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Laser induced fluorescence spectroscopy of free-base (H2Pc) and zinc (ZnPc) phthalocyanines

trapped in rare gas and nitrogen matrices reveals a quite unexpected phenomenon with a

moderate increase in the laser intensity. In all matrices except Xe, a huge increase occurs in the

intensity of an emission band near 755 nm when pumping the S1 ’ S0 transition. The band

involves a vibrational mode of the ground state, located at 1550 and 1525 cm�1 for H2Pc and

ZnPc, respectively. Many of the characteristics of amplified emission (AE) are exhibited by this

vibronic transition. Excitation scans recorded for the AE band yield greatly enhanced site

selectivity compared to what is obtained in normal fluorescence excitation scans.

1. Introduction

Although the first absorption spectra of matrix-isolated por-

phyrins and their synthetic analogues—the phthalocyani-

nes—were reported nearly forty years ago by Bajema et al.,1

the behaviour of this important class of molecules isolated in

the solid rare gases is still not fully characterised. A notable

exception is the recent work by Waluk and co-workers on the

spectroscopy2 and isolation3 of porphyrins and related mole-

cules in rare gas matrices. In addition, several groups4 have

analysed the vibronic structure on the S1 state of several

porphyrins and phthalocyanines in Spol’skii matrices.

Laser-induced fluorescence is very well suited for studies of

these molecules due to the close match between their strong

absorptions in the visible spectral region and the output of

tuneable dye lasers. While undertaking such a spectroscopic

study of matrix-isolated free-base phthalocyanine (H2Pc) and

zinc phthalocyanine (ZnPc), by means of emission–excitation

spectra using pulsed dye lasers for excitation, an unusually

intense vibronic band was observed with slightly increased

laser power. This novel solid state effect is the subject of the

present article as it is noteworthy that two previous matrix

luminescence studies on the phthalocyanines, one by Bondy-

bey and English5 on H2Pc and another by Williamson and co-

workers6 on ZnPc in Ar matrices, did not report such an effect.

In contrast, stimulated emission has been reported by Sorokin

and co-workers7 for the closely related molecule chloroalumi-

nium phthalocyanine in solution. Significantly, this was

achieved with pulsed ruby laser excitation and within a

resonator cavity.

In this paper, the unusual emission recorded primarily for

matrix-isolated H2Pc and more specifically for H2Pc in N2 will

be presented. A detailed account of the spectroscopy of H2Pc

and ZnPc isolated in a wider range of low temperature solids

will be presented elsewhere.8 The possible reasons for the

different results of the previous laser matrix studies and the

present observations will also be discussed.

2. Experimental

The spectroscopy of phthalocyanine (Pc) molecules isolated in

low temperature solids was undertaken at both the Labora-

toire de PhotoPhysique Moléculaire (LPPM) Orsay and the

Department of Chemistry, NUI–Maynooth. The oven design

used in both experiments was the same, consisting of a solid,

stainless steel cylinder into which a hollow screw, containing

either free-base (H2Pc) or zinc (ZnPc) phthalocyanines, was

fitted. The top of this screw was positioned to emerge at right

angles to a 2 mm opening passing through the length of the

cylinder. This opening was connected to the gas inlet line.

Resistive heating of the cylinder allowed temperatures of

300 1C to be reached whereby the Pc vapour was entrained

in the flow of the host gas and the mixture deposited on a CaF2

window at cryogenic temperatures. Gas flows in excess of

10 mmol/h were required to achieve isolation of monomer Pc.

The cryogenic setups have been described previously—the

Orsay9 system is capable of reaching 6 K while that at

Maynooth10 has a base temperature of 12 K. The sample

thickness has been measured by an interference method to be

in the 250 mm region.

The isolation condition of Pc in the matrix samples formed

was monitored with absorption spectroscopy in the red region

of the visible spectrum. For this a tungsten lamp source was

used. Luminescence (emission–excitation) spectra were re-

corded using tuneable dye lasers—either a home-built system

at Orsay or the Quantel TDL90 system at Maynooth. Both

systems are pumped by 10 Hz nanosecond Q-switched

Nd:YAG lasers that have been described previously.9,10 Emis-

sion was recorded using iCCD detection with the Andor

DH720 system. The absorption and emission spectra were

recorded on a 0.6 m Jobin-Yvon monochromator at Orsay

with a resolving power of few cm�1 in the red spectral region,

while a pair of lower resolution (0.3 m) Acton Research
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monochromators was used at Maynooth. No correction for

wavelength variations in the sensitivity of the detection system

has been made on data presented. Two dyes, DCM and

LDS698 were used for laser excitation scans in the wavelength

ranges 625–660 and 665–685 nm, respectively.

3. Results

3.1 Absorption

The absorption spectra recorded for free-base phthalocyanine

(H2Pc) isolated in solid Ne, N2, and Ar are shown together on

the left hand-side in Fig. 1. The argon spectrum matches that

obtained by Bajema et al.1 for H2Pc/Ar while the Ne and N2

spectra do not appear to have been previously published. The

Ar data also compares well with the higher resolution absorp-

tion spectra reported more recently by Kador and co-work-

ers11 and clearly corresponds to well-isolated guest H2Pc

molecules. The two principal features in the H2Pc spectra

recorded in all of the matrices correspond to absorptions of

the split S1 state, frequently labelled the QX and QY states12 in

order of increasing energy. The shapes of the bands differ

markedly between the solids shown with very structured

features present in N2 and a broad unstructured band present

in Ne. Ar presents what seems to be the simplest spectrum.

However, as revealed in laser excitation spectroscopy, the

widths of the bands in all matrices arise from the occupancy

of H2Pc in multiple sites. It is only in N2 that some of the

absorption lines correspond to individual resolved sites. In this

matrix, the absorption linewidths (4–5 cm�1) are quite close

to the resolving power of the recording monochromator

(approx. 2 cm�1).

3.2 Fluorescence

Representative emission spectra recorded for H2Pc in the three

aforementioned solids are shown on the right in Fig. 1. The

features in Ar closely match those reported by Bondybey and

English.5 In the spectrum it is evident that the 0–0 transition at

677 nm dominates the emission intensity by more than a factor

of 10. This is consistent with the results of measurements made

in low temperature molecular beams13–15 in which the 0–0

transition was found to carry most of the Franck–Condon

intensity. The next most intense band in the Ar spectrum is

that centered at 756 nm. The emission bands in Fig. 1 are

assigned to transitions from v0 = 0 in the excited QX state to

various vibrational levels v00 in the ground S0 electronic state.

The vibronic progression in emission is quite similar for the

three hosts shown in Fig. 1. The frequencies of the main

vibronic transitions are reported in Table 1. The emission

produced with laser excitation of the QY state corresponds to

the QX - S0 transition and exhibits, as shown in Fig. 1, the

same vibronic structure. While the QX excitation allows site

selective excitation yielding narrow emission bands, QY ex-

citation provides much poorer site selection, as evidenced by a

broadening of emission bands in Ar or an additional structure

involving multiple sites in nitrogen. Moreover, the extensive

overlap of sites that occurs in nitrogen also produces greater

intensity of the 710 nm bands evident in Fig. 1. The emission

spectra recorded for ZnPc (not shown) are broadly similar to

those presented in Fig. 1 for H2Pc. Indeed both systems show

strong similarities to the emission recorded in Shpol’skii

matrices.16,17

3.3 Amplified emission

While optimising the emission signal with the iCCD camera

operating in real time, the intensity of the exciting laser was

increased with a quite unexpected result. To illustrate the

observed effect, a summary of the changes that were recorded

for H2Pc in solid N2 is presented in Fig. 2. In this Figure the

normal fluorescence, described in the previous section, is

shown by the lower, dashed trace. Shown above this, by the

solid trace, is the emission recorded by increasing the laser

power from tens of mJ/pulse to hundreds of mJ/pulse. It is very
evident that the strongest (other than the 0–0 band) emission

band at 755.5 nm has gained enormously in intensity while the

others have remained unchanged or diminished slightly. More-

over, it is immediately evident that the linewidth of this

emission band reduces considerably when its intensity in-

creases as shown on the upper right panel of Fig. 2. Under

this condition the width of the band approaches that of the

exciting laser, decreasing from approximately 8 cm�1 to

2 cm�1 and thereby reaching the resolving limit of the emission

monochromator.

Shown in the inset on the left of Fig. 2 are the emission

decay curves recorded for the 755.5 nm emission band using

selected laser excitation intensities. With low laser power, the

long-lived decay (stars) is found to have a lifetime of around

12 ns. With higher laser power the intense emission (squares)

clearly follows the temporal profile of the laser pulse (trian-

gles). From the spectral and temporal behaviour observed on

this band, we conclude that the 755.5 nm emission is being

amplified when the excitation laser intensity exceeds a certain

value. It corresponds to reaching a threshold value in the

population inversion between v0 = 0 of the excited (QX)

electronic state and v00 = 1 of a specific vibrational mode in

Fig. 1 Absorption spectra recorded for free-base phthalocyanine

(H2Pc) isolated in solid Ne, N2, and Ar are shown on the left hand

side. Emission spectra recorded for H2Pc isolated in the three matrices

are shown on the right. The arrows shown on the left with the

absorption spectra indicated the laser excitation wavelengths used in

producing the main emission spectra. QX excitation is represented by

broken arrows while the solid arrows depict higher energy excitation.

2168 | Phys. Chem. Chem. Phys., 2008, 10, 2167–2174 This journal is �c the Owner Societies 2008

Pu
bl

is
he

d 
on

 2
1 

Fe
br

ua
ry

 2
00

8.
 D

ow
nl

oa
de

d 
by

 M
ay

no
ot

h 
U

ni
ve

rs
ity

 o
n 

17
/0

8/
20

16
 1

1:
51

:0
0.

 
View Article Online

http://dx.doi.org/10.1039/b718418b


the ground electronic state. For the mode involved, sponta-

neous emission is amplified by stimulated emission once the

threshold value is exceeded. We will refer to this process in a

general way as amplified emission (AE).

Although not presented in detail in this article, amplified

emission has also been observed for H2Pc isolated in Ne, Ar,

Kr but not in Xe hosts. When observed, AE always appears on

the same vibronic transition involving a vibrational mode

around 1550 cm�1 (Table 1). In xenon it has been determined

that the normal fluorescence decay time is considerably shorter

than in the other hosts, indicating that an efficient non-

radiative decay mechanism is present in this solid. The likely

origin of this effect lies in the external heavy atom effect which

increases the probability of intersystem crossing from the

excited singlet S1 state to the lower lying spin triplet state,

T1 state. Thus another relaxation mechanism is competing for

the fluorescence and thereby reduces the chance of the excited

singlet state population reaching the threshold condition. In

the case of H2Pc/Ne, a very efficient hole-burning phenomen-

on is observed in the 0–0 QX ’ S0 absorption band with even

weak dye laser excitation [data not shown]. As the excited

family of sites disappears during excitation, AE is not sustain-

able for long periods in this solid. The results obtained in the

zinc phthalocyanine (ZnPc) system closely mirror those pre-

sented herein for the free-base system. Thus, a single mode is

amplified in ZnPc at 1525 cm�1 equivalent to the 1550 cm�1

Table 1 Energies (cm�1) of the main S1(QX) 2 S0 vibronic transitions of H2Pc isolated in Ne, Ar and N2 matrices. The 0–0 values were
determined from absorption spectra. The emission values quoted correspond to the main bands observed as the triplet set around 710 nm and
the most intense band around 755 nm that exhibits AE. The emission values in parenthesis are frequency shifts from the 0–0 transition listed in
column 2

H2Pc 0–0 AE

Ar 14 771 14 086 (685) 14 043 (728) 13 972 (799) 13 220 (1551)
N2 (7 main sites) 14 856 14 169 (687) 14 126 (730) 14 057 (799) 13 302 (1554)

14 832 14 144 (688) 14 102 (730) 14 032 (800) 13 279 (1553)
14 817 14 130 (687) 14 086 (731) 14 016 (801) 13 264 (1553)
14 799 14 111 (688) 14 068 (731) 13 997 (802) 13 249 (1550)
14 787 14 102 (687) 14 058 (731) 13 987 (802) 13 236 (1551)
14 762 14 075 (687) 14 032 (730) 13 960 (802) 13 210 (1552)
14 715a

Ne (continuum of sites) 14 954-to-14 905 14 266-to-(688) 14 217 14 223-to-(731) 14 174 14 153-to-(801) 14 104 13 402 (1552)-to-13 352 (1553)

a Weak emission, no AE observed.

Fig. 2 Variations in the characteristics of the 755.5 nm emission of H2Pc/N2 system with laser intensity. The lower trace presents the normal

emission (fluorescence) produced with lower laser power (10 mJ/pulse). The upper trace shows the dramatic increase in the intensity of the 755.5 nm

emission with the use of approximately 100 mJ/pulse. The inset on the right shows details of the lineshape changes on the 755.5 nm band under both

low and high pulse energies. Temporal profiles of the 755.5 nm emission decay curves are shown in the inset on the left hand side.
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mode of H2Pc. As found for H2Pc, AE is observed for ZnPc in

all the solids studied except xenon.

3.4 Threshold for amplified emission

A threshold in the dependence of the intensity of the amplified

emission on the excitation laser intensity is clearly observed

under both QX and QY excitation. Threshold data is shown in

Fig. 3 for the dominant site emission in H2Pc/N2 (755.5 nm)

produced with excitation at 634 nm (QY excitation). The band

exhibiting amplification at 755.5 nm is represented in Fig. 3 by

the filled circles. For comparison, normal fluorescence from

the same site is shown in Fig. 3 by the emission bands at 744.4

and 676.3 nm (the 0–0 band) which were not observed to be

amplified. As shown in the lower portion of the plot, the

growth in the intensities of these two emission bands track the

755.5 nm band up to a specific value of the exciting laser

intensity. Beyond this value, the intensity of 755.5 nm band

rapidly increases while the fluorescence intensity remains un-

changed on the scale shown. To identify the point beyond

which amplified emission takes over from fluorescence, the

three sets of data are shown on a larger scale in the upper

portion of the plot. The threshold value is indicated in Fig. 3

by the vertical dashed line at approximately 0.95 mW (95 mJ/
pulse). The intensity of non-amplified emission follows the

same behaviour as the amplified band before the threshold,

but the slope slightly decreases beyond this point. When the

amplification of one vibronic emission occurs, the correspond-

ing specific transition becomes a preferential relaxation path

(open circle).

The threshold condition for amplified emission is given18 by

the expression,

Nth

V
¼ 8ptDn

l2lf
n2 ð1Þ

in terms of the number density of the excited state molecules

per cubic centimetre. In this equation t is the radiative lifetime

of the excited S1 (QX) state (assumed to be equal to the

measured lifetime, 12 ns), Dn is the emission linewidth (8

cm�1, 240 GHz), l is the wavelength (755.5 nm) and f is the

emission quantum yield of this vibronic transition (f = 0.05).

l is the sample pathlength (0.025 cm) and n is the index of

refraction (1.35) of the medium. Making substitutions for the

photophysical parameters measured for the H2Pc/N2 transi-

tion, given in parenthesis, we obtain a threshold value of 2 �
1016 cm�3. While this is a very large value for gas phase

conditions, it is at least 2 orders of magnitude less than the

concentration of the ground state molecules isolated in the

solid. Accordingly, it has been observed that AE does not

occur in very dilute samples in which this threshold cannot be

reached with similar excitation powers. In contrast, AE is

easily observed for slightly higher concentration, as shown in

the example of Fig. 4 where AE has been recorded on most of

the families of sites in N2.

3.5 Excitation spectra and improved site resolution with

amplified emission

Fig. 4 shows a two-dimensional (2-D) excitation/emission plot

of the AE observed for free-base phthalocyanine (H2Pc)

isolated in solid N2. The plot depicts the variety of sites

detected with excitation in the 0–0 region of the QX ’ S0
transition while monitoring the AE band centered around

755 nm. Shown on the right hand side and on the upper part

of the figure are characteristic excitation and emission slices

recorded for normal fluorescence (dotted lines) and under AE

conditions. The increased resolution on an individual site is

evident in both emission and excitation spectra. However, it is

especially evident in the excitation scans shown on the right

hand side where the lineshapes change from a featureless band

(dotted line) to a highly structured band (solid trace) exhibit-

ing what appears to be a sharp zero-phonon line and a

structured side-band. Other examples of excitation spectra

recorded under AE conditions are depicted by traces b–e in

Fig. 5 and compared with normal fluorescence excitation scans

recorded with the pump laser intensity below threshold (a).

Clearly excitation spectra recorded for the AE signal provide

greatly enhanced spectroscopic information over what can be

Fig. 3 Threshold curves measured for the dominant site emission of

free-base phthalocyanine (H2Pc) isolated in solid N2. The data were

recorded by monitoring the emission intensities at the indicated

wavelengths while varying the laser excitation intensity at 634 nm.

In the lower panel the wavelengths selected 676.3, 744.4 and 755.5 nm

correspond to 0–0 emission of the QX - S0 transition at 14 787 cm�1,

fluorescence of a vibronic band at 13 433 cm�1 and the amplified

emission band at 13 236 cm�1, respectively. In the upper panel the

same three bands are shown (open symbols) but the intensities of the

bands at 755.5 and 744.4 nm have been multiplied by factors of 25 and

80, respectively, to match the intensity of the 0–0 band at 676.3 nm. It

is evident at low pulse power that the intensities of the three emission

bands can be overlaid exactly, demonstrating that below threshold all

three emission bands follow the same dependence on excitation

intensity. However, the sudden change in slope of the 755 nm band,

depicted by the single open circle at the top of the figure (shown by the

arrows in the two panels) and indicated by dashed vertical line,

indicates the onset of amplified emission (AE) from normal fluores-

cence. This point, identified to be 0.95 mW, is the threshold for the

generation of AE on the 13 236 cm�1 band which is 1551 cm�1 from

the band origin.
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extracted from either conventional fluorescence excitation or

absorption spectroscopy.

The sharp resolved lines present in the AE excitation scan in

N2 are shifted by 130, 178 and 228 cm�1, as shown in Fig. 5,

from the 0–0 transition. They correspond to a vibronic

progression on the QX ’ S0 transition that has been identified

in the excitation scans of the molecule in low temperature

matrices5,17 and molecular beams.15 The AE excitation spectra

(b–e) shown in Fig. 5 depict the range of behaviour exhibited

by the different sites for the QX state of H2Pc in N2. Most

representative is trace (b) which exhibits a clearly identifiable

zero-phonon line (ZPL) for the 0–0 transition with a more

intense phonon sideband (PSB). Due to the strength and the

width of the latter bands, excitation of the ZPL of a blue site

simultaneously excites the PSBs of the red sites. As a result,

AE is then observed in all the sites as shown in Fig. 4. Strong

phonon sidebands are also observed in the excitation spectra

recorded in Ar and Kr matrices. Indeed for some sites the ZPL

can even be absent. In solid Ar, AE appears mainly at only one

frequency assigned to a vibronic transition of the molecule

occupying the main site: the threshold of AE is much easier to

reach for this specific site which can be efficiently populated in

the excited state through the phonon band. In contrast,

excitation spectra of AE in solid Ne are dominated by the

0–0 transition line. There is a continuum of equally occupied

sites (see absorption spectrum in Fig. 1) and the AE frequency

follows the excitation frequency all along the excitation in the

broad absorption band. It seems that in this ‘‘soft’’ solid there

is no preferential site geometry—a possible reason for the

unusual behaviour sometimes observed19 with the use of neon

as a host material. Thus, the observation of AE should be

useful to determine the number of main families of sites in a

given host and to underline the differences between the sites

occupied in these hosts.

4. Discussion

The essentials of the AE observed in this work can be

described with the energy level scheme shown in Fig. 6. It

comprises of the ground state [Level 1, S0 (v
00 = 0)], which is

Fig. 4 2-D excitation–emission plots of the AE observed for free-base phthalocyanine (H2Pc) isolated in solid N2. The data were recorded by

monitoring emission with iCCD detection while scanning the tuneable dye laser used for excitation at high intensity. The variety of sites is indicated

in the central portion of the plot. Characteristic excitation and emission slices are shown on the right hand side and on the upper parts of the

Figure, respectively, corresponding to the positions in emission and excitation given by the black dots on the 2D plot. Particularly noteworthy is

the improved resolution of the AE excitation/emission scans compared with that recorded from the conventional fluorescence signal shown by the

dotted lines at the same emission–excitation wavelengths.
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the only one populated at 10 K before laser excitation, the

pumped state, the upper level of the AE [Level 2, QX (v0 = 0)

or in general Q] and the lower level of AE [Level 3, S0 (v
00 = 1

of a specific mode)] i.e., at 1550 cm�1 above the vibrationless

ground state. In general we have a 4-level scheme because a

Level 20 is usually involved. As indicated in Fig. 6, this is either

a vibrationally excited level of QX or the QY electronic state.

For AE to occur, an efficient route for populating Level 2 is

required. This is provided by very efficient pumping with

pulsed laser excitation of an electronic transition having a

huge extinction coefficient—e = 162 000 cm�1/M at 698.5 nm

for H2Pc in chloronaphthalene.20 For indirect excitation via

the QY state (Level 20) an efficient relaxation to Level 2 is

required. This is indeed the case, because the only emission

that has been observed with QY is relaxed, originating from

v0 = 0 in the QX state. For the main sites in N2, we have not

observed any Stokes shift on the 0–0 QX 2 S0 transition so

with direct pumping of v0 = 0 in the QX state, there is, in this

matrix, only a single Level 2. Consistent with this, AE seems

easier to reach by pumping QX than QY. Finally, Level 3

corresponds to a non-thermally populated level at 1550 cm�1

so that the inversion population on the (2)-(3) transition is

easily obtained.

In order to maintain the population inversion during the

course of the 10 ns laser pump pulse, the vibrational Level 3

must rapidly relax to vibrational levels of lower energy. Level 2

of H2Pc has an observed lifetime of 12 ns in N2 solid,

indicating that Level 3 must decay more quickly than this.

From DFT calculations21 on ZnPc, the 1525 cm�1 vibrational

mode (equivalent to 1550 cm�1 mode in H2Pc) involves out-of-

phase stretching of the C–N–C bridges on the inner ring of Pc.

Thus it is expected that this mode can relax very quickly

towards low frequency modes. Indeed the measured fluores-

cence bandwidth of few wavenumbers is consistent with

typical vibrational lifetimes in the picosecond range.

As already mentioned, large population can be very effi-

ciently pumped into the available levels 2 with pulsed laser

excitation of phthalocyanines. These dye materials were ex-

amined by Sorokin7 as good candidates to generate stimulated

emission around 750 nm. With this characteristic, H2Pc and

ZnPc seem ideal molecules to observe the AE process in low

temperature matrices. From eqn (1) it is evident that threshold

will be reached most easily for strongly allowed transitions

(short t) with narrow linewidths (small Dn) and for high

fluorescence quantum yields. All of the parameters in the

threshold equation, except the pathlength, are favoured in

the case of H2Pc emission in low temperature matrices.

Especially favourable is the narrow emission linewidth

(B8 cm�1) on a fully allowed electronic transition Arising

from these observations, we predict that AE should also be

possible for these dye molecules isolated in Shpol’skii matrices

when excited with short pulse lasers.

Another key factor in generating amplified emission is the

nature of the laser excitation. Thus to achieve the threshold

population in the excited state, it is essential that a temporally

compact excitation is used such as that provided by the

nanosecond pulse of a Q-switched Nd:YAG laser. In this

regard, when we used a low intensity laser pulse, only normal

fluorescence was observed. Similarly, if a cw laser is used, the

threshold condition will not be attained. We surmise that it

was for these reasons that AE emission was not observed in

any of the previous laser studies of the matrix-isolated phtha-

locyanines. Thus, Bondybey and English5 used a low power

pulsed nitrogen laser, while in the more recent study of

Williamson and co-workers,6 a dye laser pumped by a cw

Ar+ laser was employed. The detailed spectroscopic work that

have been done on free-base and metallo-phthalocyanines, by

Huang et al.,17 also utilised a dye laser pumped by a cw Ar+

laser. With cw excitation the threshold population will not be

reached and only normal fluorescence will be observed. An

additional parameter that renders this effect difficult to ob-

serve in low temperature matrices is the short path length

Fig. 5 A selection of laser excitation scans recorded with AE,

involving the 1550 cm�1 (b–d) and the 730 cm�1 (e) modes, for a

variety of sites occupied by free-base phthalocyanine (H2Pc) isolated

in solid N2. The emission bands monitored are at 13 236 cm�1 (a–b),

13 279 cm�1 (c), 13 302 cm�1 (d) and 14 126 cm�1 (e). For the purpose

of comparison a conventional fluorescence excitation scan is shown in

(a). The spectra recorded range from a site with moderate electro-

n–phonon coupling (b) to one with vanishing small coupling (d). The

sharp features evident in the four AE scans (b)–(e), correspond to the

low frequency vibrational modes in the QX excited state.

Fig. 6 A schematic energy level diagram of the states involved in the

amplified emission of the free base phthalocyanine. The effect of AE

can be produced with 0–0 excitation (2) of the QX state or with higher

energy excitation (20) into either vibrationally excited levels of this

state or into the QY state.
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(l = 250 mm) of these thin film samples. In comparison,

production of amplified emission in the gas phase22 requires

the use of cells whose length are typically tens of centimetres.

The next question that must be addressed in the observa-

tions presented in this article is why does only a single mode

exhibit amplification? The answer to this question is also to be

found in eqn (1). Thus for molecular emission involving

several vibrational transitions, the threshold will be reached

most easily for the mode with the largest Franck–Condon

factor in order to optimise f. In other words, it is to be

expected that the most intense emission band will reach

threshold first. It will be remembered as shown in Fig. 1, the

0–0 band (around 676 nm) is much stronger than the vibronic

band around 755 nm which becomes amplified. However,

there is extensive spectral overlap of absorption and emission

bands for the 0–0 transition. Hence, this transition will suffer

from competitive absorption and accordingly will not reach

threshold. Moreover, the threshold in this specific case is much

higher than that given by eqn (1) because of the large popula-

tion in the lower level, i.e., the vibrationless ground state.

In the previous studies of phthalocyanine in solution,7

isolated in organic solids17,23 or matrices5,6 the transition

involving the vibrational mode around 1550 cm�1 is always

either one of the more intense bands or the most intense band

in emission spectra. The stimulated emission observed by

Sorokin et al.7 for AlPc in ethanol was also on this vibronic

transition. Other vibrational modes appear in the emission

spectrum with intensities similar to the 1550 cm�1 mode

(Fig. 1). In fact, some experiments done on quite concentrated

H2Pc samples with high laser intensities have shown that AE is

also possible on other vibronic transitions. Thus AE has been

observed in N2 solid, when exciting specific sites involving

modes at 687 and 730 cm�1 (a related excitation spectrum is

shown in Fig. 5e). Further experiments are currently underway

and complete details of the spectroscopy of ZnPc and H2Pc

isolated in a more extensive range of low temperature solids

will be presented elsewhere.8

5. Conclusions

The luminescence spectroscopy of phthalocyanines embedded

in low temperature solids has revealed the phenomenon of

amplified emission under modest conditions of pulsed laser

excitation. The possibility an iCCD camera provides of very

efficiently collecting high resolution 2-D excitation/emission

scans has been central to the discovery of this unexpected

phenomenon. In addition to the huge increase in intensity, the

lineshape of the AE band narrows and its decay time shortens

so that it matches the Q-switch laser used for excitation. The

photophysical characteristics conducive to this effect are ana-

lysed and it is concluded the key conditions are (1) the large

absorption strengths of these dye materials, (2) the spectrally

narrow emission lines that these molecules exhibit and (3) the

use of a Q-switched excitation laser. Accordingly, we predict

that AE should also be observable for these molecules isolated

in other solid materials that produce narrow linewidths such as

Shpol’skii matrices.

Excitation scans recorded for the AE mode yield greatly

enhanced site selectivity compared to what is obtained in

normal fluorescence excitation scans. This behaviour stems

from the increased resolution of individual sites whose line-

shape change from featureless fluorescence excitation bands to

a highly structured AE excitation band. The very well-resolved

spectra available in AE excitation scans allows detailed ex-

ploration of site occupancies in a given solid and from one

solid to another. Differences in matrix sites have been ob-

served and analysed by Waluk and co-workers3 in the case of

porphyrins and porphycenes which are very similar molecules.

The observations of AE, made in the present study with only

moderate laser excitation intensities, should allow new insights

into site effects and site selectivity in future studies of solid

state spectroscopy.
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