. Bratu et al has demonstrated a 1:1 molecular complex formation between 

AA and neutral β-CD, using several techniques included FTIR, X-ray powder 

diffraction, DSC, 
1
H NMR and UV-Vis [6]. Hu et al, also has prepared β-CD : AA 

inclusion complex using a high hydrostatic pressure technique [33]. Thus it seems likely 

that a competitive adsorption regime between AA and DA exists at the electrode surface 

via inclusion with neutral β-CD, which might result in the overlapping peaks of these 

two analytes. For the sake of comparison, the voltammogram corresponding to 

oxidation of DA (5 × 10
-5

 M) only at neutral β-CD was presented in Figure 5.6(b). 

These results also show evidence that the presence of sulfate groups on the cyclodextrin 

rims is necessary for simultaneous detection of AA and DA. 
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(a)  

(b) 

Figure 5.6: Cyclic voltammograms obtained at neutral β-CD modified CPE for a mixture of AA 

(1 × 10
-3

 M) and DA (5 × 10
-5

 M) (a) and DA (5 × 10
-5

 M) solution (b) in 0.1 M PBS (pH 6.8); scan 

rate: 50 mV / s. 

 

5.2.1.6  Effect of scan rate for a mixture of AA and DA at S-β-CD 

modified CPE 

The effect of scan rate on the oxidative peak potential and peak currents for a mixture of 

AA (1 × 10
-3

 M) and DA (5 × 10
-5

 M) at the surface of S-β-CD modified CPE was 

studied, with resultant typical cyclic voltammetric curves shown in Figure 5.7(a). When 

the scan rate is increased, the oxidation peak potentials for AA species shifts 

cathodically, while that of DA remains constant. The oxidation peak potentials are 
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given in Table 5.1. In addition, the oxidation peak current of AA was proportional to the 

scan rate over the range of 10 to 80 mV / s. The linear regression equation was Ipa 

(A) = 1.4332 × 10
-8

 v + 2.2468 × 10
-8

, with a correlation coefficient of 0.9902. So, the 

electrode process for AA in the mixture at S-β-CD modified CPE was adsorption-

controlled. On the other hand, the anodic peak current of DA at the modified electrode 

also increased linearly with the scan rate, confirming the direct electron transfer on the 

surface of S-β-CD modified CPE between it and DA. Therefore, the electrode reaction 

of DA (in the mixture) at S-β-CD modified CPE was under adsorption-control. Figure 

5.7(b) presents the reasonable linearity of the plots, with a regression equation of Ipa 

(A) = 3.7128 × 10
-8

 v + 8.2880 × 10
-7

 and correlation coefficient of 0.9935. The results 

clearly demonstrate that S-β-CD has the ability to attract DA and partially reject AA in 

solution of coexisting DA and AA.  
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(a)  

  

 

 

 

 

 

 

 

 

 

 

 

(b) 

Figure 5.7: cyclic voltammograms showing the effect of scan rate variation for a mixture of DA 

(5 × 10
-5

 M) and AA (1 × 10
-3

 M) at S-β-CD modified CPE from 80 to 10 mV / s (a) and 

corresponding plot of oxidation peak current as a function of scan rate (b). Supporting 

electrolyte 0.1 M PBS (pH 6.8). 
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Table 5.1: Effect of scan rate on oxidation peak currents and peak potentials of AA and DA 

at S-β-CD modified CPE (using CV). 

Scan rate 

(mV / s) 

AA DA 

Oxidation Peak 

Potential  

(Volt) 

Oxidation Peak 

Current  

(A) 

Oxidation Peak 

Potential  

(Volt) 

Oxidation Peak 

Current  

(A) 

10 -0.020 2.411 × 10
-6

 0.16 1.220 × 10
-6

 

20 -0.001 2.535 × 10
-6

 0.16 1.505 × 10
-6

 

40 0.026 2.813 × 10
-6

 0.16 2.313 × 10
-6

 

60 0.059 3.044 × 10
-6

 0.16 3.189 × 10
-6

 

80 0.063 3.441 × 10
-6

 0.16 3.715 × 10
-6

 

 

In order to elucidate the electrochemical properties of AA oxidation at the S-β-CD 

modified CPE electrode and clarify whether or not electron transfer process of AA in 

the mixture is dependent on coexisting DA species, cyclic voltammetry measurements 

of a solution of AA (1 × 10
-3

 M) only in 0.1 M PBS were carried out on S-β-CD 

modified CPE at different potential scan rates, as shown in Figure 5.8(a). Clearly, the 

peak potentials increase linearly with increasing scan rate. It can also be noted that the 

peak shape is more defined at lower scan rates, probably due to a relatively longer 

timescale, which allowed AA species to interact much more with electrode surface. 

Figure 5.8(b) shows that the anodic peak currents also increased linearly with scan rate. 

This suggests that the electrochemical oxidation of AA was not diffusion-controlled but 

surface controlled. The regression equation describing the electron transfer occurring at 

the surface of the electrode in the studied range of potential scan rates is as follow: Ipa 

(A) = 1.8755 × 10
-8

 v + 1.5099 × 10
-6

, with the correlation coefficient of 0.9930. This 

result was consistent with the one obtained for AA in the mixture. Therefore, the kinetic 

process of AA electro-oxidation at the modified electrode surface was not related to the 

presence of DA species or DA adsorption process at the electrode surface. 
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(a)  

 

(b) 

Figure 5.8: Cyclic voltammograms showing the effect of scan rate variation for AA (1 × 10
-3

 M) 

at S-β-CD modified CPE from 80 to 10 mV / s (a) and corresponding plot of oxidation peak 

current as a function of scan rate (b). Supporting electrolyte 0.1 M PBS (pH 6.8). 
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5.2.1.7  Electrochemical behaviour of a mixture of AA and DA at CPE 

with oxide layer 

The electrochemical behaviour of a mixture of AA (1 × 10
-3

 M) and DA (5 × 10
-5

 M) in 

a pH 6.8 PBS was examined by cyclic voltammetry at CPE with oxide layer, and a 

typical resultant voltammogram is shown in Figure 5.9(a). It was observed that the 

(irreversible) oxidation peak of AA nearly overlapped with that of oxides. However, the 

peak due to DA oxidation is well-defined. The presence of oxide species at the electrode 

surface causes an anodic shift in AA peak potential. This indicates that the activation 

energy required for AA oxidation at CPE/O is slightly lower than that required at bare 

CPE. The oxidative peak potential of AA at CPE containing oxides shifted to −0.013 V 

vs. SCE. What is also remarkable in this study is the redox property of DA. DA can be 

clearly quantified (with oxidation peak current of 1.411 × 10
-6

 A) in the presence of AA. 

DA redox activity in the mixture at CPE with oxide layer is reversible based on its low 

ΔEp of 0.016 V. Thus, DA oxidation at CPE/O is independent of AA. The oxidation 

peak current of oxide species occurring (at 0.064 V vs. SCE) between those of AA and 

DA reduced in magnitude. This may be a consequence of the interaction between oxide 

species at the electrode surface and protonated DA. For the sake of comparison, the 

cyclic voltammogram of the electrode in 0.1 M PBS, prior to immersion in the mixture 

was displayed in Figure 5.10. 

 

Figure 5.9: Cyclic voltammograms obtained at CPE with oxide layer for a mixture of AA (1 × 10
-

3
 M) and DA (5 × 10

-5
 M) in 0.1 M PBS (pH 6.8); scan rate: 50 mV / s. 
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Figure 5.10: Cyclic voltammograms of 0.1 M PBS (pH 6.8) at CPE with oxide layer;  

scan rate: 50 mV / s. 

 

The oxidation of surface oxides seems to be effective in repelling AA, which has four 

OH groups and one CO group on its periphery. Since AA is negatively charged at pH 

6.8, a relatively strong repulsive force may exist with oxide species such as carboxylate 

group. Figure 5.11 shows repetitive cycles of CPE with oxide layer in the mixture of 

AA (1 × 10
-3

 M) and DA (5 × 10
-5

 M). As observed, the oxidation peak current of AA 

decreases until a steady state is reached in the 5
th

 cycle, while the oxidation peak of DA 

remained constant over repetitive cycling.  

 

Figure 5.11: Repetitive cyclic voltammograms (10 cycles) obtained at CPE with oxide layer for a 

mixture of AA (1 × 10
-3

 M) and DA (5 × 10
-5

 M) in 0.1 M PBS (pH 6.8); scan rate: 50 mV / s. 
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5.2.1.8  Electrochemical behaviour of a mixture of AA and DA at Nafion 

modified CPE 

It was demonstrated from Chapter 4 that a relatively low concentration of Nafion coated 

CPE resulted in an enhancement of the oxidation peak current of DA. A thick Nafion 

coating leads to a decrease in sensitivity, compared to bare CPE, due to hindered mass 

transport of DA throughout the thick layer. Good electrochemical detection of DA was 

obtained by using 10 µL of 0.05 % Nafion drop-cast onto CPE. Hence, 10 µL of 0.05 % 

Nafion was drop-cast onto CPE/O and employed to detect DA in the presence of an 

excess AA. At the pH of 6.8 used, AA is expected to exist as ascorbate anion which will 

not favour its approach onto a negatively charge surface. Figure 5.12 shows typical 

cyclic voltammograms of a mixture of DA (5 × 10
-5

 M) and AA (1 × 10
-3

 M) in 0.1 M 

PBS (performed at different scan rates) at Nafion-coated CPE. When AA was present in 

the voltammetric cell, major alterations of DA signal were observed. There is a 

pronounced decay of the reduction peak current of DOQ when compared those obtained 

in a DA only solution. This feature may indicate of the occurrence of a regenerative 

process, certainly induced by AA, where the catalytic reaction of AA with the DOQ 

results in a higher anodic peak and reduced cathodic peak of DA redox activity. In 

addition, a shoulder peak is observed at around −0.020 V vs. SCE, resulting from the 

oxidation of AA. Under the experimental conditions, Nafion did not successfully 

suppress completely the voltammetric signal of AA. The overall process depends on the 

mass transport / ionic exchange features of the species (DA and AA) within the Nafion 

layer. 

 

Figure 5.12: Cyclic voltammograms for a mixture of DA (5 × 10
-5

 M) and AA (1 × 10
-3

 M) in 0.1 

M PBS (pH 6.8) at Nafion coated CPE; scan rate: 20, 40, 60, 80 and 100 mV / s. 
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It must be highlighted that Nafion is an ionomer with a rather low content of ion 

exchange groups [19, 21]. Therefore, it could be expected a higher content of sulfonate 

cation-exchange group would lead to an improvement of the incorporation of positively 

charged DA and complete repulsion of negatively charged AA. However, as already 

mentioned, a high concentration or a thick layer of Nafion at the electrode surface can 

reduce the sensitivity in the detection of DA. Taking into account the above result, the 

key question in the utilisation of Nafion coated CPE as an analytical tool for the 

determination of DA coexisting with an excess of AA, is how to obtain adequate Nafion 

concentration (for selectivity towards negatively charged AA, keeping a satisfactory 

sensitivity for DA). 

5.2.1.9  Electrochemical behaviour of AA at Fc-β-CD modified CPE 

One of the most important properties of Ferrocene, as demonstrated in Chapter 4, is its 

redox behaviour. Ferrocene was used as an agent to modify CPE. However, Ferrocene 

itself is not adsorbed strongly on CPE. The stability of Ferrocene at electrode surface 

was improved by formation of inclusion complex with β-CD. The prepared Fc-β-CD 

modified CPE was used to test its electrochemical behaviour in AA solution. 

Fc-β-CD modified CPE was dipped in 0.1 M PBS (pH 6.8) and cyclic voltammetry was 

carried out at 50 mV / s in the potential range from 0.8 V to −0.3 V. The resulting 

voltammogram is shown in Figure 5.13 (black trace). A pair of reversible redox peaks 

was observed which corresponded to the electrochemical process Fc/Fc
+
. Under 

identical conditions, Fc-β-CD modified CPE was then placed in AA (1 × 10
-3

 M) to test 

its activity toward AA oxidation. Typical data are given in Figure 5.13 (red trace). As 

can be seen, the oxidation of AA occurred irreversibly at a potential of 0.370 V vs. SCE. 

The anodic peak current (1.375 × 10
-6

 A) slightly increased over that observed at bare 

CPE (1.087 × 10
-6

 A, blue trace). The corresponding cathodic wave for reduction of 

ferrocenium ion (normally observed in PBS) is substantially depressed. Although, the 

peak current of AA was slightly enhanced at Fc-β-CD modified CPE, this could not be 

related to an electrocatalytic effect. An electrocatalytic oxidation of AA at Fc-β-CD 

modified CPE should result in a shift to the negative direction of the oxidation potential 

of AA and would correspond to Equation 5.5, as reported by Raoof et al [34]. In this 

equation Fc
+
βCD, FcβCD, H2AA and DHA represent ferrocenium β-cyclodextrin, 

Ferrocene β-cyclodextrin, ascorbic acid and dehydro-ascorbic acid, respectively. 
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Figure 5.13: Cyclic voltammograms obtained at Fc-β-CD modified CPE in 1 × 10
-3

 M AA (   ) and  

0.1 M PBS (   ) compared with cyclic voltammograms obtained at bare CPE in 1 × 10
-3

 M AA (   );  

scan rate: 50 mV / s. 

 

 CDFc2   + AAH2   FcCD2  + DHA + H2  Equation 5.5 

 

5.2.1.10  Electrochemical behaviour of a mixture of AA and DA at Fc-

β-CD modified CPE 

It was demonstrated in Chapter 4 that Fc-β-CD modified CPE shows an electrocatalytic 

effect on the oxidation of DA. On the other hand, the anodic current magnitude due to 

the oxidation of AA was (slightly) enhanced at Fc-β-CD modified CPE. These 

experimental results have encouraged investigation whether or not Fc-β-CD modified 

CPE was able to separate the voltammetric signals of DA and AA in a mixture.  

To test the electrochemical behaviour of a mixture of AA (1× 10
-3

 M) and DA (5 × 10
-5

 

M) at Fc-β-CD modified CPE, a cyclic voltammetric response was obtained in a 0.1 M 

PBS (pH 6.8). The data is given in Figure 5.14. As can be seen, the electrochemical 

oxidation results in single and sharp anodic peak corresponding to the oxidation of both 

AA and DA. This anodic peak shows a higher peak current compared with the 

individual oxidation peak current of AA and DA at Fc-β-CD modified CPE, due to 

homogeneous catalytic oxidation of AA by DOQ. Therefore, Fc-β-CD modified CPE 

cannot dissociate the voltammetric signal of AA and DA from a mixture. In addition, a 

broad cathodic wave was observed, which was attributed to the overlapping reduction of 

Fc
+
 and DOQ. 
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Figure 5.14: Cyclic voltammograms for a mixture of AA (1 × 10
-3

 M) and DA (5 × 10
-5

 M) in 0.1 

M PBS (pH 6.8) at Fc-β-CD modified CPE; scan rate: 50 mV / s. 

    

5.2.1.11  Electrochemical behaviour of a mixture of AA and DA at S-

β-CD modified GPE 

The aim of this section was to investigate if the impressive properties of graphene 

modified electrode (S-β-CD modified GPE) could enhance sensor sensitivity in the 

selective detection of DA. As differential pulse technique offers a much higher current 

sensitivity and better resolution than the cyclic voltammetry technique, it was used to 

determine DA in the presence of AA at S-β-CD modified GPE. Differential pulse 

voltammetry was performed on a mixture of AA (1 × 10
-3

 M) and DA (5 × 10
-5

 M) 

scanning in the potential range from −0.2 to +1.0 V (Figure 5.15, red trace). A single 

peak current was observed at the modified electrode. This well-defined peak signal 

occurring at 0.17 V vs. SCE with a peak magnitude of 8.988 × 10
-7

 A is characteristic of 

the oxidation of DA only. The oxidation of DA resulting from a solution containing DA 

(5 × 10
-5

 M) only, under similar experimental parameters was displayed in Figure 5.15 

(blue trace). The peak potential was also observed around 0.17 V vs. SCE with 

corresponding peak current value 1.252 × 10
-6

 A. Although, the peak current for 

oxidation of DA from the mixture had slightly reduced this experimental result was 

quite encouraging and suggested selective detection of DA in the presence of AA. 
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Figure 5.15: Differential pulse voltammograms for a mixture of AA (1 × 10
-3

 M) and DA (5 × 10
-5

 

M) (   ) and DA (5 × 10
-5

 M) solution (   ) in 0.1 M PBS (pH 6.8) at S-β-CD modified GPE. 

 

Further studies were then carried out to support the above result. The first one consisted 

of evaluating the electrochemical behaviour of the modified graphene electrode in an 

individual solution of AA (1 × 10
-3

 M). No peak related to oxidation of AA was found 

in the studied potential range as shown in Figure 5.16 (red trace), indicating that AA 

cannot be oxidised on the modified electrode. The shape of the voltammograms 

obtained was similar to the one observed when the modified electrode was run in 0.1 M 

PBS (Figure 5.16, blue trace), prior to detection AA.  

 

Figure 5.16: Differential pulse voltammograms of AA (1 × 10
-3

 M) (   ) and 0.1 M PBS (   )  at S-β-

CD modified GPE. 
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Attention was next turned to exploring the differential pulse voltammetry of AA (1 × 

10
-3

 M) at bare GPE. A broad peak signal was observed around 0.098 V vs. SCE, 

corresponding to oxidation of AA to DHA (Figure 5.17, red trace). In addition, to prove 

that the peak observed was a ‘true’ peak related to oxidation of AA, background 

subtraction was carried out and showed a defined peak signal, with a current intensity of 

1.393 × 10
-6

 A (Figure 5.17 (b)). Unlike the modified graphene electrode, bare GPE was 

able to sense AA. However this peak current value is relatively low with respect to the 

concentration of AA, 1 × 10
-3

 M. So, bare GPE exhibits slow heterogeneous electron 

transfer kinetics towards electrochemical oxidation of AA.  

 

 

 

 

 

 

 

 

 

 

 

(a)  

 

 

 

 

 

 

 

 

 

(b)  

Figure 5.17: Differential pulse voltammograms obtained at bare GPE for AA (1 × 10
-3

 M) (   ) and 

(0.1 M PBS) blank solution (   ) (a) and corresponding background subtraction (b). 
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It is important to note that, compared to AA, the electron transfer between DA and 

graphene (at bare GPE) is more feasible through π-π interaction since DA has a phenyl 

moiety [35]. In addition, characterisation studies (carried out in Chapter 2) have shown 

that the synthesised graphene possesses a degree of oxygen content (more likely) in the 

form of carboxylic groups. Such functional groups within graphene material may not 

promote the electrochemical oxidation of AA, thus, reducing considerably its 

electrochemical activity. Modification of GPE using S-β-CD increases the content of 

charged functional groups at the electrode surface (at pH 6.8). COO
-
 covalently attached 

at the edge plane of graphene and OSO3
-
 on the primary and secondary rims of 

cyclodextrin completely blocks the electrochemical activity of AA through electrostatic 

repulsion. Conversely, an improvement in DA electrochemical response is observed 

owing to an increased electrostactic attraction is observed. To confirm selective sensing 

of DA is dependent on contribution of both carboxylate and sulfate groups, differential 

pulse voltammogram of a mixture of AA (1 × 10
-3

 M) and DA (5 × 10
-5

 M) was 

recorded at bare GPE and shown in Figure 5.18. As can be seen, a broad peak signal 

was observed, corresponding to an overlapping signal response of both AA and DA. 

This voltammogram is totally different from the sharp DA peak observed at bare GPE, 

previously shown in Chapter 4. 

It can be concluded that the presence of AA does not interfere with the determination of 

DA in a 20:1 ratio. These experimental results indicate that the selective and sensitive 

determination of DA can be achieved using S-β-CD modified GPE. 

 

Figure 5.18: Differential pulse voltammogram for a mixture of AA (1 × 10
-3

 M) and DA (5 × 10
-5

 

M) in 0.1 M PBS (pH 6.8) at bare GPE. 
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5.2.2  Electrochemical Study of a Mixture of DA and 5-HT 

Simultaneous measurement of DA and 5-HT is particularly important since these 

molecules coexist in biological system and their relative levels have implications in 

many diseases. However, simultaneous measurement of these species has been mainly 

unsuccessful due to the inability of common solid electrodes to separate their respective 

potentials significantly enough to allow accurate discrimination. 

In this study, modified of carbon based electrodes were fabricate to try to overcome 

these difficulties in the simultaneous determination of DA and 5-HT. 

5.2.2.1  Electrochemical behaviour of 5-HT at S-β-CD modified CPE 

The electroanalysis of 5-HT was performed at S-β-CD modified CPE using cyclic 

voltammetry. Figure 5.18(a) shows the voltammogram of 5-HT (5 × 10
-5

 M) in 0.1 M 

PBS at S-β-CD modified CPE (black trace) compared with that obtained at bare CPE 

(red trace). In both cases, an irreversible oxidation peak is observed at 0.499 V and 

0.349 V (vs. SCE) for bare CPE and S-β-CD modified CPE, respectively. At bare CPE, 

the oxidation wave of 5-HT is broad with a peak current value of 1.237 × 10
-7

 A. In 

contrast, the peak current signal significantly increased (with a value of 6.263 × 10
-7

 A) 

at S-β-CD modified CPE. The larger peak current and the less positive peak potential 

observed at S-β-CD modified CPE indicates that the S-β-CD modified CPE has a strong 

affinity towards 5-HT. A possible electrocatalytic mechanism may be related to the 

adsorption of 5-HT on the surface of S-β-CD modified CPE firstly through electrostatic 

interaction with anionic cyclodextrin (as 5-HT is a cation at pH 6.8), followed possibly 

by host-guest interaction between 5-HT and S-β-CD. The electron transfer can then 

easily take place. This is characterised by higher peak signal compared to that at bare 

CPE. It also has to be noted that there is a broad redox peak centred at 0.026 V at S-β-

CD modified CPE. The electrochemical oxidation of 5-HT is believed to take place at 

the phenol group of the molecule to form the corresponding ketone (a quinonimine [36]) 

as shown in scheme 5.3 (Equation 5.6).  The absence of the corresponding reduction 

peak indicates the instability of this oxidation product, which can then undergo 

chemical reaction to form the easily oxidisable hydroquinone (Equation 5.7) [37].  

Therefore, the redox couple centred at 0.026 V can be attributed to this quinone / 

hydroquinone couple (Equation 5.8). Wrona et al have speculated that the oxidation of 

5-HT to corresponding ketone and the redox couple quinone / hydroquinone involved 

the removal of two electrons and two protons concomitantly [37-39] as shown in 

scheme 5.3.  
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(b)  

Figure 5.19: Cyclic voltammogram of 5-HT (5 × 10
-5

 M) 0.1 M PBS (pH 6.8) at bare CPE (   ) and 

S-β-CD modified CPE (   ) (a) and enlarged voltammogram for bare CPE (b); scan rate 50 mV / s.  
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Equation 5.6 

 

 

Equation 5.7 

 

 

Equation 5.8 

 

Scheme 5. 3: Proposed 5-HT reaction at S-β-CD modified CPE in 0.1 M PBS (pH 6.8). 

 

5.2.2.2  Electrochemical behaviour of a mixture of AA and 5-HT at S-β-

CD modified CPE 

As already mentioned, in biological environments, the main interference in the 

electrochemical detection of the catecholamine is the presence of high concentration of 

AA. So, it is important to investigate the electrochemical response of 5-HT in the 

presence of AA. A study was performed to illustrate the voltammetric behaviour of 5-

HT at bare CPE and S-β-CD modified CPE in the presence of AA using cyclic 

voltammetry with scan rate 50 mV / s. AA is usually present at a higher concentration 

than 5-HT. To try to mimic the conditions of species ratios present in the cerebrospinal 

fluid, the concentration of 5-HT was maintained at 20 times less than that of the AA. 

Figure 5.20 (a) shows the voltammogram obtained for the mixture solution of AA (1 × 

10
-3

 M) and 5-HT (5 × 10
-5

 M) recorded at bare CPE and in 0.1 M PBS (pH 6.8). A 

single peak was observed at the bare CPE due to the overlapping current response of 

AA and 5-HT. The bare CPE does not resolve the detection of AA and 5-HT. Therefore, 

determination of the individual species concentrations, from the broad voltammetric 

peak at the bare CPE, was deemed futile. The same AA / 5-HT mixture was then used to 

examine the voltammetric behaviour of S-β-CD modified CPE. As expected, using S-β-

CD modified CPE as a working electrode caused an effective separation of the anodic 

peaks of 5-HT and AA (Figure 5.20 (b). The anodic peak of 5-HT and AA occurred at 

0.097 V and 0.348 V (vs. SCE), respectively. The oxidation peak current for 5-HT 

oxidation in the mixed solution was 3.655 × 10
-7

 A. 
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(b)  

Figure 5.20: Cyclic voltammogram for a mixture of 5-HT (5 × 10
-5

 M) and AA (1 × 10
-3

 M) in 0.1 

M PBS (pH 6.8) recorded at bare CPE (a) and S-β-CD modified CPE (b); scan rate 50 mV / s.   

 

Within the diffusion layer, the negatively charged S-β-CD (at pH 6.8) accelerates 

protonated 5-HT interaction with the electrode surface, and as consequence, the reaction 

becomes easier. On the other hand, anionic AA oxidation process is partially blocked at 

the electrode surface, but can still interact through hydrogen bonding. The obtained 

results demonstrate that S-β-CD modified CPE is suitable for simultaneous detection of 

5-HT and AA. 
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5.2.2.3  Electrochemical behaviour of a mixture of DA and 5-HT at S-β-

CD modified CPE 

Although simultaneous detection of DA or 5-HT and AA using S-β-CD modified CPE 

as working electrode was a success based primarily on charge difference, it appears 

more challenging to use the same modified electrode for simultaneous detection DA and 

5-HT. Research shows that DA and 5-HT influence each other in their respective 

synaptic release [40], thus, simultaneous detection of both is highly desirable. Like DA, 

5-HT is a monoamine neurotransmitter, which is also positively charged at pH 6.8. 

Their respective pKa values, 8.9 for DA, and 9.8 for 5-HT, are very close, making any 

charge discrimination between 5-HT and DA difficult. 

The electrochemical behaviour of DA and 5-HT mixture on bare CPE and S-β-CD 

modified CPE was investigated by cyclic voltammetry. Figure 5.21(a) shows the cyclic 

voltammograms of a mixture of equimolar concentration of 5-HT (5 × 10
-5

 M) and DA 

(5 × 10
-5

 M) in 0.1 M PBS (pH 6.8) on bare CPE and S-β-CD modified CPE. At bare 

CPE, 5-HT and DA show broad peak which correspond to overlapping oxidation peak 

currents due to DA and 5-HT oxidation. This result indicates that CPE cannot be used 

for any real application for the detection of 5-HT in presence of DA, or vice versa. 

To explore whether modification of CPE give a different result, the voltammetric 

behaviour of DA (5 × 10
-5

 M) and 5-HT (5 × 10
-5

 M) mixture was investigated at S-β-

CD modified CPE using cyclic voltammetry. As shown in Figure 5.21 (b), DA and 5-

HT yielded two well-defined oxidation peaks at 0.170 and 0.349 V (vs. SCE). The 

reduction peak of DA was still observed at 0.153 V. The presence of S-β-CD results in 

significant increase in oxidation signal of DA and 5-HT from the mixture. The anodic 

peak value for DA and 5-HT are 1.283 × 10
-6

 A and 1.076 × 10
-6

 A, respectively. These 

peak current values are higher than their corresponding individual peak current at bare 

CPE.  The enhanced oxidation signals may indicate different degree of electrostatic 

interaction between positively charged DA and 5-HT with sulfate groups of the 

cyclodextrin or a probable penetration of both species into the relatively less polar 

cavity of the cyclodextrin, resulting in the formation of DA:S-β-CD and 5-H:S-β-CD 

inclusion complexes. Moreover, it was demonstrated previously that S-β-CD has strong 

catalytic activity toward the oxidation of DA and 5-HT, through their individual 

response at S-β-CD modified CPE. Therefore, a probable competition in the adsorption 

of the species at the electrode surface can be considered for quantitative and qualitative 

determination of these neurotransmitters.  

file:///C:/Users/gama/Downloads/GGT-PhD-Thesis%20template%20No%201(JC2).docx%23_ENREF_40
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(b)  

Figure 5.21: Cyclic voltammogram of a mixture of DA (5 × 10-5 M) and 5-HT (5 × 10-5 M) at 

bare CPE (a) and S-β-CD modified CPE in 0.1 M PBS (pH 6.8); scan rate 50 mV / s. 

 

To further probe the electrochemical behaviour of a mixture of DA and 5-HT at CPE, 

DPV was employed. Figure 5.22(a) shows DPV responses of DA and 5-HT in mixtures 

at the S-β-CD modified CPE in comparison with that obtained at bare CPE. As shown 

in Figure 5.22(a), the voltammogram of a sample solution containing DA (5 × 10
-5

 M) 
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and 5-HT (5 × 10
-5

 M) at bare CPE shows a large peak occurring at 0.292 V, which 

corresponds to the oxidation of 5-HT, while a small and broad peak at 0.152 V 

represents oxidation of DA. From this experimental result, it appeared that 5-HT has a 

stronger affinity for bare CPE compared to DA. It is well-known that 5-HT adsorbs 

strongly on carbon materials, thus providing good sensitivity [37, 41]. The indole 

moiety may provide a relatively greater affinity with carbon (via π-π interaction) 

compared to benzene moiety. This observation is in agreement with the electrochemical 

response of these species (in their individual solution) at bare CPE, where the 

determined peak current of 5-HT was higher than that obtained at DA. Furthermore, 

much better resolved peaks were obtained at S-β-CD modified CPE (Figure 5.22 (b). 

The peaks occurring at 0.140 V and 0.272 V (vs. SCE) correspond to the oxidation of 

DA and 5-HT, respectively. The separation between peak potentials (ΔEp) was 0.132 V. 

This value was large enough for simultaneous determination of DA and 5-HT. From the 

mixture, the peak current of DA was 1.55 × 10
-6

 A, while that of 5-HT was 1.15 × 10
-6

 

A. So, DA had a slightly larger current response than 5-HT at S-β-CD modified CPE. 

Such a difference in peak current observed by DPV is in agreement with the results 

obtained using cyclic voltammetry, and may be related to different orientation of these 

two neurotransmitters in the cyclodextrin cavity. 

 

 

 

 

 

(a)  

 

 

 

 

 

 

(b)  

Figure 5.22: differential pulse voltammograms for a mixture of DA (5 × 10
-5

 M) and 5-HT (5 × 

10
-5

 M) in 0.1 M PBS (pH 6.8) obtained at bare CPE (a) and S-β-CD modified CPE (b).  
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Docking studies performed by Sengupta et al [42] show that the indole moiety of 

serotonin is incorporated into the relatively less polar cavity of β-CD, while the 

aliphatic amine side chain protrudes through the primary rim of β-CD. Although 

complex formation through the inclusion of the aliphatic amine side chain of 5-HT 

within S-β-CD is possible, it is more likely that similar 5-HT orientation observed by 

Sengupta et al may happen using S-β-CD, with sulfate group facilitating diffusion of 

protonated 5-HT into the cyclodextrin cavity. In fact, the most stable conformation may 

correspond to the hydrophobic indole moiety of 5-HT dipped within the cavity of 

cyclodextrin, while the polar monoamine side is exposed to buffer and stabilised by 

electrostatic interaction with sulfate group.  

Previous studies in our laboratory [43] have demonstrated that DA is included in S-β-

CD cavity through its phenolic group, while cationic group is maintained outside the 

cavity and electrostatically attracted to anionic sulfate group on the rim of the cavity. 

Although both neurotransmitters show an enhanced signal at S-β-CD modified CPE, 

DA provides a quicker kinetic reaction than 5-HT which is characterised by its higher 

peak current.  

However, it is more likely that S-β-CD greatly stabilizes 5-HT compared to DA. To 

support this hypothesis, the modified electrode was thoroughly rinsed with distilled 

water and a differential pulse voltammogram was recorded in a fresh buffer solution. As 

can be seen from Figure 5.23, the peaks corresponding to oxidation of DA and 5-HT 

were clearly observed at S-β-CD modified CPE, pointing that DA and 5-HT were 

significantly adsorbed onto the surface of the modified electrode. Interestingly, the 

oxidative peak current of 5-HT (4.781 × 10
-7

 A) was higher than that obtained for DA 

(3.462 × 10
-7

 A). These results show evidence of the stability of 5-HT over DA at S-β-

CD modified CPE.     

In summary, it was demonstrated that the S-β-CD modified CPE not only exhibited 

strong catalytic ability toward the oxidation of DA and 5-HT, but also resolved their 

voltammetric responses into two well-defined voltammetric peaks.  
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Figure 5.23: Differential pulse voltammogram obtained in 0.1 M PBS (pH 6.8) at S-β-CD 

modified CPE after a voltammogram was run in a mixture DA (5 × 10
-5

 M) and 5-HT (5 × 10
-5

 

M).  

 

5.2.2.4  Effect of electrochemical window for simultaneous detection of 

DA and 5-HT at S-β-CD modified CPE 

Cyclic voltammetry was employed to observe if the electrochemical window has an 

effect on the determination of DA from a mixture of DA and 5-HT. In previous 

experiment carried out at S-β-CD modified CPE in the mixture of DA (5 × 10
-5

 M) and 

5-HT (5 × 10
-5

 M), the upper potential limit was chosen to be 0.6 V. This potential was 

reduced to 0.27 V in order to detect DA only from the mixture. The corresponding 

voltammogram is shown in Figure 5.24 (black trace). For the sake of comparison, the 

same potential window was used for the detection of DA in the absence of 5-HT (Figure 

5.24, red trace). The resulting DA peak currents are displayed in Table 5.2. As can been 

seen, the different oxidation peak currents obtained in DA solution and in the mixture 

are very close and the shape of the voltammograms are the same. This is evidence that 

DA detection is not affected by the applied electrochemical window, or more 

interestingly by the presence of 5-HT.  

E (V) vs. SCE 

I 
(1

 ×
 1

0
-6

 A
) 

DA 

5-HT 



Chapter 5                                                                                             Interference Studies 

  
201 

 
  

 

Figure 5.24: Cyclic voltammogram for a mixture of DA (5 × 10
-5

 M) and 5-HT (5 × 10
-5

 M) at S-

β-CD modified CPE in 0.1 M PBS (pH 6.8) using upper potential limit +0.6 V (   ) and +0.27 V (   ), 

and cyclic voltammogram for DA (5 × 10
-5

 M) solution using upper potential limit +0.27 V (   ).  

scan rate 50 mV / s. 

 

Table 5.2: Effect of electrochemical window on DA oxidation peak currents 

Sample analysed 
Electrochemical 

window 

DA oxidation peak 

current 

(A) 

DA solution [-0.2 V ; +0.27 V] 1.36 × 10
-6

 

Mixture DA / 5-HT [-0.2 V ; +0.60 V] 1.28 × 10
-6

 

Mixture DA / 5-HT [-0.2 V ; +0.27 V] 1.34 × 10
-6

 

 

5.2.2.5  Electrochemical behaviour of a mixture of DA and 5-HT at CM-β-

CD modified CPE 

CM-β-CD was employed as an alternative modifier (instead of S-β-CD) for 

simultaneous detection of DA and 5-HT. When a mixture of DA (5 × 10
-6

 M) and 5-HT 

(5 × 10
-6

 M) was investigated using DPV, it showed that the modified electrode had a 

better sensitivity for 5-HT compared to DA (Figure 5.25). The peak currents were 1.143 

× 10
-7

 A and 4.430 × 10
-7

 A, corresponding to the oxidation of DA and 5-HT, 

respectively. The opposite effect was observed at S-β-CD modified CPE, where the 

peak current of DA was higher than that of 5-HT in the mixture. This is probably related 

to specific affinity the cyclodextrin derivatives have for DA and 5-HT. As mentioned in 
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Chapter 4, both forms of cyclodextrin derivatives used in this study are commercially 

available and randomly substituted mixtures. Charge distribution is not conclusively 

determined. Sulfated and carboxylated groups at the primary or secondary site of the 

cyclodextrin are different in their elemental composition and atom arrangement. 

Therefore, several factors such as geometry of molecule or acid dissociation of both 

modifiers and analytes may play a role in specific electrostatic interaction between host 

and guest prior to inclusion complex. Voltammetric sensing based on chemically 

modified electrodes depends largely on how sensitively electrode modifiers recognize 

target analytes and how rapidly they communicate the resulting electric signal to the 

underlying electrode [18]. So, kinetics has to be taken into account because the first 

molecule to interact with the cyclodextrin derivatives (or more specifically to enter 

cyclodextrin cavity), could in principle not be replaced by the other.  

 

Figure 5.25: Differential pulse voltammograms for a mixture of DA (5 × 10
-6

 M) and 5-HT (5 × 

10
-6

 M) in 0.1 M PBS (pH 6.8) obtained at CM-β-CD modified CPE.  

 

As, it appeared that S-β-CD modified CPE showed a better oxidation response for DA, 

and, on the other hand CM-β-CD modified CPE gave a better peak signal for 5-HT, a 

combination of the modifiers was employed for simultaneous detection of DA and 5-HT. 

An equal amount (0.273 g) of each cyclodextrin derivative was mixed with the carbon 

paste. The prepared electrode was used to investigate the electrochemical behaviour of a 

mixture of DA (5 × 10
-6

 M) and 5-HT (5 × 10
-6

 M). The resulting voltammogram, 

displayed in Figure 5.26 shows that the oxidation of DA peak current was obtained as 

1.483 × 10
-7

 A, whereas the oxidation of 5-HT was 4.095 × 10
-7

 A. Compared to CM-β-

CD modified CPE, the peak intensity of DA has slightly increased, while that of 5-HT 
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decreased when a mixture of cyclodextrin derivatives was employed as working 

electrode. From this result, it is more likely that an adequate ratio of S-β-CD and CM-β-

CD could provide an optimum sensing of these neurotransmitters from a mixture. 

 

Figure 5.26: differential pulse voltammograms for a mixture of DA (5 × 10
-6

 M) and 5-HT (5 × 

10
-6

 M) in 0.1 M PBS (pH 6.8) obtained at S-β-CD / CM-β-CD modified CPE.  

 

5.2.2.6  Electrochemical behaviour of a mixture of DA and 5-HT at bare 

GPE 

The voltammetric response at the bare GPE in a mixture of DA (5 × 10
-5

 M) and 5-HT 

(5 × 10
-5

 M) was obtained using DPV method. The data is illustrated in Figure 5.27. 

Two distinct peaks observed at 0.12 V and 0.27 V vs. SCE correspond to oxidation of 

DA and 5-HT respectively. The separation between the two peak potentials (0.15 V vs. 

SCE) was large enough, thus, the sensing of DA and 5-HT can be measured 

simultaneously in a mixture of equimolar concentration of DA and 5-HT. Unlikely, an 

efficient separation of the anodic peak signals of DA and 5-HT cannot be achieved at 

bare glassy carbon or bare CPE. Therefore, this performance obtained at bare GPE may 

be attributed to the structure of the graphene and the presence of many active sites such 

as defects and kinks.  In addition, the presence of COOH groups on the bare GPE makes 

the surface highly electronegative, thereby contributing to electrostatic attraction of DA 

and 5-HT. The electrochemical oxidation of 5 × 10
-5

 M DA (from Chapter 4) and 5 × 

10
-5

 M 5-HT (Figure 5.27) at bare CPE occurred at 0.13 V and 0.29 V (vs. SCE), 

respectively. The negative shift of peak potential of both neurotransmitters at bare GPE 
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(compared to bare CPE) provided evidence for the catalytic effects of graphene acting 

as a promoter to accelerate the electron transfer. 

 

Figure 5.27: Differential pulse voltammogram for a mixture of DA (5 × 10
-5

 M) and 5-HT (5 × 10
-

5
 M) in 0.1 M PBS (pH 6.8) obtained at bare GPE.  

 

5.2.3  Electrochemical study of a mixture of AA, DA and 5-HT 

Measurements of DA at bare CPE are complicated due to coexistence of high 

concentration of AA, which are oxidized at the same potential region. AA also 

attenuates the detection of 5-HT though 5-HT undergoes oxidation at more positive 

potential. It was demonstrated previously that simultaneous detection of AA and DA, 

and simultaneous measurement of AA and 5-HT was successful at S-β-CD modified 

CPE. Moreover, the overlapping voltammetric signal of DA and 5-HT was well 

separated using S-β-CD modified CPE. Therefore, it was assumed that satisfactory 

results could be  obtain for analysing a mixture of AA, DA and 5-HT using S-β-CD. 

These three chemicals have been attracting great interest in bioelectroanalysis because 

they are extremely important analytes in clinical field. Many electrode modification 

strategies have been developed for improving their determination in terms of sensitivity 

and selectivity. 

The purpose of this section is to investigate the ability of S-β-CD modified CPE for 

simultaneous detection of AA, DA and 5-HT. S-β-CD possesses high stability and good 

electron-mediating activity towards AA, DA and 5-HT. Therefore, one could exploit the 

electrostatic interaction of S-β-CD towards AA, DA and 5-HT to separate their 

overlapping anodic peaks. 
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5.2.3.1 Electrochemical behaviour of a mixture of AA, DA and 5-HT at S-

β-CD modified CPE 

The voltammetric behaviour for a mixture of AA (1 × 10
-3

 M), DA (5 × 10
-5 

M) and 5-

HT (5 × 10
-5 

M) at S-β-CD modified CPE was examined using cyclic voltammetry. 

From Figure 5.28, S-β-CD modified CPE resolved the wave of AA and DA and 5-HT 

into a three well defined peaks. Hence, at the modified electrode three independent 

peaks could be observed at potentials around 0.08 V, 0.19 V and 0.34 V (vs. SCE) 

corresponding to the oxidation of AA, DA and 5-HT, respectively. 

 

Figure 5.28: Cyclic voltammograms for a mixture of AA (1 × 10
-3

 M) DA (5 × 10
-5

 M) and 5-HT 

(5 × 10
-5

 M) in 0.1 M PBS (pH 6.8) obtained at S-β-CD modified CPE. Scan rate 50 mV / s.  

 

As the charging current contribution to the background current is a limiting factor in the 

analytical determination of any electroactive species, the above experiment was carried 

out using DPV. When the DPV detection mode was applied instead of cyclic 

voltammetry for the mixture AA (1 × 10
-3

 M), DA (5 × 10
-5

 M) and 5-HT (5 × 10
-5

 M) 

at S-β-CD modified CPE, an improvement in the voltammetric peak heights 

corresponding to the oxidation of AA, DA and 5-HT, was observed. The presence of S-

β-CD resolved the mixed voltammetric response into three well-defined voltammetric 

peaks at potentials 0.05, 0.15 and 0.28 V (vs. SCE), corresponding to the oxidations of 

AA, DA and 5-HT, respectively, as shown in Figure 5.29. 
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Figure 5.29: Differential pulse voltammogram obtained at S-β-CD modified CPE in a mixed 

solution containing AA (1 × 10
-3

 M), DA (5 × 10
-5

 M) and 5-HT (5 × 10
-5

 M). Supporting 

electrolyte 0.1 M PBS (pH 6.8). 

 

5.2.4  Calibration Curves 

A calibration curve is a method used in analytical chemistry to determine the 

concentration of an unknown sample solution. Most calibration curves are based on a 

linear relationship that can be expressed using the equation for a straight line, y = mx + 

b, where y is the instrument response, x is the concentration, m represents the slope of 

the line, and b is the y-intercept.  

In this study, calibration curves were constructed for DA (AA and 5-HT) from 

electrochemical response obtained at the bare and most of modified electrodes 

employed in Chapter 4. The graph generated by experimental means, with the 

concentration of solution plotted on the x-axis and the peak currents on the y-axis show 

that in most cases a linear relationship was obtained between concentration and peak 

currents. 

The theoretical limit of detection (LOD) was calculated in accordance with the 3Sb/m 

criteria [44], where Sb is the standard deviation of the blank response for n = 3 and m is 

the slope of the linear calibration plot. Sb, average mean value of background current 
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and relevant electrochemical technique employed for each of the studied modified 

electrode was given in Table 5.3. 

Table 5.3: Average mean value of background current and corresponding standard deviation 

values obtained from each modified electrode. The standard deviation was used to calculate LOD 

 S-β-CD modified CPE 

CM-β-CD 

modified 

CPE 

Neutral 

β-CD 

modified 

CPE 

Fc-β-CD 

modified 

CPE 

Electrochemical 

Techniques 
CV DPV CV CV CV 

Average mean value 

of background 

current (A) 

9.520 × 10
-7

 2.810 × 10
-7

 1.415 × 10
-6

 6.689 × 10
-6

 2.685 × 10
-7

 

Standard Deviation, 

Sb 
4.651 × 10

-9
 1.966 × 10

-9
 2.962 × 10

-8
 4.673 × 10

-8
 1.954 × 10

-9
 

 

Table 5.3 (continued): Average mean value of background current and corresponding standard    

deviation values obtained from each modified electrode. The standard deviation was used to 

calculate LOD 

 CPE/O Bare GPE 
S-β-CD modified 

GPE 

Electrochemical 

Techniques 
CV DPV DPV 

Average mean value 

of background 

current (A) 

2.650 × 10
-6

 6.481 × 10
-6

 1.781 × 10
-4

 

Standard Deviation, 

Sb 
6.027 × 10

-6
 5.666 × 10

-6
 9.000 × 10

-6
 

 

5.2.4.1  Detection of DA in DA only solutions 

(i) At bare CPE 

The electrocatalytic oxidation of DA was carried out at bare CPE by varying its 

concentration, using cyclic voltammetry method. Figure 5.30 (a) shows that by 

increasing the concentration of DA from 5 × 10
-6

 to 1 × 10
-3

 M the electrochemical 

anodic and cathodic peak currents increase with a shift of anodic peak potential toward 

the positive direction and cathodic peak potential toward the negative direction slightly. 
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Table 5.4 shows an increasing anodic peak potential with increasing DA concentration. 

The voltammograms corresponding to the two lowest concentrations of DA and the 

background current are displayed in Figure 5.30 (b). It is worth mentioning that the 

same electrode surface was used during this experiment. From Figure 5.31, it can be 

seen that the graph of anodic peak current versus concentration of DA shows a linear 

relationship in the range from 5 × 10
-6

 to 1 × 10
-3

 M DA. The regression equation was 

Ipa (A) = 0.0053 [DA] + 8.0727 × 10
-8

, with a correlation coefficient of R
2
 = 0.9907.  

Table 5.4: Effect of DA concentration on oxidation peak currents 

and peak potential at bare CPE 

Concentration of 

DA  

(M) 

Oxidation Peak 

Potential  

(V) 

Oxidation peak 

current 

(A) 

5 × 10
-6

 0.28 1.759 × 10
-8

 

1 × 10
-5

 0.30 5.011 × 10
-8

 

5 × 10
-5

 0.31 2.982 × 10
-7

 

1 × 10
-4

 0.33 6.283 × 10
-7

 

5 × 10
-4

 0.38 3.103 × 10
-6

 

1 × 10
-3

 0.43 5.149 × 10
-6
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(a)  

(b)  

Figure 5.30: Cyclic voltammograms recorded at bare CPE in 0.1 M PBS containing different 

concentrations of DA (from 5 × 10
-6

 M to 1 × 10
-3
 M) (a) and enlarged voltammograms of 0.1 PBS 

(   ), 5 × 10
-6
 M (   ) and 1 × 10

-5
 M (   )  DA (b); scan rate: 50 mV / s. 
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Figure 5.31: Calibration curve of oxidation current for the determination of DA using bare CPE. 

 

(ii) At S-β-CD modified CPE 

It was demonstrated previously that S-β-CD shows an electrocatalytic activity towards 

the detection of DA. Therefore, the response character of S-β-CD modified CPE to DA 

was undertaken for possible detection of different concentrations of DA. The 

concentration of DA was varied from 5 × 10
-6

 to 1 × 10
-3

 M, using the same electrode 

surface (Figure 5.32(a)) and a new electrode surface for each DA solution / 

concentration (Figure 5.33 (a)). It is clear that the relationship between anodic peak 

current and concentration of DA is linear between 5 × 10
-6

 M and 1 × 10
-4

 M, with the 

linear regression equation as Ipa (A) = 0.0382 [DA] + 6.834 × 10
-8

 (R
2
 = 0.9959) and Ipa 

(A) = 0.0361 [DA] + 1.461 × 10
-7

 (R
2
 = 0.9936) for ‘polishing’ and ‘no polishing’, 

respectively, as shown in Figure  .34 (b). It has to be noted that ‘polishing’ refers to 

same electrode surface used for increasing concentration of DA. In ‘no polishing’, a 

new electrode surface was generated for each concentration of DA. The voltammograms 

corresponding to the two lowest DA concentrations was compared to the background in 

the case of ‘polishing’ and ‘no polishing’ as shown in Figure  .32 (b) and Figure  .33 

(b), respectively.  

As can be seen in Figure 5.34 (a), there is a slight deviation from linearity from 5 × 10
-4

 

M to 1 × 10
-3

 M in both cases, probably due to electrode fouling effect at these 

relatively high concentrations of DA. Moreover, in the case of ‘no polishing’, the peak 

currents related to 5 × 10
-4

 M and 1 × 10
-3

 M are slightly lower than those obtained 

when using ‘polishing’ method.  
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(a)  

(b)  

Figure 5.32: Cyclic voltammograms recorded at S-β-CD modified CPE (using ‘no polishing’ 

method) in 0.1 M PBS containing different concentrations of DA (from 5 × 10
-6

 M to 1 × 10
-3
 M) 

(a) and enlarged voltammograms of 0.1 PBS (   ), 5 × 10
-6

 M (   ) and 1 × 10
-5

 M (   ) (b); scan rate: 

50 mV / s. 
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(a)  

 

 

(b)  

Figure 5.33: Cyclic voltammograms recorded at S-β-CD modified CPE (using ‘polishing’ 

method) in 0.1 M PBS containing different concentrations of DA (from 5 × 10
-6

 M to 1 × 10
-3

 M) 

(a) and enlarged voltammograms of 0.1 PBS (   ), 5 × 10
-6

 M (   ) and 1 × 10
-5

 M (   ) (b); scan rate: 

50 mV / s. 

 

-0.250 -0.125 0 0.125 0.250 0.375 0.500
-1.8e-6

-1.3e-6

-8.0e-7

-3.0e-7

2.0e-7

7.0e-7

1.2e-6

1.7e-6

E (Volts) vs. SCE

I (
Am

ps
)

GG1751_Cy05.cor

GG1753_Cy05.cor
GG1750_Cy05.cor

E (V) vs. SCE 

I 
(A

) 

-0.250 -0.125 0 0.125 0.250 0.375
-0.000025

-0.000020

-0.000015

-0.000010

-0.000005

0

0.000005

0.000010

0.000015

0.000020

0.000025

0.000030

E (Volts) vs. SCE

I 
(A

m
p

s)

GG1751_Cy05.cor

GG1753_Cy05.cor
GG1756_Cy05.cor
GG1758_Cy05.cor

GG1760_Cy05.cor
GG1762_Cy05.cor

E (V) vs. SCE 

I 
(A

) 5 × 10
-6 

M 

1 × 10
-3 

M 



Chapter 5                                                                                             Interference Studies 

  
213 

 
  

 

(a) 

 

(b) 

Figure 5.34: Calibration curve of oxidation current for the determination of DA obtained at S-β-CD 

modified CPE using ‘polishing’ (∙) and ‘no polishing’(∙) (a), and corresponding linear region (b). 

 

In addition, the peak shape in the case of ‘no polishing’ at 1 × 10
-3

 M DA suggests a 

more diffusion profile compared to the ‘polishing’ method, with a resulting higher ΔEp 

value, as shown in Figure 5.35. What is also remarkable in this study is that in the linear 

region, the peak currents obtained from ‘polishing’ and ‘no polishing’ clearly overlap. 

This may indicate that DA, or more importantly, the oxidation products of DA (i.e. 

DOQ) follow the same approach. As we know, DA is adsorbed at the modified 

electrode surface via electrostatic interaction and / or inclusion complex formation, 

where it is oxidised to DOQ. DOQ then moves away from the electrode surface 

allowing other DA molecules to be oxidised. Therefore, electrode fouling is 

considerably reduced at relatively low concentration of DA.  
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Figure 5.35: cyclic voltammograms recorded at S-β-CD modified CPE using ‘no polishing’ (   ) 

and ‘polishing’ (   ) method in DA (1 × 10
-3

 M) from different concentrations of DA; scan rate: 50 

mV / s. 

 

It is important to note that, as the concentration of DA increases, Epa shifts towards 

more positive potentials with corresponding negative shift in Epc as expected for a 

quasi-reversible process. From Table 5.5, the oxidation peak potentials of DA at  S-β-

CD modified CPE  was constant enough and lower that those observed at bare CPE 

under similar conditions, indicating electrocatalytic effect of S-β-CD towards the 

detection of DA. 

The experimental detection limit for DA at S-β-CD modified CPE using cyclic 

voltammetry was found to 5 × 10
-6

 M. The same detection limit was obtained at bare 

CPE with different signal intensity. The oxidation peak current corresponding to 5 × 10
-

6
 M DA at bare CPE and S-β-CD modified CPE were 1.759 × 10

-8
 A and 1.669 × 10

-7
 A, 

respectively. Although, the peak current at S-β-CD modified CPE was about nine times 

higher than that obtained at bare CPE, a concentration lower than 5 × 10
-6

 M DA could 

not be detected. This may be due to the remarkable high background current observed at 

S-β-CD modified CPE compared to bare CPE. Charges associated with movement of 

electrolyte ions, adsorption / desorption at electrode-electrolyte interface were much 

more complex at the modified electrode. Therefore, this high charging capacitance may 

affect the detection of concentration lower than 5 × 10
-6

 M DA.  

 

-0.250 -0.125 0 0.125 0.250 0.375
-0.000025

-0.000020

-0.000015

-0.000010

-0.000005

0

0.000005

0.000010

0.000015

0.000020

0.000025

0.000030

E (Volts) vs. SCE

I 
(A

m
p
s
)

GG1747_Cy05.cor

GG1762_Cy05.cor

E (V) vs. SCE 

I 
(A

) 



Chapter 5                                                                                             Interference Studies 

  
215 

 
  

Table 5.5: Effect of DA concentration on oxidation peak currents 

and peak potential at S-β-CD modified CPE (using CV) 

Concentration of 

DA  

(M) 

Oxidation Peak 

Potential  

(V) 

Oxidation peak 

current 

(A) 

5 × 10
-6

 0.17 1.669 × 10
-7 

1 × 10
-5

 0.17 6.390 × 10
-7

 

5 × 10
-5

 0.17 2.020 × 10
-6

 

1 × 10
-4

 0.17 3.721 × 10
-6

 

5 × 10
-4

 0.19 1.374 × 10
-5

 

1 × 10
-3

 0.23 2.207 × 10
-5

 

 

In an attempt to detect a concentration of DA lower than 5 × 10
-6

 M at S-β-CD modified 

CPE, DPV was employed. The electrochemical behaviour of 5 × 10
-6

 M DA at the 

modified electrode was studied in 0.1 M PBS in the potential range of -0.3 V to +0.6 V 

vs. SCE and the resulted voltammogram was displayed in Figure 5.26 (a). The peak 

occurring at around 0.00 V corresponds to oxidation of oxide species, which was 

previously discussed in Chapter 2.  The small peak observed at 0.13 V is due to 

oxidation of DA. As already mentioned, oxidation peak potential of oxides and DA are 

very close and the DA signal is masked by the oxide peak when a relatively small 

concentration of DA is used. Therefore, it was decided to reduce the electrochemical 

window in order to improve the detection of 5 × 10
-6

 M DA. Successfully a distinct 

peak signal was obtained when a potential window ranging from 0 V to 0.25 V was 

used as shown in Figure 5.36 (b). Under similar conditions, the detection of 1 × 10
-6

 M 

and 5 × 10
-7

 M DA was achieved and the corresponding voltammograms are displayed 

in Figure 5.37 (a) and Figure 5.37 (b), respectively. As the peak current for 5 × 10
-7

 M 

DA was not clearly defined, background current was subtracted in order to determine 

the true peak current. The data was shown in Figure 5.38. Furthermore, differential 

pulse voltammetry response of DA at various concentration of DA was performed and 

shown in Figure 5.39 (a). As can be seen, the peak current increase as increasing the 

concentration of DA from 5 × 10
-7

 M to 1 × 10
-3

 M. The plot of Ipa against concentration 

of DA (Figure 5.39 (b)) showed a linear dynamic range of 5 × 10
-7

 – 5 × 10
-4

 M with a 

correlation coefficient value of 0.9955. The linear regression equation for this range is 

Ipa (A) = 0.0442 [DA] + 5.008 × 10
-7

. Therefore LOD was found to be 1.33 × 10
-7

 M. The 

dependence of DA concentration on the peak potential and peak current is displayed in 

Table 5.6.      

 



Chapter 5                                                                                             Interference Studies 

  
216 

 
  

(a)  (b)  

Figure 5.36: Differential pulse voltammograms of DA (5 × 10
-6

 M) recorded at S-β-CD modified 

CPE using potential windows from -0.3 V to +0.6 V (a) and from 0.0 V to 0.25 V (b) vs. SCE. 

Supporting electrolyte 0.1 M PBS (pH 6.8).  

 

 

(a) 

 

(b) 

Figure 5.37: Differential pulse voltammograms recorded at S-β-CD modified CPE in 1 × 10
-6

 M 

DA (a) and (5 × 10
-7

 M DA (b). Supporting electrolyte 0.1 M PBS (pH 6.8). 
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Figure 5.38: Differential pulse voltammograms recorded at S-β-CD modified CPE in 5 × 10
-7

 M 

DA afar background subtraction. Supporting electrolyte: 0.1 M PBS (pH 6.8). 

 

 

(a) 

 

(b) 

Figure 5.39: Differential pulse voltammograms of various concentration of DA (from 5 × 10
-7

 M to 1 

× 10
-3

 M) recorded at S-β-CD modified CPE (a) and corresponding calibration curve (b). 

Supporting electrolyte 0.1 M PBS (pH 6.8). 
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Table 5.6: Effect of DA concentration on oxidation peak currents 

and peak potential at S-β-CD modified CPE (using DPV) 

Concentration of 

DA  

(M) 

Oxidation Peak 

Potential  

(V) 

Oxidation peak 

current 

(A) 

5 × 10
-7

 0.13 4.344 × 10
-9 

1 × 10
-6

 0.13 2.965 × 10
-8

 

5 × 10
-6

 0.13 2.545 × 10
-7

 

1 × 10
-5

 0.13 5.947 × 10
-7

 

5 × 10
-5

 0.13 2.649 × 10
-6

 

1 × 10
-4

 0.14 5.803 × 10
-6

 

5 × 10
-4

 0.14 2.484 × 10
-5

 

1 × 10
-3

 0.14 4.354 × 10
-5

 

 

(iii) At CM-β-CD modified CPE 

A calibration plot was obtained at CM-β-CD modified CPE using similar conditions 

employed for S-β-CD modified CPE. The concentration of DA was varied from 5 × 10
-6

 

M to 1 × 10
-3

 M and the electrochemical current was obtained at the modified electrode. 

The cyclic voltammogram (Figure 5.40 (a)) showed an oxidation peak at 0.16 V on the 

first concentration of DA. On further increasing the concentration of DA, the peak 

potential shifted slightly to the right with a rise in peak current (Table 5.7). This 

behaviour shows the analytical importance of the CM-β-CD modified CPE in the 

determination of DA. Figure 5.40 (b) shows the two lowest concentration of DA 

compared to background current. As the concentration of DA was varied from 5 × 10
-6

 

M to 1 × 10
-3

 M, oxidation peak current holds linear relationship with concentration of 

DA, with a linear regression equation of Ipa (A) = 0.0289 [DA] - 1.4234 × 10
-7

, as shown 

in Figure 5.41 (b). The coefficient of determination, R
2
 = 1, indicating that the 

regression line is very well fitted with the experimental data. Thus, these results 

demonstrate that CM-β-CD modified CPE can be used for the determination of DA. The 

detection limit of DA at CM-β-CD modified CPE was calculated to be 3.09 × 10
-6

 M. 
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(a)  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(b)  

Figure 5.40: Cyclic voltammograms recorded at CM-β-CD modified CPE in 0.1 M PBS 

containing different concentrations of DA (from 5 × 10
-6

 M to 1 × 10
-3

 M) (a) and enlarged 

voltammograms of 0.1 PBS (   ), 5 × 10
-6
 M (   ) and 1 × 10

-5
 M (   ) DA (b); scan rate: 50 mV / s. 
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(a) 

 

(b) 

Figure 5.41: Calibration curve of oxidation current for the determination of DA obtained at CM-β-

CD modified CPE (a), and corresponding linear region (b). 

 

Table 5.7: Effect of DA concentration on oxidation peak currents 

and peak potential at CM-β-CD modified CPE 

Concentration of 

DA  

(M) 

Oxidation Peak 

Potential  

(V) 

Oxidation peak 

current 

(A) 

5 × 10
-6

 0.16 5.708 × 10
-8 

1 × 10
-5

 0.16 1.143 × 10
-7

 

5 × 10
-5

 0.17 1.267 × 10
-6

 

1 × 10
-4

 0.17 2.759 × 10
-6

 

5 × 10
-4

 0.18 1.431 × 10
-5

 

1 × 10
-3

 0.19 2.146 × 10
-5

 

 

(iv) At Neutral β-CD modified CPE 

From Chapter 4, it was observed that the peak current for 5 × 10
-5

 M DA at Neutral β-

CD modified CPE was higher than that of bare CPE. Therefore, determination of 

different concentrations of DA at Neutral β-CD modified CPE appeared important. 

However, the concentration range for the determination of DA was only 5 × 10
-5

 M – 1 

× 10
-3

 M (Figure 5.42 (a)). The oxidation current of DA within this range was 

proportional to the concentration of DA (Figure 5.42 (b)), following the linear 

regression equation Ipa (A) = 0.0114 [DA] – 4.0891 × 10
-8

. The plots showed good 

linearity, with a correlation coefficient of 0.9959 and the calculated detection limit was 
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1.23 × 10
-5

 M. It can be noted that the peak potential remained constant as the 

concentration of DA was increased (Table 5.8). 

 

(a)  

(b)  

Figure 5.42: Cyclic voltammograms of the application of various concentration of DA (from 5 × 

10
-5

 M to 1 × 10
-3

 M) recorded at neutral β-CD modified CPE (a) and corresponding calibration 

curve (b). Supporting electrolyte 0.1 M PBS (pH 6.8). 
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Table 5.8: Effect of DA concentration on oxidation peak currents 

and peak potential at neutral β-CD modified CPE 

Concentration of 

DA  

(M) 

Oxidation Peak 

Potential  

(V) 

Oxidation peak 

current 

(A) 

5 × 10
-5

 0.17 3.284 × 10
-7

 

1 × 10
-4

 0.17 1.054 × 10
-6

 

5 × 10
-4

 0.17 6.134 × 10
-6

 

1 × 10
-3

 0.17 1.116 × 10
-5

 

 

(v) At Fc-β-CD modified CPE 

Fc-β-CD modified CPE is not charged and has different sensing mechanism for DA 

compared to S-β-CD modified CPE or CM-β-CD modified CPE. Using optimised 

conditions such as concentration of Fc-β-CD, scan rate, potential to be applied for 

analysis, the sensor was calibrated for determination of DA. As can be seen from Figure 

5.43 (a), the oxidation peak current increased as the concentration of DA increased. The 

three lowest DA concentrations are displayed in Figure 5.43 (b). The calibration curve 

illustrated in Figure 5.44 shows linearity from 5 × 10
-6

 M to 1.01 × 10
-4

 M DA, with R
2
 

= 0.9981. The linear regression equation is Ipa (A) = 0.0105 [DA] + 9.3410 × 10
-8

. The 

limit of detection was determined to be 1.70 × 10
-6

 M. It is worth noting that a far better 

sensitivity was obtained at Fc-β-CD modified CPE compared to neutral β-CD modified 

CPE, indicating that Fc is a good electron mediator for the determination of DA. The 

electrocatalytic oxidation of DA at Fc-β-CD modified CPE was described in Chapter 4. 

Fe (III) produced during anodic scanning oxidizes DA molecule when it is reduced to 

Fe (II). DA is oxidized at the electrode surface of Fc-β-CD modified CPE following an 

effective diffusional process. This mode of electron transfer was different from that 

obtained at neutral β-CD modified CPE or S-β-CD modified CPE. In addition, the 

oxidation of DA at Fc-β-CD modified CPE (from Table 5.9) occurs at a lower potential 

compared to that of obtained at bare CPE.  
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(b)  

Figure 5.43: Cyclic voltammograms recorded at Fc-β-CD modified CPE in 0.1 M PBS containing 

different concentrations of DA (from 5 × 10
-6

 M to 1.01 × 10
-4

 M) (a) and enlarged 

voltammograms of 5 × 10
-6
 M (   ), 8 × 10

-6
 M (   ) and 1.1 × 10

-5
 M (   ) DA (b); scan rate: 50 mV / s. 
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Figure 5.44: Calibration curve of oxidation current for the determination of DA obtained at Fc-

β-CD modified CPE. 

 

Table 5.9: Effect of DA concentration on oxidation peak currents 

and peak potential at Fc-β-CD modified CPE 

Concentration of 

DA  

(M) 

Oxidation Peak 

Potential  

(V) 

Oxidation peak 

current 

(A) 

5 × 10
-6

 0.18 1.453 × 10
-7 

8 × 10
-6

 0.18 1.644 × 10
-7

 

1.1 × 10
-5

 0.18 1.982 × 10
-7

 

4.1 × 10
-5

 0.19 5.518 × 10
-7

 

7.1 × 10
-5

 0.20 8.483 × 10
-7

 

1.01 × 10
-4

 0.22 1.131 × 10
-6

 

 

(vi) At CPE with oxide layer 

It was found that oxides have a positive effect on the redox properties of DA. However, 

this experimental result is only true when a relatively high concentration of DA was 

used. Figure 5.45 (a) presents the relationship between DA concentration and current 

signal recorded at CPE with oxide layer. It is clear that the oxidative peak current 

increases as increasing the concentration of DA. Based on oxidation peak potential 

(Table 5.10), less energy was needed to oxidise DA at CPE with oxide layer compared 

to the bare CPE. However, the lowest detected DA concentration at oxide containing 

electrode was only 1 × 10
-5

 M. This relatively poor sensitivity is due to the strong effect 
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the oxidation of oxide species has on that of DA. From the voltammogram presented in 

Figure 5.45 (b), the oxidation of oxide species and DA are very close. Therefore, the 

peak signal of DA is masked by the oxidation peak of oxides. It can also be noted that 

the oxide peak decrease as the concentration of DA increase. From Figure 5.46, the 

graph of anodic peak current versus concentration of DA shows two linear ranges with a 

transition point at 1 × 10
-4

 M. The sensor displays linear ranges of 1 × 10
-5

 M – 1 × 10
-4

 

M and 1 × 10
-4

 M – 1 × 10
-3

 M with the linear regression equations as Ipa (A) = 0.0175 

[DA] - 1.3932 × 10
-7

 and Ipa (A) = 0.0045 [DA] + 1.2262 × 10
-6

, respectively. The 

correlation coefficient for the first linearity was 0.9993 and for the second it was 0.9955. 

The decrease of sensitivity (slope) in the second linear range is likely due to kinetic 

limitation. The detection limit of DA in the lower range was found to be 1.81 × 10
-5

 M.  

(a)  

 

 

 

 

 

 

 

(b)  

Figure 5.45: Cyclic voltammograms recorded at CPE with oxide layer in 0.1 M PBS containing 

different concentrations of DA (from 1 × 10
-5

 M to 1 × 10
-3

 M) (a) and enlarged voltammograms 

of 1 × 10
-5

 M DA (b); scan rate: 50 mV / s. 
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(a) 

 

(b) 

 

(c) 

Figure 5.46: calibration curve of oxidation current for the determination of DA obtained at CPE with 

oxide layer (a), and corresponding linear region for the lower oxidation range (b) and linear region for the 

higher oxidation range (c). 
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Table 5.10: Effect of DA concentration on oxidation peak currents 

and peak potential at CPE with oxide layer 

Concentration of 

DA  

(M) 

Oxidation Peak 

Potential  

(V) 

Oxidation peak 

current 

(A) 

1 × 10
-5

 0.16 2.190 × 10
-8

 

5 × 10
-5

 0.16 7.600 × 10
-7

 

1 × 10
-4

 0.16 1.550 × 10
-6

 

5 × 10
-4

 0.17 3.701 × 10
-6

 

1 × 10
-3

 0.19 5.780 × 10
-6

 

 

(vii) At bare GPE 

Differential pulse voltammetry technique was applied for the quantitative detection of 

DA at bare GPE. The corresponding results are showed in Figure 5.47 (a). As seen, the 

peak currents enhance gradually with the increase of DA concentration. The oxidation 

peak currents show a good linear relationship with the concentrations of DA ranging 

from 5 × 10
-5

 M to 1 × 10
-3

 M (Figure 5.48). The voltammograms corresponding to the 

first two lowest DA concentrations are highlighted in Figure 5.47 (b). The linear 

equation was Ipa (A) = 0.0325 [DA] + 3.2904 × 10
-7

 (R
2
 = 0.9978). The limit of detection 

for this electrode was estimated to be 1.70 × 10
-5

 M. From Table 5.11, it is observed that 

GPE give the lowest peak potential values compared to all studied electrodes.  This 

remarkable shift in peak potential is more likely due to the unique properties of 

graphene such as large surface-to-volume ratio and high electrical conductivity. 
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(a) 

 

(b) 

Figure 5.47: Differential pulse voltammograms recorded at bare GPE in 0.1 M PBS containing 

different concentrations of DA (from 5 × 10
-6

 M to 1 × 10
-3

 M) (a) and enlarged voltammograms 

of 5 × 10
-6

 M DA (   ) and  1 × 10
-5

 M DA (   ). 

 

 

Figure 5.48: Calibration curve of oxidation current for the determination of DA obtained at bare 

GPE. 
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Table 5.11: Effect of DA concentration on oxidation peak currents 

and peak potential at bare GPE 

Concentration of 

DA  

(M) 

Oxidation Peak 

Potential  

(V) 

Oxidation peak 

current 

(A) 

5 × 10
-6

 0.11 9.213 × 10
-8

 

1 × 10
-5

 0.11 3.389 × 10
-7

 

5 × 10
-5

 0.12 1.774 × 10
-6

 

1 × 10
-4

 0.12 3.967 × 10
-6

 

5 × 10
-4

 0.12 1.762 × 10
-5

 

1 × 10
-3

 0.12 3.225 × 10
-5

 

 

(viii) At S-β-CD modified GPE 

The calibration curve of DA at S-β-CD modified graphene electrode was obtained by 

increasing the concentration of DA from 5 × 10
-6

 M to 1 × 10
-3

 M. Prior to 

determination, the modified electrode was conditioned by repeated potential scanning in 

a blank 0.1 M PBS solution, pH 6.8, with the purpose of obtaining a steady background 

current.  

Figure 5.49 depicts the voltammograms at various concentrations of DA using S-β-CD 

modified GPE. The plot of  oxidation peak current versus the concentration of DA 

shows a fair relationship in the concentration range 5 × 10
-6

 M – 1 × 10
-4

 M (Figure 5.50) 

with a correlation coefficient R
2
 = 0.9805. The linear regression equation was expressed 

as Ipa (A) = 0.1108 [DA] + 7.2589 × 10
-7

. The detection limit was obtained to be 2.44 × 

10
-4

 M. Although, S-β-CD modified GPE shows a better electrochemical response 

(using 5 × 10
-5

 M DA) as compared to bare GPE, the detection limit was poor. The 

synthesised graphene utilised in this study already contained some degree of functional 

groups such as carboxylate (Chapter 2). Therefore, the addition of 0.545 g S-β-CD to 

the paste may cause some kinetic limitation, particularly for detection of successive 

concentrations of DA. This ‘difficult’ reactivity is characterised by the higher peak 

potentials (Table 5.12) compared to those obtained at bare CPE.   
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Figure 5.49: Differential pulse voltammograms recorded at S-β-CD modified GPE in 0.1 M PBS 

containing different concentrations of DA (from 5 × 10
-6

 M to 1 × 10
-3

 M). 

 

 

 

(a) 

 

(b) 

Figure 5.50: Calibration curve of oxidation current for the determination of DA obtained at S-β-CD 

modified GPE (a) and corresponding linear region (b). 
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Table 5.12: Effect of DA concentration on oxidation peak currents 

and peak potential at S-β-CD modified GPE 

Concentration of 

DA  

(M) 

Oxidation Peak 

Potential  

(V) 

Oxidation peak 

current 

(A) 

5 × 10
-6

 0.23 7.542 × 10
-7

 

1 × 10
-5

 0.23 1.853 × 10
-6

 

5 × 10
-5

 0.23 7.232 × 10
-6

 

1 × 10
-4

 0.24 1.350 × 10
-5

 

5 × 10
-4

 0.24 2.960 × 10
-5

 

1 × 10
-3

 0.24 3.924 × 10
-5

 

 

5.2.4.2  Detection of DA from solution mixtures of AA and DA at S-β-CD 

modified CPE 

As already mentioned, the analysis of DA is normally affected by the presence of other 

electroactive species especially AA. Therefore, DA sensing in the presence of AA was 

investigated. Figures 5.51 and 5.52 show typical cyclic voltammograms obtained at S-β-

CD modified CPE,  in solution mixtures of 1 mM AA and different concentrations of 

DA (from 5 × 10
-6

 to 1 × 10
-3

 M) in pH 6. , at a scan rate  0 mV / s, using ‘polishing’ 

and ‘no polishing’ methods, respectively. As can be seen, the cathodic and anodic peak 

current of DA increases with increase in concentration. The voltammograms 

corresponding to the three lowest concentrations for ‘polishing’ and ‘no polishing’ are 

displayed in Figure 5.51 (b) and Figure 5.52 (b), respectively. It is worth mentioning 

that the signal corresponding to AA decreases as the concentration of DA increase 

(Figure 5.53 (a) and Figure 5.53 (b)). 

The current response shows that DA oxidation peak current (in both cases) was directly 

proportional to concentration within the range 5 × 10
-6

 M – 5 × 10
-4

 M (Figure 5.54). 

The linear regression equation describing the behaviour was Ipa (A) = 0.0292 [DA] + 

3.5290 × 10
-8

 A (R
2
 = 0.9996) and Ipa (A) = 0.0252 [DA] + 1.5205 × 10

-7
 A (R

2
 = 0.9993). 

The detection limit of DA in the presence of AA using ‘no polishing’ method was 

calculated as 5.55 × 10
-7

 M. Moreover, the calibration plots of DA in the absence and 

presence of 1 mM AA using both ‘polishing’ and ‘no polishing’ methods are compared 

in Figure 5.55 (a) and Figure 5.55(b), respectively. The current response of DA in the 

mixture remains the same as when it was studied independently, indicating that the 
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electrochemical reaction of DA at the electrode surface is not affected by the presence 

of AA. 

 

(a) 

 

(b) 

Figure 5.51: Cyclic voltammograms recorded at S-β-CD modified CPE (using ‘no polishing’ 

method) in 1mM AA containing different concentrations of DA (from 5 × 10
-6

 M to 1 × 10
-3

 M) (a) 

and enlarged voltammograms of a mixture of AA (1 × 10
-3

 M) and DA (5 × 10
-6
 M) (   ),    (1 × 10

-3
 

M) and DA (1 × 10
-5

 M) (   ) and AA (1 × 10
-3

 M) and DA (5 × 10
-5

 M) (   ) (b); scan rate: 50 mV / s. 

 

(a) (b) 

Figure 5.52: Cyclic voltammograms recorded at S-β-CD modified CPE (using ‘polishing’ method) 

in 1mM AA containing different concentrations of DA (from 5 × 10
-6

 M to 1 × 10
-3

 M) (a) and 

enlarged voltammograms of a mixture of AA (1 × 10
-3

 M) and DA (5 × 10
-6
 M) (   ),    (1 × 10

-3
 M) 

and DA (1 × 10
-5

 M) (   ) and AA (1 × 10
-3

 M) and DA (5 × 10
-5

 M) (   ) (b); scan rate: 50 mV / s. 
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(a) (b) 

Figure 5.53: Cyclic voltammograms showing oxidation peak of AA (1 × 10
-3

 M) in presence of 

increasing concentration of DA at S-β-CD modified CPE using ‘no polishing’ method (a) and 

‘polishing’ method (b); scan rate: 50 mV / s. 

 

 

(a) 

 

(b) 

Figure 5.54: Calibration curve of oxidation current for the determination of DA from a mixed 

solution of 1 mM AA and increasing concentration of DA obtained at S-β-CD modified CPE using 

‘polishing’ (∙) and ‘no polishing’(∙) (a), and corresponding linear region (b). 
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(a) (b) 

Figure 5.55: Calibration curve of oxidation current for the determination of DA in the presence 

(∙) and absence (∙) of 1 mM AA recorded at S-β-CD modified CPE using ‘polishing’ method (a) 

and ‘no polishing’ (b) method. 
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could not be described adequately for the determination of 5-HT within the range 

studied (Figure 5.57). It is well-known that 5-HT adsorbs strongly on graphite [37], thus 

providing good sensitivity. A peak response for 5 × 10
-6

 M 5-HT was clearly obtained at 

bare CPE with peak intensity of 1.525 × 10
-6

 A (Table 5.13), while the detection of such 

concentration for DA at bare CPE under the same conditions gave a peak current of 

1.759 × 10
-8

 A.  

The oxidation products of 5-HT are known to form insulating layers on the electrode 

surface, causing electrode fouling [45]. As shown in Figure 5.56 (b), a concentration 

higher than 5 × 10
-5

 M resulted in voltammograms where the peak current could not be 

measured accurately. This confirmed that bare CPE cannot effectively be used for 

determination of DA. 
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(a) (b) 

Figure 5.56: Cyclic voltammograms recorded at bare CPE in 0.1 M PBS containing different 

concentrations of 5-HT (from 5 × 10
-6

 M to 1 × 10
-4

 M) (a) and voltammograms of 5 × 10
-4
 M (   ) and 

1 × 10
-3

 M (   ) (b); scan rate: 50 mV / s. 

 

 

Figure 5.57: Calibration curve of oxidation current for the determination of 5-HT obtained at 

bare CPE. 
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Table 5.13: Effect of 5-HT concentration on oxidation peak currents 

and peak potential at bare CPE 

Concentration of 

5-HT  

(M) 

Oxidation Peak 

Potential  

(V) 

Oxidation peak 

current 

(A) 

5 × 10
-6

 0.39 1.525 × 10
-6

 

1 × 10
-5

 0.39 2.354 × 10
-6

 

5 × 10
-5

 0.41 4.230 × 10
-6

 

1 × 10
-4

 0.50 1.148 × 10
-5

 

 

(ii) At S-β-CD modified CPE 

The calibration curve for the oxidation of 5-HT at the S-β-CD modified CPE was 

generated using cyclic voltammetry. The peak current was found to increase as the 

concentration of 5-HT increase in both cases of ‘polishing’ and ‘no polishing’ 

(Figure 5.58 (a) and Figure 5.59 (a)). The plot of peak current versus concentration 

was linear in the ranges 5 × 10
-6

 M – 5 × 10
-4

 M and 5 × 10
-6

 M – 1 × 10
-4

 M, for 

‘polishing’ and ‘no polishing’, respectively (Figure  .60). The corresponding 

regression equations were obtained as Ipa (A) = 0.0150 [5-HT] + 7.5966 × 10
-7

 A (R
2
 = 

0.9902) and Ipa (A) = 0.0211 [5-HT] + 6.6767 × 10
-7

 A (R
2
 = 0.9984). This reasonable 

linearity and remarkable enhancement in peak current indicate clearly that S-β-CD 

modified CPE could effectively be used for determination of 5-HT. In addition, it 

was observed from Table 5.14 that the oxidation overpotential was considerably 

lowered. Therefore, 5-HT was oxidised under catalytic effect at S-β-CD modified 

CPE. The detection limit was estimated as 6.60 × 10
-7

 M. 
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(a) 

 

(b) 

Figure 5.58: Cyclic voltammograms recorded at S-β-CD modified CPE in 0.1 M PBS containing 

different concentrations of 5-HT (from 5 × 10
-6

 M to 1 × 10
-3

 M) (a) and enlarged voltammograms 

of 5 × 10
-6

 M (   ) and 1 × 10
-5
 M (   ) (b); scan rate: 50 mV / s. 

 

 

(a) 

 

(b) 

Figure 5.59: Cyclic voltammograms recorded at S-β-CD modified CPE in 0.1 M PBS containing 

different concentrations of 5-HT (from 5 × 10
-6

 M to 1 × 10
-3

 M) (a) and enlarged voltammograms 

of 5 × 10
-6

 M (   ) and 1 × 10
-5
 M (   ) (b); scan rate: 50 mV / s. 
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(a) 

 

(b) 

 

(c) 

Figure 5.60: Calibration curve of oxidation current for the determination of 5-HT recorded at S-β-

CD modified CPE using ‘no polishing’ (∙) method and ‘polishing’ (∙) method (a), and corresponding 

linear region for ‘no polishing’ method (b) and ‘polishing’ method (c). 
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Table 5.14: Effect of 5-HT concentration on oxidation peak currents 

and peak potential at S-β-CD modified CPE 

Concentration of 

5-HT  

(M) 

Oxidation Peak 

Potential  

(V) 

Oxidation peak 

current 

(A) 

5 × 10
-6

 0.35 7.473 × 10
-7 

1 × 10
-5

 0.35 8.767 × 10
-7

 

5 × 10
-5

 0.35 1.777 × 10
-6

 

1 × 10
-4

 0.35 2.755 × 10
-6

 

5 × 10
-4

 0.38 6.524 × 10
-6

 

1 × 10
-3

 0.38 8.851 × 10
-6

 

 

(iii) At CM-β-CD modified CPE 

CM-β-CD modified CPE has been proven to be an effective sensor in the detection 

of 5-HT. Therefore, using the optimum conditions utilised for S-β-CD modified 

CPE, the calibration curve of 5-HT was constructed using cyclic voltammetry. As 

shown in Figure 5.61 (a), the oxidative current increased with increasing 

concentrations of DA. The first three lowest 5-HT concentrations are displayed in 

Figure 5.61 (b). A linear relationship between oxidation peak current and 

concentration was observed in the range from 3 × 10
-6

 M to 1 × 10
-3

 M, with a 

correlation coefficient of 0.9981 (Figure 5.62). The detection limit was estimated to 

be 2.89 × 10
-7

 M. These experimental results indicated that CM-β-CD modified CPE 

can effectively be used as a chemical sensor for the determination of 5-HT. 
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(a)  

(b)  

Figure 5.61: Cyclic voltammograms recorded at CM-β-CD modified CPE in 0.1 M PBS 

containing different concentrations of 5-HT (from 3 × 10
-6

 M to 1 × 10
-3

 M) (a) and enlarged 

voltammograms of 3 × 10
-6
 M (   ) and 5 × 10

-6
 M (   ) (b) and 1 × 10

-5
 M (   ); scan rate: 50 mV / s. 
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Figure 5.62: Calibration curve of oxidation current for the determination of 5-HT recorded at 

CM-β-CD modified CPE. 

 

5. 15: Effect of 5-HT concentration on oxidation peak currents 

and peak potential at CM-β-CD modified CPE 

Concentration of 

5-HT  

(M) 

Oxidation Peak 

Potential  

(V) 

Oxidation peak 

current 

(A) 

3 × 10
-6

 0.37 6.372 × 10
-6 

5 × 10
-6

 0.37 8.075 × 10
-6

 

1 × 10
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 0.37 1.306 × 10
-5
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-5

 

1 × 10
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 0.37 5.095 × 10
-5
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 0.37 1.657 × 10
-5

 

1 × 10
-3

 0.39 3.156 × 10
-5

 

 

5.2.4.4  Simultaneous Detection of DA and 5-HT from solution mixtures of 

DA and 5-HT 

The detection of DA and 5-HT from solution mixtures of DA and 5-HT, in 0.1 M PBS 

(pH 6.8), was performed using both S-β-CD and CM-β-CD modified CPE under 

differential pulse voltammetry. Typical voltammograms obtained from a mixture of 

increasing DA concentrations in a presence of 5 × 10
-6

 M 5-HT are shown in Figure 

5.63 (a). A linear response was obtained for DA detection in the range 5 × 10
-6

 M – 1.5 

× 10
-5

 M. The linear regression equation was Ipa (A) = 0.0490 [DA] - 8.0336 × 10
-7

 A, 

with a correlation coefficient of R
2
 = 0.9970 (Figure 5.63 (b)). The detection limit for 
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DA from the mixture was calculated as 3.52 × 10
-7

 M. It has to be noted that while the 

concentration of DA was varied from 5 × 10
-6

 M to 1.5 × 10
-5

 M, no remarkable change 

in the oxidation peak current of 5-HT was detected. 

Figure 5.64 (a) shows differential pulse voltammograms of 5 × 10
-6

 M DA with 

coexisting 5-HT concentrations ranging from 5 × 10
-6

 M to 1.5 × 10
-5

 M. It was 

observed that with increasing 5-HT concentration, the oxidation peak current increases 

linearly within the studied concentration range. The regression equation was Ipa (A) = 

0.0460 [5-HT] + 3.2900 × 10
-8

 A, with a correlation coefficient of R
2
 = 0.9949 (Figure 

5.64 (b)). The detection limit was estimated as 1.13 × 10
-6

 M. The oxidation peak 

current for 5 × 10
-6

 M DA remained relatively constant over the 5-HT concentration 

range. 

 

(a) 

 

(b) 

Figure 5.63: Differential pulse voltammograms of the application of various concentration of DA 

(from 5 × 10
-5

 M to 1 × 10
-3

 M ) in the presence of 5-HT (5 × 10
-5

 M) recorded at S-β-CD modified 

CPE (a) and corresponding calibration curve of DA (∙) and plot of oxidation peak current of 5-HT 

as a function of DA concentration (∙) (b). Supporting electrolyte 0.1 M PBS (pH 6.8). 
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(a) 

 

(b) 

Figure 5.64: Differential pulse voltammograms of the application of various concentration of 5-HT 

(from 5 × 10
-5

 M to 1 × 10
-3

 M) in the presence of DA (5 × 10
-5

 M) recorded at S-β-CD modified CPE 

(a) and corresponding calibration curve of 5-HT (∙) and plot of oxidation peak current of DA as a 

function of 5-HT concentration (∙) (b). Supporting electrolyte 0.1 M PBS (pH 6.8). 
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(a) 

 

(b) 

Figure 5.65: Differential pulse voltammograms of the application of various concentration of 5-HT 

(from 5 × 10
-5

 M to 1 × 10
-3

 M) in the presence of DA (5 × 10
-5

 M) recorded at CM-β-CD modified 

CPE (a) and corresponding calibration curve of 5-HT (∙) and plot of oxidation peak current of DA 

as a function of 5-HT concentration (∙) (b). Supporting electrolyte 0.1 M PBS (pH 6.8). 
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current and concentration was obtained for 5-HT from the tertiary mixture (AA, DA and 

5-HT), the peak currents of DA and AA were considerably altered. It was observed that 

the peak current responses for of DA and AA decreased when the concentration of 5-HT 

was increased from 5 × 10
-6

 M to 5 × 10
-5

 M (Figure 5.66 (b)) and disappeared at 5-HT 

concentrations higher than 1 × 10
-4

 M (Figure 5.66 (c)).  

 

(a) 

 

(b) 

 

(c) 

Figure 5.66: Cyclic voltammograms recorded at S-β-CD modified CPE in 0.1 M PBS containing 

different concentrations of 5-HT (from 5 × 10
-6

 M to 1 × 10
-3

 M) in the presence of AA (1 × 10
-3

 M) 

and DA (5 × 10
-5

 M) (a) and highlighted voltammograms showing the variation of 5-HT 

concentration: 5 × 10
-6
 M (   ), 1 × 10

-5
 M (   ) and 5 × 10

-5
 M 5-HT (   ) (b) ; 1 × 10

-4
 M (   ), 5 × 10

-4
 M (   

) and 1 × 10
-3

 M 5-HT (   ) (c); scan rate: 50 mV / s. 
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Table 5.16: Effect of 5-HT concentration on oxidation peak currents 

and peak potential at S-β-CD modified CPE 

Concentration of 

5-HT  

(M) 

Oxidation Peak 

Potential  

(V) 

Oxidation peak 

current 

(A) 

5 × 10
-6

 0.35 1.599 × 10
-7

 

1 × 10
-5

 0.35 3.441 × 10
-7

 

5 × 10
-5

 0.35 1.005 × 10
-6

 

1 × 10
-4

 0.35 2.074 × 10
-6

 

5 × 10
-4

 0.40 7.323 × 10
-6

 

1 × 10
-3

 0.43 9.142 × 10
-6

 

 

 

(a) 

 

(b) 

Figure 5.67: Calibration curve of oxidation current for the determination of 5-HT in the presence 

of AA (1 × 10
-3

 M) and DA (5 × 10
-5

 M) obtained at S-β-CD modified CPE (a) and corresponding 

linear region (b). 
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Table 5.17: LOD with corresponding electrode and electrochemical technique 

Compound analysed Electrode LOD (M) 
Electrochemical 

technique 

DA (from a solution of DA) 

S-β-CD modified CPE 1.33 × 10
-7

 DPV 

CM-β-CD modified CPE 3.09 × 10
-6

 CV 

Fc-β-CD modified CPE 1.70 × 10
-7

 CV 

Neutral β-CD modified 

CPE 
1.23 × 10

-5
 CV 

Oxide containing CPE 1.81 × 10
-5

 CV 

Bare GPE 1.70 × 10
-5

 DPV 

S-β-CD modified GPE 2.44 × 10
-4

 DPV 

DA (from a mixture of AA and 

DA) 
S-β-CD modified CPE 5.55 × 10

-7
 CV 

DA (from a mixture of DA and 5-

HT) 
S-β-CD modified CPE 1.06 × 10

-6
 DPV 

5-HT (from a mixture of AA, DA 

and 5-HT) 
S-β-CD modified CPE 9.81 × 10

-7
 CV 

5-HT (from a solution of 5-HT) 
S-β-CD modified CPE 6.60 × 10

-7
 CV 

CM-β-CD modified CPE 2.89 × 10
-7

 CV 

5-HT (from a mixture of DA and 5-

HT) 

S-β-CD modified CPE 1.13 × 10
-6

 DPV 

CM-β-CD modified CPE 3.06 × 10
-7

 DPV 
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6.1 Introduction 

Molecular host–guest systems have captured much attention in recent years. By 

carefully selecting the host molecule, an effective inclusion complex with DA could be 

achieved. Among a wide range of host molecules, examples of well-known hosts are 

calixarenes. These are macrocyclic compounds with typical cavity that can selectively 

bind certain ligands. They can act as receptors for cations [1], anions [2] or neutral 

molecules [3] when they were appropriately functionalized. Calixcrown ether is one of 

the important derivatives of calixarene. As a novel class of host molecules which 

combine calixarene and crown ether in a single molecule, calixcrowns have attracted 

more attention during the last few decades because of their increased ability for 

selective binding to guest molecules as compared with crown ethers or calixarenes. 

They have been proved to be useful vehicles for the study of hydrogen bonding and 

electrostatic interactions as well as cation-π interactions that occur when ions are 

complexed [4, 5]. Lai et al [6] have analysed the voltammetric determination of DA at 

calix[4]arene crown-4 ether [6] (Figure 6.1) film modified glassy carbon electrode [7]. 

The author demonstrated that the CACE solution drop-cast on a GCE displayed a 

significant electrocatalytic response of DA. The detection limit was estimated to be 3.4 

x 10
-6

 M. An alternative calix modified electrode was developed by Doyle et al [8]. The 

author used a platinum electrode modified with polypyrrole doped with p-

sulphonatocalix[6]arene for electrochemical detection of DA. Studies on the mode of 

sensing indicated that DA forms a partial endo-inclusion complex with the calixarene. 

However, the sensor was only able to detect DA at concentrations of 2 x 10
-5

 M. 

 

 

Figure 6.1: General structure for calix[4]arene crown-4 ether [6]. 

 

Cyclodextrins [9] are another class of DA receptors. CDs can bind a variety of guest 

molecules inside their torus-shaped cavities and serve as a model of host site [10]. As 

discussed throughout this thesis, the literature, reports show that CDs based sensors 

were used with good results for the determination of DA. Alarcon-Angeles et al [11] 
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developed a sensor based on modification of glassy carbon electrode with MWCNT/β-

CD for the electrochemical detection of DA. The response mechanism of the 

MWCNT/β-CD modified electrode for DA is based on the combination of electrostatic 

and inclusion interaction of β-CD with DA which is distinguished from the response 

mechanism of non-modified electrode. The proposed integrated sensor showed 

improved analytical performance characteristics in catalytic oxidation of DA compared 

with bare glassy carbon electrode.  However, the detection limit for the MWCNT/β-CD 

modified electrode was only 3.7 x 10
-5 

M DA. 

Although, the electrochemical behaviour of DA at the macrocycles modified electrodes 

(mentioned above) showed improved analytical performance characteristics in oxidation 

of DA compared with non-modified electrode, their respective LOD for DA are 

relatively poor. 

6.1.1 Aim of Chapter 

Earlier in Chapter 5 it was demonstrated that the sensitive detection of DA was 

improved when S-β-CD or CM-β-CD was employed as modifiers. S-β-CD showed a 

LOD of 1.33 x 10
-7

 M for DA by using DPV technique. This remarkable enhancement 

in sensitivity could be due to the formation of a molecular complex between S-β-CD 

and DA. It is worth mentioning that the S-β-CD used in this thesis is a commercially 

available CD derivative. Its main structural features consist of a hydrophobic cavity and 

the randomly sulfated group on the CD rims, it is estimated by the commercial supplier 

that the degree of sulfation per molecule of cyclodextrin ranges between 7 and 11 

sulfate groups. It is expected that all seven primary hydroxyl groups in the β-CD are 

sulfated, as they would be the most reactive ones (Figure 6.2). However, it would be 

extremely difficult to predict or identify the precise chemical structure of β-CD with 

further degree of sulfation. 
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Figure 6.2: Structure of Heptakis-S-β-CD (7 sulfated groups are present). 

 

The aim of this chapter is the synthesis of some cyclodextrin derivatives that could be 

used to further improve sensitivity in DA detection. The challenges in the modification 

of CD lie on the presence of the hydrophobic cavity and a large number of hydroxyl 

groups. Since each hydroxyl group present at the 2-, 3-, and 6-positions could be able to 

compete for the reagent, selective modification is extremely difficult. Moreover, the 

hydrophobic cavity often has the tendency to complex the reagent to direct the reaction 

to unexpected place [12]. 

In this Chapter, the synthesis of Heptakis 6-deoxy-6-(1-(4,5-dicarboxyl)-1,2,3-

triazolyl)-β-CD 6.6 (Figure 6.3) was completed following reported literature procedures 

[13].   
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Figure 6.3: Structure of Heptakis 6-deoxy-6-(1-(4,5-dicarboxyl)-1,2,3-triazolyl)-β-CD 6.6 [13]. 
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As already mentioned, the synthesis of this macrocycle is based on modification of 

neutral β-CD. However, the size of the cavity was not altered, which is sufficient for 

encapsulating DA molecule. Similarly to S-β-CD, the modified β-CD 6.6 has the 

possibility to display numerous negative charges, as the carboxylate groups can form an 

electrostatic interaction with protonated DA. In addition, the triazole moieties in the 

modified CD may enhance its affinity for DA due to attractive aromatic stacking 

interactions with the aromatic core of DA (Figure 6.4). 
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Figure 6.4: Possible stabilizing interactions of Heptakis 6-deoxy-6-(1-(4,5-dicarboxyl)-1,2,3-

triazolyl)-β-CD 6.6 with DA. 

 

The synthesised cyclodextrin derivative 6.6 was mixed with carbon paste, and its 

electrochemical performance for the determination of DA was investigated. It was 

shown that the combined effect of the carboxylate arms, the triazole moiety and the 

non-polar cavity improve molecular recognition towards DA. 

A second cyclodextrin derivative, Heptakis (6-(4-hydroxymethyl-1H-[1, 2, 3] triazol-1-

yl)-6-deoxy)-β-cyclodextrin 6.7 (Figure 6.5) was also synthesised following literature 

procedures [14]. 



Chapter 6                                                                                       Optimisation of Sensors 

  
257 

 
  

O

OH
HO

N

O

O

OH

HO
N

O

OOH

OH

N

O

O

OH
OH

N

OO

OH

OH

N

O

O
OH

OH
N

O

O

OH

HO

N

O

N

N

N
N

N
N

N

N

N

N

NN

N
N

O

N

HO
OH

O

7

N

N

HO

HO

HO

OH

OHOH

HO

HO

 

Figure 6.5: Structure of Heptakis (6-(4-hydroxymethyl-1H-[1, 2, 3] triazol-1-yl)-6-deoxy)-β-

cyclodextrin 6.7 [14]. 

 

In this case, the modified cyclodextrin did not have acid groups that could become 

ionized to give negative charges, but it still features the triazole moieties that could 

provide aromatic interactions. This derivative has primary hydroxyl groups, similarly to 

non-modified β-CD, which could act as H-bond donors and acceptors (Figure 6.6).  
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Figure 6.6: Possible stabilizing interactions of Heptakis (6-(4-hydroxymethyl-1H-[1, 2, 3] triazol-

1-yl)-6-deoxy)-β-cyclodextrin 6.7 with DA. 

 

Synthetic CD 6.7 was used as a modifier for the electrochemical detection of DA. It is 

worth noting that although the preparation of the modified CD was previously described, 

their ability to bind DA has never been investigated. 
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6.2  Results and discussion 

6.2.1  Synthesis of Heptakis 6-deoxy-6-(1-(4,5-dicarboxyl)-

1,2,3-triazolyl)-β-CD 6.6 

The synthesis of compound 6.6 (Scheme 6.1) [13] reported in this study starts from the 

conversion of native β-CD into β-CD-I7 6.1, which was prepared via selective 

replacement of all primary hydroxyl groups of β-CD by iodine atoms.  
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Scheme 6.1: Synthesis of cyclodextrin derivatives β-CD 6.6 [13]. 

 

The subsequent reaction of 6.1 with NaN3 in DMF led to the formation of β-CD-(N3)7 

6.2. 
1
H NMR analysis of 6.2 in DMSO-d6 (Figure 6.7) revealed the complete 

disappearance of the hydroxyl proton (6-CH2OH) signal at 4.47 ppm, which is present 

in β-CD. The chemical structure of 6.2 was further examined by IR spectroscopy. The 

spectrum of 6.2 (Figure 6.8) exhibits an absorption band at 2107 cm
-1

 which is 

characteristic of N3 azido group. In addition, the mass spectrometry of 6.3 confirmed the 

introduction of seven azide groups on the small rim of β-CD. 
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Figure 6.7: 
1
H-NMR spectra of β-CD (a) and β-CD-(N3)7 6.2 (b) recorded in DMSO-d6. 

 

 

 

Figure 6.8: IR spectra of β-CD (—) and β-CD-(N3)7 6.2 (—). 
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To facilitate the isolation of pure compound by column chromatography and to assure 

that the product obtained was symmetrically substituted, β-CD-(N3)7 6.2 was acetylated 

using Ac2O and pyridine to give the acetylated product 6.3 in 70 % yield. The structure 

and symmetrical substitution have been confirmed by mass spectrometry and NMR 

spectroscopy as described in the experimental procedure in Chapter 2.  The appearance 

of absorption band in the IR spectrum of cyclodextrin 6.3 at 1742 cm
-1

, characteristic of 

carbonyl groups strongly indicates the effective acetylation of azide derivative 6.2.  

The formation of the triazole moieties in cyclodextrin 6.5 was accomplished by the 

thermal Huisgen cycloaddition of alkyne dimethyl acetylenedicarboxylate 6.4 and the 

azide cyclodextrin 6.3. A solution of both compounds in toluene was refluxed for 17 

hours at 110 °C to afford acetylated compound 6.5 with a yield of 85 % after 

purification by column chromatography. In this case, the cycloaddition reaction can take 

place in the absence of a catalyst due to the fact that alkyne 6.4 is symmetrically 

substituted. The thermal Huisgen cycloaddtion between an azide and a non-symmetrical 

alkyne gives poor regiospecificity, leading to a mixture of regioisomers 1,2,3-triazole 

products. Figure 6.9 shows the IR spectrum of the triazole cyclodextrin 6.5, where the 

disappearance of N3 absorbance band at 2107 cm
-1

 present in cyclodextrin 6.4 can be 

clearly observed. Although 
1
H-NMR spectrum for cyclodextrin 6.5 recorded in DMSO-

d6 presents a relatively poor definition of the signal multiplicity (as shown in Figure 

6.10), the integration of the different 
1
H-NMR resonance shows clearly that the ratio of 

the protons from the acetyl group (COCH3) and the overlapping peaks representing 

anomeric H and H-3 protons (occurring approximately at 5.49 ppm) is 3:1. These results 

allow concluding that all azide groups have been converted into dimethylester 

substituted 1,2,3-triazole. 
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Figure 6.9: IR spectra of Acetylated β-CD-(N3)7 6.3 (—) and triazole compound 6.5 (—). 

  

 

Figure 6.10: The 
1
H-NMR spectrum of acetylated Heptakis 6-deoxy-6-(1-(4,5-dicarboxyl)-1,2,3-

triazolyl)-β-CD 6.5 recorded in CD3CN. 
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The treatment of cyclodextrin 6.5 with KOH in an aqueous mixture of dioxane and 

methanol at room temperature yielded complete hydrolysis of both acetyl and methyl 

esters. The NMR data of the final compound 6.6 (described in detail in Chapter 2) is in 

agreement with the reported literature values [13]. In addition, its 
1
H-NMR spectrum, 

displayed in Figure 6.11 reveals the disappearance of peaks from the methyl esters of 

protected cyclodextrin 6.5, which were occurring as singlet at 3.82 and 3.86 ppm. 

 

Figure 6.11: The 
1
H-NMR spectrum of Heptakis 6-deoxy-6-(1-(4,5-dicarboxyl)-1,2,3-triazolyl)-β-

CD 6.6 recorded in D2O. 

 

6.2.2  Synthesis of Heptakis (6-(4-hydroxymethyl-1H-[1, 2, 3] 

triazol-1-yl)-6-deoxy)-β-cyclodextrin 6.7 

The synthetic approach for the second target cyclodextrin 6.7 involved the use of copper 

(I)-catalysed azide-alkyne cycloaddition (CuAAC). The CuAAC process has emerged 

as the first example of click chemistry, a term developed by Sharpless to describe a set 

of ‘near-perfect’ bond-forming reactions, useful for rapid assembly of molecules [15]. 

In this work, the CuAAC was performed following literature procedures by treatment of 

β-CD-(N3)7 6.2 with propargyl alcohol in the presence of CuI and DIEA for 24 hrs to 

afford the desired product 6.7 (Scheme 6.2) [16]. The use of the copper catalyst leads to 

the formation of exclusively the corresponding 1,4-disubstituted triazole. An excess 

alkynyl reactant with respect to the cyclodextrin was used to ensure conversion of all 



Chapter 6                                                                                       Optimisation of Sensors 

  
263 

 
  

the β-CD-(N3)7 6.2. After 24 hours reaction time, the reaction was found to be clean as 

TLC analysis of the crude product only revealed two spots (desired product and excess 

alkyne), and a third small spot corresponding to copper salt. The bright green colour of 

the crude product in solution indicated the formation of copper (II) complexes. The 

copper was removed by addition of the chelating resin Chelex 100 sodium form. Excess 

alkyne was easily removed by washing the crude product with ethanol.  

O

N3

HO
OH

O

7

6.2

DMF/MeOH
O

N

HO
OH

O

7

N

N

HO

6.7

CuI, DIEA

OH

 

Scheme 6.2: Synthesis of cyclodextrin derivatives β-CD 6.7. 

 

1
H-NMR spectrum, of β-CD 6.7 recorded in DMSO-d6 revealed a characteristic peak at 

7.84 ppm, which was assigned to be the triazole proton. On the other hand, as generally 

observed for substituted cyclodextrins, other signals were hardly possible to assign due 

to overlapping. By contrast, the 
13

C-NMR was much more informative. As can be seen 

from Figure 6.12, all peaks were clearly distinguishable. In particular, the presence of 

the carbon peaks at 124.11 and 147.58 ppm (from triazole) shows evidence of the 

formation of the desired cyclodextrin 6.7.  
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Figure 6.12: The 
13

C-NMR spectrum of Heptakis(6-(4-hydroxymethyl-1H-[1, 2, 3] triazol-1-yl)-6-

deoxy)-β-cyclodextrin 6.8 recorded in DMSO-d6. 

 

The target compound was further characterised by mass spectrometry (Chapter 2). It is 

worth noting that, unlike the thermal Huisgen cycloaddition to prepare compound 6.6, 

the CuAAC reaction was performed at room temperature and allowed the synthesis of 

one regioisomer specifically regardless the symmetry of alkyne. A possible mechanistic 

pathway of the CuAAC process [17, 18] is displayed in Scheme 6.3. In brief, copper 

coordinates to the acetylene π-electrons. The resulting copper-acetylide binds to the 

azide, followed by rearrangement of complex to an unusual six-membered copper-

metallocycle and further into a copper-metallated triazole complex. Ring contraction to 

copper-triazole is followed by protonolysis that delivers the triazole product. 
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Scheme 6.3: Proposed mechanism of the CuAAC reaction [17]. 

 

6.2.3  Attempted Synthesis of Cyclodextrin Derivative 6.9 

The preparation of a third target cyclodextrin was investigated preliminary. The 

aromatic triazole groups, present in both cyclodextrins 6.6 and 6.7, were substituted by 

the trihydroxyphenyl moiety, as shown in Scheme 6.4.  It was envisaged that this 

aromatic moiety could have good stacking interactions with the catechol moiety present 

in DA. The attempted synthesis of compound 6.9 (Scheme 6.4) was based on the 

procedure analogue to that reported by Ashton et al [19], which consisted of coupling 

amino-cyclodextrin 6.8 with gallic acid.  
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Scheme 6.4: Attempted synthesis of cyclodextrin derivatives β-CD 6.9. 

 

The starting material 6.8 was obtained by reduction of azido-cyclodextrin 6.2. This 

reaction was carried out via the Staudinger method, using Ph3P in DMF followed by 

subsequent treatment with aqueous ammonia. A proposed mechanism for the reaction 

[20] is displayed in Scheme 6.5. Ph3P reacts with the azide to generate a phosphazide, 
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which loses N2 to form an iminophosphorane. Hydrolysis by aqueous work-up leads to 

the amine and the very stable phosphine oxide. 

 

Scheme 6.5: Proposed mechanism of the Staudinger reaction [20]. 

  

The amino-cyclodextrin 6.8 was obtained in good yield (89 %) and its chemical 

structure was confirmed by mass spectrometry. In addition, IR spectroscopy revealed 

disappearance of N3 group. Surprisingly, amino-cyclodextrin 6.8 was extremely 

insoluble in H2O. However, as the pH of an aqueous suspension of 6.8 was lowered to 

neutrality or slightly acidic conditions, the compound was dissolved rapidly. Indeed, to 

carry out characterization using NMR spectroscopy, compound 6.8 had to be converted 

into its HCl salt, which was highly soluble in D2O. The amino-cyclodextrin 6.8 was 

then reacted with gallic acid using the HOBt / DCC system. However, these amide 

coupling conditions were not successful, as none of the desired product 6.9 was isolated. 

The 
1
H-NMR spectrum showed very broad signals and the amide characteristic peak 

(RNHCOR’) could not be identified. Instead, the spectrum indicated the presence of 

dichlorohexylurea with traces of unreacted gallic acid. In the future, alternative amide 

coupling conditions should be explored to carry out the formation of gallic acid 

derivative cyclodextrin 6.9. 

6.2.4   Host-guest Complexation Studies 

As mentioned earlier in this thesis, cyclodextrins belong to the family of cyclic 

oligosaccharides, and have been studied extensively as hosts in supramolecular 

chemistry. They can encapsulate organic, inorganic and biomolecules and intensive 

studies of their inclusion complexes have been reported previously [21-23]. In the 

pharmaceutical field for instance, bioavailability and stability of commonly used drugs 

have been enhanced as a result of their complexation with CDs [24].  

CDs have a torus-like macro-rings made of glucose units, in particular β-CD has seven 

glucose units. The number of glucose units directly influences CD physical properties 

such as water solubility and cavity size. The non-bonding electron pairs of the 
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glycosidic oxygens point toward the inside of the cavity, providing a high electron 

density and a Lewis base character. The CD cavity is relatively hydrophobic compared 

to the exterior faces which are hydrophilic [25-27]. A great variety of guest molecules 

of suitable size and shape may be entirely or partially included in this hydrophobic 

cavity, resulting in a stable association without formation of covalent bonds. The 

complexation driving force have been attributed to hydrophobic interactions, Van der 

Waals-London dispersion forces, and hydrogen bonds [25, 28, 29].  

Among various techniques, NMR spectroscopy is the most reliable method for the study 

of inclusion phenomenon in solution [25, 28]. NMR titration measure chemical shift 

changes of the signals for host and guest protons, affected by the formation of a 

complex, as a function of host/guest concentration and can be used to determine the 

binding constant Ka. The observed shift changes can offer an insight into the 

conformation of the formed supramolecular complexes, which is difficult to extract 

from other analysis such as UV-visible titrations [25]. In general, the informations 

provided by the NMR titration method include: (i) confirmation of complex formation, 

(ii) calculation of stoichiometry of the complex, and (iii) establishment of the geometry 

of the complex [28-31]. 

The simplest NMR experiment that can give indication of complexation is the 

observation of the difference in the proton chemical shifts between the free guest or host 

species and a mixture of both, which would be a result of the formation of the suggested 

complex. 

β-CD and some of their derivatives are known to bind to DA [32, 33]. However there is 

no published report on the interaction of DA and cyclodextrin derivatives 6.6 (CD6.6) 

and 6.7 (CD6.7). 

In this section, the complexation between DA and both CD6.6 and CD6.7 was 

investigated in aqueous solution using 
1
H-NMR spectroscopy. The binding 

stoichiometry was determined by a continuous variation method (Job’s plot) and the 

binding constants (Ka) was evaluated following NMR titration. 

6.2.4.1  Sample preparation and NMR measurements  

Before considering analysis of the interaction between DA and the cyclodextrin 

derivatives, DA molecule was characterised by 
1
H-NMR spectroscopy. Figure 6.13 

illustrates the 
1
H-NMR spectrum of protonated DA in 0.1 KCl / D2O. As can be seen, 

clear and well resolved signals are observed. Two doublets and a doublet of doublets 
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(from the aromatic ring) correspond to H-b, H-a and H-c, as illustrated. Two triplets 

(from the aliphatic ethylene amine chain) correspond to H-e and H-d. 

 

H-a

H-b

H-c

H-e

H-d

 

Figure 6.13: The 
1
H-NMR spectrum of protonated DA recorded in 0.1 M KCl / D2O. 

    

In order to investigate the interaction between DA and the cyclodextrin derivatives, a 

stock solution for the hosts (CD6.6 and CD6.7) and the guest (DA) were obtained by 

dissolving appropriate amount of each compound in a solution of 0.1 M KCl / D2O to 

achieve a concentration of 7.4 × 10
-2

 M. A series of solutions were prepared by mixing 

variable volumes of (host and guest) stock solutions in varying proportions so that a 

complete range of molar ratios was sampled (0 ≤ r ≤ 1), keeping the total concentration 

of DA and CD as 2 × 10
-2

 M ([DA] + [CD] = 2 × 10
-2

 M) and the total volume (0.27 mL) 

constant for each solution. The different mixtures were filled up to 1 mL with 0.1 M 

KCl / D2O and shaken thoroughly before NMR measurement. The volumes taken from 

each stock solution to give the required molar fraction are shown in Table 6.1. 
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Table 6.1: The solution composition for the Job’s plot measurement and corresponding mole 

fraction of DA. 

Solutions 
Volume of CDs 

(mL) 

Volume of DA 

(mL) 

Molar fraction of DA 

(r) 

 

1 0.2700 0.0000 0.00 

2 0.2250 0.0450 0.17 

3 0.2159 0.0541 0.20 

4 0.2024 0.0676 0.25 

5 0.1799 0.0901 0.33 

6 0.1350 0.1350 0.50 

7 0.0901 0.1799 0.67 

8 0.0676 0.2024 0.75 

9 0.0541 0.2159 0.80 

10 0.0450 0.2250 0.83 

11 0.0000 0.2700 1.00 

 

In this study, the aromatic region of DA spectrum was used to monitor chemical shift 

variations. All 
1
H-NMR measurements were performed at ambient temperature in D2O 

containing 0.1 M KCl in order to maintain a constant pD and ionic strength. 

It is well-known that the chemical shift (δ) of a given nucleus depends on its shielding 

constant and in turn is sensitive to medium effects. Therefore, changes in δ (ppm) 

values of the DA nuclei can provide a measure of the degree of complex formation. As 

the chemical environment of some protons changes upon complexation, there is a 

consequent variation in the chemical shift (Δδ) of the 
1
H-NMR (shielding or deshielding 

effect). Figure 6.14 shows clearly that all protons from DA aromatic ring shift 

downfield in the presence of CD6.6. This significant change in the chemical shifts 

strongly suggests an interaction event between DA and CD6.6. Although, there is a 

general tendency for chemical shift displacement (downfield), it cannot be inferred from 

these data that an inclusion complex has been formed. The chemical shift displacement 

of the DA protons may be regarded as a combination of interactions with CD6.6. It has to 

be noted that the macrocycle CD6.6 contains seven triazole units bearing two carboxylic 

acid groups each. Electrostatic interactions and other types of non-covalent attractive 

interactions are likely taking place between DA and the different functionalities of CD6.6. 
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Figure 6.14: 
1
H-NMR spectra recorded in 0.1 M KCl / D2O for the Job’s method showing the 

different chemical shift changes for DA (aromatic region) upon addition of CD6.6. The molar 

fraction of DA was varied from 0.2 to 1, as shown on each spectrum. 

 

The 
1
H-NMR spectra reporting the changes in the chemical shifts for the protons of DA 

in the presence of CD6.7 was also analysed as presented in Figure 6.15. The most 

significant change of DA chemical shifts was observable for H-b, where a more 

noticeable downfield displacement occurred upon reducing the molar fraction of DA. A 

slight upfield shift for H-c was observed. However, there was no consistent shift of H-a. 

The chemical shift change in DA aromatic protons (in particular H-b and H-c) once 

again could be interpreted as an evidence for the formation of an interaction between 

DA and CD6.7. 
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Figure 6.15: 
1
H-NMR spectra recorded in 0.1 M KCl / D2O for the Job’s method showing the 

different chemical shift changes for DA (aromatic region) upon addition of CD6.7. The molar 

fraction of DA was varied from 0.17 to 1, as shown on each spectrum. 

 

The observed changes in chemical shift for the aromatic protons of DA (H-a, H-b and 

H-c) upon interaction with CD6.6 and CD6.7 are given in Table 6.2 and Table 6.3, 

respectively. The dimensionless quantity r is defined as r = m / (m + n), where m and n 

represent the stoichiometric ratios of DA and cyclodextrin derivatives, respectively. The 

chemical shift change of DA protons was calculated according to formula: Δδ = δ 

(complex)     δ (free).  In other words, Δδ is defined as the difference in chemical shifts in the 

presence and absence of the cyclodextrin derivatives for each NMR measurement. By 

convention, a positive sign of Δδ (ppm) shows a downfield displacement and a negative 

sign shows an upfield one. 
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Table 6.2: Chemical shift change of DA (aromatic protons) upon addition to CD6.6 

 r = 1.00 r = 0.75 r = 0.67 r = 0. 50 r = 0.33 r = 0.25 r = 0.20 

H-a 

(ppm) 
6.7849 6.7829 6.7877 6.8145 6.8525 6.8706 6.8628 

H-b 

(ppm) 
6.7278 6.7295 6.7333 6.7536 6.7838 6.7971 6.7949 

H-c 

(ppm) 
6.6368 6.6398 6.6465 6.6773 6.7191 6.7372 6.7363 

Δδ(H-a) 

(ppm) 
-0.0020 0.0028 0.0296 0.0676 0.0857 0.0779 0.1310 

Δδ(H-b) 

(ppm) 
0.0017 0.0055 0.0258 0.0560 0.0693 0.0671 0.1118 

Δδ(H-c) 

 (ppm) 
0.0030 0.0097 0.0405 0.0823 0.1004 0.0995 0.1490 

 

Table 6.3: Chemical shift change of DA (aromatic protons) upon addition to CD6.7 

 r = 1.00 r = 0.83 r = 0.80 r = 0. 75 r = 0.67 r = 0.50 r = 0.33 r = 0.25 r = 0.20 r = 0.17 

H-a 

(ppm) 
6.8025 6.8022 6.8054 6.8069 6.8088 6.8163 6.8183 6.8186 6.8172 6.8140 

H-b 

(ppm) 
6.7466 6.7416 6.7440 6.7441 6.7435 6.7471 6.7448 6.7399 6.7413 6.7367 

H-c 

(ppm) 
6.6560 6.6487 6.6506 6.6500 6.6494 6.6449 6.6449 6.6334 6.6388 6.6315 

Δδ(H-a) 

(ppm) 
0.0000 -0.0003 0.0029 0.0044 0.0063 0.0138 0.0158 0.0161 0.0147 0.0115 

Δδ(H-b) 

(ppm) 
0.0000 -0.0050 -0.0026 -0.0025 -0.0031 0.0005 -0.0018 -0.0067 -0.0053 -0.0099 

Δδ(H-c) 

(ppm) 
0.0000 -0.0073 -0.0054 -0.0060 -0.0078 -0.0066 -0.0111 -0.0226 -0.0172 -0.0245 

 

6.2.4.2  Stoichiometry of the inclusion complexes 

There is abundant reports on ordinary stoichiometric 1:1, 2:1, and 1:2 complexes 

between host CD and guests [26, 35-37]. Job’s plot, which depicts the dependence of 

chemical shift on substrate / CD ratio, has been widely used to determine complex 

stoichiometry [38]. Therefore, the first focus in this study was to derive a Job’s plot 

using the continuous variation method that would correctly describe the stoichiometric 

nature of the possible complexes formed between DA in cyclodextrin derivatives CD6.6 

and CD6.7. Important assumptions of the method of continuous variation are: (i) neither 

host nor guest self-associate, (ii) the law of mass action is obeyed, and (iii) only one 
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complex is formed [39]. In NMR spectroscopy, two situations may occur when using 

the continuous variation method in experiments with CD inclusion complexes: (i) the 

slow exchange condition and (ii) the fast exchange condition [40]. In slow exchange, 

the free and complexed forms of one component produce separated signals, and the ratio 

of the free and complexed forms can be measured directly by digital integration of the 

relevant signals on the NMR spectrum. In fast exchange, only shifts of the spectral lines 

are observed due to fast averaging by the exchange between free and included states. As 

no free, as well as complexed signals for DA protons could be observed in the 
1
H-NMR, 

it was presumed that a rapid exchange between free and bound state on the NMR time 

scale was obtained. Therefore, the chemical shift differences were multiplied by the 

mole fraction of DA in order to create a Job’s plot. Tables 6.4 and Table 6.  indicate the 

calculated quantity | Δδ | × r, which was plotted as a function of the mole fraction of DA, 

r, in the case of interaction form CD6.6:DA and CD6.7:DA, respectively. 

Table 6.4: Chemical shift change of DA (aromatic protons) multiplied by the corresponding  

mole fraction upon addition to CD6.6 

 r = 1.00 r = 0.75 r = 0.67 r = 0. 50 r = 0.33 r = 0.25 r = 0.20 r = 0.00 

|Δδ(H-a)| × r 

(ppm) 
0.0000 0.00150 0.00188 0.01480 0.02231 0.02143 0.01558 0.0000 

|Δδ(H-b)| × r 

(ppm) 
0.0000 0.00128 0.00369 0.01290 0.01848 0.01733 0.01342 0.0000 

| Δδ(H-c)|× r 

(ppm) 
0.0000 0.00225 0.00650 0.02025 0.02716 0.02510 0.01990 0.0000 

 

Table 6.5: Chemical shift change of DA (aromatic protons) multiplied by the corresponding mole 

fraction upon addition to CD6.7 

 r = 1.00 r = 0.83 r = 0.80 r = 0.75 r = 0.67 r = 0. 50 r = 0.33 r = 0.25 r = 0.20 r = 0.17 r = 0.00 

|Δδ(H-a)| 

× r 

(ppm) 

0.00000 0.00025 0.00232 0.00330 0.00422 0.00690 0.00521 0.00403 0.00294 0.00196 0.00000 

|Δδ(H-b)| 

× r 

(ppm) 

0.00000 0.00415 0.00208 0.00200 0.00208 0.00025 0.00059 0.00168 0.00106 0.00168 0.00000 

|Δδ(H-c)| 

× r 

(ppm) 

0.00000 0.00606 0.00432 0.00450 0.00523 0.00330 0.00366 0.00565 0.00344 0.00417 0.00000 
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Figure 6.16 shows the generated Job’s plot when DA interacts with CD6.6. This plot is 

characterised by possessing a maximum centred at r = 0.33 for all aromatic protons of 

DA which strongly suggests that the complex formed between CD6.6 and DA favoured a 

2:1 stoichiometry.    

 

Figure 6.16: 
1
H-NMR Job plots for the binding of DA to CD6.6. The plot is generated for each DA 

aromatic proton. 

 

In the case of CD6.7, the continuous variation analysis (Job’s plot) was applied to H-b as 

this aromatic proton showed the most obvious chemical shift variation. As presented in 

Figure 6.17, the plot shows a maximum value at r = 0.50 and a fairly symmetrical shape, 

which indicates the existence of a CD6.7:DA complex with a 1:1 stoichiometry. 

 

Figure 6.17: 
1
H-NMR Job’s plot for the binding of DA to CD6.7. The plot is generated for H-b from 

DA aromatic region. 
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6.2.4.3  Insights into the mode of interaction 

 

(i) CD6.6:DA interaction 

It has been demonstrated from the stoichiometry studies that CD6.6 forms a 2:1 complex 

with DA. In other words, two molecules of CD6.6 interact with one molecule of DA. The 

interaction of DA with CD6.6 is related to the structure (and chemical features) of the 

macrocycle. The narrow rim of CD6.6 cavity is linked to triazole moieties which provide 

additional hydrophobic regions and consequently an expansion of the hydrophobic CD 

cavity. The protonated amine group of the DA molecule could form an ion-pair with the 

charged carboxylate groups of one CD6.6 molecule, while the hydroxyl groups may be 

included in the cavity of the other CD6.6 which could result in the formation of hydrogen 

bonding. Hydrogen bonds could also be formed between the hydroxyls and the 

carboxylate groups. It was shown from the continuous variation analysis that all DA 

aromatic protons followed a downfield shift; therefore, it appears likely that some of the 

above interactions may be taking place. It was reported in the literature [38, 39] that a 

downfield displacement of a drug proton indicates that it is close to an electronegative 

atom, like oxygen, whereas, an upfield shift displacement is probably due to a variation 

in the local polarity when the protons are inside the CD cavity. This indicates shielding 

effect due to Van der Waals forces between the drug and carbohydrate C-H framework. 

The methylene protons of DA (H-e and H-d) are also significantly deshielded as 

presented in Figure 6.18. The DA molecule has to arrange its conformation in the 

additional hydrophobic environment provided by the triazole moieties and to allow for 

the different interactions with CD6.6. Thus, the chemical shift displacement of H-e and 

H-d may indicate their proximity to electronegative atoms. 
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H-e H-d

H-3H-2

 

Figure 6.18: 
1
H-NMR spectra recorded in 0.1 M KCl / D2O showing the chemical shift changes for 

DA (aliphatic chain protons H-e and H-d) upon addition of CD6.6. The molar fraction of DA was 

varied from 0.17 to 1, as shown on the diagram. 

 

The variations undergone by some CD6.6 protons (H-3 and H-5) as a consequence of the 

presence of DA were also analysed. H-3 and H-5 from each sugar unit face the internal 

cavity and they are located near the wide and the narrow ring, respectively. They can be 

used to probe the internal cavity of CD6.6 for the presence of a guest molecule and to 

understand the nature the interaction. 

If a DA molecule is completely included into the CD6.6 cavity, H-3 or H-5 will be 

considerably shielded by benzene ring of DA and show a significant upfield shift. 

However, it was noticed in this work (continuous variation analysis) that H-3 was 

unaffected whereas a slight downfield shift of H-5 signal was observed. Although an 

exact value of the shift from H-5 was hard to determine, as it splits as a multiplet 

(Figure 6.19), it was suggested that this proton could be close to some of the hydroxyl 

groups of CD6.6. The fact that H-3 does not experience a chemical shift variation (as 

shown in Figure 6.18 above) strongly suggests that the interaction between CD6.6 does 

not occur at the larger rim. In addition, the signal of H-1 and H-2 are unaffected by the 

presence of DA, demonstrating that these protons do not participate in CD6.6:DA 

interactions. Interestingly, one of the H-6 protons (diastereotopic H-6a proton) followed 
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an upfield shift as shown in Figure 6.19. Such a shift suggests that H-6a could be in 

proximity of the benzene ring. The local circulation of the electrons (from benzene ring) 

around H-6a causes a shielding effect (or magnetic anisotropic effect [38]). Thus, H-6a 

resonates at a relatively lower chemical shift in the presence of DA. Since the exterior 

proton H-4 closer to the narrow rim is also influenced (follows a slight downfield shift 

similar to that of H-5), it cannot be excluded the existence of interactions with external 

surface of the macrocycle. 

H-6a H-5
H-4

 

Figure 6.19: Expanded region of the part of 
1
H-NMR spectra displaying CD6.6 protons H-6a, H-5 

and H-4 with respect to DA molar ratio. 

   

In view of these data, it seems possible that the complexation between DA and CD6.6 

seems not to be governed by hydrophobic effect via the CD cavity but through 

interactions taking place closer to the triazole moiety at the narrow rim of the cavity, 

which offers an alternative hydrophobic environment to the guest DA and possibility for 

electrostatic and hydrogen bonding interactions. 

As previously reported by Zia et al [42], chemical modification of β-CD with 

sulfobutylether substituents may provide supplementary binding sites for molecules 

capable of forming ionic interactions with the charged sulfate moieties. The author also 

mentioned that the charged sulfate groups on each β-CD are likely to repel one another 
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by extending out and away from each other, providing a hydrophobic region near the 

cavity. This additional hydrophobic region participates in the stabilisation of the 

complex. The same phenomenon is likely to happen in this study, where seven triazole 

moieties associated with fourteen carboxylate groups on each CD6.6 allow stabilisation 

of the protonated DA molecule and seem to prevent somehow its (complete) penetration 

into the cavity. Therefore, the formation of several non-covalent weak forces, including 

electrostatic, hydrogen-bonding, Van der Waals and π-π interactions cooperatively 

contributes to the formation of the complex. The latter has been described by Karimov 

[43], where aromatic π-π stacking interactions between benzene and triazole rings are 

possible, as shown in Figure 6.20. In addition, the electronegative and sp
2
 hybridized 

nitrogen atoms on each triazole unit could participate in hydrogen-bonding, further 

stabilising the complex.  

 

Figure 6.20: Part of the crystal structure showing a π-π stacking interactions observed between 

triazole and benzene ring [41]. 

 

Based on the above explanation, a plausible representation of the interaction between 

DA and CD6.6 is shown in Scheme 6.6. More detailed NMR studies, alongside with 

crystallography and molecular modelling would be required for the determination of the 

precise structure of the complex. 

 



Chapter 6                                                                                       Optimisation of Sensors 

  
279 

 
  

 

Scheme 6.6: Possible representation of the interaction between DA and CD6.6. 

 

(ii) CD6.7:DA interaction 

As already mentioned, the continuous variation method applied to proton H-b of DA 

showed a maximum at r = 0.5, indicating a complexation of 1:1 stoichiometry between 

CD6.7 and DA. Therefore, one molecule of CD6.7 interacts with another molecule of DA 

in solution. Although, CD6.7 contains seven triazole moieties, this macrocycle is not 

charged. Unlike CD6.6, an ion-ion interaction does not occur between the protonated DA 

and CD6.7.  

Analysis of chemical shift changes of H-a, H-b and H-c (as shown in Figure 6.15) 

revealed that these aromatic protons experienced different type of interactions to the 

ones described above. In the presence of CD6.7, H-b is shifted to a high frequency, 

whereas H-c is shifted to a lower frequency. No significant shift is observed for H-a. 

The probable explanation for this observation is based on the fact that DA may adopt a 

conformation so that H-c is inserted into the cavity of CD6.7. Thus, the chemical shift 

variation of H-c could be attributed to the shielding effect, due to the electron density 

inside the cavity. On the other side, H-b is probably positioned outside the cavity and 

may be deshielded by the effect of nitrogen atoms from the triazole moieties. The fact 

that H-a is practically unaffected remains unclear. 

In the presence of CD6.7, the DA aliphatic ethylene amine protons, H-e and H-d, are 

shifted slightly downfield (Figure 6.21). Therefore, it is more likely that these protons 

are outside the CD6.7 cavity and exposed to the environment provided by the triazole 

moieties. It is worth mentioning that there is a fair degree of flexibility of the aliphatic 
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ethylene amine chain. The complex may be further stabilised by formation of hydrogen-

bonding of the DA hydroxyl protons the free electron pairs on nitrogen atoms of the 

triazole group or with the hydroxymethilene on its side chain.   

 

Figure 6.21: Expanded region of the 
1
H-NMR spectra displaying DA aliphatic amine protons upon 

addition to CD6.7. 

 

The molecular interactions taking place between CD6.7 and DA were further 

investigated by monitoring the chemical shifts of CD6.7 protons. Because of the higher 

shielding effect on H-5 with respect to H-3, it could be assumed that H-c penetrates the 

CD6.7 cavity from the lower rim. In addition, the external CD6.7 protons (H-1, H-2 and 

H-4) remained essentially unchanged. However, the proton belonging to the triazole 

moiety experienced slight downfield shift variation as displayed in Figure 6.22. The 

magnitude of the shift difference for this proton is probably dependent on aromatic 

stacking interactions with the benzene ring in DA. 



Chapter 6                                                                                       Optimisation of Sensors 

  
281 

 
  

r = 0.80

r = 0.75

r = 0.67

r = 0.33

r = 1

r = 0.25

r = 0.20

r = 0.83

r = 0.50

r = 0.17

N N

N
H

 

Figure 6.22: Expanded region of the part of 
1
H-NMR spectra displaying triazole proton of CD6.7 

with respect to DA mole ratio. 

 

Considering all above, it could be concluded that DA could be partially included into 

the CD6.7 cavity. However, this complexation event seems to occur mostly through the 

triazole moiety. A series of interactions (hydrogen-bonding, π-π stacking, Van der 

Waals forces) may contribute to stabilise the complex. A plausible representation of the 

complexation is displayed in Scheme 6.7. As before, more detailed NMR studies, 

alongside with crystallography and molecular modelling would be required for the 

determination of the precise structure of the complex. 
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Scheme 6.7: Possible representation of the interaction between DA and CD6.7. 

 

There are abundant reports describing complexes between CDs and guests, showing an 

aromatic or hydrophobic moieties of a guest included into the CD cavity [33, 44, 45]. 

However, this study clearly presents a different mode of interaction. The aromatic group 

of DA interacts with CD6.6 and CD6.7 essentially via the triazole moieties. The 

involvement in the coordination of triazole (and / or carboxylate groups) to the 

cyclodextrin derivatives plays a crucial role in the complexation event; therefore, it 

appears important to evaluate the strength of the complex by calculation of the binding 

constant Ka.  

6.2.4.4  Determination of binding constant, Ka 

NMR spectroscopy is very well suited to study molecular complexes of weak and 

moderate strength. In particular, NMR titration has found tremendous success in the 

determination of binding constants for inclusion complexes formed between a variety of 

organic molecules and CDs [46-48]. NMR titrations were performed at a constant DA 

concentration (1 × 10
-2

 M) while increasing progressively the amount of cyclodextrin 

derivatives from 2.38 × 10
-3

 to 2.4 × 10
-2

 M and from 2.38 × 10
-3

 to 3.1 × 10
-2

 M for 

CD6.7 and CD6.6, respectively. Aliquots (20 µL) from a stock solution of the CDs (5 × 

10
-2

 M) were titrated with 0.4 mL DA (1 × 10
-2

 M) in the NMR tube with aid of a 

microsyringe. The sample tube was shaken carefully after each addition and the 
1
H-

NMR spectra were recorded at ambient temperature. The spectra were recorded at a 

(relatively) constant time within 5 minutes after the addition of each CD aliquot and the 

chemical shifts were checked considering D2O / H2O (4.7 ppm) as reference sample.  
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Macomber’s model [49] was used to evaluate the binding constants supposing that an 

equilibrium was reached between the DA and CD. Under “fast-exchange” conditions, 

the observed chemical shift change, Δδ, for a DA proton was expected to vary as a 

function of the CD molar ratio, R = [CD] / [DA], according to equation 6.1. 

       (
  

 
)  (   √      ) Equation 6.1 

where, 

          
 

       
 Equation 6.2 

and, δ is the observed chemical shift in absence of CD and δh is the chemical shift 

observed in the presence of CD. Δδ is the chemical shift change, and R the molar ratio 

of CD. 

Considering Equations 6.1 and 6.2, a value for Ka could be obtained from a non-linear 

curve fitting by plotting Δδ as a function of CD molar ratio, R. Sigmaplot 12.0 was used 

to generate the plot and determine a value for Ka. 

(i) Binding constant (Ka) for CD6.6:DA complex 

In order to determine the CD6.6:DA binding constant, the chemical shift of the proton H-

b from DA was taken into account as this showed the highest chemical shift changes. In 

general, the chemical shift observed for H-b (Δδ(H-b)) is quite significant, which might 

indicate a moderate association constant. Table 6.6 displays Δδ(H-b) and corresponding 

molar ratio of CD6.6. |Δδ(H-b)| was plotted as a function of the molar ratio of CD6.6, R 

(Figure 6.23), and the value Ka = 1.563 × 10
7
 M

-2
 was extracted from the fitting 

procedure. Hemmateenejad et al [50] studied the inclusion complex formed between 

DA and neutral β-CD using a chronoamperometric technique. The authors found that 

DA formed a 1:1 complex, with Ka value of 2.1 × 10
3
 M

-1
. Goa et al [51] reported an 

inclusion complex between DA and neutral β-CD using cyclic voltammetry technique. 

They found that the inclusion complex has a 1:1 stoichiometry, with a corresponding Ka 

value of 0.28 × 10
3
 M

-1
. Although normally different Ka values for the same 

complexation event can be observed depending on the techniques used to measure it, the 

binding constant values obtained for complexation of DA by CD6.6 seems too high and 

probably indicates that NMR is not the ideal technique to accurately measure the Ka 

value of this particular host-guest system at the described concentrations, The reason for 

this very high binding constant in this study is not certain. Ayling et al [52] reported 

that the dilution factor of host and guest species may be a key parameter for the accurate 



Chapter 6                                                                                       Optimisation of Sensors 

  
284 

 
  

determination of Ka, particularly for a powerful receptor. In fact, a significant 

concentration of unbound receptor must remain after one equivalent of substrate has 

been added, thus, the complex formation must not be essentially quantitative. This also 

implies that the sensitivity of the spectroscopic method employed determines the upper 

limit of Ka which can be measured. Therefore, the results obtained constitute a 

preliminary work on the binding constant studies and further experiments need to be 

performed in order to determine an accurate Ka value for complex formation between 

CD6.6 and DA. 

Table 6.6: 1H-NMR chemical shift change of DA proton H-b in the presence of increasing 

concentration of CD6.6 

Aliquot No 
CD6.6 added 

(μL) 

[DA] 

(M) 

[CD6.6] 

(M) 

Molar ratio of 

CD6.6 

(equivalent) 

|Δδ(H-b)| from 

DA (ppm) 

      

1 20 0.01 0.00238 0.238 0.0015 

2 40 0.01 0.00455 0.455 0.0056 

3 60 0.01 0.00652 0.652 0.00055 

4 80 0.01 0.0083 0.83 0.00055 

5 100 0.01 0.01 1 0.0025 

6 120 0.01 0.012 1.2 0.0085 

7 140 0.01 0.013 1.3 0.0147 

8 160 0.01 0.014 1.4 0.0217 

9 180 0.01 0.016 1.6 0.0256 

10 200 0.01 0.017 1.7 0.0303 

11 220 0.01 0.018 1.8 0.0354 

12 240 0.01 0.019 1.9 0.0387 

13 260 0.01 0.02 2.0 0.0437 

14 280 0.01 0.021 2.1 0.0464 

15 300 0.01 0.0214 2.14 0.0515 

16 320 0.01 0.022 2.2 0.0547 

17 340 0.01 0.023 2.3 0.0557 

18 360 0.01 0.024 2.4 0.0596 

19 380 0.01 0.0244 2.44 0.0621 

20 400 0.01 0.025 2.5 0.0622 

21 420 0.01 0.026 2.6 0.0623 

22 440 0.01 0.0262 2.62 0.0623 

23 460 0.01 0.027 2.7 0.0624 

24 480 0.01 0.0272 2.72 0.0624 

25 500 0.01 0.028 2.8 0.0624 

26 520 0.01 0.029 2.9 0.0625 

27 540 0.01 0.03 3 0.0626 

28 560 0.01 0.03 3 0.0626 

29 580 0.01 0.031 3.1 0.0627 
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Figure 6.23: Non-linear regression fitting of experimental data for chemical shift changes of DA 

proton H-b as a function of CD6.6 molar ratio. 

 

(ii) Binding constant (Ka) for CD6.7:DA complex 

In the same manner as described above, the chemical shift changes of DA nuclei were 

monitored in the presence of added CD6.7 while DA concentration was kept constant. 

The proton signals of H-b underwent the most prominent shifts. Table 6.7 displays Δδ(H-

b) and corresponding molar ratio of CD6.7. The chemical shift change of H-b versus the 

molar ratio of CD6.7 was plotted (Figure 6.24) and used for the determination of the 

binding constant, Ka. Non-linear analysis of the data points using Sigmaplot yields Ka = 

2.538 M
-1

. As opposed to what was observed for CD6.6, this indicates a very weak 

complex formation between DA and of CD6.7. 
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Table 6.7: 1H-NMR chemical shift change of DA proton H-b in the presence of increasing 

concentration of CD6.7 

Aliquot No 
CD6.7 added 

(μL) 
[DA] [CD6.7] 

Molar ratio of 

CD6.7 

(equivalent) 

|Δδ(H-b)| from 

DA (ppm) 

      

1 20 0.01 0.00238 0.238 0.0037 

2 40 0.01 0.00455 0.455 0.00775 

3 60 0.01 0.00652 0.652 0.01155 

4 80 0.01 0.0083 0.830 0.01485 

5 100 0.01 0.0100 1.000 0.01725 

6 120 0.01 0.012 1.2 0.0205 

7 140 0.01 0.013 1.3 0.0225 

8 160 0.01 0.014 1.4 0.0234 

9 180 0.01 0.016 1.6 0.0261 

10 200 0.01 0.017 1.7 0.0261 

11 220 0.01 0.018 1.8 0.0265 

12 240 0.01 0.019 1.9 0.0268 

13 260 0.01 0.02 2.0 0.0276 

14 280 0.01 0.021 2.1 0.0277 

16 320 0.01 0.022 2.2 0.0281 

18 360 0.01 0.024 2.4 0.0282 

 

 

Figure 6.24: Non-linear regression fitting of experimental data for chemical shift changes of DA 

proton H-b as a function of CD6.7 molar ratio.. 

 

The difference in the Ka values obtained from the analysis of the titrations of CD6.6 and  

CD6.7 are striking. Both modified CDs investigated in this study feature a relatively 

similar chemical structure, the main difference being the absence of anionic groups in 
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CD6.7 capable of forming electrostatic interactions with protonated dopamine. These 

results highlight the importance of an appropriate design in the chemical structure of the 

host in order to achieve the molecular recognition necessary to form stable host-guest 

complexes. 

6.3  DA Electrochemical Redox Process at Carbon 

Paste Modified with the Synthesised CD 

Derivatives 

In Chapter 4, electrochemical performances of various types of carbon paste composite 

electrodes towards the detection of DA were examined. Overall, these modified CPEs 

showed a better DA detection compared to bare CPE. To further increase the analytic 

determination of DA, modified CPEs were prepared with cyclodextrin derivatives CD6.6 

and CD6.7. As described in the previous sections, these cyclodextrins can form a 

complex with DA. Therefore, it was envisaged that a great electrochemical response of 

DA could be achieved by using CD6.6 in particular, as this host seemed to form very 

stable complexes.     

The CD6.6 and CD6.7 modified carbon paste electrode were prepared according to 

previously used procedure: 0.095 g of the cyclodextrin derivatives (CD6.6 or CD6.7), 200 

μL of silicone oil and 0.71 g of graphite (or graphene) powder were hand-mixed in a 

mortar and ground carefully. The prepared homogeneous mixed paste was packed 

firmly into a Teflon holder (internal diameter = 2 mm), with a copper wire as the 

electrical contact. Prior to use, the modified electrode was polished on a piece of 

weighing paper. 

The electrochemical behaviour of DA (5 × 10
-5

 M) at CD6.7 modified CPE using cyclic 

voltammetry showed the detection of DA could not be obtained as illustrated in Figure 

6.25. The cyclodextrin sample used for the construction of the working electrode may 

contain some impurities which hindered the access of DA at the electrode surface. It is 

worth mentioning that the synthesis of CD6.7 was performed using copper iodide (CuI) 

as a catalyst. Although, the copper was removed by addition of the chelating resin 

Chelex 100 sodium form, CD6.7 may still contain traces of copper, which complicate the 

detection of DA. Further investigations have to be carried out to determine how CD6.7 

could be used as an efficient modifier for the electrochemical detection of DA. 

Meanwhile, CD6.6 show promising results and was subject to more attention. 
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Figure 6.25: Cyclic voltammograms recorded at CD6.7 in DA (5 × 10
-5

 M) (−) and in 0.1 M PBS (−);  

scan rate: 50 mV / s. 

 

6.3.1 Electrochemical response of DA at CD6.6 

 

The voltammetric responses  of bare CPE and CD6.6 modified CPE towards the 

detection of DA were compared by cyclic voltammetry as illustrated in Figure 6.26, 

which shows typical cyclic voltammograms of 5 × 10
-5

 M DA solution in 0.1 M PBS 

(pH 6.8) using the potential range [−0.2 V; +0.6 V]. 

The oxidation peak potential (Epa = 0.165 V vs. SCE) of DA at CD6.6 modified CPE is a 

more negative than the oxidation peak potential observed at bare CPE (Epa = 0.220 V vs. 

SCE). This peak potential shift may be attributed to CD6.6 molecules on the surface of 

the electrode with high supramolecular recognition capability which can form 

complexes with DA. The complexation action may further enhance the accumulation 

effect of CD6.6 modified CPE and consequently increase the concentration of DA on the 

interface of the modified electrode. As a result, DA oxidation peak current is greatly 

enhanced (about 1.7 times). This phenomenon based on recognition capability of 

cyclodextrin was also reported by Alarcon-Angeles et al [11]. The DA sensor developed 

by the authors was a glassy carbon electrode modified with β-CD and multiwall carbon 

nanotubes (MWCNT). β-CD was used as molecular receptor to immobilised DA into its 

cavity. Thus, an enhancement in DA oxidation peak current was observed at the 

modified electrode. 

Moreover, the cyclic voltammogram of DA (5 × 10
-5

 M) at CD6.6 modified CPE 

revealed that the peak potential separation, ΔEp = Epa – Epc, was 31 mV. Therefore, ΔEp 

is close to 2.3RT/nF (or 59/n mV at 25 °C) [53], which is in accordance with a Nernst 
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reversible behaviour. Thus, the number of electrons, n, involved in the reaction was 

about 2. 

 

Figure 6.26: Cyclic voltammograms recorded at CD6.7 in DA (5 × 10
-5

 M) (−) and in 0.1 M PBS (−);  

scan rate: 50 mV / s. 

 

A charged cyclodextrin could also interact with DA via ion pairing interaction. For 

example, Colleran et al [54] used PEDOT/S-β-CD modified gold electrodes for 

electrochemical detection of DA, in which the mode of sensing at this electrode was 

based on the ability of S-β-CD to form electrostatic or ion-pairing interaction between 

randomly sulfated groups on the cyclodextrin and protonated DA. 

Although in solution CD6.6 forms a 2:1 inclusion complex with DA (as previously 

demonstrated), it is difficult to determine the exact mode of sensing at the modified 

electrode surface. CD6.6 molecules are immobilised at the surface of the electrode. 

Therefore, the ability of 2 CD6.6 molecules to interact with one DA is not obvious. The 

most possible interactions are the occurrence of ion-pairing between the anionic 

carboxylate groups on CD6.6 and the cationic protonated DA, and π-π stacking 

interaction between triazole moieties on CD6.6 and aromatic benzene moiety of DA. 

To support the evidence of DA accumulation at the surface of the modified electrode 

through ion-pairing and π-π stacking interaction it is important to study the reaction 

kinetics. 

6.3.1.1 Effect of scan rate of DA at CD6.6 modified CPE 

The influence of scan rate on DA oxidation at the CD6.6 modified CPE was investigated 

by cyclic voltammetry. It can be observed (from Figure 6.27) that the oxidation peak 

currents of DA (5 × 10
-5

 M) were linearly proportional to the scan rate. The linear 
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regression equation is such as Ipa (A) = 3.7988 × 10
-9

 ν + 1.79 6 × 10
-7

 with a 

correlation coefficient, R
2
, 0.9934. The equations indicate that the electro-oxidative 

reaction of DA on the surface of the electrode is adsorption-controlled process. This 

behaviour points out that electron transfer occurred differently at the modified electrode 

with respect to the bare CPE. Therefore, this electrochemical evidence strongly suggests 

a complexation event between the DA and the CD6.6 immobilized at the surface of the 

CPE. 

 

 

(a) 

 

(b) 

Figure 6.27: Cyclic voltammograms for the effect of variation of scan rates of DA (5 × 10
-5

 M) at 

CD6.6 modified CPE from 10 to 100 mV / s (a) and corresponding variation of oxidation peak 

current as a function of scan rate (b). Supporting electrolyte 0.1 M PBS (pH 6.8). 

 

6.3.1.2 Electrochemical quantification of DA at CD6.6 modified CPE 

 

Cyclic voltammetry was used to determine the relationship between the oxidation peak 

current and concentration of DA on CD6.6 modified CPE. As shown in Figure 6.28, 

under optimal conditions, the oxidation peak current of DA increased with its 

concentration in the range from 5 × 10
-6

 M to 1 × 10
-3

 M. Therefore, CD6.6 modified 

CPE can be used to determine DA in this concentration range. 
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(a)  (b) 

Figure 6.28: Cyclic voltammograms of the application of various concentration of DA (from 5 × 10
-5

 

M to 1 × 10
-3

 M) recorded at CD6.6 modified CPE (a) and corresponding calibration curve (b). 

Supporting electrolyte 0.1 M PBS (pH 6.8). 

 

Because differential pulse voltammetry (DPV) exhibits higher sensitivity compared 

with cyclic voltammetry, it was used to detect micro-molar concentration of DA on 

CD6.6 modified CPE. The voltammograms presented in Figure 6.29 show that it is 

possible to detect DA concentrations low as 5 × 10
-6

, 1 × 10
-6

 and more importantly 5 × 

10
-7

 M. 

(a) (b) (c) 

Figure 6.29: Differential pulse voltammograms recorded at CD6.6 modified CPE in 0.1 M PBS 

containing DA concentration of 5 × 10
-6

 M (a), 1 × 10
-6

 M (b) and 5 × 10
-7

 M. 
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6.3.1.3 Electrochemical detection of DA at carbon paste microelectrodes 

 

Since the early work of Adams et al [123, 124] which introduced electrochemistry to 

neuroscience, numerous electrochemical techniques and electrode materials have been 

used to determine catecholamines including DA. 

So far, CPEs of conventional macro-size dimension modified with S-β-CD, CM-β-CD 

or nafion have been used for electroanalysis of DA. However, in this section, carbon 

paste microelectrode is employed in order to improve the detection limit of DA. The 

small area of carbon paste microelectrodes means that the background or capacitive 

current is low in comparison to the faradaic current so that the signal to noise (S/N) 

could be enhanced. This feature allows measurements of analytes at lower 

concentrations. 

In many literature reports, the measurement of DA with microelectrodes is made using 

cyclic voltammetry technique on a 3-electrodes potentiostat. As already stated, DPV 

gives better sensitivity; therefore, this method was performed to investigate the 

relationship between the peak current and the concentrations of DA.  The general 

procedure for the construction of chemically modified carbon paste microelectrode was 

described in Chapter 2. In the case CD6.6, 0.095 g was mixed with graphene (0.71 g) and 

silicone oil (200 µL). Figure 6.30(a) shows the differential pulse voltammograms of 

increasing DA concentrations on a carbon paste microelectrode modified with CD6.6. 

One important observation is that well-defined oxidation peaks are obtained. Moreover, 

the oxidation peak currents increase as increasing the concentration of DA. Remarkably, 

the detection of 3 × 10
-7

 M DA was achieved, which is highlighted in Figure 6.30(b). 

This confirms that CD6.6 modified carbon paste microelectrode has promising results 

concerning the electrochemical behaviour of DA. The oxidation peak current of DA is 

linear to its concentration in the range from 3 × 10
-7

 to 5 × 10
-4

 M. The regression 

equation can be demonstrated as: Ipa (A) = 0.0028 [DA] + 3.1575 × 10
-8

 (R
2
 = 0.9934) 

(Figure 6.30(c)). The detection limit was calculated as 3.76 × 10
-5

 M. As already stated, 

the detection limit was calculated by using the formula LOD = 3Sb/m criteria [55], 

where Sb is the standard deviation of the blank response for n = 3 and m is the slope 

obtained from the calibration plot. 
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(a) 

 

(b) 

 

(c) 

Figure 6.30: Differential pulse voltammograms recorded at CD6.6 modified carbon paste 

microelectrode in 0.1 M PBS containing different concentrations of DA (from 3 × 10
-7

 M to 3 × 10
-4

 

M) (a) and enlarged voltammograms of 3 × 10
-7
 M (   ), 5 × 10

-7
 M (   ) and 1 × 10

-6
 M (   ) DA (b). The 

corresponding calibration curve of oxidation current (c); scan rate: 50 mV / s. 

 

Based on the above results, it is more likely that the use of carbon paste microelectrode 

(modified with CD6.6) can be advantageous to macroelectrode for DA measurement. 

This is probably related to the size of microelectrodes. In fact, when the diameter of an 

electrode is decreased from the millimetre scale down to micron scale, radial diffusion 

of the electroactive species towards the electrode surface becomes more dominant rather 

than linear diffusion. The microelectrode produces a greater signal-to-background ratio 

due to radial diffusion [56-58]. Therefore, reducing the size of the electrode increases 

the mass flux and hence there is more analyte at the interface. This difference in 

behaviour is illustrated in Figure 6.31. 

 

I 
(1

 ×
 1

0
-6

 A
) 

3 × 10
-7

 M 

5 × 10
-4

 M 

E (V) vs. SCE 

I 
(1

 ×
 1

0
-7

 A
) 

E (V) vs. SCE 

[DA] / M

0 2e-4 4e-4 6e-4

Ip
 (

A
m

p
s
)

0.0

2.0e-7

4.0e-7

6.0e-7

8.0e-7

1.0e-6

1.2e-6

1.4e-6

1.6e-6

yo  = 3.1575 x 10
-8

a   =  0.0028

R
2
 = 0.9934

I p
 (

A
) 
 



Chapter 6                                                                                       Optimisation of Sensors 

  
294 

 
  

 

Figure 6.31: Schematic illustration of linear diffusion at a macroelectrode and radial diffusion at 

a microelectrode. 

 

 

A number of microelectrodes were then constructed in order to compare their DA 

oxidative response with CD6.6 modified carbon paste microelectrode. Figure 6.32 shows 

the determination of DA and corresponding calibration curves obtained at bare GPE, S-

β-CD (0.545 g) modified GPE and Nafion modified CPE. Their limit of detection and 

linear range are presented in Table 6.8. It can be noted from Table 6.8 that the 

sensitivity and detection limit obtained using these modified carbon paste 

microelectrode are inferior than the corresponding sensitivity and detection limit 

obtained at CD6.6 modified carbon paste microelectrode. The wide linear range and the 

good sensitivity might be attributed to the properties of CD6.6 modified GPE, such as the 

excellent recognition effect and ion-pairing capacity due to CD6.6, and acceleration of 

electron transfer provided by graphene. Thus, the combination of CD6.6 and graphene as 

a composite material can greatly improve the sensitivity because electrochemical 

detection of DA is inner sphere, surface dependent, and kinetically dominated by 

adsorption processes at the electrode surface [59, 60]. 
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(a)  
 

 

(b)  

 

(c) 

 

 

Figure 6.32: Differential pulse voltammograms recorded at three microelectrodes modified CPE in 

0.1 M PBS containing different concentrations of DA: Bare GPE with corresponding calibration 

curve (a), S-β-CD (0.545 g) modified GPE with corresponding calibration curve and Nafion 

modified CPE with corresponding calibration curve (c); scan rate: 50 mV / s. 
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Table 6.8: Limit of detection and linear dynamic range for the 

microelectrodes studied 

Microelectrode LOD (M) Linear range (M) 

Bare GPE 6.78 × 10
-6

 [1 × 10
-6
     1 × 10

-3
] 

S-β-CD (0.545 g) modified GPE 3.61 × 10
-5

 [1 × 10
-5
     1 × 10

-3
] 

Nafion modified CPE 3.22 × 10
-4

 [1 × 10
-6
     5 × 10

-4
] 

   

6.3.1.4 Electrochemical investigation of a mixture of AA and DA at CD6.6 

modified CPE 

As already mentioned, the selective determination of DA in the presence of AA is still a 

major challenge in biological analysis. This goal has been achieved using S-β-CD 

modified CPE with an internal diameter of 2 mm (Chapter 5). The electrochemical 

behaviour of CD6.6 modified CPE in a mixture of AA and DA was carried out. The aim 

of this section is to separate the overlapping signals of AA and DA normally observed 

at bare CPE and eventually use the microelectrode modified with CD6.6 to obtain the 

same result.  

Like CD6.6, S-β-CD is negatively charged and may be able to discriminate the signal of 

AA and DA. Figure 6.33 indicates the cyclic voltammogram of CD6.6 modified CPE in 

a mixed solution of AA (1 × 10
-3

 M) and DA (5 × 10
-5

 M). Although, the oxidation and 

reduction peaks of DA are relatively small, they can be identified as they appeared at 

0.182 and 0.160 V vs. SCE respectively. The irreversible peak of AA seems not to be 

present, leading to the assumption that AA was partially rejected at the electrode surface. 

Unexpectedly, a broad signal was observed at about 0.282 V vs. SCE. Although further 

studies need to be done to clarify the origin of this peak, it has to be noted that the 

electrode contains only 0.095 g of CD6.6. An optimisation of CD6.6 concentration within 

the paste can lead to an effective discrimination of DA signal in the presence of an 

excess AA.  
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Figure 6.33: Schematic illustration of linear diffusion at a macroelectrode and radial diffusion at 

a microelectrode. 

    

As discussed in Chapter 5, S-β-CD modified CPE is able to differential the 

electrochemical signal of AA and DA. Therefore, this electrode was miniaturised to 

investigate a solution of DA coexisting with AA.  

6.3.1.5 Electrochemical investigation of a mixture of AA and DA at S-β-

CD (0.545 g) modified carbon paste microelectrode 

The development of selective method for simultaneous detection of DA and AA in brain 

fluid is highly desirable for analytical applications and for diagnostic research [61, 62]. 

To mimic the extracellular space of the brain, artificial cerebrospinal fluid (aCSF) was 

used instead of PBS as supporting electrolytes solution. The cyclic voltammetric 

response of aCSF containing a mixture of AA (1 × 10
-3

 M) and DA (5 × 10
-5

 M) was 

recorded at S-β-CD modified carbon paste microelectrode as illustrated in Figure 6.34. 

As can be seen, two well-defined oxidation peaks occurred at 0.141 V and 0.378 V vs. 

SCE which correspond to the oxidation of AA and DA, respectively. It is also important 

to note that the oxidation and reduction peak for DA occurred almost at the same 

potential (ΔEp = 0.019 vs. SCE) indicating a high reversibility. 

The mechanism behind the oxidation of DA and AA might be resulted from the nature 

of the electrode as discussed previously in Chapter 5. However, the potential separation 

between AA and DA (0.237 V vs. SCE) is larger than that of the same electrode at a 

macro-scale. Again, the radial diffusion of both analytes at the electrode surface may be 

an advantage using size microelectrode. 
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The large separation of the peak potential allows simultaneous detection of AA and DA 

in their mixture. This impressing result could be exploited for in vivo measurement of 

DA using S-β-CD carbon paste microelectrode. 

 

 

Figure 6.34: Cyclic voltammogram recorded at S-β-CD modified CPE in aCSF containing a 

mixture of DA (5 × 10
-5

 M) and AA (1 × 10
-3

 M). Scan rate: 50 mV / s. 
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7.1 General Conclusions 

In this thesis, a number of modified CPEs were examined, aimed at enhancing the 

sensitive and selective detection of DA. CPEs were chosen as opposed to common solid 

electrodes because they offer several interesting possibilities when studying compounds 

that are soluble in aqueous media. In some cases, CPEs offer a better sensitivity. In 

addition, the surface of the CPE can be renewed by squeezing a small amount of carbon 

paste out the holder and a fresh surface is exposed whenever needed. Thus, CPE offer a 

simple method for the modification of the electrode and fast analysis of analytes. 

Initially, the preparation and characterisation of modified CPE sensors was examined. 

The modification of CPEs was performed on the surface or in the bulk paste and 

characterised using a number of techniques such as optical microscopy, scanning 

electron microscopy, energy disperse X-ray spectroscopy and electrochemical 

impedance spectroscopy. In the process, a great understanding of surface or bulk 

modifications examined was sought. 

The first DA sensors developed in this study are based on the modification of CPE with 

a variety of compounds including Nafion, Sulfated β-cyclodextrin, Carboxymethyl β-

cyclodextrin and Ferrocene β-cyclodextrin complex. In general, the results have 

demonstrated that modified CPEs exhibit an increase in current response, and thus 

sensitivity, for DA over the bare electrode. The mechanism of sensing at the modified 

electrodes has been determined to be a combination of complexation and electrostatic 

interactions. The increase of the current intensity can be attributed to the 

preconcentration of the analyte at the electrode surface due to the interaction with the 

modifiers which retains more molecules at the surface of the electrode. The negative 

shift of peak potential, compared to the bare CPE, can also be explained by the mediator 

effect. 

The kinetic parameters of the electrochemical oxidation process of DA in 0.1 M PBS 

was determined for each of the modified electrodes. In the case of Nafion, Sulfated β-

CD and Carboxymethyl β-cyclodextrin modified CPE; the electron transfer was under 

adsorption-control. However, Ferrocene β-cyclodextrin complex modified CPE 

presented a system corresponding to a diffusion-controlled process. The blocked β-

cyclodextrin cavity (by Ferrocene) indicates the mode of interaction DA / β-

cyclodextrin. The electron transfer process goes from adsorption at β-cyclodextrin 
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modified CPE to a diffusion-controlled process at Ferrocene β-cyclodextrin complex 

modified CPE. 

Compared with graphite, graphene possesses a much larger surface area and an 

excellent electrical conductivity [1]. Therefore, graphene was chemically synthesised 

and the performance of the bare graphene paste electrode (GPE) towards the detection 

of DA showed a dramatic enhancement of the oxidation peak current. The composite of 

graphene with Sulfated β-cyclodextrin was also prepared for the achievement of 

effective electrochemical communication between DA and the electrode surface. The 

modified graphene electrode exhibited a higher electrocatalytic activity and good 

selectivity towards the oxidation of DA. 

 

One of the aims outlined in the introduction of this thesis is the detection of DA in the 

presence of high concentration AA. This goal was achieved in two distinctive ways: 

simultaneous and selective detection of DA in the presence of AA. S-β-CD modified 

CPE has the ability to separate the anodic oxidation peak potentials of AA and DA with 

a well-defined peak separation and a strong current response. On another hand, AA had 

no effect (as its voltammetric response was suppressed) when detecting DA with S-β-

CD modified GPE, which indicated that the selective and sensitive determination of DA 

in the presence of AA was feasible. Moreover, the chemical reactions accompanying the 

electrode process of DA, which interfere in the electrochemical DA determination, were 

described.  

Perhaps one of the most interesting results of this thesis is the ability of the S-β-CD 

modified CPE to discriminate between the oxidation AA, DA and 5-HT. The highly 

electrocatalytic activity of the sensor to the three analytes was demonstrated from the 

sensitive, well-separated voltammetric signals and potential shift. By using cyclic 

voltammetry or differential pulse voltammetry, a good resolution of the oxidation peak 

potential for the three species was obtained. In addition, electrochemical behaviour of a 

solution mixture containing DA and 5-HT was extensively studied. The results 

indicated that S-β-CD modified CPE and CM-β-CD modified CPE can promote DA and 

5-HT oxidation, and could be simultaneously detected. In order to check the 

intermolecular effect s between DA and 5-HT, the concentration of one analyte was 

varied while keeping constant the concentration of the other. The results obtained show 

that the peak currents for DA or 5-HT increased linearly with increasing their respective 

concentration without considerable effects on the other peak current.  
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Starting from neutral β-CD, the cyclodextrin analogue CD6.6 was obtained from a 

suitable synthetic route. It was demonstrated that DA forms a significantly strong 

complex with CD6.6 in aqueous solution. Clear evidence for the formation of this 

complex was obtained using NMR spectroscopy measurements. The complex was 

formed as a 2:1 stoichiometry of CD6.6 to the DA; while NMR analyses indicated that 

the protonated DA molecule was binding CD6.6 through a combination of interactions 

between the triazole moieties and the carboxylate groups of CD6.6. The discussed CD6.6 

modified CPE enhanced the oxidation peak current of DA, which is corroborated by the 

detection of 5 × 10
-7

 M using differential pulse voltammetry. This great result had 

inspired the fabrication of CD6.6 modified graphene paste microelectrode. The 

developed sensor used a combination of features allowing a more rational design of 

analytical strategies for the detection of DA. For example, CD6.6 was used as a 

molecular receptor, graphene as enhancer of electron transfer and the micro-size of the 

electrode for radial diffusion of DA species. This novel sensor possesses properties such 

as high sensitivity and wide linear dynamic range. Along with S-β-CD modified CPE, 

CD6.6 modified graphene paste microelectrode was compared to other modified carbon 

based electrodes reported in the literature for electrochemical detection of DA (Table 

7.1). 

Table 7.1: comparison of the performance of different DA sensors 

Electrode 
Linear dynamic range 

(M) 
LOD (M) 

Technique 

used 
Refs. 

TiO2–grapheme/GCE [5 × 10
-6
     2 × 10

-4
] 2.00 × 10

-6
 DPV [2] 

L-arginine/CPE [5 × 10
-5
     1 × 10

-4
] 5.00 × 10

-7
 LSV [3] 

Graphene/GCE [2.5 × 10
-6
     1 × 10

-4
] 5.00 × 10

-7
 CV [4] 

cucurbit[8]uril 

(CB[8])/Nafion/GCE 
[2.99 × 10

-7
     2.99 × 10

-5
] 9.90 × 10

-8
 CV [5] 

S-β-CDCPE [5 × 10
-7
     5 × 10

-4
] 1.33 × 10

-7
 DPV 

This 

work 

CD6.6 modified 

graphene paste 

microelectrode 

[3 × 10
-7
     5 × 10

-4
] 3.76 × 10

-5
 DPV 

This 

work 

 

Another significant result obtained in this study is the simultaneous detection of AA and 

DA in aCSF using S-β-CD modified carbon paste microelectrode. A comparison of the 

resolution for AA and DA with reported literature is shown in Table 7.2. 
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Table 7.2: The comparison of S-β-CD modified carbon paste microelectrode with other electrodes  

for simultaneous determination of AA and DA. 

Electrode 
Reference 

electrode 

ΔEp(AA/DA) 

(V) 

Concentration of 

species in mixture (M) 

Technique 

used 
Refs. 

Poly(Alanine)/CPE SCE 0.054 
[AA] = 1 × 10

-3
 

[DA] = 1 × 10
-4

 
CV [6] 

Poly(p-aminobenzene 

sulfonic acid)/GCE 
SCE 0.158 

[AA] = 1 × 10
-3

 

[DA] = 1 × 10
-5

 
CV [7] 

Polyglycine/CPE SCE 0.197 
[AA] = 1 × 10

-3
 

[DA] = 1 × 10
-4

 
CV [8] 

CuZEA/RGO/GCE SCE 0.200 
[AA] = 5 × 10

-4
 

[DA] = 5 × 10
-5

 
CV [9] 

Polyethylene 

oxide/GCE 
SCE 0.216 

[AA] = 1 × 10
-3

 

[DA] = 1 × 10
-4

 
DPV [10] 

DDAB/GCE Ag/AgCl 0.300 
[AA] = 5 × 10

-4
 

[DA] = 5 × 10
-4

 
CV [11] 

S-β-CD  modified 

carbon paste 

microelectrode 

SCE 0.240 
[AA] = 1 × 10

-3
 

[DA] = 5 × 10
-5

 
CV 

This 

work 

 

7.2 Future Recommendations 

This study has demonstrated that the developed carbon based sensors are promising 

electrode materials for DA detection. Taking the results into consideration, many 

innovative ideas could be applied on the biosensing systems regarding working 

electrode 

The S-β-CD modified GPE was effective in the elimination of AA during the selective 

determination of DA, and the S-β-CD modified CPE was capable of simultaneously 

detecting AA, DA and 5-HT. However, there are a number of electrochemical 

interferents present during the detection of DA in biological fluids. These include uric 

acid [12], histamine [13], acetylcholine [14] and some amino acids such as aspartic acid 

and glutamic acid [15]. The detection and analysis of these compounds in the presence 

of DA offers many advantages in the medical field due to their biological significance. 

Therefore, it would be of interest to determine the effect that the developed sensors have 

on DA in the presence of these compounds. Moreover, the detection of DA in complex 

biological samples, such as blood serum and urine, should be conducted. This would be 
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carried out in order to assess the feasibility of the developed sensors for real samples 

and potential commercial application. Finally the developed sensors, particularly the 

CD6.6 modified graphene paste microelectrode can be tested for real time detection of 

DA in-vivo. The modified electrode could be able to measure DA in awake rats – thus 

correlate neurochemistry with behaviour [16]. 
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