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Abstract

A stroke is the loss of brain function caused by a sudden interruption in the blood supply

of the brain. The extent of damage caused by a stroke is dependent on many factors

such as the type of stroke, its location in the brain, the extent of oxygen deprivation and

the criticality of the neural systems affected. While stroke is a non-cumulative disease,

it is nevertheless a deadly pervasive disease and one of the leading causes of death and

disability worldwide. Those fortunate enough to survive stroke are often left with some

form of serious long-term disability. Weakness or paralysis on one side of the body, or

in an individual limb is common after stroke. This affects independence and can greatly

limit quality of life.

Stroke rehabilitation represents the collective effort to heal the body following stroke

and to return the survivor to as normal a life as possible. It is well established that

rehabilitation therapy comprising task-specific, repetitive, prolonged movement training

with learning is an effective method of provoking the necessary neuroplastic changes

required which ultimately lead to the recovery of function after stroke. However, tra-

ditional means of delivering such treatments are labour intensive and constitute a sig-

nificant burden for the therapist limiting their ability to treat multiple patients. This

makes rehabilitation medicine a costly endeavour that may benefit from technological

contributions. As such, stroke has severe social and economic implications, problems

exasperated by its age related dependencies and the rapid ageing of our world. Con-

sequently these factors are leading to a rise in the number living with stroke related

complications. This is increasing the demand for post stroke rehabilitation services and

places an overwhelming amount of additional stress on our already stretched healthcare

systems.

Therefore, new innovative solutions are urgently required to support the efforts of health-

care professionals in an attempt to alleviate this stress and to ultimately improve the

quality of care for stroke survivors. Recent innovations in computer and communication

technology have lead to a torrent of research into ubiquitous, pervasive and distributed

technologies, which might be put to great use for rehabilitative purpose. Such technology

has great potential utility to support the rehabilitation process through the delivery of

complementary, relatively autonomous rehabilitation therapy, potentially in the comfort

of the patient’s own home. This thesis describes concerted work to improve the current

state and future prospects of stroke rehabilitation, through investigations which explore

the utility of wearable, ambient and ubiquitous computing solutions for the development



of potentially transformative healthcare technology. Towards this goal, multiple differ-

ent avenues of the rehabilitation process are explored, tackling the full chain of processes

involved in motor recovery, from brain to extremities. Subsequently, a number of cost

effective prototype devices for use in supporting the ongoing rehabilitation process were

developed and tested with healthy subjects, a number of open problems were identified

and highlighted, and tentative solutions for home-based rehabilitation were put forward.

It is envisaged that the use of such technology will play a critical role in abating the

current healthcare crisis and it is hoped that the ideas presented in this thesis will aid

in the progression and development of cost effective, efficacious rehabilitation services,

accessible and affordable to all in need.
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Chapter 1

Introduction

The average age of the world’s population is increasing at an unprecedented rate. A

report commissioned by the U.S. National Institute on Aging estimates that the current

number of people worldwide age 65 and older is 524 million. By the year 2050, that

number will have reached 1.5 billion [354]. To put these figures into perspective, in

just under 40 years, the proportion of older people will double from 7% to 14% of

the world’s total population. While this shift in population demographics will have

many unforeseeable effects on society, it will inevitably lead to a rise in the number

of people living with chronic illnesses such as cardiovascular diseases (CVD), cancer,

chronic obstructive pulmonary disease, dementia and diabetes.

Of such diseases, stroke a subtype of CVD is of particular concern, being the second

leading cause of death above the age of 60 [396] and the leading cause of long-term

disability worldwide [254]. Globally, 15 million people suffer a stroke each year, one-

third die, one-third make a reasonable recovery and one-third are left with moderate

to severe disability [237] with major impact on their quality of life. Given that age is

one of the most substantial risk factors for stroke, with the risk of stroke doubling each

decade after 55, the ageing of the world population implies a growing number of people

at risk [49].

A stroke is a brain attack, characterised by the sudden interruption of blood flow

to the brain causing the loss of brain function. Each stroke is unique and can effect

physical, cognitive and emotional functioning. The affects of stroke are dependent on

the type of stroke, the location in the brain and the extent of the resulting brain injury.

The most common impairment caused by stroke is motor impairment [390], which can

be regarded as a loss or limitation of function in muscle control or movement. More

specifically, weakness in the upper limbs is the most common impairment after stroke
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effecting approximately 80% of patients [200]. Movement impairment is categorised

according to severity of deficit, e.g. from weakness in an individual limb, movement

weakness on one side of the body (hemiparesis) or the inability to move one side of

the body (hemiplegia). The loss of functional ability is a significant impairment for

an individual, limiting their ability to engage in activities of everyday living, reducing

their quality of life and their independence. Therefore, much emphasis is put on the

restoration of motor function and the recovery of functional movement skills during

stroke rehabilitation.

The mechanisms of recovery after stroke are complicated. In general, motor recovery

depends on the plasticity of neurons and circuits within the motor system [187]. The

brain has some innate capacity to recover following the stroke, known as spontaneous

recovery [310], during this period improvement in physical, cognitive, and communica-

tion deficits may occur on their own. However, the brain can also extensively remodel

after stroke, primarily through a process called neuro-plasticity [321]. Neuro-plasticity

is defined as the ability of the brain to change its structure and/or function in re-

sponse to internal and external constraints and goals [150]. Fundamental research has

demonstrated that reorganization is not driven simply by increased use and instead that

expansion of cortical representations requires skill dependent motor learning behaviour.

As a result, it is well established that rehabilitation therapy comprising task-specific,

repetitive, prolonged movement training with learning can have a significant impact

on recovery outcomes [112],[131]. In most cases, stroke rehabilitation begins while the

patient is still in acute care and continues long after returning home. The duration

of rehabilitation differs from patient to patient, some stroke survivors recover quickly,

however most need some form of stroke rehabilitation long term, possibly months or

years after their stroke.

Positive outcome of physical rehabilitation after neurological impairment depends

heavily on the onset, duration, intensity and task-orientation of the training. Treat-

ment of motor defects after stroke is subsequently labour intensive, requiring extensive,

protracted one-to-one manual interactions with a physical therapist, constituting a sig-

nificant burden for the therapist and decreasing the availability of rehabilitation services.

Subsequently, stroke imposes a major economic burden on healthcare systems worldwide.

A recent study comparing international stroke cost showed that on average, 0.27% of

gross domestic product is spent on stroke by national health systems, and that post

stroke care accounts for approximately 3% of total national health care expenditures

[102]. These problems will most likely exacerbate in the future as life expectancy con-

tinues to increase [260], resulting in an increase in the incidence of stroke, accompanied

by a growing population of elderly people with moderate and severe motor disabilities. In
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addition, the rising disproportion of older people will also result in there being a smaller

“working age” population to care for those afflicted with disability and to contribute

taxes to pay for national healthcare services.

Consequently, healthcare providers are actively investigating alternative approaches

to providing healthcare services post stroke. Early supported discharge (ESD) accompa-

nied by home-based rehabilitation (HBR) is one such intervention under consideration

which has gained much appraisal. Studies suggest that ESD can provide a cost-effective

alternative in the management of stroke care and can reduce the amount of time pa-

tients spend in hospital [109],[310],[28]. Advocates of such programs suggest that in

addition to economic benefits there are several additional advantages to moving towards

a HBR paradigm including; reduced risks of nosocomial acquired illnesses and less dis-

tress caused from prolonged hospital stay [11]. In addition, the home centred treatment

paradigm gives people the advantage of practising skills and developing compensatory

strategies in the context of their own home. However, to be successful, such programs

will need to deliver results which are comparable to that of conventional clinical rehabil-

itation. Currently, there are some distinct disadvantages to home based rehabilitation

programs. First, there is a dearth of affordable specialised equipment available to sup-

port home based rehabilitation programs. Second, there is evidence to suggest that

adherence to rehabilitation programs is poor in the absence of supervision [26],[370]. As

a result, there is both an imminent need and an opportunity to develop new technology

that can supplement the efforts of healthcare specialists, through the addition of devices

that can augment the benefits of therapeutic intervention and which can encourage

continuous adherence with unsupervised exercise programs.

Computing technology is pervasive, each decade bringing smarter, cheaper and more

powerful devices to the market place. It may be hard to believe but by today’s standards

the computer NASA used to put a man on the moon is no more powerful than some

pocket calculators [130]. It is estimated that there are approximately 2 billion personal

computers (PCs) actively in use as of 2014, with countless more office based and au-

tonomous systems in use world-wide [116]. Indeed, computers have become much more

than simple tools of labour and now play an active role in how we live, socialise and

even identify ourselves. The internet has created a global connectedness of unimagin-

able proportion allowing us to instinctively interact with systems, purblind to the reality

that such information might be stored on a machine half a world away. Technology is

also advancing rapidly, capturing the imagination of a world desperate for more con-

nectivity, desiring smarter, more intuitive means of interacting with their world, which

is rapidly becoming more and more digital. While the driving force behind much of

this technology is commercial products, this technology also represents great hope for
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millions of people worldwide suffering from illness and disease. The evolving concepts

of pervasive computing, ubiquitous computing and ambient intelligence are increasingly

influencing health care and medicine [278, 387, 387]. Such technology has the potential

to be supportive, diagnostic and analytical in an unobtrusive and even inconspicuous

manner [70]. Wearable sensors and ubiquitous computing applications have tremendous

capabilities, such as remote, autonomous patient monitoring and diagnosis. While not

applicable to all illnesses, such technology can play a major role in assistance health-

care, offering enhancements to unsupervised forms of physical therapy in the comfort

of a patient’s own home. In addition, smart systems can take measurements, quan-

tify and assess on-going rehabilitation efforts and automatically adjust parameters of

training programs according to patient progress. From the perspective of healthcare,

there is great potential to utilise such technology to improve the efficacy of home-based

rehabilitation. Capabilities such as these will no doubt help advance the paradigm shift

from hospital/clinical rehabilitation towards home care, and may also enhance patient

self-care and independent living.

1.1 Objective

The objective of this thesis is to contribute towards improving the efficacy of home-

based rehabilitation after stroke, with focus on interventions for the upper extremity.

This objective is approached from two perspectives. First, through the design and

development of novel, low cost devices suitable for the home setting which can help

facilitate recovery, support the ongoing rehabilitation process and to improve adherence

through the provision of extrinsic feedback.

Second, to investigate the interaction dynamics of supervised assisted therapy, through

the application of novel modelling techniques, with the view towards designing more ef-

fective controllers for human unsupervised assisted movement therapy.

1.2 Contributions

In its entirety, this thesis has produced a number of contributions which are described

below.

1. A comprehensive literature review of the state of the art in technology assisted

home-based rehabilitation. The review consists of a short description of the key
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domains pertaining to home-based solutions for stroke rehabilitation; wearable

sensors, ubiquitous computing, ambient intelligent environments, low cost robotics

and brain computer interfaces.

2. Development of a novel, affordable, open source, autonomous sensor glove system

for gesture based control of home environments.

3. Investigations into the potential application of Game Theory and agent based

modelling as a novel approach to modelling patient/therapist interaction dynamics

with a view toward developing more efficient assistance control strategies.

4. Development of a low cost, digital hand dynamometer for measuring grip strength.

5. Development of a novel feedback platform for investigating the effects of extrinsic

feedback on motor performance.

6. Modification of an open source Electroencephalograph (EEG) platform for use as

an Electromyography (EMG) acquisition platform.

7. Collection and presentation of data highlighting the effects of “slacking” by the

motor system during obfuscated feedback driven exercises.

8. Design and development of an affordable, brain computer interface (BCI) driven

pneumatic exercise glove system for home-based neuro-rehabilitation.

9. Demonstration of machine learning techniques for automatic facial paralysis scor-

ing and the synthesis of images with successive grades of facial motor paralysis,

towards the development of an intelligent feedback mirror for stroke.

1.3 List of Publications

A list of the publications produced from the thesis is presented below.

1. Coffey, A. L., Ward, T. E., & Middleton, R. H. (2011). Game Theory: A Po-

tential Tool for the Design and Analysis of Patient-Robot Interaction Strategies.

International Journal of Ambient Computing and Intelligence, 3(3), 43–51.

2. Coffey, A. L., & Ward, T. E. (2013). A Sensor Glove System for Rehabilitation

in Instrumental Activities of Daily Living. In Communications in Computer and

Information Science (Vol. 374, pp. 135–139). Las Vegas, NV, USA: International

Conference, HCI International 2013,.
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3. Coffey, A. L., Leamy, D. J., & Ward, T. E. (2014). A Novel BCI-Controlled

Pneumatic Glove System for Home-Based Neurorehabilitation. In 36th Annual

International IEEE EMBS Conference of the IEEE Engineering in Medicine and

Biology (pp. 3622 – 3625). Chicago, IL: IEEE.

4. Coffey, A. L., & Ward, T. E. (2014). Slacking in the Context of Agent-based As-

sessment in Virtual Rehabilitation Systems. In 36th Annual International IEEE

EMBS Conference of the IEEE Engineering in Medicine and Biology (pp. 5844–5847).

Chicago, IL: IEEE.

5. Coffey, A. L., & Ward, T. E. (2015). Combined Ambient and Wearable Sensors

for Gesture-Based Environmental Control in the Home. In Recent Advances in

Ambient Intelligence and Context-Aware Computing (1st ed., pp. 1–21). IGI

Global.

6. Hurtier, J., Van Dokkum L., Dalhoumi S., Coffey A., Perrey S., Jourdan C.,

Dray G., Ward T., Froger J., Laffont I. (2016). A closed-loop BCI system for

rehabilitation of the hemiplegic upper-limb: A performance study of the systems

ability to detect intention of movement. Annals of Physical and Rehabilitation

Medicine.

1.4 Outline of the Thesis

This thesis is comprised of seven subsequent chapters, the content of which is described

below.

Chapter 2 provides a background to the physiological systems and functions of inter-

est in this thesis, including a detailed discussion of the nervous system, (both central and

peripheral), the anatomical structure of the brain, the cerebral circulatory system, as

well as an in-depth discussion of the components of neural plasticity, neurons, synapses

and action potentials. In addition, specific details pertaining to the underlying cause,

effects and recovery mechanisms of stroke are given. Finally, details of the physiologi-

cal signals that are most commonly measured for clinical purposes and which are used

through this thesis are given, including Electroencephalogram (EEG), Electromyogram

(EMG) and grip strength.

Chapter 3 details the current state of the art in assisted upper extremity interven-

tions and the current challenges for technology assisted solutions. The review is sepa-

rated into 4 distinct areas of interest, which are prevalent throughout this thesis. (1), a

literature review of sensor gloves for the capture of hand motion data (2), a literature
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review of robotic devices for rehabilitation of the upper extremity, including a detailed

discussion about current approaches to control systems and control strategies. (3), a

literature review of extrinsic feedback, highlighting the role of extrinsic feedback on im-

plicit motor learning and discussing its capacity for enhancing participant motivation

and self-efficacy after stroke. And (4), a literature review of physiological sensed feed-

back (i.e. biofeedback and neurofeedback) approaches to rehabilitation, discussing the

potential of such systems for enhancing motor rehabilitation in chronic stroke patients

with severe movement weakness.

Chapter 4 introduces the design of a novel, autonomous sensor glove system for

gesture based control of personal electronic appliances (TV, radio, etc.) and describes

its potential for integrating repetitive, therapeutic practise of functional hand skills into

the activities of daily living.

Chapter 5 explores the development of a virtual therapist for stroke rehabilitation.

The chapter begins with the exploration of the interaction dynamics between a patient

and therapist during a typical assisted movement task. After which the concept of

modelling these interaction dynamics using “Game Theory” is discussed. A rudimen-

tary demonstration of such an implementation is demonstrated and through simulations

some interesting behavioural patterns are identified and exposed (motor “slacking” and

learned dependency). Finally, a discussion follows about the potential use of such an

approach for modelling patient/therapist interaction dynamics towards developing more

sophisticated control systems for technology assisted movement therapy.

Chapter 6 introduces the design of a novel experimental platform for investigating the

effects of obfuscated feedback on motor performance during a repetitive grip and release

task. Towards this goal, the design and development of two independent low-cost tools (a

digital hand dynamometer and an EMG acquisition unit) for motor function assessment

are described. Using the experimental platform an experiment is performed in healthy

subjects investigating the use of extrinsic feedback on performance for delivering semi-

automated rehabilitation therapy. Experimental results are presented which suggest the

visibility of motor “slacking” as a result of error obfuscation and a discussion of the

implications of theses finding for designing feedback driven therapy solutions follows.

Chapter 7 describes efforts to utilise aspects of machine learning techniques for the

development of enhanced biofeedback driven rehabilitation applications. The chapter is

split into two sections. The first section describes the development of a compact, in-

expensive solution for home-based motor-neurorehabilitation comprising an EEG-based

brain computer interface and simplified haptic feedback system based on a pneumatic

glove solution. Preliminary results are presented of a pilot study conducted with health
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subjects to test the system. The second section describes the application of machine

vision techniques, in particular the use of active appearance models for the tracking of

key facial features, automatic scoring of facial paralysis and the synthesis of subdued

feedback imagery.

Chapter 8 concludes the thesis by providing a summary of the novel contributions

of the work therein and discusses future directions for research arising from the work

performed.

8



Chapter 2

Physiological Background

2.1 Introduction

The brain is without doubt the most complex organ in the human body. To understand

just how complex the brain is, consider that the brain is made up of a network of billions

of interconnected nerve cells called neurons. A neuron is an electrically excitable cell that

processes and transmits information through electrical and chemical signals. Neurons

have a large number of extensions, in the order of thousands, called dendrites, which can

reach out and form connections with other neurons. There are approximately 100 billion

neurons in the human brain, of which 30 billion are situated in our cerebral cortex, the

highest functioning portion of our brain. The cerebral cortex is capable of generating 1

million billion synaptic connections. If we consider the number of possible neural circuits

which could be constructed we would be dealing with hyper astronomical numbers, i.e.

10 followed by at least a million zeros. In comparison, there are 1097 atoms in the known

universe [89].

The connection fidelity between neuron pairs is not immutable but instead is ever

changing, depending on experience and stimulus from the outside world. In this way,

many neurons can form together to create neural pathways and even more complicated

structures such as neural circuits and networks. It is these neural structures which give

rise to extremely complex functions of the brain. Stimulus from the world around us,

received by our sensory organs and passed through out peripheral nervous system to

our brains modulate how these networks form and grow. From leaning how to crawl, to

walking upright, to swinging a tennis racket, all of these tasks rely on highly sophisticated

neural circuits, developed over years, through practise and experience. These circuits

not only control how our bodies respond and function, they also mould our sense of self,
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defining who we are. They form our personalities, our perceptions, our thoughts, both

waking and sleeping, they shape our goals and desires and even constitute our dreams.

However, like all living cells, neurons require a constant steady stream of metabolic

fuel (oxygen and nutrients) in order to function correctly. In fact, neurons are highly

metabolically active and therefore particularly susceptible to cell death if deprived of

oxygen and nutrients for even a short period of time. The blood flow to the brain must

therefore be extremely well regulated in order to keep the cells alive and hence the

neural circuits intact and functioning correctly, a property referred to as homoeostasis.

A disruption of the blood supply to the brain, known as a stroke, can result in rapid

and widespread cell death, causing significant damage to the structure of neural circuits

and therefore a cease in related neural functioning.

Fortunately, the brain can heal itself after damage through reorganisation and re-

structuring of damaged neural pathways, a process known collectively as neural plastic-

ity. Further, it is well established that the process of recovery after brain injury can be

facilitated and even enhanced through rehabilitation therapy comprising task-specific,

repetitive, prolonged movement training with learning. The question of how best to

facilitate and promote such neural plastic changes in the brain, through the application

of affordable technology, is the key aspiration of this thesis. However, prior to discussing

how modern technology may help treat stroke and improve the lives of survivors, the

physiology of the brain and the mechanics of stroke must first be introduced in more de-

tail. The following chapter provides the background knowledge required to understand

and contextualise the problems explored in this thesis. In addition, the physiological

recording technologies and techniques used to collect data throughout this thesis are

also described.

2.2 The Nervous System

The nervous system is essentially the means through which we experience and interact

with the world. The nervous system is made up of the brain, spinal cord and a network

of fibres and nerve cells which transmits message to and from all other parts of the body,

see Figure 2.11. The nervous system can be subdivided into two main parts, the central

nervous system (CNS) and the peripheral nervous system (PNS).

The CNS contains the brain and spinal cord, it is the command center of the body

and is where information is processed and decisions are made, see Section 2.3.

1Source: Public domain
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The PNS consists mainly of nerves (neurons) and ganglia, which are fibre bundles

that connect the CNS to every other part of the body. The purpose of the PNS is to

connect the CNS to the limbs and organs, essentially acting as a communication network

between the brain and the rest of the body, see Section 2.4.

Figure 2.1: The nervous system including both the central nervous system (Red) and
the peripheral nervous system (Blue).
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At the cellular level, the nervous system is comprised primarily of a special type of

cell, called the neuron, also refereed to as a “nerve cell”, see Section 2.5. There are many

different types of neurons. Neurons differ from one another structurally, functionally and

genetically, as well as in how they form connections with other cells. As well as neurons,

the nervous system also contains other specialized cells called glial cells, also known

simply as glia which provide structural and metabolic support. Glial cells transport

nutrients to neurons, clean up brain debris, digest parts of dead neurons and also help

keep neurons in place and add insulation between them.

2.3 Central Nervous System (CNS)

2.3.1 The Spinal Cord

The spinal cord is the main pathway for information between the brain and the rest

of the body. The main body of the spinal cord is a long thin strand of nerve fibres

which stretch from the occipital bone down to the space between the first and second

lumbar vertebrae, see Figure 2.1. The cord consists primary of two types of fibres,

an efferent pathway for motor neurons, which travel from the brain towards the body

to control muscle movement, and an afferent pathway for sensory neurons, which carry

information from the body’s sensory organs back to the brain. The cord is segmented

distally into 31 sections called nerve roots which are fundamentally clusters of nerve

endings which branch off the central cord into the body. The spinal cord is protected

by an outer column of bone called vertebrae. Between each two vertebrae is a disk of

cartilage which helps add flexibility to the spine and to absorb shocks. The spinal cord

has three main functions, it carries motor neurons from the brain to the body, it carries

sensory information from the sensory organs to the brain and it coordinates certain

autonomous reflexes [91].

2.3.2 The Brain

The human brain is an incredibly complex structure which until recently was considered

incomprehensible. Most of what we now know about the brain was only discovered in the

last 50 years and is in part because of the accelerating pace of research in neurological

science and the development of new functional mapping techniques. The advent of

brain imaging techniques, including positron emission tomography (PET) and functional

magnetic resonance imaging (fMRI) has enabled us to peak inside the brain and glance

at its inner workings. Using this technology researchers can examine in a non-invasive
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manner human brain functions, by study the temporal and spatial changes in the brain

as a function of various stimuli.

The brain is composed of three main parts; the cerebrum, cerebellum, and brainstem,

see Figure 2.22.

Figure 2.2: Sagittal view of the brain showing three main parts, cerebellum (Purple),
cerebrum (Pink) and brainstem (Blue).

2.3.2.1 Cerebellum

The cerebellum is located posterior to the upper part of the brain stem. The cerebellum

is relatively small, only accounting for 10% of the brains overall mass, however it contains

approximately half of the brains neurons. Functionally the cerebellum plays an assisted

role in motor control, while it does not initiate movement the cerebellum assists in

the coordination and planning of voluntary movements such as; posture, balance, and

speech. In addition, the cerebellum also plays an important role in motor learning, most

notably in learning to adjust to dynamic changes in sensorimotor relationships [162].

The cerebellum also appears to be involved in a variety of linguistic functions [81].

2.3.2.2 Brainstem

The brainstem is located in the posterior of the brain, conjoining the brain with the

spinal cord. The brainstem includes the midbrain, pons, and medulla. Though relatively

small, the brainstem plays the important role of interfacing the brain with the nerve

2Source: Diagram showing some of the main areas of the brain (cropped, colors modified and re-
labelled). licensed under Creative Commons Attribution-Share Alike 4.0 International
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connections of the motor and sensory systems which spread out into the rest of the

body. The brainstem is also responsible for autonomic, involuntary functions of the

body including basic vital life functions such as, blood pressure regulation, breathing

and heart rate. The brainstem is also involved with a series of complex reflective motor

functions including swallowing, chewing, posture adjustment and locomotion [171].

2.3.2.3 Cerebrum

The cerebrum is the largest part of the human brain and is associated with higher

brain functionality, including perception, thought, judgement, imagination and decision

making. From an evolutionary perspective, the cerebrum is the newest part of the

brain and is highly developed in humans compared to other species of mammals. The

surface of the cerebrum is known as the cerebral cortex or simply cortex. The cortex

is only a few millimetres in thickness and consists of two cortices, separated along the

sagittal plane, known as the left and right hemispheres. Although thin, the cortex

contains approximately 10 billion neurons and is home to the most complex functions

of the human brain. The cortex has a wrinkled texture made up of ridges called gyri

(singular gyrus), and grooves or fissures called Sulci (singular sulcus). Because of this

configuration two-thirds of the surface of the cortex is hidden, allowing for a much

larger concentration of brain matter inside the skull. Functionally, the cerebral cortex is

commonly segmented into four key areas; the frontal lobe, parietal lobe, occipital lobe

and temporal lobe, see Figure 2.33.

3Source: Cerebrum lobes.svg (colours modified and relabelled) licensed under CC BY-SA 3.0
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Figure 2.3: Cerebral cortex showing four main lobes; temporal lobe (Blue), optical
lobe (Green), parietal lobe (Purple) and frontal lobe (Brown), Motor areas; primary
motor cortex (Grey), premotor cortex (Red), supplementary motor area (Orange) and

somatosensory cortex (Pink).

The frontal lobe is located in the anterior of the brain and is considered our intelli-

gence and emotional center and home to our personality. It controls important cognitive

skills such as problem solving, long term memory, language skills, judgement, impulse

control, emotional expression and sexual behaviour. At the posterior of the frontal lobe,

located in the dorsal precentral gyrus, lies the motor cortex, see Figure 2.3. The motor

cortex is of primary interest to this thesis as it the area of the cortex responsible for

planning, control, and execution of voluntary movements of the body. The motor cortex

can be sub divided into three main areas; the primary motor cortex, which generates

the signals that control the execution of movement. The premotor cortex, which is re-

sponsible for the preparation of movement, sensory guidance of movement and spatial

guidance of movement, and the supplementary motor area, which is responsible for the

planning of sequences of movement and the coordination of the two sides of the body.

The parietal lobe is located just behind the frontal lobe, above the occipital lobe in

the upper mid section of the brain. The parietal lobe contains the somatosensory cortex

which is essential to the processing of the body’s senses, such as touch, pressure and

pain. The main functionality of the parietal lobe is the integration of sensory information

from various parts of the body. The parietal lobe also plays a part in spatial and visual

perception, for example in the differentiation of size, shape and color and in language

processing.
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The temporal lobe is located at the base section of the brain, it contains the

primary auditory cortex responsible for interpreting sound and the hippocampus associ-

ated with the formulation and storage of memory. The temporal lobe is responsible for

processing sensory information in order to make it understandable and comprehensible,

for example in the case of deciphering meaningful speech from sound and meaningful

visual information from sight. The temporal lobe is also associated with the retention

of language and visual memories, and association of emotion.

The occipital lobe is located at the rear portion of the brain, above the brainstem.

The occipital contains the primary visual cortex and is the visual processing center

of the brain. The occipital lobe is involved in visual-spatial processing including, the

discrimination of movement and recognition of color.

Although the brain accounts for only approximately 2% of the total body weight

in humans, it requires a large portion of the body’s blood supply, approximately 15-

20%. Normal healthy function of the brain is highly dependent upon adequate supply of

oxygen and nutrients, distributed through a network of blood vessels, see Section 2.3.3

on Cerebral circulation. Without oxygen, brain cells die quickly, in the order of minutes

after an oxygen-depriving event. Therefore, any decrease in the flow of blood to the

brain can be catastrophic and may result in severe damage to the brain, resulting in

impairment in function of the affected area.

2.3.3 Cerebral Circulation

Cerebral circulation refers to the movement of blood through the network of blood

vessels which supply the brain. Arteries supply blood from the heart to the brain, rich

in oxygen, glucose and other nutrients while veins carry the depleted de-oxygenated

blood back towards the heart, removing by-products such as carbon dioxide and lactic

acid. The blood supply towards the brain is supplied by two major artery pairs, the left

and right vertebral arteries and the left and right internal carotid arteries, see Figure

2.44. At the base of the brain, these four arteries become interconnected by the bilateral

posterior communicating arteries, forming a circle referred to as the circle of Willis, see

Figure 2.55. The internal carotid arteries mainly supply the brainstem and cerebrum,

while the two vertebral arteries join together forming the basilar artery which primarily

supplies the posterior part of the circle of Willis.

4Source: Arteries beneath brain.png licensed under CC BY-SA 3.0
5Source: Circle of Willis en.svg licensed under Public Domain
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Figure 2.4: The major arteries of the brain.

From this circle, additional arteries branch off including, the anterior cerebral artery

(ACA), the middle cerebral artery (MCA), and the posterior cerebral artery (PCA),

supplying blood to all parts of the brain. The intention of the circle of Willis is to create

redundancy in the cerebral circulation system which helps to maintain blood regulation

to all parts of the brain, even if one of the major arteries becomes occluded.
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Figure 2.5: The Circle of Willis.

Given that regulation of blood to the brain is so important, it is of the utmost

importance that the main cerebral arteries are healthy. Failure to maintain adequate

blood supply to any part of the brain, typically caused by blockage or rupture of an

artery, can lead to a stroke, see Section 2.6.

2.3.4 Electroencephalography (EEG)

Electroencephalography is a technique developed for recording electrical activity of the

brain, the subsequent recording is referred to as an Electroencephalogram (EEG). EEG

measures voltage fluctuations in the brain resulting from neural activity [76]. Neurons

are constantly exchanging ions, for example while attempting to maintain resting poten-

tial and while propagating action potentials, see Section 2.5.2 on neural transmission

process. While the activity of a single neuron is difficult to detect, when neurons are
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active together they cause a propagation effect or wave (moving ionic current) which

can easily be detected by electrodes. When the wave of ions reaches the electrodes, they

push or pull the electrons on its surface, which can be detected and recorded by sensitive

electronic equipment. Recording these voltages over time gives us the EEG., see Figure

2.66.

Figure 2.6: An EEG sample showing gamma waves.

EEG can be recorded in two main ways, from subdural electrodes surgically planted

on the surface or within the substance of the brain, or in a non-invasive manner from

surface placed electrodes which sit on the exterior of the scalp. The amplitude of the

recorded EEG data depends on many factors and can therefore vary between subjects,

however a typical adult human EEG signal is approximately between (10-20) mV when

measured from subdural electrodes and approximately between (10-100) µV in amplitude

when measured from the scalp [21].

EEG frequencies typically range from (1–100) Hz, however most of the interesting

data lies in the lower frequencies, less than 20 Hz, as most of the cerebral signals observed

in the scalp EEG fall within this range [29]. In clinical practise EEG data is typically

described in terms of rhythmic activity and is therefore commonly sub-categorised into

frequency bands known as alpha, beta, theta and delta, see Table 2.1.

Table 2.1: EEG frequency bands and associated functions.

Band Frequency (Hz) Related Activity

Delta <4 adult: slow-wave sleep

Theta 4 - 7 drowsiness, idleness

Alpha 8 - 15 relaxed, eyes closed

Beta 16 - 31 active thinking, alert or stressed

Gamma >32 perceptual functions

Mu 8 - 12 motor function activities

EEG has a wide range of applications in modern medicine, it is used to evaluate

several types of brain disorders including Alzheimer’s disease, epilepsy and narcolepsy.

6Source: Eeg gamma .svg licensed under GNU Free Documentation License
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EEG is also used to quantitatively assess drug intoxication, brain trauma or the ex-

tent of brain damage in comatose patients and stroke patients. More recently EEG is

finding applications in advanced research including brain computer interfacing (BCI)

applications, see Chapter 3 for relevant literature on BCI.

2.4 Peripheral Nervous System (PNS)

2.4.1 Motor Unit Recruitment

A motor unit consists of one motor neuron and all of the muscle fibres it stimulates. A

motor neuron is a specific type of nerve cell that controls the action of a muscle, causing

it to contract or relax. A motor neuron is an efferent nerve, that is, it transmits motor

commands from the brain down the spinal cord and into a muscle to produce movement.

The amount of force exerted by an individual muscle fibre is dependent on two control

principles; rate coding and the size principle.

2.4.1.1 Rate Coding

Rate coding relates to the frequency at which the neural signals (i.e. action potentials

fired by motor neurons) get sent to a muscle telling them to contract [4]. When a single

impulse is fired by a motor neuron it causes the muscle to twitch slightly and then relax

again. If sufficient time elapses allowing the muscle to return to rest before a second

impulse is received, the muscle will simply twitch again in the same manner as before.

However, if the impulse arrives before the muscle has relaxed, it results in a greater

amount of force than the first. This process can be thought of as a summation of muscle

contractions. Hence, when a motor neuron increases its firing rate there is a proportional

increase in the amount of force that the muscle generates. Motor unit recruitment is a

measure of the number of activated motor neurons in a particular muscle, and therefore

is a measure of how many muscle fibres of that muscle are activated. The larger the

recruitment rate the stronger the muscle contraction will be. The maximum voluntary

contraction (MVC) is known as a tetanic contraction which occurs when a motor unit

has been maximally stimulated by its motor neuron, see Section 2.4.1.3.

2.4.1.2 Size Principle

The size principle refers to the systematic order in which motor units are recruited. In

general, motor units are recruited in order of smallest to largest. This is known as the
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Henneman’s Size Principle [238]. The reasoning behind this principle is that smaller

muscles are more fatigue resistant than their larger counterparts and are therefore ac-

tivated when low force is required. It also permits fine control of force at all levels of

output by ramping up to larger forces by recruiting more and more muscle fibres of

appropriate larger size.

2.4.1.3 Maximum Voluntary Contraction (MVC)

The maximum voluntary contraction (MVC) is the upper obtainable force threshold

which a muscle group can produce. This occurs when a muscle’s motor unit is stimulated

at a sufficiently high frequency, disallowing the muscle to return to baseline between

twitches. The measure of MVC is a standardised, objective and sensitive tool for the

measurement of muscle strength and plays an important role as a metric for gauging

recovery during motor function rehabilitation after stroke. An increase in a patients

MVC is a good indicator that they are recovering functional movement of an impaired

limb. For stoke related weakness of the upper extremity, grip strength is often assessed as

an indication of weakness and recovery. MVC is also used to monitor disease progression

for slowly progressive conditions, such as motor neurone disease.

2.4.2 Neuromuscular Fatigue

Fatigue is a common symptom experienced in many disorders including, chronic ob-

structive pulmonary disease, multiple sclerosis, Parkinson’s disease and post stroke [82].

Fatigue is defined as, a progressive loss of the ability to generate maximum force during,

or following repeated or sustained muscle contractions, or the loss of force generation

during a task [78]. Neuromuscular fatigue can be classified as either “central” or “periph-

eral”. Central muscle fatigue can be thought of as an overall sense of energy deprivation

caused by the CNS, while peripheral muscle fatigue is related to local muscle dynamics

and reflects a muscle’s specific inability to do work.

2.4.2.1 Central Fatigue

Central fatigue is caused by a decline in the neural signal driving a muscle group that

results in an overall weakening in force output. Central fatigue is characterised by a

reduction in voluntary effort unrelated to metabolic exhaustion or the indication of

stress such as (elevated heart rate, blood lactate, low blood sugars, etc.). While the

phenomenon of central fatigue is not entirely understood, it has been suggested that
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the observable reduction in neural drive during exercise may be a protective mechanism

of the CNS, designed to protect against organ damage or failure, as might occur if the

intensity of work was allowed to continue [31]. There is also evidence that central fatigue

might be triggered by a reduction of dopamine levels in the brain and an elevation of

serotonin (5-HT) [32].

2.4.2.2 Peripheral Fatigue

Peripheral fatigue results from local muscle dynamics and reflects changing internal

conditions of the muscle. Peripheral muscle fatigue is primarily caused by two mech-

anisms, first, through anaerobic metabolism exhaustion which is an exhaustion of fuel

(i.e. adenosine, triphosphate, glycogen and creatine phosphate) needed to supply the

muscle in order to do work. And second, through the build up of anaerobic metabolic

by-products within muscle fibres including, lactic acid and other acidic compounds which

interfere with the ability of calcium to stimulate muscle contraction [182].

Peripheral muscle fatigue can be difficult to detect because compensation can be

made for declining muscle fibres by increasing the innervation frequency and/or the

active number of motor units. However, this activity causes a detectable change in the

firing patterns of the muscle fibres, which can be detected using an Electromyography

(EMG), see Section 2.4.3.

2.4.3 Electromyography (EMG)

Electromyography (EMG) is a technique for evaluating and recording the electrical ac-

tivity produced by skeletal muscles. As described previously in Section 2.4.1, muscle

contractions are controlled by motor units. From an electrophysiology perspective, when

a motor unit fires, see Section 2.5, an impulse (called an action potential) is carried down

a chain of motor neurons to the muscle it innervates. After the action potential is trans-

mitted across the neuromuscular junction, an action potential is elicited in all of the

innervated muscle fibres of that particular motor unit. The summation of this electrical

activity is known as a motor unit action potential (MUAP). The corresponding electri-

cal activity from the composition of multiple motor units makes up the signal recorded

during an EMG, see Figure 2.7.
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Figure 2.7: Example of EMG record from the forearm using Biopac MP150 acquisition
system, showing A) EMG amplitude against time and B) power spectral density (PSD)

of EMG.

EMG has a variety of clinical and biomedical applications. EMG is used as a di-

agnostic tool for identifying neuromuscular diseases and as a research tool for study-

ing kinesiology, and disorders of motor control. EMG also plays an important role in

motor function assessment during stroke rehabilitation and can be used to monitor re-

covery outcome and to detect peripheral muscle fatigue during intensive training, see

Section 2.4.3.1.

2.4.3.1 Mean and Median Frequencies in Electromyography (EMG) Anal-

ysis

Traditionally EMG is used in the assessment of muscle fatigue and in the analysis of

motor unit recruitment during incremental or constant exercise.

During maximal or prolonged exercise the majority of available motor units are re-

cruited. According to the size principle, the smaller fast twitching muscles are recruited

first. Over time these muscles become progressively fatigued and are subsequently re-

placed with larger slower twitching muscles. The resulting changes in muscle recruit-

ment patterns and subsequent alteration in motor neuron firing rates cause changes in

the EMG signal which can be detected by statistical frequency analysis.

Two of the most commonly used frequency domain features for the assessment of

muscle fatigue in surface EMG signals are the mean frequency (MNF) and median

frequency (MDF) [20, 58, 295].
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The MNF is an average frequency which is calculated as the sum of product of

the EMG power spectrum and the frequency divided by the total sum of the power

spectrum. Mathematically, the MNF is expressed as Equation (2.1).

MNF =

M∑
i=1

fiPi

M∑
i=1

Pi

(2.1)

where, fi is the frequency value of EMG power spectrum at the frequency bin i, Pj

is the EMG power spectrum at the frequency bin i, and M is the number of frequency

bin.

The MDF is a frequency at which the EMG power spectrum is divided into two

regions with equal amplitude. Mathematically, the MDF is expressed as Equation (2.2).

MDF =
1

2

M∑
i=1

Pj (2.2)

where, fi is the frequency value of EMG power spectrum at the frequency bin i, Pj

is the EMG power spectrum at the frequency bin i, and M is the length of frequency

bin.

Both the MNF and MDF provide information regarding how the spectrum of the

EMG signal changes with respect to time. Some investigations have been conducted to

investigate which parameter is more suitable for evaluation of changes in neuromuscular

function [365, 388]. However, findings vary between experiments and results seem to

depend on the form of exercise being measured and the pertaining muscle groups being

examined. For this reason many researchers include a measurement of both MNF and

MDF in their studies.

2.5 Neuron

A neuron is a specialised nerve cell which transmits electro-chemical messages around

the nervous system. There are various different types of neurons, however all neurons

are electrically excitable cells who’s function is to process and transmit information.

The three main neuron types found in the nervous system are; sensory neurons, which

transmit proprioceptive signals from the body’s sensory organs including touch, sound,
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light as well as other stimuli, motor neurons, which transmit signals from the brain and

spinal cord telling the skeletal muscles to contract or relax, and inter-neurons, which

transmit signals between neurons within the same region of the brain.

2.5.1 Cell Structure

All neurons in the brain have broadly the same structure, illustrated by Figure 2.8 7. A

typical neuron consists of three parts, a cell body (soma), dendrites and axon. The soma

is the factory of the neuron, it produces all the proteins for the dendrites, axons and

synaptic terminals. The dendrites are long extensions, often hundreds of micrometres

in length, which branch off the soma giving rise to a complex “dendritic tree” structure.

The function of the dendrites is to conduct electrical messages from other neurons and to

transmit these signal into the cell body. The axon is fundamentally a nerve fibre which

protrudes outwards from the soma, carrying electrical impulses away from the cell’s

body. The function of the axon is to propagate information to different cells including

other neurons, muscles and glands.

Figure 2.8: Structure of a neuron.

Neurons communicate by chemical and electrical synapses in a process referred to

as neuro-transmission, also called synaptic transmission. The fundamental process that

triggers the release of neurotransmitters is an electrical impulse called the action poten-

tial which is generated by exploiting the electrically excitable membrane of the neuron,

see Section 2.5.2.

7Source: Blausen-0657-MultipolarNeuron.png licensed under CC BY 3.0
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2.5.2 Action Potential

An action potential refers to the transient alteration in a cells electrical potential, caused

by the propagation of an impulse along the membrane of that cell. Action potentials

follow a consistent trajectory, first rapidly rising before falling sharply again, see Figure

2.98 for illustration.

Figure 2.9: Illustration of the propagation of an action potential.

Action potentials are generated by special types of voltage-gated sodium (Na+)

channels that are embedded in a cell’s membrane. When no stimulus is present, the

Na+ channels remain closed and the electrical potential across the membrane remains

constant. If a sufficiently sized depolarising stimulus is applied to the cell causing the

cells membrane potential to increase beyond a precisely defined threshold value, approx-

imately −55mV , the Na+ channels begin to rapidly open. This permits an inward flow

of Na+ ions into the cell, further depolarising the membrane and causing more Na+

channels to open. This process continues until all of the available ion channels are open

and the membrane potential reaches the equilibrium potential for Na+, approximately

+30mV . This results in a large increase in the cell’s overall membrane potential. The

rapid influx of Na+ ions causes the polarity of the plasma membrane to reverse, at

which point the Na+ channels close, adopting an inactive state where the channels are

unable to open again even though the membrane potential is still depolarised. Potas-

sium (K+) channels are then activated causing a subsequent outward current flow of

K+ ions, returning the electrochemical gradient to the resting state. The Na+ channels

remain in an inactive state for a few milliseconds after the membrane potential returns

to its initial resting value, approximately −70mV .

8Source: figure-35-02-03.png licensed under CC BY 3.0
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After an action potential has occurred there is a transient negative shift, called the

after hyper-polarization or refractory period, due to additional potassium currents. This

prevents the action potential from travelling back along the path it came. Therefore,

the action potential travels along the length of the axon, in only one direction. When

an action potential reaches the end of a pre-synaptic cell it causes the release of neural

transmitters which cross the synaptic cleft and bind to the post-synaptic cell, see Section

2.5.3.

2.5.3 Synapse

A synapse is a minute junction which separates two nerve cells. Synaptic transmission is

the process by which an electrical impulse is passed between two nerve cells by diffusion

of a neurotransmitter, see Figure 2.109. In the pre-synaptic neuron-membrane there are

chemical neurotransmitters, packaged into small bundles called vesicles. Each vesicles

can contain thousands of neurotransmitter molecules. When the pre-synaptic neuron is

excited by a nerve impulse (an action potential), it causes the vesicles to fuse with the

pre-synaptic membrane and to release their neurotransmitters into the synaptic cleft.

After travelling across the cleft, these neurotransmitters then interact with receptors on

the post-synaptic neuron and are converted back into an electrical impulse. The binding

of the neurotransmitters may influence the post-synaptic neuron in either an inhibitory

or excitatory way, increasing or decreasing the likelihood of the post synaptic neuron

from firing respectively. See Section on synaptic plasticity 2.7.2.1.

9Source: synapse-diag1.svg licensed under CC BY-SA 3.0
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Figure 2.10: A: Presynaptic Neuron, B: Postsynaptic Neuron, 1: Mitochondria, 2:
Neurotransmitters, 3: Receptor, 4: Synapse, 5: Postsynaptic receptors activated by
neurotransmitter, 6: Calcium channel, 7: Exocytosis of a vesicle, 8: Recycling of neu-

rotransmitter.

2.6 Stroke

A stroke, also known as a cerebrovascular accident (CVA), cerebrovascular insult (CVI),

or brain attack, is a sudden loss of brain function caused by cell death, resulting from

an interruption in blood flow. There are two main mechanisms by which blood supply is

restricted to an area of the brain; by arterial haemorrhage, also known as a haemorrhagic

stroke, see 2.6.2, or by arterial occlusion, also known as an ischaemic stroke, see 2.6.1.

While not technically a stroke, a transient ischemic attack (TIA), see 2.6.3, is similar

to a stroke, producing similar symptoms, but usually lasting only a few minutes and

causing no permanent damage.

2.6.1 Ischaemic Stroke

Ischemic stroke is the most common type of stroke, accounting for approximately (85-

90)% of all cases [10, 344]. Ischemic stroke occurs as a result of an obstruction within
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a blood vessel supplying blood to the brain. The underlying condition for this type

of obstruction is atherosclerosis, which is the build up of fatty deposits on the inner

walls of blood vessels. These fatty deposits can cause two types of obstruction, cerebral

thrombosis or cerebral embolism. A cerebral thrombosis refers to the obstruction of

blood flow to the brain caused by a blood clot that formed in the brain itself. In

contrast, a cerebral embolism refers to an obstruction of blood to the brain resulting

from a clot which has formed outside of the brain, usually in the heart and large arteries

of the upper chest and neck, which breaks loose, enters the bloodstream and travels

towards the brain, getting stuck when it reaches a vessel too small for it to pass. See

Figure 2.11 10.

Figure 2.11: Illustration of: (A) healthy artery, (B) formation of a thrombus, and
(C) an embolism.

2.6.2 Haemorrhagic Stroke

A Hemorrhagic stroke is less common than an Ischaemic stroke and accounts for approx-

imately (10-15)% percent of stroke cases. Hemorrhagic stroke occurs when a weakened

blood vessel ruptures. There are two types of weakened blood vessel conditions which

typically cause hemorrhagic stroke, aneurysms and arteriovenous malformations. An

aneurysms is essentially a deformation in a blood vessel or cardiac chamber, which al-

lows blood to pool, causing it to swell. A arteriovenous malformation (AVM) is an

abnormal defect in which arteries and veins are connected. The most common cause of

hemorrhagic stroke is uncontrolled hypertension (high blood pressure).

2.6.3 Transient Ischaemic Attack

While not strictly a stroke, a transient ischaemic attack (TIA) is very serious and results

from the temporary blockage of a blood vessel. A TIA does not typically result in acute

10Source: Created from two separate images, Blausen-0836-Stroke.png, Carotid-artery-stenosis.png
licensed under CC BY-SA 3.0
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infarction however they may be an indicator that an ischaemic stroke is imminent.

According to the American stroke association, approximately 15% of major strokes are

preceded by TIAs. The symptoms of TIA resemble those found early in a stroke and

may include sudden onset of weakness, numbness or paralysis, typically on one side of

the body. Slurred speech or difficulty understanding others. Blindness in one or both

eyes. TIA’s occur rapidly and are short lasting, typically lasting less than five minutes.

2.6.4 Physiological Effects of Stroke

The primary underlying mechanism for loss of function after stroke is neuronal death

in the infarcted tissue but also because of cell dysfunction in the areas surrounding

the infarct. In addition, the function of remote brain regions, including the contralat-

eral areas that are connected to the area of tissue damage can be compromised due to

hypometabolism, neurovascular uncoupling, and aberrant neurotransmission, jointly re-

ferred to as diaschisis [290]. When brain cells die during a stroke, abilities controlled by

that area of the brain such as memory and muscle control are lost. The lasting effects

of stroke are dependent on the type of stroke, the area of the brain affected and the

extent of the brain injury. Each stroke is unique and can effect physical, cognitive and

emotional functioning. As described in Section 2.3.2, the brain is divided into three

main areas, the Cerebrum (consisting of the right and left hemispheres), the Cerebellum

and brainstem. Depending on which of these regions of the brain the stroke occurs in,

the effects may be very different.

If stroke occurs in the Cerebrum, depending on the area and hemisphere affected,

any, or all, of the following body functions may be impaired; movement and sensa-

tion, speech and language, eating and swallowing, vision, cognitive (thinking, reasoning,

judgement, and memory) ability, perception and orientation to surroundings, bowel and

bladder control and sexual ability.

If stroke occurs in the Cerebellum, fine movement, coordination and balance may

be effected. Common issues include; inability to walk and problems with coordination

and balance (ataxia), dizziness, headaches, nausea and vomiting.

If stroke occurs in the brainstem it threatens vital bodily functions such as breath-

ing, blood pressure and heart rate control. The brain stem also contains the brain’s

awareness center, which allows us to stay conscious of the world around us. The most

common effects therefore include problems with; breathing and heart functions, body

temperature control, balance and coordination, weakness or paralysis, chewing, swal-

lowing, and speaking, vision and consciousness.
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In the case of ischemic stroke, where blood circulation is impeded or restricted by

occlusion of one of the main arteries supplying blood to the brain, the effects can differ

greatly depending on the location of the blockage.

The posterior cerebral artery (PCA) supplies blood to the medial occipital lobe

and the inferior and medial temporal lobes. A stroke located in the PCA can cause

visual deficits, typically a decreased vision or blindness (anopsia) in half the visual field

refereed to as contralateral homonymous hemianopia. Significantly larger PCA strokes

may also cause contralateral hemiparesis and hemisensory loss.

The middle cerebral artery (MCA) is the largest vessel branching off the internal

carotid artery (ICA) and is the most common site of stroke [279]. The MCA delivers

blood to the regions of the brain which are responsible for motor control for the face,

hand and upper extremity. A stroke located in the MCA can cause dysfunction in a

large portion of the forebrain sensor-motor apparatus, including the frontal and parietal

cortex and/or sub-cortical structures, resulting in deficits in motor function of the upper

extremity.

The anterior cerebral artery (ACA) supplies the anterior medial portions of the

frontal and parietal lobes. Strokes occurring in the ACA are uncommon and can easily

be misdiagnosed, they usually result in contralateral leg weakness and sensory loss of

the lower extremity.

2.6.5 Motor Impairment

Motor impairment can be be regarded as a loss or limitation of function in muscle

control or movement. Movement impairment is categorised by severity, from weakness

in an individual limb, movement weakness on one side of the body (hemiparesis) or the

inability to move one side of the body (hemiplegia). Motor impairment typically occurs

from damage to the motor cortex region of the cerebrum cortex. Because of the contra-

lateral arrangement of the brain hemispheres, each cerebral hemisphere of the primary

motor cortex contains a motor representation of the opposite (contra-lateral) side of the

body. Injury to the left hemisphere therefore effects movement on the right hand side

of the body whereas injury to the right hemisphere effects movement on the left hand

side of the body. However, motor function can also be affected if stroke occurs in parts

of the brain related to motor control, such as the cerebellum or brainsteam. The most

severe form of motor impairment is known as locked-in syndrome (LIS) which results

from a lesion to the brainstem, most frequently an ischemic pontine lesion [74].
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2.7 Recovery After Traumatic Brain Injury: Mechanisms

and Principles

The mechanisms of recovery after stroke are complicated. In general, motor recovery

depends on the plasticity of neurons and circuits within the motor system [187]. Critical

recovery after stroke is most prominent during the first 30 days but continues for at least

6 months [180, 264, 384] and is dependent on the degree of tissue loss, the preservation

and/or engagement of neuronal networks which serve as substrate for the restoration of

lost brain functions [393].

It is suggested that functional recovery involves 3 overlapping phases: first, reversal

of diaschisis, activation of cell genesis, and repair, commonly referred to as spontaneous

recovery; second, modification of existing neuronal pathways; and third, neuroanatom-

ical plasticity leading to the formation of new neuronal connections. The second and

third phases constitute the basic operations of the process known collectively as neural

plasticity, which is also involved in normal learning. For this reason it is widely recog-

nised that functional recovery after CNS injury is to an extent a relearning process.

2.7.1 Spontaneous Recovery

The brain has an innate capacity to repair itself after injury without intervention,

through a process known as spontaneous recovery [270]. The principle theories of why

spontaneous recovery of function occurs during the first few weeks post-stroke include:

tissue reperfusion, edema reduction, reversal of diaschisis and neurogenesis [269]. In

contrast, complications arising from secondary degeneration described below might help

explain why spontaneous recovery does not often lead to complete recovery.

2.7.1.1 Edema Reduction

Edema (swelling) surrounding the lesion may disrupt nearby neuronal functionality.

Some of the early recovery observed in stroke may be due to reduction of edema in the

area surrounding the infarct [208].

2.7.1.2 Tissue Reperfusion

Reperfusion injury occurs when blood supply returns after a period of ischemic stroke

causing inflammation and oxidative damage through the induction of oxidative stress
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rather than restoration of normal function [47]. Early recovery might be related to

metabolic recovery and the reduction of tissue inflammation [23].

2.7.1.3 Reversal of Diaschisis

Diaschisis is a sudden loss or change of function in a portion of the brain connected

to a remote, but damaged, brain area. There is growing evidence that recovery from

diaschisis may depend on neuronal reorganisation and reconnection [332].

2.7.1.4 Neurogenesis

Neurogenesis is defined as the process of generating new neurons from precursor cells.

In response to an acute ischemic insult, endogenous cells inside the cerebral cortex have

been found to be able to divide at as early as 24-48 hours after ischemia to generate

daughter neurons in the penumbral cortex [126].

2.7.1.5 Secondary Degeneration

Secondary degeneration is a form of degeneration occurring in nerve fibres as a result of

their division. Secondary degeneration in the central nervous system involves indirect

damage to neurons and glia away from the initial injury. Studies shows that secondary

degeneration occurs and deteriorates not only in the fibre tract distal to but also proximal

to a subcortical cerebral infarct at least 12 weeks after stroke onset, and may hamper

neurological recovery [111].

2.7.2 Neural-plasticity

Until recently it was thought that developmental plasticity is mainly a characteristic

of early life and that once matured the structure of the brain is fixed and immutable.

This conventional view sees the brain as made up of a group of specialized processing

modules, genetically hard-wired to perform specific functions, each developed and refined

over millions of years of evolution. It was also believed that we were born with a finite

number of neural cells and when a cell died no new cell could grow.

However, pioneering research in neurology in the late 60’s and early 70’s turned this

notion on its head. Paul Bach-y-Rita, an American neuroscientist was one of the first

to seriously study the idea of neuroplasticity and to introduce sensory substitution as a
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tool to treat patients suffering from neurological disorders. The first sensory substitution

system was developed by Bach-y-Rita et al. in an attempt to allow congenitally blind

individuals to see [373]. The result of this experiment showed that a person who has lost

the ability to retrieve data from the retina, in this case due to underdevelopment of the

optic nerve (optic nerve hypoplasia), can still see subjective images by instead using data

gathered from additional sensory pathways such as touch or audition. The results of this

study showed for the first time that the brain was indeed plastic and could rewire itself,

in this case to reroute tactical vibrations representing images to the visual cortex in the

brain. Bach-y-Rita went on to develop another device which enabled patients with dam-

aged vestibular nuclei to regain their ability to remain balanced, by using an electrical

stimulator placed on the tongue which reacted to a motion sensor (accelerometer) affixed

to the patient’s head. However, after repeated use, it was discovered that on removing

the device some residual effects remained and the patient could remain balanced after

the device was switched off. Bach-y-Rita hypothesized that the vestibular system was

disorganized and was sending random “noisy” signals from the damaged tissue which

was in turn blocking any signals sent by the remaining healthy tissue. The machine thus

helped to reinforce the healthy signals and helped recruit new neuronal pathways in the

brain, which with extended repetition became stronger. This idea, that the brain can

reorganize and restructure itself is the fundamental principle of neural-plasticity.

Today, brain plasticity is well established and is the neurobiological foundation for

recovery after brain injury. In general, neural-plasticity is defined as the ability of the

brain to change its structure and/or function in response to internal and external con-

straints and goals [173]. This ability to adapt in response to the changing environment is

the most fundamental property of the nervous tissue and constitutes the basis for motor

learning. As such, neural plasticity represents an intrinsic property of the nervous sys-

tem which enables modification of function and structure in response to environmental

demands via the strengthening, weakening, pruning, or adding of synaptic connections

(see Section 2.7.2.1 on synaptic plasticity) and by promoting neurogenesis [282].

2.7.2.1 Synaptic Plasticity

Synaptic plasticity refers to the malleability of a synapse, that is the ability of the synapse

to change the connection fidelity between two neurons. A theory which describes the

fundamental mechanism for synaptic plasticity was proposed by Hebb [138, 139], in

which there is some growth process or metabolic change which occurs in a synaptic

pathway as a result of the pre-synaptic neuron repeatedly or persistently exciting the

post-synaptic neuron.
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The degree of the voltage change in the post synaptic neuron is what we mean by

the strength of the connection. Strengthening of the synapse is referred to as long-term

potentiation (LTP), whereas weakening of synapse strength is referred to as long term

depression (LTD). There is a critical window for synaptic plasticity with a peak time for

changes in synaptic strength being 20 milliseconds before and after an action potential.

If the pre-synaptic neuron fires before the post-synaptic neuron, within the preceding

20 milliseconds, LTP occurs. If the pre-synaptic neuron fires after the post-synaptic

neuron, within the following 20 milliseconds, LTD occurs. This process is known as

spike timing dependent plasticity [229].

The best example of the underlying biochemical mechanics behind LTP and LTD is

synaptic plasticity in the hippopotamus neurons and is due to glutamate receptors. Glu-

tamate is the main excitatory neurotransmitter in the brain, which activates two types

of post-synaptic receptors, AMPA and NMDA that play crucial roles in hippopotamus

synaptic plasticity. Both AMPA and NMPA receptors are ligand-gated ion channels and

have unique properties that sub-serve different phases of synaptic plasticity. The AMPA

receptor is permeable to Potassium (K+) and Sodium (Na+) and it is this inward flux

through the AMPA receptor which depolarises the cell. In contrast, the NMDA recep-

tor is blocked by magnesium and negative voltages and therefore does not significantly

contribute to post synaptic depolarization. However, once the cell is depolarised, mag-

nesium is displaced and then ions can flow through the NMDA receptor. An important

property of the NMDA is that it also allows calcium to flow through it. It is the nature

of this calcium current which causes spike timing dependent plasticity.

If the pre-synaptic neuron fires first it becomes depolarised and releases glutamate

which binds to the AMPA receptors at the post-synaptic neuron, causing it to depolarise.

As the cell becomes depolarised, NDMA receptors become unblocked and subsequently

glutamate binds to them, causing a large calcium influx. In contrast, if the post-synaptic

neuron fires first, it becomes depolarised, the pre-synaptic neuron then fires and releases

glutamate. When the glutamate reaches the post-synaptic neuron it is still in the tran-

sition of re-polarising and therefore is at a lower voltage state. This means there are

fewer NDMA receptors available to bind with and leads to a reduced calcium influx. In

the cell, AMPA receptors are constantly being recycled though two process, exocytosis

and endocytosis. A calcium influx large enough to cross a critical threshold will acti-

vate calcium dependent protein kinases which alter the recycling of AMPA receptors.

In particular, they increase the exocytosis of them, they also change their structure

and make them more permeable. This means that when glutamate crosses the synapse,

more AMPA receptors are there to open, hence more current flows through and the

change in potential is increased. In contrast, a lesser calcium in flux does not cross the
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critical threshold necessary to activate the kinases and instead only activates protein

phosphatase kinases, these again alter the recycling of AMPA receptors but in the op-

posite way, increasing the endocytosis and therefore decreasing the number available at

the post-synaptic terminal. This means that when glutamate again crosses the synapse,

fewer receptors are open, less current flows through and the change in potential de-

creases. Thus, a large calcium influx leads to LTP and a small calcium influx results in

LDP.

The operations of increasing and decreasing synaptic strength caused by coordinated

neuronal firing is known as Hebbian learning, Hebbian plasticity or associative plasticity

and are responsible for the fundamental neural plasticity of the brain.

2.7.2.2 Cortical Representations and Plasticity

Cortical stimulation mapping (CSM) is a type of electrocorticography used to localise

functional areas in the brain through direct electrical stimulation of the cortex. CSM is

used to determine which areas of the cortex are related to different body parts. Although

not the first neurologists to utilise this technique, pioneering research by Penfield in the

early 19th century illustrated that the primary motor and somatosensory cortices contain

organised maps of the body. Penfield found that, although there were small differences

between individuals due to variations in brain structure, the overall organization of these

maps was basically the same across healthy individuals. Furthermore, he discovered

that these maps were topologically ordered, that is, the body is represented in a highly

structured fashion, with adjacent body parts mapping precisely onto adjacent areas

of the brain. This is known as the cortical homunculus map, which is how the brain

internally represents the body, see Figure 2.12.11. The size of the area devoted to any

particular body part in the cortex is proportional to the amount of control that the

primary motor cortex has over that part of the body. Therefore, the functional areas of

the cortex occupied by both the hand and fingers is much larger than the areas acquired

by the trunk or legs, since their muscle patterns are less complex.

11Source: 1421-Sensory-Homunculus.jpg, licensed under CC BY-SA 3.0
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Figure 2.12: The cortical homunculus map.

Prior to the 1960’s there was general consensus among neuroscientists that the struc-

ture of the brain after childhood was relatively immutable. This belief partially stemmed

from the fact that there was relative homogeneity found in the cortical maps of different

people. However, in the late 60’s indisputable evidence of the contrary was proposed.

Merzenich et al. [287, 288] found that the observed cortical maps of a monkey who had a

large portion of its hand’s peripheral nerves cut and allowed to regenerate, did not match

expectations. Aware that the peripheral nervous system was capable of regeneration, it

was assumed that some neurons would inevitably “rewire” themselves incorrectly to the

wrong axons and would therefore stimulate the wrong nerve. However, after remapping

the monkeys hand it was found that the resulting map was normal, with no evidence

of cross wiring as expected. They concluded from these results that the brain must be

capable of “normalizing” itself when stimulated with an irregular input and therefore

that the adult brain must be plastic.

In addition to being re-organisable, Merzenich et al. went on to show that cortical

maps are highly dynamic and that body parts are in constant competition for mapping

real estate. They highlighted this property through an experiment in which they severed

the median nerve of a monkey’s hand to investigate what the resulting cortical map would

look like when all input was removed. After two months, the hand was remapped. It

was found that when the middle of the hand was touched no activity occurred at the

median nerve location, however surprisingly when the sides of the monkey’s hand were

touched, activity was found in the median nerves location. They concluded that cortical
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remapping must have occurred and that the maps for the radial nerve and the ulnar

nerve had remapped themselves, spreading out and infringing on the dormant median

map, which no longer received any input [241].

2.7.2.3 Enhancement of Post-injury Plasticity

In the acute rehabilitation stage, after a patient has been stabilised, emphasis is put on

maximising the natural recovery process of the brain. During this stage, specific deficits

are identified and treatment is formulated to improve weakened function within these

areas. As the rehabilitation process progresses focus is shifted towards replacing skills

and functions that have been lost.

Plasticity is involved not only for the formation of new neural connections but also

in the strengthening of existing ones. The goal of research rehabilitation is to maximize

the functional benefits of post stroke motor rehabilitation through the development of

interventions which promote motor learning related neuro-plasticity. While there are

many factors which can promote plasticity, studies suggest that motor recovery reha-

bilitation programs should focus on the practise of meaningful, intense, repetitive

exercises in an enriched environment.

Meaningful/task specific rehabilitation

There is strong evidence to support the notion that exercise therapies which focus on

the practise of meaningful activities taken from everyday life improve recovery in stroke

survivors [312, 361].

Intensity of rehabilitation

There are numerous studies which promote the importance of exercise intensity, suggest-

ing that higher rehabilitation intensity is associated with better functional improvement

at discharge for stroke patients [169, 196].

Repetitiveness of rehabilitation

There is strong evidence to suggest that there is a dosage dependency required to pro-

mote optimum plasticity and therefore re-learning after stroke. Studies designed to

investigate neural-plasticity in animal models of stroke often require hundreds of daily

repetitions of functionally-important task practice [183, 271, 272]. Similarly, studies in

humans designed to investigate motor learning also employ large amounts of practice,

although usually for fewer sessions. The number varies across studies but typical ranges

are between 300 and 800 repetitions per session [48, 106]. A study by Huang et al
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[154] on the impact of timing and dose of rehabilitation delivery on functional recov-

ery of stroke patients showed that there is a dose-dependent effect of rehabilitation on

functional improvement of stroke patients for the first 6 months post-stroke.

Enriched environment

Hebb (1947) first described the concept of enriched environments after noticing quali-

tative differences in the behaviour of rats which were kept in cages in his laboratory,

to those that he brought home for his children to play with. In the early 1960s studies

by Nithianantharajah et al. [265] and Rosenzweig et al. [308] provided some context

to Hebbs observation by providing evidence that changes in the complexity of an en-

vironment and interaction in that environment can cause biochemical and structural

changes in the brain. Since then there have been numerous studies employing enriched

environments to study the mechanisms of experience-dependent plasticity in the central

nervous systems of animals, a through review of which was conducted by Nithianan-

tharajah and Hannan [265]. Studies with stroke patients also highlight the significance

of the richness of the environment for promoting activity. Studies with stroke patient

which assessed improvement in physical, cognitive and social activity relating to envi-

ronment was conducted by Janssen et al. [166]. The results of these preliminary trials

suggest that patients who were exposed to an enriched environment were more likely to

be engaged in any activity compared with those in a non-enriched environment.

2.8 Summary

Stroke is a complicated and devastating disease, the result of which causes severe dis-

ability and suffering. Stroke is also a prevalent disease due to its age related risks and

dependencies. Currently, the best intervention for stroke is taking precautions as to its

prevention. While this approach will no doubt help stem the incident of stroke, preven-

tive measures are not a cure for stroke, without which future strokes are inevitable, nor

does it alleviate the suffering of those misfortunate enough to succumb to stroke. The

perspective taken in this thesis is to treat stroke as a problem to be fixed, the effects of

which are to be reversed, in an attempt to return the stroke sufferer back to their healthy

normal self. As such, it is important to understand the effects of stroke on the brain and

the innate mechanisms, primarily neuroplasticity, through which the brain can recover.

The next chapter describes modern technology derived solutions for evoking, promoting

and enhancing such effects for the recovery of healthy brain function after stroke.
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Literature Review

3.1 Introduction

One of the most exciting changes occurring today is the proliferation of embedded devices

(i.e. special-purpose computing systems), their rapid diffusion into everyday life and

the congruent development of large-scale distributed systems. Embedded systems have

extensive applications in a wide variety of markets including consumer, commercial,

industrial, automotive and healthcare. As a result, today powerful computers exist all

around us and in the most unexpected places; smart watches, smart phones and now even

glasses are packed with tiny advanced sensors that can tell us everything from our global

geographical position to where the nearest bus stop is. In addition, innovations like the

Arduino1, an open-source electronic prototyping platform based on easy-to-use hardware

and software, have bought such technology to the mainstream, allowing anybody to

develop powerful digital devices and interactive objects that can sense and control the

physical world around them. There is also an abundance of low cost sensors available

to the enthusiast, which in combination with a micro-controller can be used to detect

location, orientation, movement, light, humidity, temperature and proximity, among

various other things. Advances in telecommunications technology have made the world

a much smaller place. The Internet has evolved from its humble beginning as ARPANET

(Advanced Research Projects Agency Network) [159], to a highly sophisticated, global

collective network of billions of machines. Millions of kilometres of cables now connect

even the most remote parts of the globe, creating a super information highway, teeming

with electrons carrying information close to the speed of light to remote corners of the

world. That is not to mention the unfathomable amount of wireless signals constantly

pulsating into space, with the purpose of being redirected to the other side of the world

1Arduino: https://www.arduino.cc/
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by a network of satellites in low earth orbit. Currently we are on the verge of yet

another computing revolution, that is the convergence of embedded systems and the

internet, commonly referred to as the Internet of Things (IoT). The IoT refers to the

network of physical objects or “things” embedded with electronics, software, sensors, and

network connectivity, which enables these objects to collect and exchange data [120]. It

is estimated there is approximately 25 billion embedded devices currently connected

to the Internet and reports by Cisco predicts that by the year 2020 this number will

have risen to 50 billion devices [100]. Innovations such as these have the capacity to

revolutionise the way in which we perceive and ultimately utilise technology.

From the perspective of healthcare, this emerging technology allows for the develop-

ment of cost effective solutions and tools which can augment the efforts of conventional

rehabilitation programs, reducing the burden on healthcare specialists and helping to

diffuse expert knowledge into semi-automated rehabilitation programs. Wearable sen-

sors can help monitor and access patient progress in a non-invasive and cost effective

way. Ubiquitous embedded systems can assist in developing ambient intelligent environ-

ments, that is, electronic environments that are sensitive and responsive to the presence

of people. Low cost micro-controllers and electronic prototyping platforms allow for the

rapid, cost effective development of prototype rehabilitation tools and systems. The IoT

grants these systems the ability to seemingly tap into an enormous library of knowledge,

to better make decisions, to interact with another system autonomously, and to confer

with human specialists. However, despite the recent advancement in rehabilitation tech-

nology and the importance of reducing the burden on healthcare services, traditional

low-tech approaches for stroke rehabilitation still remain dominant. The slow uptake of

technology in the rehabilitation field is due to many factors. The need to often physi-

cally interact with the patient for assessment and treatment purposes, and the need to

objectively measure physical performance both present significant technical challenges

for the developers of rehabilitation technologies [1]. In addition to, and arguably more

importantly than replicating the physical touch of the therapist, is maintaining the

psychological aspect of therapy. The therapist plays an extremely important yet often

under appreciated psychological role in the rehabilitation process. During rehabilitation

therapy they constantly monitor and assess the patient’s physical and mental state and

when required they stimulate and motivate the patient through feedback coaxing meth-

ods, designed to elicit additional effort or engagement. Developing technology which can

deliver comparable feedback during therapeutic training is an immensely difficult chal-

lenge. Additionally, there is a need to stimulate industrial developments in the field of

technology for healthcare, in an attempt to strengthen interest from small and medium

enterprises [362]. To achieve this goal there is a need to demonstrate the potential and

usefulness of assistance technology (AT) towards improving the quality of life of disabled
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people and towards developing new approaches to delivering healthcare. This process

starts here, through the action of research which creates the necessary studies that

can build evidence as to the effectiveness and utility of such technology for healthcare

applications.

This chapter briefly discusses current innovative efforts already under-way to tackle

such problems and towards gaining acceptance in the use of such technology for reha-

bilitative purposes. This chapter also discusses current challenges facing the advent of

such technology for use in the home setting and highlights key areas where improve-

ment needs to be made. The following literature review is subdivided into 4 key areas

of interest which are prevalent throughout this thesis. The development of wearable

sensors, specifically the design and application of sensor gloves, for the augmentation of

functional hand recovery after stroke, see Section 3.2. The role of extrinsic feedback

on implicit motor learning and its capacity for enhancing participant motivation and

self-efficacy after stroke, see Section 3.4. An investigation of robotic movement de-

vices and their control systems for use post stroke, see Section 3.3. Finally, a review

of the most prominent neurofeedback solutions currently being employed for use in

chronic stroke rehabilitation, see Section 3.5.2.

3.2 Sensor Gloves

A sensor glove, also known as a data glove, cyber glove, or historically as a wired glove, is

an interactive device resembling a glove worn on the hand which facilitates tactile sensing

and recording of motion pertaining to the hand and fingers. A considerable amount of

research effort has been devoted to developing sensor glove technologies for studying

interaction and manipulation. Sensor glove systems for hand movement acquisition

have been in development since the late 1970’s and to this day continue to engage a

growing number of researchers. In fact, recently there has been renewed interest in

devices for hand motion capture with many developers recognising their potential to

compliment the re-emergence of virtual reality headsets, spearheaded by devices such as

the Oculus Rift(Oculus VR, California, USD)2. As a result, there has been a vast range

of devices developed over the last 3 decades, more than could possibly be described

here concisely. Instead, the following section consists of a review of the most prominent

data gloves studies, including some of the pioneering data gloves systems (Sayre and

MIT-LED) which brought the development of such devices into the mainstream. After

this, focus is directed toward describing more recent sensor glove systems which focus

on functional hand recovery after stroke. For a more general and thorough survey of

2Oculus Rift: https://www.oculus.com
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glove-based systems the reader is directed to the work of Sturman and D. Zeltzer [351],

Zhou and Hu [416] and Dipietro et al. [86].

3.2.1 Methods for Position Tracking

Accurate assessment of motor abilities is important in selecting the best therapies for

stroke survivors. Sensor glove-based systems represent one of the most important efforts

aimed at acquiring hand movement data. The process of tracking a hand generally

involves calculating some of the properties of the hand (i.e. position, orientation and

pose). There are several documented methods for position tracking when using glove-

based input [351], the most common being; optical tracking [75, 115, 337, 389], magnetic

and inertial sensing [87, 103, 189, 190, 293], mechanical sensing [46, 280, 358, 369] and

acoustic tracking [274, 275]. In practise, a combination of these methods are often used

for hand/finger tracking as each solution has its own advantages and disadvantages.

3.2.1.1 Mechanical Sensing

Conceptually, mechanical sensing is perhaps the simplest approach to position tracking

and typically involves using some form of direct physical linkage between the target

and its environment. For finger tracking this typically involves using electromechanical

transducers such as potentiometers or shaft encoders, positioned at the fulcrum point

between two articulated segments of the finger (i.e. adjacent phalanges of the finger).

As the finger bends, the articulated segments change shape and the transducers move

accordingly. The subsequent electrical output of the transducer can then be sampled

and used to estimate the joint position of each segment of the finger.

Finger tracking of this kind is typically quite robust and cheap to design. However,

it is difficult to develop a sensor glove based on these principles which is adjustable for

multiple users with various sized hands, as the measurement is derived from mechanical

components which need to be carefully positioned at the intersection of each joint.

Adjustable devices have been developed of this kind, however the added mechanisms

required to achieve this often clutter the device, making it cumbersome and difficult to

use. Furthermore, such devices are often aesthetically disconcerting, which can have a

negative impact psychologically on patient compliance with therapy.
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3.2.1.2 Optical Tracking

Optical tracking typically refers to one of two methods used for real-time spatial track-

ing of an object, either by tracking visual markers, typically coloured patterns, see

Figure 3.13, or alternatively using the silhouette method, see Figure 3.24, which detects

objects by their outline using an edge detection approach.

Marker based optical tracking relies on the ability to triangulate the three dimen-

sional position of a marker in real-time with respect to a camera’s frame of reference.

This type of tracking system is robust and useful when the interaction space of an object

is known or fixed and when there is sufficient computation power available to process

large numbers of images quickly. To be useful for real-time hand tracking, an optical

tracking solution needs to be able to process camera frames and track the hand, at a

minimum of 30 frames per second.

Figure 3.1: Example of a colour glove used for optical marker based tracking.

A great deal of work has also been done on natural gesture tracking, i.e. tracking

the naked hand without a glove. This is typically achieved by detecting the silhouette

of a hand through edge detection [206] or template matching [346]. While this form of

hand tracking allows for the most natural user experience, tracking the hand without any

invariant tracking features is a complicated task. Camera systems are extremely sensitive

to environmental changes such as variation in natural light, the casting of shadows by

other objects, the reflection of light off surfaces, all which can have a dramatic affect on

the observed color of objects in view. The observed shape (silhouette) of the hand also

changes dramatically as its ordination is changed, making it difficult to identify. Hence,

a robust model is required to track the hand as it moves around the work space.

3Image:Color glove, source: MIT’s Computer Science and Artificial Intelligence Lab (CSAIL), [389]
4Image:Silhouette of hand, source:[337]
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Figure 3.2: Example of silhouette method used for hand detection.

The major drawback of camera based systems is that they are restricted to the space

in which the cameras are placed. Additionally, optical tracking systems suffer from visual

occlusion of the fingers or markers, that is the obscuring of an object as it moves behind

another object, due to the cameras fixed reference position [99, 190]. To solve this

problem, additional cameras, each with a unique perspective of the workstation can be

used [147, 376]. However, adding additional cameras increases the amount of processing

required to detect objects and given constrains, might not be a feasible solution.

3.2.1.3 Inertial & Magnetic Sensing

An alternative sensing method used in sensor gloves is based on local magnetic actua-

tion. The availability of Micro Electrical Mechanical Systems (MEMS) technology has

resulted in the development of tiny, low-cost Inertial and Magnetic Measurement Sys-

tems (IMMS) devices that can be easily attached to textile clothing without impairing or

restricting movement. An IMMS is an electronic device that consists of a combination of

different inertial sensors which measures orientation and gravitational forces. An IMMS

typically consists of a combination of accelerometers, which measure changes in accel-

eration, gyroscopes, which detect changes in rotational attributes including pitch, roll

and yaw and magnetometers, which assist calibration against orientation drift. IMMS

are ideal for measuring motion in compact environments where space and weight are of

concern, they are self-contained, they do not require line-of-sight for measurement and

are not sensitive to interference from electromagnetic fields or ambient noise. They also

have extremely low latency (typically a couple of µs) and can be measured at relatively

high rates (thousands of samples per second). For this reason they are an excellent

means for measuring the position and rotation offset of the hand.
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However, to measure finger movement using this technique would require three sep-

arate IMMS for each finger and another 2 for the thumb, totalling 14. Suitable devices

for this task, that is IMMS which are small and light enough are expensive. Designing

a nimble sensor glove suitable for use with a patient suffering from movement weakness,

housing 14 IMMSs, not to mention the additional peripherals and supporting electronics

required for their function, as well as a micro-controller, power supply and communica-

tion device, would be a difficult task. In addition, although each IMMS can be sampled

at relatively high rates, the computational speed required to sample 14 IMMS at a suffi-

cient sample rate to attain fluid motion capture is high. Another disadvantage of IMMS

for tracking is that they typically suffer from accumulated error. This is because the

current estimation of position is based on previous estimation of position, therefore, any

errors in measurement regardless of how small are accumulated. This leads to a drift in

position measurement (i.e. an increasing difference between where the system thinks it

is located and its actual location) [266].

3.2.1.4 Acoustic Tracking

Acoustic sensors use the transmission and sensing of high frequency audio signals to track

motion. Acoustic ranging systems typically operate by timing the flight duration of a

brief ultrasonic pulse. In practise, this is accomplished through a series of transmitters

and receivers, where the transmitters (speakers) are usually positioned on the object to

be tracked, in this case the glove itself, while the receivers (microphones) are positioned

around the tracking environment, in this case a display device such as a TV or monitor.

The transmitters take turns transmitting a short radio burst, which are subsequently

detected at different times by the receivers, depending on their distance away from the

signal source. Then using a triangulation algorithm, the relative position of the glove

with respect to the display device can be determined.

Acoustic tracking may be appealing in situations were both optical and inertia/-

magnet sensing are not practical. For example, magnetic tracking is easily disturbed

by metal objects, which might be common in the application domain. Likewise, optical

tracking is sensitive to background lighting and suffers from occlusion [80]. While this

technique has be used to estimate the location and orientation of the hand, and in the-

ory could also be used to estimate the position of each of the segments of the finger, in

practise the latter is not feasible due to physical properties of ultrasound.

In general, acoustic tracking faces a number of problems for hand tracking. Acoustic

sensing is sensitive to environmental dynamics as it is subject to reflection and occlusions
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[335]. Acoustic sensing also suffers from high latency due to fly time delay and as a results

can only be sampled at a limited rate [274].

3.2.2 Early Sensor Glove Technology

3.2.2.1 Sayre Glove

The Sayre glove was designed in 1977 by Daniel J. Sandin and Thomas Defanti and is

often cited as the first sensor glove [351]. The Sayre glove was designed to be an inex-

pensive, lightweight glove to monitor hand movements and provided to be an effective

method for multidimensional control, such as controlling a set of virtual sliders on a

computer screen. The device used light-based sensors with flexible tubes with a light

source at one end and a photocell at the other, an idea credited to Rich Sayre, hence the

name of the glove. As the fingers were bent, the amount of light that hit the photocells

varied, thus providing a varying voltage proportional to the bend. This voltage could

then be sampled and digitalised and used as an input for controlling a user interface.

Figure 3.3: Photograph of the Sayre Glove.

3.2.2.2 MIT LED Glove

The MIT-LED glove, developed in the early 1980s by the architecture machine group of

the MIT Media Laboratory, as part of a camera system for motion tracking of the body

and limb position for real-time computer graphics animation. The glove used a series of

LEDs mounted on a cloth glove for position tracking. This glove is one of the very first
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designed for motion capture, however the device was not sufficiently developed to gain

acceptance as a practical technology and the glove was only used briefly [351].

Although no longer using an LEDs based glove for motion capture, the MIT group

have more recently developed an inexpensive vision based motion capture glove system

that facilitates 3-D articulated user-input using the hands [389], see Figure 3.1. The

system uses a single camera to track a hand wearing a fabric glove that is imprinted

with a custom coloured pattern. The pattern is designed to simplify the pose estimation

problem. Using computer vision techniques such as a nearest neighbour approach, the

hands are tracked at interactive rates. The intention of this glove is to be a foundation

for new interactions in modelling, animation control and augmented reality.

3.2.2.3 Digital Entry Data Glove

The digital entry data glove [124], a novel sensor glove developed by Gary Grimes et al.

in 1983, was the first glove to integrate multiple different sensor modules. It consisted

of touch or proximity sensors for determining whether the user’s thumb was touching

another part of the hand or fingers and four knuckle-bend sensors for measuring flexion

of the joints in the thumb, index, and little finger. The glove also has two tilt sensors

for measuring the tilt of the hand in the horizontal plane and two inertial sensors for

measuring the twisting of the forearm and the flexing of the wrist. This glove was

intended for creating alphanumeric characters from hand positions defined in the single

hand American sign-language alphabet manual5. Hand gestures were recognized using

hard-wired circuitry, which mapped 80 unique combinations of sensor readings to a

subset of the 96 printable ASCII characters.

3.2.3 Commercialised Sensor Gloves

3.2.3.1 VPL DataGlove

The first commercially available data glove appeared in 1987 and was sold by VPL Re-

search Inc. (VPL Research, Inc., Redwood City, CA), referred to as the VPL DataGlove.

The DataGlove was an improved version of a data glove developed by Zimmerman [417],

albeit with major improvements. The DataGlove was based on the 6502 microcontroller

(MOS Technology, Inc., Pennsylvania, USA.), used fibre optics instead of light tubes as

its predecessor had and carried multiple sensors. For the first time it allowed real time

tracking of the hand, including 10 individual finger joints measurements (2 per finger

5Signal Hand American Manual Alphabet: https://en.wikipedia.org/wiki/American manual alphabet
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and the thumb), and 6 degrees of freedom of the hands position and orientation, about

the wrist. The DataGlove also did not rely on line of sight observation, was much lighter

than its predecessors, was comfortable to wear and unobtrusive to the user. Commer-

cialisation of the DataGlove by VPL Research [351], its low cost and multiple sensors

options, lead to its widespread use by research institutions around the world. Inspired by

the success of the DataGlove a number of similar devices were developed, including the

ill-fated Nintendo (Nintendo Co., Ltd., Kyoto, Japan) Power Glove, see Section 3.2.3.2.

Figure 3.4: Photograph of the VPL DataGlove.

3.2.3.2 Power Glove

The Power Glove was developed as a control input for the Nintendo entertainment sys-

tem (NES) and was commercialized by Mattel Intellivision (Mattel, Inc., El Segundo,

CA) in 1989. It was one of the first attempts to bring sensor gloves technology into the

mainstream and had it been successful, sensor gloves might today be more common. Un-

fortunately, the Power Glove was criticized for its imprecise and difficult-to-use controls

and was a commercial failure.

The Power Glove system worked using two ultrasonic speakers (transmitters), which

were positioned on the glove body and three ultrasonic microphones (receivers) which

were placed around the TV monitor. The transmitters take turns transmitting short

bursts of inaudible sound (40 Khz), which the receivers pick up at various different times

as a result of the difference in path length between each of the sources relative to each

of the receivers. Triangulation is then used to determine a rough location of the sensor

glove in relation to the TV.
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Figure 3.5: Photograph of the Nintendo PowerGlove.

A research paper by Williams and Green illustrated how with slight modification

the Power Glove could be interfaced with a Macintosh computer, allowing the Power

Glove to be used instead of the Macintosh mouse [397]. This paper also referenced a

supplementary software demo which was demonstrated using the Power Glove to manip-

ulate a virtual three dimensional cube. The aspirations of this work was to increase the

accessibility of the device to the academic community in the hopes of enabling further

research, potentially for healthcare applications. However, to the authors regret, no fur-

ther publications regarding the use of the Power Glove were found during this literature

review.

3.2.3.3 CyberGlove

The CyberGlove was developed by James Kramer at Stanford University as a tool for

translating American Sign Language into spoken English. The glove was commercialised

by a Stanford research lab spin-off company, Virtual Technologies (Virtual Technologies

Inc., Palo Alto, CA) in 1992. The original CyberGlove consists of a custom-made

cloth glove with up to 22 thin foil strain gauges sewn into the fabric to sense finger

and wrist bending. Since then the CyberGlove has gone through two major revisions,

(i.e. CyberGlove II and CyberGlove III). Both CyberGlove models utilise a proprietary

resistive bend-sensing technology to accurately transform hand and finger motions into

real-time digital joint-angle data. The sensors are accurate to less than 1 degree bend

resolution, and are sampled at 90Hz.

The CyberGlove II comes in two versions, an 18 sensor or 22 sensor variation. The

18-sensor version features two bend sensors on each finger, four abduction sensors, plus

sensors measuring thumb crossover, palm arch, wrist flexion, and wrist abduction. The

18-sensor system includes open fingertips, which allow the user to easily type, write, and

grasp objects. The 22-sensor version contains the same array of sensors as the 18-sensor
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glove, as well as an additional flexion sensor per finger, increasing the total to three per

finger.

Figure 3.6: Photograph of the CyberGlove II6.

The CyberGlove III is the latest addition to the CyberGlove range. It is essentially

an upgraded version of its predecessor, with significant improvements having been made

to motion capture accuracy, reliability and filtering. The glove also now carries an

upgraded Wi-Fi communication module providing for improved connectivity and an

increased operating range of more than 100 feet. In addition, the CyberGlove III also

boasts on board portable data storage, 12-bit A-D conversion unit, extended battery life

and recording time and camera markers on glove for additional tracking capabilities.

Figure 3.7: Photograph of the CyberGlove III7.

Currently, the CyberGlove III is one of the most impressive and accurate sensor

glove devices commercially available [199]. The 18 sensor glove version costs $12,295,

while the 22 sensor glove is $17,795.

6Image:cyberglove-ii.png, Source: http://www.cyberglovesystems.com/cyberglove-ii/
7Image:cyberGlove-iii.png, Source: http://www.cyberglovesystems.com/cyberglove-iii/
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3.2.3.4 MIT AcceleGlove

The AcceleGlove glove [141], is a programmable glove that records hand and finger

movements, developed under MIT spin-off company AnthroTronix and was released in

2009. The AcceleGlove uses a series of accelerometers to measure finger positions and

hand orientation. A single accelerometer is positioned just below each fingertip, with

another placed on the back of the hand. When the user’s hand moves, the accelerometers

can detect the three-dimensional orientation of the fingers and palm with respect to

Earth’s gravity. The accelerometers feed the position information to a central processing

board positioned on the back of the hand. This board also acts as a gateway between

the host PC and the glove, facilitated by a USB cable, for data transfer and power.

Figure 3.8: Photograph of MIT’s AcceleGlove.

AnthroTronix initially developed data gloves for US Defence for controlling robots.

However, after going commercial, the AcceleGlove has found application in video games,

sports training, and physical rehabilitation. The glove costs approximately $499.

3.2.3.5 5DT Data Glove

The 5DT Data Glove is developed by Fifth Dimension Technologies (Fifth Dimension

Technologies, Pretoria, South Africa). The 5DT Data Glove uses propriety optical-fibre

flexor sensors technology. 5DT offer multiple variations of their data glove, differing in

the amount of sensors depending on the accuracy required. The base model, the 5DT

Data Glove 5 Ultra, features 1 sensor per finger with 10-bit flexure resolution and an

integrated pitch and roll sensor position on the wrist. The sensors can be sampled at a
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rate of 200 Hz per finger. The 5DT Data Glove 14 Ultra model has an additional sensors

per finger, as well as 4 additional abduction sensors between the fingers.

The gloves are made of a stretchable material (Lycra�) with open finger tips and

is marketed as one size fits many. They use a standard tethered USB based interface

with a host computer. In addition to a customisable number of sensors, 5DT also offer

different variations of their glove suitable for different environments, including a wireless

(Bluetooth) version and a version suitable for use in Magnetic Resonance Imaging (MRI)

environments.

Figure 3.9: Photograph of the 5DT Data Glove8.

The 5DT gloves range in cost depending on the glove version and sensor configura-

tion, however they start at approximately $1,000 for the standard 5 sensor 5DT glove

(i.e. 5DT Data Glove 5 Ultra) and go as high as $7000 for the 14 sensor MRI glove (i.e.

5DT Data Glove 14 Ultra MRI).

3.2.4 Haptic Feedback Gloves

3.2.4.1 Dexterous Hand Master

The Dexterous Hand Master is not really a glove but rather a lightweight aluminium

exoskeleton, consisting of an arrangement of sensors, held over each finger joint by

lightweight pads and Velcro� straps [155]. Each sensor houses both a Hall-effect mag-

netic pickup and a small magnet to measure the bending angle of each joint. As the

finger bends the magnet is brought closer or further away from the Hall sensor, generat-

ing a varying voltage proportional to the strength of the magnet’s magnetic field. The

Dexterous Hand Master measures bending of the three joints of each finger as well as

8Image:hw data glove wireless 01.jpg, Source: http://www.5dt.com
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abduction of the fingers and complex motion of the thumb. Hence, in total the Dexter-

ous Hand Master measures 20 degrees of freedom of the hand, 4 for each finger and 4 for

the thumb. The analog signals acquired from the joint sensors are collected by a custom

A/D board at up to 200 samples per second and are transmitted to a PC through a

serial port connection.

Figure 3.10: Photograph of the Dexterous HandMaster.

Originally the Dexterous HandMaster was developed as a controller for the MIT

Dexterous Hand robotic hand [165], however it was then commercialised and sold by

EXOS (EXOS, Inc., Burlington, MA, United States). The device is no longer for sale,

however it was priced around $15,000.

3.2.4.2 Rutgers Master II-ND

The Rutgers Master II-ND glove is a haptic feedback glove designed to enable dexterous

interactions within virtual environments [35]. The glove provides force feedback up to

16 N each to the thumb, index, middle, and ring fingertips. It uses custom pneumatic

actuators arranged in a direct-drive configuration. The glove uses two Hall-effect sensors

to measure the flexion and adduction/abduction angles of the pneumatic actuators. An

infrared sensor measures the translation of the piston inside an air cylinder. In addition

to force feedback the glove can also measure position of the hand and fingers, using

integrating non-contact Hall-effect and infrared sensors. The glove has a haptic-control

interface, consisting of pneumatic servo valves, signal conditioning electronics, a power

supply and an embedded Pentium PC. Communication with a host PC, i.e. streaming
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of sensor data and for the actuation of the pneumatic actuators is accomplished using a

serial port connection.

Figure 3.11: Photograph of the Rutgers Master II-ND. A) Hand open, B) Hand
closed.

3.2.5 Stroke Studies with Commercial Gloves

Despite the fact that sensor gloves are an ideal means of capturing hand motion data

and although their is ample commercially available gloves for this purpose, there is a

surprising deficit of studies as to the efficacy of sensor gloves for use in stroke rehabil-

itation. Albeit, some studies have been conducted which signify the potential of such

devices.

Boian et al. investigated the potential use of a glove based VR-based training system

for reducing finger impairments in chronic stroke patients. Two commercial gloves, a

CyberGlove and a Rutgers Master II-ND haptic glove were used in this investigation.

4 chronic patients participated in the study. Each patient had to perform a variety of

VR exercises to reduce impairments in their finger range of motion, speed, fractionation

and strength. Patients exercised 2 hours per day, 5 days a week for 3 weeks. Results

showed that three of the patients had substantial gains in thumb range (50-140%) and

moderate improvements in finger speed (10-15%) over the three weeks trial. All four

patients had significant improvement in finger fractionation (40-118%) [33].

An additional study of the effectiveness of both the CyberGlove and the Rutgers

Master II-ND, for delivering force feedback during motor function rehabilitation, was

conducted by Adamovich et al. 8 chronic stroke patients participated in VR training
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consisting of 4 training sessions, including; range of motion, speed of movement, frac-

tionation of individual finger motion and strengthening of the fingers. The subjects

trained for 2 to 2.5 hours each day, 5 days a week for 3 weeks. The results of the study

reported that 6 out of the 8 subjects increased their finger and thumb range of motion

significantly. Similarly, 4 subjects improved finger speed and 2 in thumb speed, 7 in

fractionation and 3 in strength exercises. Patients also showed good retention when

measured one-week post intervention [2].

Camerirao et al. developed and tested a rehabilitation gaming system (RGS) based

on the 5DT data glove, which recorded hand position, arm joint angles and finger flexure.

14 acute and sub-acute stroke patients participated in the study, which consisted of

completing three 20 minute training sessions a week for 3 months. The patients were

randomised into three groups; an RGS group and two control groups (Control A and

Control B). The RGS group performed tasks with the addition of virtual reality (VR)

feedback using the 5DT data glove for input. Control group A preformed motor tasks

similar to the RGS group but without visual VR feedback. Control group B performed

non-specific games with the Nintendo Wii console. The outcomes of this preliminary

trial suggest that the RGS may induce a sustained improvement in motor outcome based

on the Chedoke Arm and Hand Activity Inventory (CAHAI) scores and Motricity Index

scores [45].

Martin and Vargas performed two investigations using the AcceleGlove for the quan-

tification of functional hand grip using electromyography and inertial sensor-derived ac-

celerations [230, 231]. The evaluation explored the potential use of the AcceleGlove for

the measurement of 6 functional hand movements including; terminal pinch, termino-

lateral pinch, tripod pinch, power grip, extension grip and ball grip. The primary objec-

tive of these studies was to investigate the feasibility of using a combined measurement

of electrical muscle activity, recorded through EMG and hand motion, recorded by the

AcceleGlove, as a means for analysing hand function.

3.2.6 Custom Sensor Gloves and Stroke Studies

Given the high cost of commercial sensor gloves many researchers interested in hand

rehabilitation have opted to instead develop their own sensor glove systems. Subse-

quently, many sensor gloves have been developed for a variety of different applications

[97, 129, 163, 205, 245, 314, 340]. A sub-collection of sensor gloves which have been used

in clinical trials, as well a collection of the most notable glove designs, are described

below.
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Friedman et al. proposed a novel sensor glove, the MusicGlove, which was devel-

oped to facilitate and motivate at home practise of hand movements [113]. This low

cost device uses music as an interactive and motivating medium to guide hand exercise

and to quantitatively assess hand movement recovery. A proof of concept study was

conducted using MusicGlove with 10 chronic stroke patients, with disabilities ranging

from severe to moderate hand impairment. During training, the patients first learned to

perform functional movements, including pincer grips, key-pinch grip and finger-thumb

opposition. During practise, the patients used these movements to play different musi-

cal notes and to play along to songs displayed by an interactive video game. The study

found that the glove was well suited to patients with a Box and Blocks score of 7 or

above and that the glove was capable of obtaining a measure of hand dexterity that

correlates strong with a Box and Blocks score. The study suggests that the use of music

for training significantly improved both objective measures of hand motor performance

and self-ratings of motivation, in addition, music assisted the ability to hit the right note

with the right grip, but did not have any affect on timing.

A pneumatic glove, the PneuGlove, and an accompanying immersive virtual reality

environment for hand rehabilitative training after stroke was proposed by Connelly et

al. The PneuGlove provides independent extension assistance for each finger without

limiting hand movement. A proof of concept study for this device was conducted with 14

stroke patients. The patients were divided into two groups, each containing 7 patients.

Both groups completed a six-week rehabilitation training protocol, consisting of three 1

hour training sessions, performed once a week. One group wore the PneuGlove during

training, performed both within a novel virtual reality environment and outside of it with

physical objects, while the other group, a control group, completed the same training

without the device. A Fugl-Meyer assessment, a Box and Blocks Test and palmar

pinch strength assessment was conducted with each patient after the completion of

the training. Significant improvements in upper extremity, the hand/wrist portion of

the Fugl-Meyer assessment, the Box and Blocks test, and palmar pinch strength were

observed in both groups. Whereas there was statistically little difference between groups,

the group training with the PneuGlove showed greater mean improvement on each of

these measures [64].

Flynn et al. developed a novel smart glove to facilitate the rehabilitative process of

rheumatoid arthritis, through the integration of sensors, processors and wireless technol-

ogy to empirically measure range of motion (ROM) [273]. The glove uses a combination

of 20 bend sensors, 16 tri-axial accelerometers and 11 force sensors to detect joint mo-

tion. The sensors are housed on a flexible printed circuit board (PCB) to provide high

levels of flexibility.
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Nathan et al. proposed the design of a low cost functional electrical stimulation

grasp-assistive glove for use with task-orientated robotic stroke therapy. The glove

measures grasp aperture while a user completes real-life activities, and when combined

with an integrated functional electrical stimulator (FES) it assists in hand opening and

closing. Results from 5 subjects with stroke validate the FES system, showing that the

glove can deliver qualitative FES to subjects and that this does indeed help with hand

opening [259].

Simone et al. developed a low cost instrumented glove for extended monitoring

and functional hand assessment was proposed. The glove was evaluated for feasibility,

measurement repeatability and reliability, fidelity of wireless transmission, and user

acceptance. Five healthy individuals participated in the study of repeatability, while 10

healthy individuals and 10 individuals with acquired brain injury participated in trials

to assess feasibility and user comfort. Results demonstrate that the glove has a strong

potential to be used as a tool for objective hand function evaluation in the home and

community for both short- and long-term monitoring [340].

3.2.7 Discussion

Sensor glove technology represents great potential for use in hand rehabilitation therapy

post stroke. While there are a range of high quality sensor glove systems commercial

available for this purpose, such systems are prohibitively expensive, costing anywhere

from $500 to $20,000, making them inaccessible both for the aspiring researcher and for

patients who might use them as part of their home-based rehabilitation program. As

a result, their has been a proliferation of custom designed sensor gloves developed, as

researchers opt to develop their own sensor gloves solutions. However, in the authors

opinion most of the custom gloves reviewed are either over designed for a specific purpose,

or are simply not suitable for use in patients with movement weakness. Most of the gloves

reviewed sacrifice moveability for motion capture accuracy, boasting an excessive number

of sensors for acquiring redundant degrees of motion capture, at least for the purpose of

hand impairment assessment. Furthermore, most reviewed gloves were either designed

to use a tethered interface, or forced to do so because of the amount of data they acquire.

In addition, the author did not come across any self-contained, autonomous sensor glove

designs. Instead, researchers opted to design their gloves to rely on external computers

to process data, or to make use of the captured data. These design considerations place

restrictions on the users moveability, and in the case of a wired interface, effectively

restrict the user to the proximity of the computer, thereby limiting its interactive space

and potential usability.

58



Literature Review

As new smart technology continues to invade our homes there is great opportunity

to take advantage of wearable technology and ubiquitous computing to develop ambient

intelligent environments, that is environments which are sensitive and responsive to

human presence. There is thus a need for a simple sensor glove design which is self-

contained, that can function autonomously, having the ability to communicate sensor

data wirelessly while remaining cheap and easy to reproduce.

3.3 Robotic Devices for Upper Limb Rehabilitation

The history of robotics is fascinating. The fundamental components of automation have

their roots in the industrial revolution, a period now almost two centuries old. Robots

are the epitome of autonomous automation, they work continuously and systematically,

never deviating from their objective, repetitively churning out complex products in a

fraction of the time and cost of their human counterpart. As a result, robots have

replaced humans in performing repetitive and dangerous tasks, or tasks which take

place in extreme inhospitable environments, such as outer space or the bottom of the

ocean. However, more recently robotics are also starting to play an active role in more

normal working environments, to supplement the efforts of highly skilled human workers,

mostly in relieving the burden on manual labour. From the perspective of recovery after

neurological injury such as stroke, robot devices can assist patients in a number of

circumstances. They can aid with passive range of motion to help maintain range and

flexibility, to help reduce hypertonia or resistance to passive movement. A robot can also

help with active movement, where a patient is too weak to move of their own accord.

There has been a proliferation in the application of robotic devices for healthcare

over the last few decades and subsequently many literature reviews on robotic devices

for upper extremity rehabilitation have been conducted. As such, many comprehensive

literature reviews have been performed on the use of robotics for motor rehabilitation

[37, 52, 221, 226, 298]. Combined, there are 140 plus unique clinical robots reviewed in

the aforementioned systematic reviews, far to many to go into detail in this literature

review. Instead, an overview of the different robotic control strategies and mechanisms

for use in motor rehabilitation is given here, as well as a brief discussion including a small

subset of the most prominent robotic systems for rehabilitation of the upper extremity

which are current at the stage of clinical trials.
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3.3.1 Control Signals

A variety of different signals have been used as control input for robotic movement de-

vices. The more simple systems tend to rely on kinematic measures of forces (position,

torque, acceleration etc.) typically provided by an actuator encoder. More advanced

control inputs, such as biometric measurements of muscle activity have also been more

recently used, for example, surface electromyography (sEMG), which provides informa-

tion about the intention of the person to perform particular movements.

3.3.2 Control Strategies

A comprehensive review of control strategies for robotic movement training was con-

ducted by Marchal-Crespo and Reinkensmeyer [226], in which they proposed that con-

trol strategies for movement rehabilitation devices can be separated into two categories,

low-level and high-level control strategies. Low-level control strategies refers to strate-

gies which control the force, position, impedance or admittance factors of the robotic

device. In contrast, high-level control strategies refers to strategies designed explicitly

to provoke motor plasticity.

Additional systematic review of control strategies for robotic movement training

after neurologic injury have been conducted by Maciejasz et al. [221] and Winstein et

al. [399].

3.3.3 High-level Control Strategies

There are a number of different ways in which robot devices can assist with movement.

The most common high-level control strategies are; active, passive, haptic and coaching.

3.3.3.1 Active Devices

Active assistance involves helping an individual to complete a motion by producing force

feedback. In terms of robotic therapy, this is typically achieved using an actuator which

applies a force in the direction of the desired motion. Active assistance is often used when

a patient is too weak to perform specific exercises alone. The majority of robot devices

for motor rehabilitation are active movement devices. A review of active systems with

3-DoF or more, containing 30 different exoskeleton prototypes for neurorehabilitation of

the upper limbs was conducted by Jarrasse et al. [167].
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All active assist control strategy follows the basic principle that; when the participant

moves along a desired trajectory, the robot controller should not intervene, however if

the participant deviates from that path, then an appropriate restoration force should

be applied which encourages the participant back onto the desired trajectory. The

resulting controller is termed an assistance-as-needed (AAN) controller. The first and

most basic form of assistance controllers used were based on the proportional feedback

position control which enforce a form of virtual channel that guides limb movement

[249, 367, 368]. One concern about such controllers is that they enforce strict adherence

to a fixed trajectory, which might be suboptimal for rehabilitative training because

they abolish variability, an intrinsic property of neuromuscular control [42, 170]. To

advert this effect, dead-bands are often included into the control scheme which allow

for variation outside some threshold to occur without intervention from the robotic

controller. Another variation on the standard feedback controller is to include some

form of triggered mechanism. Here, a trigger variable, which could be a measure of

elapsed time, a measure of force, spatial tracking error, limb velocity or muscle activity,

triggers assistance only after some performance threshold is reached.

3.3.3.2 Passive Devices

In contrast to active devices, a passive device is a device which resists movement, for this

reason they are also commonly called challenge-based control strategies. This imposed

challenge is often achieved using an actuator which provides resistive force, for example a

break. Passive devices are commonly used for strength or resistive training and are often

used in motor adaptation experiments [368]. Passive devices are also used for physical

therapy where suppression is required, for example in the case of tremor suppression

[305] and to manage muscle spasticity [55].

3.3.3.3 Haptic Devices

Haptic devices supply tactile sensation to the user by applying forces, vibrations, or

motions. Haptic robotics have the potential to address sensory impairments. Haptic

feedback devices may be useful for partial sensory impairment as a means of sensory

augmentation facilitating motor control and rehabilitation in patients post stroke [338].

For example, damage to the vestibular system after stroke often affects postural control,

which can lead to issues with balance and can cause difficulties in standing or walking

[90]. Haptic feedback may help improve standing stability in such cases by substituting

or reinforcing damaged feedback pathways in the brain [5]. Haptic feedback devices
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may also help close the sensorimotor loop for stroke patients with severe disability who

cannot actively move without assistance [121].

3.3.3.4 Coaching Devices

A robotic coaching device is a device which does not physically contact the participant

but instead serve as a coach, helping to direct the therapy program, motivate the par-

ticipant, and promoting motor learning through non-tactile feedback. This concept is

better known as socially assistive robotics (SAR). SAR devices focus on helping human

users through social rather than physical interaction, through the application of robotics

for the provision and administration of motivation, encouragement, and rehabilitation

for those suffering from cognitive, motor, and social deficits [385]. These devices of-

ten use some form of sensor based monitoring to tracking motion, however they do

not actively or passively interact with an individual during movement practise. SAR

is an innovative, interdisciplinary and increasingly popular research area that brings

together a broad spectrum of research including robotics, social and cognitive sciences,

and neuroscience [357].

3.3.4 Low-level Control Strategies

The majority of low-level control approaches for robotic rehabilitation of the upper limb

are either impedance or admittance based.

3.3.4.1 Impedance Control

Impedance control is an approach in which the dynamic interaction between a robotic

manipulator and its environment are altered to apply assistance. Impedance control

doesn’t regulate force or position directly but rather regulates the relationship (in-

put/output) between force (e.g. pull, push) and reactions (i.e. position, velocity and

acceleration). An impedance controller takes a position, velocity or acceleration, as an

input and produces a resulting force as output. The MIT Manus [146] and the L-Exos

exoskeleton [114] are two classic examples of robots which utilise an impedance based

control strategy.

Impedance control is efficient for lightweight backdrivable exoskeletons, in which

cable-driven systems are often used for torque transmission. The problems relating to

impedance control are the compensation of gravity and friction, particularly in tendon-

like systems [167].
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3.3.4.2 Admittance Control

Admittance is the inverse of impedance. An admittance controller measures force ex-

erted by the user and then generates the corresponding displacement accordingly. The

admittance control strategy has been implemented in [244] and [73]. For exoskeletons

that lack backdrivability, admittance control may be more appropriate, because there

must be measurements of the force at the interfaces with the human limb to move the

robot, considering its inertia and dynamic effects [167].

3.3.5 Clinical Robotics Trials

While there has been significant effort over the last two decades to improve the design

and control strategy of robotic rehabilitation devices, there has been little development

to prove the efficacy of such systems in clinical rehabilitation settings. The majority

of clinical trials reported are small, and lack the use of a control group for comparison

treatment. Prange et al conducted a systematic review of the effect of robot-aided ther-

apy on recovery of the hemiparetic arm after stroke, including 8 studies [298]. Kwakkel

et al., performed a systematic review on the use of robotics for rehabilitation of the

upper extremity following stroke, containing 10 studies [195]. A more recent review by

Mehrholz et al. included 19 trials (328 subjects) in the evaluation of electromechanical

and robot-assisted arm training devices [239]. An even more recent review [221] consist-

ing of 132 robotic devices for upper limb rehabilitation was conduced by Maciejasz et

al.

The following section describes a subset of the most prominent robotic devices which

have been used in clinical trials to date.

3.3.5.1 MIT-Manus

The first robotic system to receive extensive clinical testing for movement rehabilitation

was the MIT-Manus [146]. It features a 2 degree of freedom robot actuator that assists

in shoulder and elbow movement. It also provides visual, auditory and tactile feedback

during goal-directed movements.
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Figure 3.12: Photograph of the MIT Manus

An overview of the clinical trials undertaken with the MIT-Manus was conducted

by Krebs et al. [191]. The outcome of this work shows that the group of stroke pa-

tients treated daily with additional robot-aided therapy during acute rehabilitation had

improved outcome in motor activity at hospital discharge, compared to a control group

that received only standard treatment. Further, the groups still statistically differed in

motor impairment at a 3-year follow-up [382]. There has been an additional 10 clinical

studies conducted with the MIT-Manus, the most recent [207] and [66] both contained

large groups (127, 62 patients respectively). The results of these studies continue to be

promising, showing modest improvements in recovery outcomes compared to standard

rehabilitation, indicating that supplemental robotic therapy can improve recovery in

acute and chronic stroke patients.

3.3.5.2 MIME

The Mirror Image Motion Enabler Robot (MIME) [214] is a 6 degree of freedom robot de-

veloped to assist with bi-manual movements with both assisted and resistive movements

of the hemiparetic upper extremity. Clinical trials conducted by Burger et al. comparing

robot-assisted therapy using MIME to traditional therapy in 21 chronic stroke subjects

showed significant improvement in the Fugl-Meyer (FM) measure of motor recovery in

the robot group, which exceeded improvements in the control group [38].
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Figure 3.13: Photograph of the MIME Robot

Lum et al. conducted a study comparing the effectiveness of robot-assisted movement

training to conventional therapy for the rehabilitation of the upper-limb motor function

after stroke. 27 stroke patients with chronic hemiparesis participated in the study.

Subjects were randomly assigned to either a robot group or control group. Each subject

received twenty four 1 hour training sessions over 2 months. Subjects in the robot group

practised shoulder and elbow movement with the assistance of MIME. Subjects in the

control group received neuro-developmental therapy which targeted upper limb function.

Patients were assessed using a Fugl-Meyer assessment, FIM�instrument, and through

bio-mechanical measures of strength and reaching kinematics. The results show that the

robot group had larger gains in strength and increased reach extent after 2 months when

compared to the control group. At 6 months no significant differences were seen between
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groups in the Fugl-Meyer test, however the robot group had larger improvements in the

FIM�instrument [214].

An additional study by Lum et al. assessed the use of MIME for upper limb neuro-

rehabilitation in sub-acute stroke patients. The goal of this study was to confirm the

previous results and to identify the therapeutic features of MIME robot therapy. 30

subjects participated in the study which consisted of fifteen 1 hour treatment sessions,

over 4 weeks. Subjects were randomly assisted to one of 4 treatment groups (one control

and three robot). Subjects in the three robot groups received 50 minutes of MIME

assisted movement training, while subjects in the control treatment group received 50

minutes of conventional treatment. Motor impairment was assessed with the upper limb

portion of the Fugl-Meyer (FM) and Motor Status Score (MSS). The results showed

that greater gains were attained by robot groups in proximal FM and MSS synergy

scale compared to the control group [213].

Burgar et al. conducted a clinical assessment of MIME for delivering robotic as-

sistance for the upper limb in an acute rehabilitation setting. 54 hemiparetic subjects

participated in the study. Subjects were randomly separated into four groups, a (control)

group who received usual care, and three other groups which received additional training

on top of usual care, including, low dosage robotic assisted (RA) training (15 hours),

high dosage RA training (30 hours) or 15 hours of additional conventional therapy. The

primary outcome measure was the Fugl-Meyer Assessment (FMA). A secondary out-

come measure was the Functional Independence Measure (FIM). Results of the study

show that significant correlations were found at discharge between FMA gains and the

dose and intensity of RA training groups. The high dose group also had great FIM gains

than controls at discharge and great tone but no difference in FIM changes compared

with low-dose RA training at 6 months [37].

3.3.5.3 ARM Guide Robot

The Assisted Rehabilitation and Measurement (ARM) Guide robot uses a linear rail

to move the user’s hand in a straight line trajectory [175]. ARM measures and applies

assistive or resistive forces to linear reaching movements across a wide workspace.
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Figure 3.14: Photograph of the ARM Robot

Kahn et al. conducted a pilot study with 10 chronic stroke patients to assess the use

of the ARM Guide robot. Subjects were randomly assigned to either a robot group or

control group. Subjects in the robot group performed self-initiated reaching movements

under their own power with active assistance from the device. Control subjects practised

reaching without ARM Guide assistance. Both training groups participated in 45 minute

training sessions, 3 times a week, for 8 weeks. Each training session involved performing

50 reaching movements while feedback was given visual performance feedback during

training, however only the robot group received mechanical assistance. Results of this

study showed that significant improvements were made by both groups in functional

ability movement, velocity and range of motion of supported reaching and straightness

of unsupported reaching. However, there was no significant difference noted between

groups [174].

3.3.5.4 Bi-Manu-Track

The Bi-Manu-Track [142] is a computerized motor-driven arm trainer that allows bilat-

eral training of two distinct movement patterns; forearm pro- and supination and wrist

flexion and extension. The Bi-Manu-Track supports three computer-controlled modes

of practice. In the passive-passive mode the robot controls both arms. In the active-

passive mode the less impaired upper limb actively moves the control handle while the

robot guides the most impaired upper limb. In the active-active mode both arms per-

form actively by overcoming an initial isometric resistance. Movements can be either

mirror-symmetric (in-phase) or parallel (anti-phase). Amplitude, speed, and resistances

can be set individually.
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Figure 3.15: Photograph of the Bi-Manu-Track robot

Hesse et al. performed a pilot trial of the Bi-Manu-Track arm trainer for the passive

and active practice of bilateral forarm and wrist movements with hemiparetic subjects.

12 chronic stroke patients participated in the study. Participants received in addition

to an ongoing comprehensive rehabilitation program, daily upper limb training of 15

minutes in all three modes of the Bi-Manu-Track, for 3 weeks. Outcome was measured

after the 3-week interval and at 3 months follow up, using the Modified Ashworth Scale

(MAS) to measure spasticity and the Rivermead Motor Assessment (RMA) to assess

motor control ability. After treatment MAS scores revealed significant muscle tone

reduction in wrist and fingers. However, scores returned to pretreatment values at 3-

month follow up. The RMA score did not change significantly at either 3-weeks or 3

months [142].

Hesse et al. also conducted a randomized controlled trial (RCT) to compare a

computerised arm trainer (AT), the Bi-Manu-Track for repetitive practise of passive and

active bilateral forearm and wrist movement training, and electromyography-initiated

electrical stimulation (ES) of the wrist extensor in severely sub-acute stroke patients. A

total 44 subacute patients with severe arm paresis after stroke were randomly assigned

to either the AT or ES group. AT patients performed 800 repetitions per session with

the Bi-Manu-Track. ES patients performed 60 to 80 wrist extensions per sessions. The

primary outcome measurement was a FMA, the secondary measures were upper limb

muscle power and tone, measured using the Medical Research Council (MRC) scale, and
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the Ashworth scale, respectively. At the end of the training program, upper limb muscle

power and FMA scores increased significantly more in the Bi-Manu-Track group than in

the electrical stimulation group post-treatment and at 3-month follow-up. The AT group

also had a significantly greater MRC score than the ES group, both post-treatment and

at 3-month follow-up [143].

Liao et al. performed a randomized controlled trial (RCT) to study the effects of

robot-assisted upper limb rehabilitation on daily function and real-world arm activity in

patients with chronic stroke. 20 post stroke patients participated in the study. Partic-

ipants were randomised into two groups, Robot-assisted therapy (AT) or dose-matched

active control therapy (ACT). All patients received therapy for 90–105 minutes each

day, 5 days per week, for four weeks. Outcome measures included arm activity ratio and

scores on the Fugl-Meyer Assessment Scale, Functional Independence Measure, Motor

Activity Log and ABILHAND questionnaire. The robot-assisted therapy group signifi-

cantly increased motor function, hemiplegic arm activity and bilateral arm coordination

compared with the dose matched active control group [204].

3.3.5.5 RUPERT

A robotic upper extremity repetitive therapy device dubbed “RUPERT” is currently

being developed by the Arizona State University in partnership with Kinetic Muscles,

Inc. (Arizona, USD). RUPERT is developed to provide a low cost, safe and easy-to-use,

robotic-device to assist the patient and therapist to achieve more systematic therapy at

home or in the clinic [353]. RUPERT I and II are powered by four pneumatic muscles to

assist movement at the shoulder, elbow and wrist. The design was based on a kinematics

model of the arm, which showed where to locate the pneumatic muscles and how much

force was needed for normal reaching and feeding movements. The mechanical arm is

adjustable to accommodate different arm lengths and body sizes.
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Figure 3.16: Photograph of the RUPERT robot

Zhang et al. performed two feasibility studies of robot-assisted stroke rehabilitation

with RUPERT. The first study involved 6 patients who received therapeutic training

three times weekly, for 4 weeks, at a clinic setting [135]. The second study involved

2 patients who received therapeutic training daily, for 4-5 weeks, in the home setting

[411]. In both studies, patients’ performances were assessed using both the Wolf Motor

Function Test and Fugl Meyer Assessment (FMA), both before and after the training.

Half of the clinic-visiting patients demonstrated a significant increase in the propor-

tion of successfully reaching targets, and no significant function deterioration to other

targets. Similar results were noted in the home-application group, with both patients

demonstrating functional improvement after the training, including significant increase

in the proportion of successfully target hitting and movement smoothness.

3.3.6 Discussion

The field of robotics is slowly moving from the realm of science fiction to the leading

edge of healthcare advancement. Rehabilitation robots represent the potential to miti-

gate healthcare burdens by taking over aspects of rehabilitation which can more readily

be automated. Robots also represent a means of administering intensive, controlled,

task oriented and interactive therapies without the need for continual supervision by

a professional. Over the past couple of decades great advancement has been made

towards achieving these goals and as a consequence there has been an assortment of

robotic devices developed by research initiatives around the world. However, to date

much of this effort has been focused on developing more advanced hardware, in a bid

to increase the degrees of freedom, dexterity and functionality of the robot end effector,

in order to support movement training of more complicated movements. In contrast,

little progress has been made towards the progression of high-level control strategies,
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which specify how these devices interact with participants in an attempt to provoke

motor plasticity, and therefore improve motor recovery. The present evidence supports

the use of robot-assisted therapy for improving motor function in stroke patients as an

additional therapeutic intervention in combination with the conventional rehabilitation

therapies [52]. Nevertheless, robotic devices are currently struggling to produce results

which improve upon conventional means and there is ample opportunities for improve-

ment in the near future. Currently, robot control strategies have been designed on an

ad hoc basis, usually drawing on some concepts from the rehabilitation, neuroscience

and motor learning literature. There is thus a need for innovative thinking which can

help foster more sophisticated control systems suitable for delivering optimal assistance

during rehabilitation training.

Furthermore, owing to the complexity of such devices, current available commercial

robotics systems are prohibitively expensive for researchers and physicians who would

otherwise study and use such devices. Efforts need to be made towards developing low

cost robotic devices which are affordable enough to enable research, which in turn can

help to generate the necessary studies as to the efficacy of such devices for rehabilitative

purposes, and which will encourage interest from small and medium companies who

would ultimately commercially develop such devices.

3.4 Extrinsic Feedback

Feedback is an essential component in the successful acquisition and development of

skills. Feedback provides information about the performance that allows the learner

to adjust and improve or continue efficient performance. Feedback can be classified

as either intrinsic, resulting from a direct result of producing a movement through

the kinaesthetic senses (i.e. vision, proprioception, touch, pressure and audition) or

extrinsic, received from external sources (outside the body) for example, from a coach,

watching taped performances, through performance scores, or through measurements

derived from sensors.

Extrinsic feedback typically offers information which is not naturally available to

an individual or which substitutes or supplements damaged inherent feedback mecha-

nisms. Extrinsic feedback is categorised as either “knowledge of performance” (KP) or

“knowledge of results” (KR). KR refers to information, obtained from an outside source,

regarding the outcome of performing a skill or about achieving a goal [225]. For example,

when a dart player sees their dart hit the target. In contrast, KP refers to information

about the movement characteristics that led to a performance outcome. For example,
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when a trainer gives the dart player feedback about the form of their throw. Although

it is clearly possible to learn motor tasks without the provision of extrinsic feedback,

studies have shown that learners given KP or KR feedback show improved retention com-

pared to those who receive no feedback at all [77, 149, 243, 324, 379, 395]. In addition,

studies have shown that feedback is also important for sustaining the learners motiva-

tion during training [377]. As a result, there has been extensive research conducted

on the effectiveness of extrinsic feedback for improving motor learning, both in healthy

individuals and in patients with neurological injury. A meta-analysis review examining

the effects of extrinsic feedback was conducted by Deci et al. [83]. A comprehensive

review synthesising the research findings and evidence as to the effectiveness of extrinsic

feedback was presented by Vliet [379]. The definitive book on extrinsic feedback was

written by Schmidt [324].

This section attempts to highlight the role of extrinsic feedback on implicit motor

learning and to explore its capacity for enhancing participant motivation and self-efficacy

after stroke. Towards this goal, a brief overview of feedback is given here, highlighting

different feedback modalities and their applications. For a more intensive overview, the

reader is referred to the aforementioned works.

3.4.1 Instruction Type

Extrinsic feedback can be delivered by many different means, the most common forms

are; visual feedback, verbal feedback, haptic (i.e. tactile or kinesthetic) feedback, virtual

feedback or bio-feedback. The latter feedback modality, bio-feedback, is not discussed

here but instead is discussed in a later section devoted to physiological feedback, see

Section 3.5 for a detailed discussion.

3.4.1.1 Verbal Feedback

Verbal feedback is the most common form of extrinsic feedback used routinely during

training, and is traditional used by trainers and therapists to elicit performance boosts

from learners. A study of the effectiveness of different types of verbal feedback on

learning complex movement tasks was conducted by Vallerand et al. [377]. The outcome

of this study suggests that verbal feedback produced increased feelings of competence and

intrinsic motivation in subjects. Verbal feedback has been applied to numerous training

scenarios with positive results. Zaton et al. showed that immediate verbal feedback

had a positive effect on performance on modifications of stroke length during swimming

training [410]. Argus et al. found that verbal feedback on upper-body performance in
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elite athletes lead to improvements in upper-body power output of well-trained athletes

[19]. Cirstea et al. found that verbal feedback was effective in improving motor skill

reacquisition outcomes in patients with stroke [59]. Kannappan et al. investigated

the effects of verbal feedback on surgical skills performance and motivation, finding

moderate improvements in accuracy and significant improvement in time, when feedback

was presented during a peg transfer task [177].

3.4.1.2 Visual Feedback

Visual feedback is another commonly used means of providing feedback on performance.

For less experienced learners, visual feedback is often given by demonstration by a trainer

or more experienced practiser. For more experienced learner, self-education is often used,

for example by watching recordings of experts performing a task. Visual feedback has

been shown to be useful in learning during a diversity of complicated tasks. Wierinck et

al. found visual feedback improved performance during manual dexterity training [394].

Zheng et al. found that video watching improved learning of a tennis swing [415]. Hoppe

et al. reviewed the effects of visual feedback on the acoustic quality and physiological

aspect of singing performance [148]. Hopper et al. found that visual feedback has a

significant positive influence on power during leg press exercises, in elite women field

hockey players [149].

3.4.1.3 Haptic Feedback

Haptic feedback typically refers to two distinct types of feedback, either tactile or kines-

thetic. Tactile perception is usually conveyed through the skin, such as by vibrations

or pressure. Whereas, kinesthetic feedback refers to knowledge about the position and

movement of the body and its parts [30]. Haptic feedback is often used either to replicate

real-world interaction forces, or to provide cues that are not available in the physical

world. Haptic feedback or haptic guidance has been shown to be extremely useful for

presenting motor patterns to an individual that a user is expected to internalize and

later recall [253]. Feygin et al found that haptic feedback contributes to learning spa-

tiotemporal trajectories [105]. Williams et al employed haptic feedback in a medical sim-

ulator and also found that it contributed to learning position trajectories [398]. Patton

and Mussa-Ivaldi found haptic feedback useful for teaching movement patterns during

robot-assisted movement training [286]. Huang et al found visuohaptic feedback to be

superior to the other feedback modalities in exciting a virtual oscillator [153]. O’Malley

et al found that using haptic constraints provides significant benefit for both performing

and learning movement patterns during training [277]. Afzal et al. demonstrated the
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use of kinesthetic haptic feedback for improving standing stability of healthy subjects

and stroke patients [5].

3.4.1.4 Virtual Feedback

Virtual reality (VR) is a technology which allows an individual to interact with a digital

environment. VR has emerged as a new treatment approach in stroke rehabilitation.

Virtual reality may be an advantageous approach to deliver novel feedback, because

it provides the opportunity to practise activities that are not, or cannot be practised

within the clinical environment [198]. Moreover, VR programs are often designed to

be more interesting and enjoyable than traditional therapy tasks, thereby encouraging

higher numbers of repetition of otherwise tedious and monotonous movement tasks.

Henderson et al. conducted a systematic review of VR systems for rehabilitation of the

upper extremity that included 6 studies evaluating VR technology [140]. The consensus

of the report was that VR feedback might be more effective compared to no therapy.

Another systematic review was conducted by Saposnik et al., including 12 studies, 5

of which were randomised clinical trials (RCTs) [317]. In the 5 RCTs, VR was shown

to significantly improve FMA scores (speed of arm movements, range of motion and

force) compared to moderate improvements in a control group. In the other 7 studies

(non RCTs), there was moderate improvements in motor function measurements. A

more recent review [198] included 19 VR RCTs, of which 8 examined upper extremity

intervention. Of these, 7 studies showed a statistically significant effect on arm function.

However, in summary, the report found that there was limited evidence that the use

of VR may be benifical in improving arm function and activities of daily living when

compared to conventional therapy. Furthermore, the report suggests that although VR

appears to be a promising intervention, at present studies are too few and too small

to draw conclusions. Another interesting finding was that recruitment rates were low

(approximately 34% of participants screened we recruited). Such findings perhaps reflect

either a lack of interest in video game based VR therapy by patients or their unsuitability

to the trails.

3.4.2 Comparison of Feedback Modalities

The choice of feedback delivery mechanism often comes down to practicality and ease

of implementation, for example verbal feedback is often given during sport training by

a trainer positioned on the side lines. In such a situation, other feedback modalities

are impractical, either burdening the learner or risk distracting them during training.

Similarly, visual feedback is often the preferred feedback modality for tasks involving
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aiming accuracy, for example showing a driver the result of their parking is a more

effective means of feedback than telling them. However, in some situations there is no

obvious feedback mechanism which is most suitable. Subsequently, some studies have

been conducted on comparing the effectiveness of different feedback techniques.

Jung and Hallbeck studied the influence of instruction type, verbal encouragement,

and visual feedback on static and peak handgrip strength. 31 male students partici-

pated in the study that employed an isokinetic wrist dynamometer to measure handgrip

strength. The results revealed that both verbal and visual feedback had significant pos-

itive effects on static grip strength, peak grip strength and time to reach the maximal

strength [172].

Kirazci investigated the effects of verbal and visual feedback on anticipation timing

task during a series of acquisition and retention trials. 48 participants were recruited

and randomly assigned to one of four groups, visual-visual, visual-verbal, verbal-visual,

and verbal-verbal conditions. Results indicated that there was no statistically significant

difference among the groups in their performance of the task [181].

Akamatsu conducted a comparison of tactile, auditory, and visual feedback in a

pointing task using a modified computer mouse. No differences were found in overall

response times, error rates, or bandwidths; however, significant differences were found

in the final positioning times. For the latter, tactile feedback was the quickest, visual

and auditory feedback was the slowest [6].

Pollard and Ashton compared different feedback modalities for teaching individuals

to control their heart rate. 60 subjects were divided into six separate groups; (1) visual

feedback, (2) auditory biofeedback (tone generated from ECG signal), (3) combined vi-

sual and auditory biofeedback, (4) no feedback but instructed to attempt to reduce their

heart rate, (5) sitting quietly (i.e. no attempted heart rate control) and (6) abbrevi-

ated relaxation training. The results indicated that all groups showed evidence of heart

rate reduction over the course of the experiment, however no differential advantage was

observed for any of the feedback groups [210].

3.4.3 Feedback Scheduling

The scheduling of feedback during practice involves the timing and frequency with which

extrinsic feedback is provided. Feedback timing has been shown to have a profound affect

on the acquisition and retention of skills and thus should be adjusted during the learning

process in order to optimise the outcome of training [220]. However, care must be taken
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when developing feedback systems as some studies have shown that feedback can have

undesirable affects and can even diminish the learning process. Beukers et al. showed

how when given erroneous verbal feedback during an anticipation timing task, it had

the effect of overriding subjects own intrinsic feedback mechanisms, such that subjects

adjusted their response to the incorrect verbal feedback [36]. Furthermore, studies by

Schmidt have shown that feedback can have negative effects if provided too frequently,

such that the learner become dependent on it [324, 325]. The guidance hypothesis,

proposed by Schmidt, sums up these effects stating that extrinsic feedback can have

negative effects on motor skill learning if it is provided too frequently or in a form that

is too easy to use [325].

As a result, the literature suggests that for effective learning, extrinsic feedback

should be provided sparingly and in a manner that does not enforce learned dependency

[355]. Subsequently, many different modes of delivering scheduled extrinsic feedback

have been developed, which are discussed next.

3.4.3.1 Concurrent Feedback

Concurrent feedback refers to feedback given instantaneously and continuously during

execution of an action. A classic example of concurrent feedback is a speedometer

in a car, which relays the current speed of the car to the driver in real-time. While

concurrent feedback can be a useful means for controlling aspects of a task and has been

shown to have significant affects on task performance when present during training,

studies have shown that once withdrawn, such benefits quickly subside. As a result, the

general consensus is that concurrent feedback is in fact detrimental for learning [329].

Schmidt et al. suggests that concurrent feedback can degrade motor skill learning, fosters

learned dependency and the development of movement instability [329]. There are three

competing views which attempt to explain the observed negative effects of guidance on

motor learning. The prevailing view is that the learner becomes dependent on KR when

it is presented too frequently. A second explanation is that frequent KR encourages the

learner to make too many corrections during practise which leads to instability. A third

explanation is that frequent and useful KR can encourage learners to ignore important

sources of sensor feedback (e.g kinaesthetic) intrinsic to the task [12].

However, there is still much debate on the proposed effects of concurrent feedback,

with some studies suggesting that the detrimental effects are evident in simple motor

task learning. However, for complex motor tasks in early learning stages, concurrent

feedback can be supportive.
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3.4.3.2 Terminal Feedback

Terminal feedback, also known simply as delayed feedback, is information provided to

an individual after the performance is complete, often a couple of seconds later. A

systematic review on the effectiveness of terminal feedback delivery was conducted by

Stanhope [345]. Terminal feedback has been found to be more effective than concurrent

feedback, performing better in retention tests and transfer tests. It is believed that

delaying feedback in such a manner helps an individual to internalise the required task

dynamics, promotes error estimation and as a result, leads to more effective learning

[356],[315].

Walsh et al. investigated the optimal timing of feedback for technical skills learning

in novices. 30 novice endoscopists were tested on a colonoscopy simulator task, in

12 practise trials. Participants received feedback either during (concurrent) or after

(terminal) each of the trials. Effectiveness of training was assessed (i.e. measures of

execution time and blinded expert assessments) using an immediate post-test and one

week later on retention and transfer tests. While both groups performed equally well on

the pre-, post-, and retention tests. At transfer, the terminal feedback group performed

significantly better [386].

Sigrist et al. found that terminal feedback outperformed concurrent visual, auditory,

and haptic feedback in learning a complex rowing-type task. Sigrist concludes that

terminal visual feedback was most effective because it emphasized the internalization

of task-relevant aspects. In contrast, concurrent feedback fostered the correction of

task-irrelevant errors, which hindered learning [338].

3.4.3.3 Bandwidth Feedback

Bandwidth feedback is an alternative form of scheduled feedback, which obfuscates di-

rect performance to provide feedback only if the learners errors are outside of some

predefined band of correctness, i.e. if the measured error is within some error band,

no feedback information is provided, indicating to the learner that there performance

is acceptable. Bandwidth feedback tends to produce more stable learning behaviour

and better retention performance when feedback is withdrawn, in comparison to every-

trial feedback [334]. Bandwidth feedback was first proposed by Thorndike as early as

1927, who experimented with delivering verbal right-wrong feedback after estimating

the lengths of paper strips or drawing lines of particular lengths [366]. Since then, band-

width feedback has been used in many studies involving learning tasks. The following

selected studies investigate the application of bandwidth feedback for enhancing learning
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and provide support for the generalization of bandwidth feedback principles to complex

tasks.

Goodwin and Meeuwsen investigated the predictions of the guidance and specificity

hypotheses by manipulating different distributions of relative frequency of knowledge

of results (KR) using bandwidth (BW) conditions. 120 subjects participated in an

experiment and were randomly assigned to one of four groups, either a BW0%, BW10%,

Shrinking-BW, or Expanding-BW condition. After 100 trials were completed, a double

transfer design was employed in which the subjects were divided in half and randomly

assigned to a no-KR or KR retention condition. Results of the retention test under the

no-KR retention condition suggested that receiving high relative frequencies of KR at

the end of the acquisition phase was as detrimental to motor skill learning as receiving

high relative frequencies of KR throughout acquisition [123].

Sadowski et al. studied the benefits of bandwidth feedback in learning a complex

gymnastic skill. 30 male acrobats participated in the study. The subjects were randomly

assigned to one of two groups: B - bandwidth feedback or C - 100% feedback. Group

B was provided with bandwidth feedback only, i.e. error information regarding the key

elements of movement techniques. Participants performed 4 practise sessions per week,

for 16 weeks, consisting of basic gymnastic routines, including a handstand, cartwheel,

and somersault. Both groups performed ten trials during each training session for a total

of 640 trials. Analysis of the results suggest that while group B made more errors in

pre-test (one day before the experiment), results from the retention test (one day after

the experiment) suggest that scores improved significantly in group B and insignificantly

in group C [313].

Lee et al. studied the effects of bandwidth knowledge of results on motor skill learn-

ing, during observation of a model’s performance. 28 participants were randomised into

two groups, a bandwidth group and a yoked group. The bandwidth group received KR

about the model’s performance only when their performance fell outside the criteria for

a correct response. The yoked group received KR on the same trials as the bandwidth

group did but were not told that the KR was only about incorrect performances. Fol-

lowing the observation phase, both groups of participants performed 10-min and 24-hr

retention tests. The study concludes that Bandwidth KR enabled that group to reduce

its performance variability and, to a lesser extent, to enhance its performance accuracy

[203].

Smith et al. studied the application of bandwidth feedback scheduling to a golf

shot. Participants practised a golf chipping task with either KR or error correcting

transitional information, under 0%, 5%, or 10% bandwidth conditions. Participants in
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the 10% bandwidth condition who had received transitional information performed more

consistently in retention than all other participants [342].

3.4.3.4 Faded Feedback

Another form of feedback often used is termed faded feedback or “fading scheduling”.

Faded feedback is feedback in which more KR or KP is given early in practise and grad-

ually reduced over time, as the learner becomes more competent at performing the task.

Studies suggest that faded feedback generates similar effects to those observed in both

terminal and bandwidth feedback, that being the improvement in performance reten-

tion. A comprehensive assessment of the literature on fading feedback was conducted

by Goodman et al. [122], which outlines the key studies investigating the merit of faded

feedback for motor learning. Feedback fading was extensively studied by both Winstein

and Schmidt [400] and Wulf and Schmidt [406]. Both studies advocate the use of feed-

back fading for improving retention and skill acquisition during learning and are often

cited as the two fundamental studies on the merits of fading feedback. However, more

recent studies, some conducted by the aforementioned authors, have found either mixed

results or no support for the benefits of faded feedback over fixed frequency feedback.

Dunham and Mueller studied the effects of fading KR on the acquisition, retention

and transfer of a simple motor task. 45 subjects were recruited for this study and were

randomly assisted to one of three feedback groups, continuous, intermittent or faded

KR. The results of this study suggest that no significant difference was observed in

acquisition, retention and transfer between groups [93].

Jarus investigated the effect of reduced relative frequency of KR of faded feedback

on a kinesthetic awareness task. 90 healthy young and older subjects participated in

this study, consisting of three task versions of kinesthetic acuity. Practice conditions of

100% KR were compared with 33% equally spread and 33% faded practice conditions.

The results of this study suggest that reduced relative KR frequency depressed the

performance of the older subjects but raised the performance of the younger subjects

in the acquisition phase. In retention, reduced relative KR frequency produced more

effective performance than 100% KR, with no difference between the two age groups or

the two 33% KR frequency conditions [168].
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3.4.3.5 Trial Delayed Feedback

Trial delayed feedback is essentially elongated terminal feedback, where feedback on

performance is delayed by more than a single trial. For example, feedback on perfor-

mance would not be provided to the performer until after a set of intervening trials

have been completed. Initial investigation into trial delayed feedback speculated that it

might be distributive to the learning process as the learner might have difficulty linking

the feedback with their past performance. However, more recent studies have shown

that feedback about a group of trials, after which all trials in that set were completed,

resulted in greater retention performance [330].

3.4.4 Evidence for Feedback After Stroke

An important question for stroke is whether the benefits cited in literature for healthy

subjects transfer to patient’s recovering from brain injury.

A randomized controlled clinical trial was conducted by Cirstea et. al, consisting of

37 patients with chronic hemiparesis. The study assessed physical (motor impairment,

function) and kinematic (movement time, precision, segmentation, variability) variables

before and after practice. The study reported that use of KP during repetitive movement

practice resulted in better motor outcomes than KR [59]. A follow up study, containing

28 chronic stroke patients suggested that when the learners’ attention was directed to the

movements themselves (KP), motor improvements reflect recovery compared to when

attention was directed toward movement outcomes (KR) [60].

Regardless of the approach KP or KR, feedback appears to have a positive effect on

motor recovery, and has been shown to be more effective than no feedback at all. Sys-

tematic reviews of extrinsic feedback [352],[379], [409] found strong evidence supporting

the provision of explicit feedback for implicit motor learning in both the upper and lower

extremity post stroke.

3.4.5 Discussion

Extrinsic feedback is clearly a powerful means for augmenting learning of both simple

and complex tasks, as is evident from the literature reviewed. Tremendous work has

been conducted on the application of such feedback for enhancing training in healthy

individuals, and in particular for improving peak performance in professional athletics.

In addition, ample studies have also proven such feedback can also be of great utility
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for augmenting the benefits of motor relearning after neurological injury, such as is

common after stroke. With recent advancements in information and communications

technology, as well as the pervasiveness of computer systems, there is great opportunity

to develop therapeutic training systems which incorporate mechanisms for delivering

extrinsic feedback on performance during exercise training. Such systems may help

increase the amount of rehabilitation a stroke survivor carries out, as well as providing

a platform, suitable for use in the home setting, which can facilitate long term self-

managed rehabilitation in the comfort of a patient’s own home.

3.5 Physiological Sensed Feedback

This section deals with the subject of physiological feedback for rehabilitation. What is

meant here by physiological feedback is simply feedback which is acquired by the use of

electronic sensing technology, such as EEG and EMG, for the measurement of secluded

physiological signals, e.g. electrical activity of the brain and body. This section deals

with two particular types of physiological feedback, bio-feedback and neuro-feedback.

In essence, neurofeedback is fundamentally a form of biofeedback, often referred to as

EEG-biofeedback, however, here a distinction is made between the physiological source

of the feedback in question. This distinction is made primarily to better segregate the

growing field of neurofeedback from other non-brain based biofeedback methodologies.

Henceforth, the term biofeedback refers here to signals measured from the PNS, for

example, EMG and ECG. In contrast, neurofeedback refers here to signals measured from

the CNS, more specifically the brain itself, for example, EEG or hemoencephalography

(HEG). It is also important to differentiate physiological sensed feedback from that

described previously in section Section 3.4, termed extrinsic feedback. Physiological

sensed feedback refers to feedback which reveals or gives direct access to otherwise hidden

information about the autonomic functioning of the body. In contrast, extrinsic feedback

refers to information gained that is not naturally derived from intrinsic mechanisms of

the body but rather from an external source. Extrinsic feedback often substitutes for

the lack of, or loss of intrinsic feedback, whereas physiological sensed feedback alludes

to the presence of an otherwise obscured form of intrinsic information.

3.5.1 Biofeedback

Biofeedback is a technique which helps individuals to learn to control physiological

functions, such as blood pressure, heart rate, muscle tension and balance, by giving the

individual access to information pertaining to these systems. This process is typically
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mediated by sensors, often from surface mounted electrodes attached to the skin. For

example, an ECG can relay feedback about the electrical and muscular activity of the

heart, which in conjunction with manipulation of breathing can be used to decisively

control heart rate.

Biofeedback has been extensively applied to treat a wide variety of illnesses and

disorders, including but not limited to; speech disorders and to improve speech per-

formance (i.e. phonatory disorders) [232], urinary incontinence [119], gastrointestinal

disorders [233], Bruxism (a condition in which you grind, gnash or clench your teeth)

[158], Dysgraphia (deficiency in the ability to write) [160], primary Raynaud’s phe-

nomenon (excessively reduced blood flow in response to cold or emotional stress) [178],

peak performance training in sport [297] and for stroke rehabilitation [262]. From the

latter perspective, that of stroke rehabilitation, biofeedback has been applied to numer-

ous aspects of the rehabilitation process. Many extensive literature reviews of the use of

biofeedback in stroke rehabilitation have been conducted, for a comprehensive in-depth

discussion the reader is referred to [118, 262, 404]. The following section gives a brief

overview of the relevant literature, giving context to the utility of biofeedback for stroke.

3.5.1.1 EMG Biofeedback

EMG biofeedback for neuromuscular re-education was one of the initial biofeedback

technologies applied to stroke rehabilitation for individuals with hemiparesis. EMG

uses surface electrodes to detect a change in skeletal muscle activity, which is then fed

back to the user usually by a visual or auditory signal. Following a stroke, normal

regulation of muscle tone is disrupted, as is the ability to in-act direct specific control

over target muscles, as a result of neuronal damage to the motor circuits. However,

typically some of the motor circuits survive and are partially left intact. The theory

behind EMG biofeedback is that through feedback, individuals may be able to learn how

to use these preserved pathways, which over time might help to strengthen and rebuild

the damaged pathways and hence the recovery of motor function. EMG feedback is

particularly suitable in the earlier stages of stroke recovery or when paresis is more severe,

when the individual’s ability to generate movement is small and less easily observable

kinesthetically. There has been a series of independent meta-analyses conducted to

investigate the effectiveness of EMG biofeedback for stroke.

An analysis by Schleenbaker et al. including 8 studies, with a total of 192 patients,

found that EMG biofeedback improves functional outcomes in patients with hemiplegic

stroke [323].
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A meta-analysis was conducted by Moreland and Thomson, containing 6 studies

and examined the efficacy of electromyographic biofeedback compared with conventional

physical therapy for upper-extremity [251]. This study found small effect size increases

with biofeedback therapy compared to conventional physical therapy [251].

A later meta-analysis by Moreland, including 8 studies on the effects of EMG biofeed-

back for improving lower extremity function after stroke indicates that EMG biofeedback

is superior to conventional therapy for improving ankle dorsiflexion muscle strength [252].

A more recent Cochrane review by Woodford and Price was conducted on the use

of EMG biofeedback for the recovery of motor function after stroke. 13 trials, involv-

ing 269 individuals with stroke were included. All trials compared EMG biofeedback

plus standard physiotherapy to standard physiotherapy either alone or with sham EMG

biofeedback. The review suggests that there was a small amount of evidence to suggest

that EMG biofeedback had a beneficial effect when used with standard physiotherapy

techniques [404].

3.5.1.2 Force Platform Biofeedback

The body maintains a sense of balance through a complex set of sensory-motor control

systems, primarily using input from the vestibular system (motion, equilibrium, spa-

tial orientation) but also sensory input from vision (sight) and proprioception (touch).

Damaged caused by stroke to any of the subsequent control areas of the brain can result

in a reduced sense of stability and balance. Difficulty with balance is therefore very

common after stroke and as a result approximately 40% of stroke survivors have serious

falls within a year of their stroke [391]. Much effort has thus been allocated to improving

balance during stroke rehabilitation. One method for improving balance is to provide

additional information to an individual during training that can help reinforce informa-

tion coming from the bodies correctly functioning intrinsic balance apparatus. Force

platform biofeedback is one such method for providing an individual with information

about the location of their center of gravity with reference to the location of their feet.

A Cochrane review, containing seven trials and 246 participants, which assessed the

use of force platform biofeedback, found that biofeedback significantly improved stance

symmetry [24].
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3.5.1.3 Mirror Biofeedback

Although technically a form of visual feedback, mirror feedback is more aptly categorised

as a form of bio-feedback. Mirror box therapy was first described by [299] for the relief

of phantom limb pain, a phenomenon common in individuals who have had a limb

abruptly amputated. It occurs because the nerve endings at the amputation site still

send messages to the brain which preserves a sense of that limb within the CNS. The

principal behind mirror feedback is that vivid kinaesthetic sensations of movement can

be evoked by observing movement of the healthy hand or arm in a mirror. It is suggested

that observing such movement causes additional neural activity in motor areas located

in the affected hemisphere, which should eventually result in cortical reorganization and

improved function [319]. In practise, during mirror box therapy the amputated limb is

obscured by a mirror box, which projects a virtual inverted copy of their healthy limb

back to the patient. The patient then attempts to move both limbs while watching the

reflection in the mirror. The mirror essentially leads the brain to perceive the missing

limb is intact and responding correctly to their motor command and subsequently relays

this sensorimotor information to the contralateral portion of the brain and closes the

motor feedback loop. This motor-sensory information stimulates the otherwise dormant

cortex region and in turn elevates the phantom pain.

Since its initial discovery, application of the mirror box therapy technique has also

been successfully reported in patients with other pain syndromes and in sensory re-

education of severe hyperaesthesia after hand injury [307]. For motor recovery after

stroke, mirror therapy might provide patients with sensorimotor feedback which substi-

tutes for the lack of, or decreased proprioceptive input from a paretic limb.

Altschuler et al. performed an initial proof of concept study of mirror therapy for

recovery of hempiparesis in chronic stroke patients. The patient were randomly assigned

to one of two groups, a mirror group or transparent plastic group (control). Patients

practised using either a mirror or transparent plastic sheet, for 15 min, twice a day, 6

days a week, moving both hands or arms symmetrically (moving the affected arm as

best they could) while watching the good arm in the mirror. During practise patient

performance was assessed by two graders. After competition of the trials, both graders

found that substantially more patients improved from the mirror group compared to the

control group [8].

Sathian et al. describe the successful application of mirror therapy to the post-stroke

rehabilitation of a patient with poor functional use of an upper extremity. Although

small and not sufficiently controlled, the results of this study are promising, reporting
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improved range of motion (ROM), speed and accuracy of arm movement after mirror

therapy [320].

Michielsen et al. showed that in patients with chronic stroke, unsupervised home-

based practise with a mirror resulted in statistically significant improvements in upper

extremity motor function and that mirror therapy caused a shift in activation balance

M1 toward the lesioned hemisphere, suggesting neural reorganisation [246].

More recent studies, [408] and [88] conducted high-quality, randomized control trials

which both reported mirror therapy-improved motor function in patient with acute and

sub-acute stroke.

3.5.2 Neurofeedback

Neurofeedback, also referred to as neuro-biofeedback or neurotherapy, is a biofeedback

technique that uses real-time displays of brain activity to teach self-regulation of brain

function. Neurofeedback has its origins as far back as the 1960’s and was popularised

by the work of two independent researchers, Dr. Kamiya and Dr. Sterman.

Kamiya is often cited as the first to describe the use of neuro-feedback for con-

ditioning of brain activity. In an enduring series of innovative experiments Kamiya

investigated the use of feedback to condition subjects to elicit alpha brain waves. Ini-

tially, conditioning was achieved by verbally prompting subjects when they achieved the

desired alpha state. Later, improvements were made to the experiment and with the

addition of electronic circuity a tone was generated automatically whenever alpha waves

were achieved. Kamiya showed that through feedback and with training, subjects were

able to learn to alter their brain activity to elicit increased levels of alpha [176, 267].

Around the same time, Sterman et al. conducted a series of studies investigating learned

suppression of a previously rewarded response for food in cats through the use of EEG

monitoring [309, 347, 349]. The experiment consisted of first training cats to press a

lever when they wanted food. Once the cats were conditioned to this task a tone was

introduced and the cats learned that they would only receive food if they press the lever

after the tone subsided. Sterman observed that while the cat was waiting for the tone

to stop, it remained absolutely still, though extremely alert. Sterman discovered that

this state was characterised by a specific rhythmic brain frequency of 12Hz to 15Hz over

the sensorimotor cortex which he called the sensorimotor rhythm (SMR). After discov-

ering the SMR, Sherman changed the experiment by removing the lever and instead

rewarded the cat whenever it produced a half second of the SMR frequency. Over time

the cats learned how to produce the frequency at will. Although at the time the use of
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neurofeedback training and the ability to elicit SMR was not well understood and had

no practical applications.

Since these initial studies great interest has been shown in the potential application

of neurofeedback for treating a variety of different physiological illnesses and neurological

diseases including; seizures suppression [348], hyperactivity and attention issues [211],

anxiety [250], posttraumatic stress disorder [132], addictions [291] and more recently as

a means of enhancing learning after neurological injury after stroke.

A thorough literature review on the use of Neurofeedback and traumatic brain injury

was conducted by May et al. [235]. The following is a brief review of the evidence for

and application of neurofeedback after stroke.

3.5.2.1 Evidence for Neurofeedback After Stroke

Recently neurofeedback is gaining much attention as a potential treatment for traumatic

brain injury, with some clinical studies highlighting the effectiveness of neurofeedback

therapy in patient with stroke. During practise, some form of extrinsic feedback, typi-

cally visual or auditory feedback is used in conjunction with neurofeedback, to provide

cues as to guide the patient toward a healthy brain response, as defined by a sample of

healthy subjects. A series of studies investigating the effectiveness of neurofeedback for

use in stroke rehabilitation have demonstrated potential, albeit most of these studies are

small and not sufficiently controlled.

Rozelle and Budzynski demonstrated that neurofeedback therapy in combination

with audio/visual feedback (over 6-month) with a 55-year-old male chronic stroke pa-

tient, lead to an inhibition of 4-7Hz activity and simultaneous increase of 15-21 Hz

activity in the sensory-motor and speech areas. The outcome of which resulted in sig-

nificant clinical improvement including; speech fluency, concentration and visual-motor

coordination [311].

Cannon et al. found that neurofeedback training was efficacious in the treatment of a

43-year-old female stroke patient with a series of physical and mental deficits. EEG data

was collected for both pretreatment and post-treatment evaluation. Prior to beginning

neurofeedback a self-developed symptom checklist was provided to the participant and

was repeated every 10 sessions. The participant then received 52 neurofeedback sessions.

Following treatment, comparative EEG and eLoreta analyses [284], illustrated significant

decreases in the absolute and relative theta power measures and significant elevations of

absolute and relative beta power in the occipital areas. These suppressions corresponded
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to self-reported improvements in patient cognitive functioning (sleep quality, emotional

regulation, and energy) and depressed mood.

Kubik et al. conducted a series of neurofeedback studies in patients with acute and

chronic pain syndromes. They observed that while their studies indicate neurofeedback

is an effective treatment methodology, that a high dosage of training (typically per-

formance of 40+) are required before positive therapy results are observed. One such

study including 9 stroke patients with long term paresthesias, reported that first posi-

tive results were observed only after 20 trainings. A further 40 to 60 trainings 3 times

a week, were required before permanent pain relief was noted. In addition, a further

15 patients with troublesome headaches after craniocerebral trauma were also treated.

40-60 neurofeedback training sessions, 3 times a week, were conducted by this group,

after which positive results were achieved.

However, more recently researchers are starting to realise the potential application

of brain computer interface (BCI) controlled haptic devices for delivering neurofeedback.

A BCI can help achieve enhanced self-initiated motor rehabilitation through a neuro-

feedback process in which measures of motor program engagement can be detected with

appropriate feature extraction and machine learning, to produce a control signal which

is then used to close the feedback loop through triggering of appropriate feedback. Such

an approach may have tremendous utility in providing closed loop neurorehabilitation

to stroke patients, especially those with severe motor deficits.

3.5.3 Brain Computer Interfaces for Neuro-rehabilitation

One of the most substantial recent innovations in stroke rehabilitation is the application

of BCI for neuro-rehabilitation. A BCI uses brain-activity signals to directly interface

with an external device. While this technology may have numerous potential applica-

tions, from the perspective of healthcare, the obvious application of such technology is

its potential use in patients with severe motor impairment. Result of preliminary case

studies suggests that BCI-mediated feedback therapy may be viable for stroke rehabili-

tation.

Shindo et al. conducted a preliminary case study investigating the effects of neu-

rofeedback training with an EEG-based brain-computer interface for hand paralysis. 8

chronic stroke patients with moderate to severe hemiparesis participated in the study.

Participants practised imagine movement with a BCI driven mechanical orthosis system,

once or twice a week for a period of 4-7 months, after which clinical and neurophysi-

ological examinations pre- and post-intervention were compared. New voluntary EMG
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activity was measured in the affected finger extensors in 4 cases who had little or no

muscle activity before the training, and the other participants exhibited improvement

in finger function [336].

Murguialday et al. evaluated the efficacy of daily brain–machine interface driven

robotic arm orthoses training in chronic stroke patients with severe hand weakness. 32

chronic stroke patients were randomly assigned to 2 groups, one received BCI controlled

movement of an arm orthoses and another, the control group received sham move-

ments of the orthoses, which occurred randomly. Training lasted for approximately 18

days. Upper limb motor function scores, electromyography from arm and hand mus-

cles, placebo–expectancy effects, and functional magnetic resonance imaging (fMRI)

blood oxygenation level–dependent activity were assessed before and after intervention.

Fugl–Meyer assessment (FMA) scores improved more in the experimental than in the

control group, presenting a significant improvement of FMA scores reflecting a clinically

meaningful change from no activity to some in paretic muscles [300].

Ang et al. investigated the effectiveness of BCI controlled Haptic Knob (HK) orthosis

biofeedback. The study consisted of 21 chronic hemiplegic stroke patients which were

randomly allocated to one of three groups, BCI-HK, HK-only, or Standard Arm Therapy

(SAT) group. All groups received 18 sessions of intervention over 6 weeks, 3 sessions per

week, 90 min per session. Significantly larger motor gains were observed in the BCI-HK

group compared to the SAT group at intermediate points during training, motor gains

in the HK-only group did not differ from the SAT group at any time point [13].

3.5.4 Discussion

Recent research demonstrates that neurofeedback and biofeedback are effective inter-

ventions for many neurological and physiological disorders. As a result there has been

much academic interest in such techniques and their potential application to stroke re-

habilitation. Such feedback is particularly useful for delivering feedback during training

in patients with severe motor impairment, where normal intrinsic feedback pathways, or

conventional extrinsic feedback are little or no use. For example, in the case of move-

ment therapy in patients with severe weakness, EMG based biofeedback may provide

information about movement attempts which are too faint to be detected kinetically.

In such a case, biofeedback can help positively reinforce desired behaviour and help

the patient to isolate and improve mental function. In the case of total arm paralysis,

hemiplegia, where little or no movement can be detected, EEG based neurofeedback

may provide feedback on attempted or imagined movement. Taking this idea one step
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further, neurofeedback systems can be used in a brain computer interface configuration

to drive a haptic feedback device, to close the motor-sensory feedback loop.

However, neurofeedback research is currently sparse and neurofeedback has not

gained popularity in clinical practice, primarily because of a lack of empirical evidence as

to its effectiveness. This is partially due to the requirement of sophisticated equipment

and the high costs associated (i.e. EMG or EEG acquisition systems, and a haptic feed-

back device). In addition, such systems are often unsuitable for home deployment given

their size, costs, complexity and technical operation requirements. The major disadvan-

tage of home-based rehabilitation programs is the current lack of specialized equipment

and insufficient data as to their efficacy. Unfortunately this lack of data makes it diffi-

cult for companies which might provide BCI-driven haptic feedback systems to justify

the investment required to make this technology widely available. This, in turn, makes

collection of the required evidential data even less likely to happen. Hence, their is a

need for more studies to add evidence as to the effectiveness and utility of home-based

BCI rehabilitation systems.

3.6 Summary

This chapter describes current technological solutions for augmenting motor rehabil-

itation of the upper extremity post stroke, in particular, the use of wearable sensor

solutions, robotic devices - their control systems, and brain computer interfaces. In

addition, this chapter attempts to highlight the role of feedback on implicit motor learn-

ing and subsequently its capacity to improve the benefits of training and increase the

outcome of recovery. Using the knowledge described in this chapter, and through the

development of custom low-cost experimental platforms, the following chapters investi-

gate applications of this work for improving the efficacy of rehabilitation, with emphasis

on developing solutions suitable for the home setting.
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Chapter 4

A Sensor Glove System for

Rehabilitation in Instrumental

Activities of Daily Living

4.1 Introduction

Upper extremity dysfunction is common after stroke, effecting approximately 60% of

stroke survivors [384]. Chronic deficits in the hand are particularly prevalent in people

with hemiparesis and are a major contributor to disability post stroke. In particular, the

ability to extend and flex the digits of the hand is the motor function most likely to be

impaired [107]. The loss of hand function is a significant impairment for an individual,

severely limiting their ability to engage in activities of everyday living such as feeding

and dressing one’s self. Ideomotor apraxia (IMA), a neurological disorder characterized

by the inability to correctly imitate hand gestures and voluntarily mime tool use, is

often associated with stroke patients. Persons with IMA exhibit a loss of ability to

carry out simple, common motor movements and patterns such as, waving goodbye or

brushing one’s hair, and may show errors in how they hold and use tools [219]. There is

strong evidence that gesture training is associated with improvement in IMA, and may

subsequently extend to improvements in activities of daily living [361]. However, as with

all motor learning tasks, functional improvements are made according to the intensity

of practise. Hand function can be recovered under certain circumstances when the

patient engages in prolonged movement practice [51], however for many the inability to

move significantly means that the patients find such activities difficult and unrewarding.

As a consequence, impairment of hand function is often exacerbated by learned non-

use which in turn leads to a loss of cortical representation of the limb. Therefore, it
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is imperative that efforts are made to encourage use of the hand and fingers, in an

attempt to maintain intact cortical representations and to facilitate recovery through

reorganisation and repair, by stimulating the damaged brain region with novel neuronal

activity, derived from repetitive, active movement exercises.

Body language (kinesics) and in particular hand gestures play a significant role

in the efficacy of human communication, providing reinforcing visual imagery of what

we are trying to convey verbally. Naturally then the use of hand gestures could also

provide an attractive alternative for interacting with computer systems [257]. With

the evolution of pervasive computing systems and as more and more devices fill up our

homes, there is an opportunity to develop wearable devices which can help inaugurate

the concept of ambient intelligent environments, that being digital environments that

are sensitive and responsive to the presence of people. Towards this objective, there

is already an assortment of digital entertainment devices in the home which rely on

common interfaces (i.e Infrared, Bluetooth, Wifi etc.) which could easily be controlled

through gestures derived from such wearable sensors. From the perspective of stroke

rehabilitation, there is also an opportunity to use such technology in an attempt to

diffuse functional therapeutic rehabilitation into the activity of daily living. Such a

design places the rehabilitation process at the heart of relevant activities of daily living

which are both personalized to the specific user and which should elicit motivational

engagement. In addition, approaches such as this might help enhance self-care and

independent living, empowering the user through regained control of their environment.

Sensor gloves exemplify the aspiration of developing low cost, immersive human-

computer input devices and subsequently many novel sensor gloves have been developed

with a wide range of applications. Sensor gloves have been designed as interfaces for

virtual reality [129] and gaming [205], as a tool for learning sign language [97] and even

as an experimental tool for developing music through motion capture [314]. Researchers

has also expressed a keen interest in sensor gloves from a healthcare perspective, with

many realising their potential for non-invasive hand impairment assessment [245], re-

mote monitoring of the usage of a paretic hand [340] and the ability to add context to

otherwise tedious and repetitive physical exercise programs [163]. While there has been

an assortment of sensor gloves designed for healthcare application, see Literature re-

view for detailed synopsis, typically such systems are designed as novel peripheral input

devices for a PC, and thus do not functioning autonomously but instead are tethered

to a host, limiting the freedom of the user, the range of possible motions performable

and restricting the potential application of the device. Further, a large portion of those

sensor gloves described are simply not suitable for people with movement disability due

91



A Sensor Glove System for Rehabilitation in Instrumental Activities of Daily Living

to their cumbersome designs which utilise non-docile material, heavy bulky parts, ex-

pensive components and restrictive wired interfaces. In addition, there is a tendency

by designers to integrate an excessive amount of sensors, paradoxically impinging on

the practical usability of the device, (i.e. limiting a devices battery life, increasing it’s

weight and restricting the users dexterity). This also increases the cost and required

set-up procedure, as most sensors require some form of calibration before use, making

them less appealing for unsupervised home use.

As healthcare services inevitably move towards home-based rehabilitation, it is im-

portant to develop support systems which can more efficiently integrate professional

knowledge, afforded by healthcare experts, into the training process and to maintain the

presence of the therapist in the rehabilitation process. Another application ideal then for

sensor gloves is the non-invasive recording of movement activity and operational context

over time, such that numbers of repetitions and performance scores can be reviewed

remotely by an occupational or physical therapist at a later stage.

Towards these objectives, the following Chapter describes the development of a novel

sensor glove system, designed using open source technology, as an innovative, wireless,

autonomous wearable solution for use in the home setting. The content of this chapter

is divided into four parts. In the first section details are given regarding the core design

of the aforementioned sensor glove system, describing in detail the hardware used and

its configuration. After which an additional three sections illustrate unique applications

of this system. First, we describe the use of the sensor glove system for gesture based

control of personal electronic appliances (TV, radio, etc.), demonstrating the sensor

gloves potential for integrating repetitive, therapeutic practise of functional hand skills

into the activities of daily living. Second, a complementary visualisation and playback

system is presented, providing a means for quantisation and analysis of the captured

motion data with emphasis on the use of such technology for remote monitoring by

a therapist. This system utilises open source promiscuously licensed technology (i.e.

an open source graphics rendering engine and 3D Model) to articulate a realistic 3D

model hand using the captured sensor data. And third, a hybrid sensor solution which

integrates the sensor glove with a depth sensing camera, for full spatial hand and finger

tracking is described. This step expands the capabilities of the glove system as a human-

computer interaction (HCI) device. A detailed discussion follows expanding on the

use of such a tool for developing more advanced therapeutic applications, such as the

development of interactive games or the virtualization of testing procedures, such as the

nine-peg hole test.
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4.1.1 Motivation

As already discussed in Chapter 2, the cortex contains a topological map of the body.

The amount of cortex devoted to any given body region is proportional to how richly

innervated that region is and how skilled the brain is at manipulating that body part.

For example, functional magnetic resonance imaging (fMRI) scans of professional string

players show larger representations of the fingers of the dominant hand, than that of

control groups [96]. The cortical map of Braille readers show significant larger repre-

sentation of the reading hand than the non-reading hand [283]. The cortical maps of

professional badminton players show more pronounced representation of the dominant

playing hand compared to their supporting hand, and compared to that of amateur

players [289].

After injury to the cortex, as often occurs with stroke, it is common for there to

be considerable damage to the fore-brain, i.e. the sensory and motor apparatus. An

infarction of the motor cortex can damage or disrupt motor representations, resulting

in the impairment of motor functions. Fortunately as already discussed, the brain can

repair itself after such neurological injury, through the process of reorganisation and

restructuring. Motor learning or perhaps more aptly, motor re-learning, plays an im-

portant role in the reacquisition of functional movement skills after stroke. Motor skill

learning can be described as the modification of the temporal and spatial organiza-

tion of muscle synergies, which result in smooth, accurate, and consistent movement

sequences [133]. It is suggested that motor learning occurs in two stages [375], an initial

stage which is characterised by a fast learning period in which rapid gains are made

in relatively short periods of time. Followed by a secondary phase of learning in which

incremental performance gains are made but at a much slower pace. The hypothesis

being that fast learning involves processes that select and establish an optimal routine

or plan for the performance of the given task. While slow learning may reflect the on-

going structural alterations of the basic motor modules, which with practise over time

cause strengthening of links between motor neurons and their recruitment into the task

specific representation of the practised movement [179].

Studies on animals have shed light on the relationship between motor skill learning

and changes in motor map representations. Nudo et al. [272] trained three monkeys

to retrieve food pellets using digit and wrist movements, while a fourth control monkey

was instead trained to retrieve food pellets using its forearm and wrist. Training lasted

a total of 10 days during which a high number of task repetitions were performed. Post

training cortical mapping showed cortical changes that directly reflected the demands of

the particular task. The monkeys in the first group showed increased representation of
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the digits and wrist compared to pre-training maps, while the latter control group showed

an increase in wrist and forearm representation. Additional studies on monkeys have

showed that after a limb is deafferentation, cortical territories which used to represent

that limb start to diminish over time [241]. Another study in monkeys showed that

2-8 months after a digit is amputated, its cortical representation is completely occupied

by new and expanded representations from adjacent digits or the palm [242]. These

fundamental studies highlight the importance of frequent use of the impaired limb in

strengthening cortical representation after neurological damage and imply that intense,

repetitive rehabilitation may significantly improve motor function. In addition, these

studies also highlight that failure to increase cortical representation of the impaired limb

might result in infringement of this motor area by other neighbouring representations.

Although research suggests that increasing motor representation improves motor

function, the optimal level of exercise dosage required to promote the underlying neural-

plastic change is unknown [184, 212]. Studies of recovery in animals after neurological

injury suggest that daily repetition of the order of hundreds are required in order to pro-

voke lasting cortical change. For example, a study of cortical reorganisation in healthy

rats required 400 repetitions of a skilled reaching task to be performed daily, for 10

days [183]. Similar numbers, 500-600 repetitions daily, for 10-11 days, were required in

a study which examined the affects of motor learning on cortical map representations

with healthy monkeys [270]. In contrast, the current level of activity encouraged in

practise during rehabilitation training with humans is low. A comprehensive study in-

cluding 312 physical therapy sessions from 7 sites around the United States and Canada

investigated the amount of practice, in numbers of repetitions, currently occurring in

stroke rehabilitation [197]. Practice of upper extremity movements were observed in 162

of these sessions, while functional upper extremity movements were only observed in

half of these sessions. The average number of functional upper extremity repetitions in

those sessions was 32. These findings indicate that doses of movement practice currently

provided during stroke rehabilitation are substantially smaller than those deemed nec-

essary for cortical reorganisation in animal models investigating the plasticity of motor

circuits. Perhaps these results shed some light on why as many as 50% of patients leave

primary care with some degree of physical impairment [49].

After returning home, stroke patients are encouraged to engage in daily physical

rehabilitation which focuses on the use of their weakened limb. In the case of weakness

in the upper extremity, functional hand movements involved in activities of daily living

are often practised, including; reaching, grasping, pinching, as well as movements which

involve manipulation of the wrist, for example, turn a door handle and opening a sealed

jar. However, for a recovering patient these tasks are extremely difficult and the inability
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to perform them can be frustrating and discouraging. For this reason, it is common that

stroke survivors learn to compensate for their weakness and quite often stop using their

affected limb altogether, a condition known as learned non-use [360]. Learned non-use

has serious consequences for neural reorganisation as it is a self reinforcing behaviour.

The less the limb is used the smaller the cortical representation of that limb becomes

and the less control the patient has over it, leading to further disuse.

Subsequently, a movement therapy paradigm called constraint induced movement

therapy (CIMT) in which a patient’s healthy arm is restrained, typically using a sling,

a splint, a half glove, or a mitt [53], has been suggested to encourage the use of the

weakened limb. CIMT has been shown to produce significant improvements in the

amount of use of the paretic limb in patients with chronic stroke [247]. Unfortunately,

few rehabilitation centers offer CIMT because insurance companies will not support

it and because it is impractical in terms of time requirements and available resource

[248]. From the perspective of home based rehabilitation, CIMT can also be hazardous

especially if a patient is attempting CIMT independently, as restricting the use of the

healthy arm can displace balance and in the case of a fall, will impair the ability to

cushion an impact.

Thus, we are interested in developing an affordable wearable sensor glove for stroke

rehabilitation, suitable for use in the home, which places emphasis on the use of the

weakened hand without constrained or restricting the use of the healthy arm. Instead,

it is hoped that the novelty of the device and the extended abilities it offers will help

foster increased use of the weakened hand.

4.2 Sensor Glove Design

Most sensor gloves are designed as novel peripheral input devices only doing the most

minimal, if any, on-board computation themselves and instead rely entirely on a host

machine (PC) to make use of the acquired sensor data. The design novelty of the sensor

glove described here is that it functions autonomously, acquiring sensor data, classifying

hand gestures and wirelessly transmitting control signals and or sensor data using on

board hardware, independent of a host machine. To accomplish this feat the glove

incorporates a powerful micro-processor, five independent sensors, a high density light

weight battery power supply and two independent wireless communication systems (IR

and Bluetooth). Such design considerations allow the sensor glove to be used as an

agile unconstrained controller, freeing the user from the typical confined and tethered

user interaction space of a desktop. The sensor glove system was designed around a
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standard, knitted fabric cotton glove. Cotton was chosen as it is comfortable, cheap and

pliable, being easy to attach sensors and other electronic components. The glove was

also designed with adjustability in mind, the chosen cotton fabric is inherently elastic

allowing it to stretch to accommodate different size hands. The flex sensors are fixed

to the glove only at the tip of the finger, with the remaining body of the sensor guided

by elastic through holes at each of the finger’s phalanges. This mechanism allows the

rigid flex sensors to tightly following the curvature of the fingers as they bend without

compressing and opposing movement, see Figure 4.1.

Figure 4.1: Sensor glove: highlighting main components and joints.

4.2.1 Bend Sensor

The sensor used for acquiring finger position is a bi-directional flexible bend sensor (Flex

Sensor – Spectra symbol Corp, Salt Lake City, USA), see Figure 4.2.

Figure 4.2: Sensor glove

The flex sensor exhibits a varying resistance that is proportional to its bend, with

a nominal 25kΩ at rest and an intermediate resistance which is proportional to the

applied bend radius. In order to sample and subsequently quantify this physical changing

property of the sensor we need to convert the resistance into a varying voltage. This is

accomplished by incorporating the sensor into a standard voltage divider configuration,

with the output going to an analog-to-digital converter (ADC), see Figure 4.3. An
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impedance buffer is also incorporated into the sensor acquisition circuit to reduce error

caused by the source impedance. A voltage divider circuit and ADC channel are required

for each flex sensor, totalling 5 for our design.

4.2.2 Micro-controller

In order to remove the dependency on an external PC, we based our system around a

powerful embedded microprocessor, the PIC16f688 (PIC16f series, 8 bit micro-controller,

Microchip corps, USA). We selected this microprocessor as it has the necessary function-

ality and additional internal hardware required for our sensor glove design requirements.

That is, five dedicated (ADC) channels, three digital I/O pins, one of which has pulse

width modulation (PWM) support required by the IR LED and the remaining two

having universal asynchronous receiver/transmitter (UART) support as required for the

embedded Bluetooth module. The chosen PIC16f688 is a suitable micro-controller meet-

ing all the above requirements; however an alternative equivalent micro-controller would

suffice.

4.2.3 Communication Modules

The sensor glove incorporates two separate communication modalities, Infrared (IR) and

Bluetooth (BT). IR is used for transmitting control signals to environmental devices such

as home entertainment systems, including (TV’s, DVD players and radio/CD players).

Most consumer electronics work on one of two wavelength: 870nm or (930-950)nm. To

accommodate both, an IR LED of each wavelength was integrated into the gloves design.

The IR LEDs are driven by Pulse Width Modulate (PWM) using a dedicated peripheral

pin of the micro-controller.

Bluetooth is used for live streaming of sensor data from the glove to a host device

at high speeds and can be used in conjunction with custom designed software for data

capture and presentation, see Section 4.4. The Bluetooth module used is the (HC-05

Bluetooth Module - Guangzhou HC Information Technology Co., Ltd.). The BT module

is connected over dedicated peripheral pins, a universal asynchronous receiver/transmit-

ter (UART) module of the micro-controller.
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4.2.4 Power

The entire system is powered by low voltage (i.e. 5V DC), using a 3.3V DC lithium

polymer battery and a step-up DC to DC converter (NCP1402-5V, ON Semiconductor

Components Industries, USA).

4.2.5 Electronic Schematics

The complete hardware schematics (electronic circuitry) are shown in Figure 4.3.

Figure 4.3: Electronic schematics for sensor glove system.

4.2.6 Safety

From a safety perspective, many considerations were made when designing the sensor

glove. Cotton, which is an extremely good insulator was used for the main body of the

sensor glove. Hence there is both good heat insulation, which protects the user from any

heat dissipation from the electronic components, as well as good electrical insulation. In

addition, the printed circuit board (PCB) which houses the electronic components rests

on top of a thin layer of plastic, further isolating the user. Only very low voltages (i.e.

3.3 V and 5 V DC) are used to power the glove, which are of no danger to the user even

if they came in direct contact with skin.
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There are no moving mechanical parts used in the glove which is made from com-

pletely docile material. The bend sensors incorporated into the glove are flexible and

offer little or no noticeable resistance to movement. The PCB is attached to the body

of the glove using Velcro�, hence, from a hygiene perspective all the components can

easily be removed from the base glove which is machine washable. The glove is also

comfortable to wear and easy to don and doff.

4.3 Gesture Based Environmental Control in the Home

Current recommendations post stroke suggest that high levels of physical activity are

important for promoting optimal recovery after stroke. Regardless, evidence gathered

from systematic reviews repetitively finds that in spite of this evidence, hospitalised

stroke patients consistently spend large proportions of their day inactive. Furthermore,

through interviews with care workers and therapists it was found that patients treated

at home spend a considerable proportion of their day stationary, sitting or lying down

while interacting with entertainment systems. On average, patients were alone for more

than half of the day. It is recommended that physical exercise programs should focus

on the practise of functional movement which are important to activities of daily living

(ADLs). In the home setting, patients receive on average one hour of guided physical

therapy a day and are expected to practise such exercises on their own as often as

they are capable. However, as the previous chapters have affirmed, unguided exercise

programs are extremely difficult for patients struggling with weakness and such exercises

are not naturally motivating. The result of which often leads to neglect of the impaired

limb and subsequently poor recovery of function.

This section describes an application of the aforementioned sensor glove system

which uses hand gesture recognition to control personal appliances, in an attempt to

integrate functional movement into the activities of daily living. It is hoped that this

approach will help promote increased use of the paretic limb through the intrinsic reward

of controlling one’s surrounding through interactive hand gestures.

4.3.1 Finger Position Estimation

The skeleton of the human hand is made up of 27 bones which are categorised into there

groups, the carpals, metacarpals and phalanges. The carpals consist of eight small

bones that make up the base of the hand, protruding from the wrist. Above these are
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the metacarpals which form the base of the fingers ending with the knuckles, from the

ends of which stem the phalanges, the bones of the fingers. See Figure 4.41.

Figure 4.4: Skeleton structure of the human hand.

Each finger consists of three bones, the proximal, middle, and distal phalanges. The

joints between, the distal and middle phalange, and the middle and distal phalange are

hinged, each having a single degree of freedom. The base joint between the metacarpals

and distal phalange has two degrees of freedom. However, natural gestures made with

the fingers are for the most part simple and are well captured by only the flexion and

extension of the phalanges. Hence, lateral abduction of the fingers can for the most part

be ignored and the base joint (metacarpals - distal phalange) can be reduced to a single

degree of freedom.

Although the human hand is extremely complex with many individual degrees of

freedom, joint movements are correlated. Hand motion studies involving simple activities

1Source: 806-Hand-and-Wrist.jpg Creative Commons Attribution 3.0 Unported
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such as reach-to-grasp [234, 316], and skilled activities such as typing [108, 343] reveal

that a small dimensional space accounts for a large fraction of the postural variance

observed during these tasks. Therefore, finger position can be estimated to a high

degree of accuracy using only a single flex sensor, measuring the overall bend of the

finger with respect to the metacarpals.

To estimate finger position using the chosen flex sensor, a two stage calibration

method is used to determine the maximum and minimum sensor values (Xmax, Xmin),

corresponding to the angles (θmax, θmin) of the open hand and closed fist, respectively.

A linear mapping system is then used to map the intermediate flex sensor value Xi(t),

for each of the five flex sensors (X1, X2, X3, X4, X5), to its corresponding finger’s angle

of flexion θi(t), for each of the five fingers (θlittle, θring, θmiddle, θindex, θthumb), see

Equation 4.1.

θi(t) = θi(min) +
θi(min) − θi(max)

Xi(min) −Xi(max)
× [Xi(t)−Xi(min)] (4.1)

4.3.2 Gesture Recognition

Several hand gesture recognition techniques already exist, most of which are based on

Hidden Markov Models [40, 54], Fuzzy Logic [27] or Neural Networks [17, 137]. These

methods provide accurate real time recognition of hand gestures but the computational

costs associated are high and are therefore not suitable for deployment on an embedded

micro-controller. Hand gestures are instead recognised by a custom template match-

ing technique that compares attempted gestures against a table of pre-defined gestures

stored in memory on the micro-controller.

To ensure a detected gesture was actively attempted by the user and not just part of

some natural movement (such as arm movement while walking) each gesture is encap-

sulated by a proceeding and succeeding static pose that initialises the gesture checking

routine, see Figure 4.5 2.

2Hand gesture 30690 sourced from www.freegreatpicture.com
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Figure 4.5: (a) proceeding pose, (b) attempted pose and (c) succeeding pose

A pose P is defined as,

p(t) = [X1(t), X2(t), X3(t), X4(t), X5(t)] (4.2)

Where, Xi(t) is the value of the i-th flex sensor at time t.

The micro-controller continuously monitors incoming sensor values, creating pose

candidates and searching for the framing pose which at the start of a gesture is considered

the proceeding pose and at the end of a gesture is termed a succeeding pose. When it

finds a match corresponding to the proceeding pose, it then starts buffering the next

N consecutive poses until either a time-out occurs or the succeeding pose is captured.

If a time-out is detected, the sensor glove dumps the captured poses and returns to its

previous routine. If instead the succeeding pose is detected within the time limit, the

micro-controller stops buffering poses and proceeds to check each of the buffered poses

against a gesture lookup table. An intermediate pose p matches one of the pre-defined

poses g if the sum of the Euclidean distance D between each element of those poses is

less than or equal to some error threshold E, see Equation 4.3.

D =
5∑

i=0

√
(gi − pi)2

f(D) =

{
1, D ≥ E
0, otherwise

(4.3)

4.3.3 Transmitting (IR) Codes

In the case where a match is found between an attempted pose and a pre-defined pose,

the index of that pose in the gesture lookup table will be used to retrieve its paired IR
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code from an additional table. IR codes are transmitted by an LED modulated with a

carrier frequency of 38kHz, using pulse distance encoding following the NEC infrared

transmission protocol (Semiconductors, 2013), see Figure 4.6.

Figure 4.6: NEC transmission protocol: illustrating, leading pulse, 8-bit address,
logical inverse of address, 8-bit command, logical inverse of command and end of trans-

mission burst.

A logic “0” is encoded as a 562.5µs pulse burst followed by a 562.5µs space. A logic

“1” is encoded as a 562.5µs pulse burst followed by a 1.6875µs space. See Figure 4.7.

Figure 4.7: Illustation of NEC logic encoding

The NEC protocol was chosen as it is widely used by commercial IR products and for

which command codes are freely available. This design consideration allows our device

to interact with many commercial based home entertainment systems, including (TV’s,

DVD players and radio/CD players).

4.3.4 Dynamic Difficulty Adjustment

The inclusion of a dynamic task difficulty mechanism allows for the automatic increase

or reduction in the precision of the gesture required, according to the user’s continuous

performance. The difficulty of a task can be increased or decreased by changing the
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error threshold E or adjusting the time limit T, see Equation 4.3. Dynamic difficulty

adjustment (DDA) is a useful method often used in gaming to optimize engagement

through matching player’s ability with an appropriate challenge [156]. We currently

use a DDA approach which adjusts E or T based on a running average of the relevant

performance measures (DA or TA) for the previous M gesture attempts. When DA (or

TA) is greater than E (or T ) we gradually increase E by an increment each gesture

iteration until an appropriate balance is obtained and similarly if the gesture is too easy

the difference measure is used to increase the difficulty level. This feature is designed to

provoke the necessary motor learning associated with effective therapy.

4.3.5 System Testing and Validation

4.3.5.1 Data Capture

Figure 4.8 shows the raw output from each of the five flex sensors during a series

of rapid hand movements, designed to evaluate and demonstrate the gloves ability to

capture variable movement.

Figure 4.8: Raw data output from sensor glove: illustrating, (a) period of rest, (b)
initial movement, (c) brief maximum clenching of the hand into a fist, (d) rapid opening

and closing of the hand, (e) transient muscle spasm while returning to rest.
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4.3.5.2 Gesture Recognition Accuracy

A preliminary test with 3 healthy users was conducted to validate the operation of the

gesture recognition system. Subjects were thought five unique hand gestures and learned

the association with these gestures and their commands signals, see Table 4.1. Subjects

were then sat in front of a TV and asked to attempt to control different functionality

during a 10 minute session. The time limit T chosen in which a gesture needed to be

performed was 500ms and an error threshold E was chosen to be 8%, see Section 4.3.2.

Table 4.1: Hand Gestures and resulting command codes

Gesture ID Command Hand Gesture

1 Channel Up

2 Channel Down

3 TV On/Off

4 Volume Up

5 Volume Down

The results of this test were averaged across the subjects and are presented in Table

4.2. The results illustrate the average number of times each gesture was performed,

the number of successful and failed classifications, the average time taken to perform

a gesture (measured as the difference between detection of framing poses), and the
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accuracy with which each gesture was performed (measured as the difference between

the pose candidate and the nearest matching predefined pose).

Table 4.2: Average sensor glove testing results across subjects.

Gesture Attempts Successful Failed Time(ms) Error Command

1 15 14 1 443 5.3% Channel Up

2 14 12 2 459 6.5% Channel Down

3 6 6 0 462 6.1% TV ON/OFF

4 20 19 1 426 5.5% Volume Up

5 15 13 2 463 6.2% Volume Down

4.3.5.3 Discussion and Conclusion

Evidence suggests that the level of exercise dosage undertaken by stroke patients in

the chronic stage of rehabilitation are suboptimal for recovery. In fact, observed levels

of exercise repetitions are far lower than those deemed necessary to promote neuro-

plastic response in stroke models. Through interviews with carers and therapists it was

determined that patients spend a considerable proportion of their day interacting with

entertainment systems and that the interfaces to such devices can be very challenging

to operate. Consequently, we designed our sensor glove as an IR-based augmented

controller for personal appliances (TV, DVD, radio etc.). Such a design places the

rehabilitation process at the heart of relevant activities of daily living which are both

personalized to the specific user and should elicit motivational engagement.

Subsequently, the sensor glove application described here was designed to encourage

the user to perform gestures which are derived from therapist-specified motor exercises,

the successful execution of which acts as a control input to an environmental control

system. A preliminary test of the accuracy and usability of the glove was conducted

with healthy subjects. Users found the glove system intuitive, responsive and fun to use,

requiring little or no training other than learning the relationship between gestures and

the corresponding triggered commands. These results are encouraging, as the devices

usefulness as a healthcare apparatus is contingent on the practicality and gratification

of use.

Future work will involve validating the device with chronic stroke patients to inves-

tigate the practically and usefulness of our system as a tool for promoting exercise.
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4.4 Visualisation and Playback of Sensor Glove Data

According to statistics compiled by the National Stroke Association, 10% of people who

have a stroke make a full recovery, 25% recovery with only minor complications, 40%

make some recovery but end up with moderate to severe problems, and 10% require long

term care in a nursing home or similar facility. While the rate of recovery after stroke

is contingent on many factors, there is strong evidence that adherence to post-acute

stroke rehabilitation guidelines is strongly associated with improved recovery outcomes

[92, 164]. While exact figures are hard to come by, reports suggest that non-adherence

to physical exercise could be as high as 70% [341]. Many studies have identified key

factors which affect adherence, such as; misunderstanding instructions, low self-efficacy,

depression, anxiety, poor social support/activity and pain [163].

From the perspective of physical therapy for stroke rehabilitation there are many

strategies which can be employed to improve adherence. Providing explicit instructions

for the required movement task, checking and analysing the patient’s movement attempts

and providing positive feedback on performance [26, 101, 331]. In this respect, support

and encouragement from a therapist are very important elements which help shape the

outcome of therapy. It is especially important that the patient believe that their hard

work, elicited through countless hours of repetitive exercise, can and will help to promote

recovery.

This section describes a therapeutic application of the previously introduced sensor

glove system, for the visualisation, capture and playback of movement during exercise

training. The aspirations of this tool are to increase the therapist’s involvement in

everyday exercise training by allowing the therapist to keep track of the patient progress

and to analyse their exercise sessions remotely.

4.4.1 Sensor Data Acquisition

The sensor glove buffers data that has been processed (i.e. converted from Analog to

Digital) until one sample is acquired from each sensor. After which the data is then

organised into frames for transmission. Data framing ensures the correct transmission

of data from the sensor glove to the receiving software. A frame typically includes

a synchronization sequence which indicate the beginning and end of the payload and

some delimiting characters to break up the data. If the receiver connects to the system

in the middle of a frame transmission, it can then ignores the data until it detects a

new frame synchronization bit. Given the limited processing power of the embedded
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micro-controller, a custom framing protocol was implemented to maximise the data

transmission rate, see Figure 4.9.

Figure 4.9: Illustration of custom data framing protocol.

As previously described in Section 4.2 the sensor data was acquired using a 10-bit

ADC on an 8-bit micro-controller. Therefore, the resulting ADC conversion is stored in

two separate 8 bit registers named, ADCH and ADCL. The upper 2 most significant bits

of this conversion are stored in ADCH, while the lower 8 significant bits are stored in

ADCL. Hence, each sensor is represented by two bytes of data in the framing protocol.

A packet checksum is also included in the frame to ensure the data’s integrity. The

checksum is computed on the glove side and transmitted along with the sensor data, this

checksum is then recomputed on the receiving end and matched with the transmitted

checksum. If the checksums fail to match, the receiver simply drops the packet, otherwise

it proceeds to parse the data and process the sensor information. The checksum C is

simply calculated as,

C =

(
11∑
2

X(i)

)
%255 (4.4)

Where:

X[i] is the ith byte of the framing protocol.

4.4.2 Sensor Data Transmission and Reception

Data is transmitted over Bluetooth using the Universal Asynchronous Receiver Trans-

mission (UART) protocol, at a baud rate of 115200 bits per second (BPS). The received

data is buffered, demultiplex and filtered to reduce sensor noise. Each sensor is filtered

separately, the filtering is done by a moving average filter described by Equation 4.5..

y[i] =
1

M

M−1∑
i=0

x[i] (4.5)

Where:
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y is the output signal.

x is the input signal.

ith sensor value.

M is the number of points used in the moving average.

4.4.3 Real-time Visualisation

A software platform named “Ditto” was developed for real time visualisation of the

sensor glove data. The software platform integrates an open-source graphics rendering

engine called Ogre3D3 (Object-oriented Graphics Rendering Engine), in conjunction

with an open-source library for rendering and recognizing articulations of the human

hand, LibHand [227], see Figure 4.10.

3OGRE-3D - url: http://www.ogre3d.org/
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Figure 4.10: Screen capture of the Ditto software platform showing real time capture
of sensor data articulating a 3D model hand.

Ogre 3D is released under the MIT License 4, a permissive open source license.

Orge 3D is a full featured, self contained graphics engine designed to minimise the

effort required to render 3D scenes and to be independent of 3D implementation (e.g.

Direct3D, OpenGL, etc).

The LibHand library was created by Marin Saric and is released under the Creative

Commons Attribution 3.0 Unported License 5. LibHand contains a textured, rigged and

skinned realistic model of a human hand, based on a 75k+ polygon mesh. The rig or

skeleton is an important feature of LibHand as the Ogre 3D engine supports skeletal

animation, a technique in which a model is represented in two parts: a surface represen-

tation (called skin or mesh) and a hierarchical set of interconnected bones (called the

4MIT License
5Creative Commons Attribution 3.0 Unported License
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skeleton or rig) used to animate the mesh. Skeletal animation works by having a collec-

tion of ’bones’ which are essentially joints, each with its own position and orientation,

arranged in a tree structure.

For example, in the case of the hand skeleton, the distal phalanx is a child of the

middle phalanx, which in turn is a child of the proximal phalanx, which is a child of the

Metacarpals, see Figure 4.4 for reference.

Figure 4.11: Skeleton structure of LibHand

4.4.3.1 Animation of LibHand

There are two main techniques which can be used to animate the underlying skeleton

structure of LibHand. The first and most simple of the these is to manually manipulate

the rotation and position of each of the bones separately. The second is to use inverse

kinematics [256] to determine the joint parameters that provide a desired position of the

end-effector. While the inverse kinematics approach is more sophisticated it requires

a detailed model of the fingers kinematics and is not supported natively by the Ogre

3D engine. In contrast, the former approach can be achieved using a system of weights

which determine the relative rotation of each of the fingers three joints, with respect to

the overall bend of the finger, see Equation 4.6.

[
α β γ

]
= Xi


W1

W2

W3

 (4.6)
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Where:

α: is the joint angle between the distal and middle phalanges.

β: is the joint angle between the middle and proximal phalanges.

γ: is the joint angle between the proximal phalange and metacarpal.

Xi: is the intermediate value of the ith sensor.

W1: rotational weight applied to α

W2: rotational weight applied to β

W3: rotational weight applied to γ

The magnitude and direction of these operations is determined by the captured

sensor glove data Xi, which approximates the ith finger position as described in Section

4.3.1.

4.4.4 Recording

Recording of captured motion was achieved using the Biovision Hierarchical (BVH) data

format [240]. The BVH format is one of the most widely used motion data formats for

representation of animation of humanoid structures. The BVH format was designed as

a way to provide skeleton hierarchy information in addition to the motion data. A BVH

file contains two sections, a header which describes the hierarchy and initial pose of the

skeleton, and a body section which contains the motion data. The following description

of the BVH format is derived from a lecture series by the UW Graphics Group6.

The start of the header section begins with the keyword “HIERARCHY”. The fol-

lowing line starts with the keyword “ROOT” followed by the name of the root segment

of the hierarchy to be defined. The BVH format now becomes a recursive definition.

Each segment of the hierarchy contains some data relevant to just that segment then it

recursively defines its children. The first piece of information of a segment is the offset

of that segment from its parent, specified by the keyword “OFFSET”, followed by the

X, Y and Z offset of the segment from its parent. The offset information also indicates

the length and direction used for drawing the parent segment. The following line after

an offset contains the channel header information, denoted by the “CHANNELS” key-

word, followed by a number indicating the number of channels and then a list of labels

6http://research.cs.wisc.edu/graphics/Courses/cs-838-1999/Jeff/BVH.html
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indicating the type of each channel. This information is required by the BVH reader

and is used to parse each line of motion data. On the line of data following the channels

specification there can be one of two keywords, either you will find the “JOINT” key-

word or you will see the “End Site” keyword. A joint definition is identical to the root

definition except for the number of channels. This is where the recursion takes place,

the rest of the parsing of the joint information proceeds just like a root. The end site

information ends the recursion and indicates that the current segment is an end effector

(has no children). The end site definition provides one more bit of information, it gives

the length of the preceding segment just like the offset of a child defines the length and

direction of its parents segment.

In the body of the BVH file lies the motion section, which begins with the keyword

“MOTION”. This line is followed by a line indicating the number of frames, this line

uses the “Frames:” keyword and a number indicating the number of frames that are in

the file. On the line after the frames definition is the “Frame Time:” definition, this

indicates the sampling rate of the data. 30 frames a second is the usual rate of sampling

in a BVH file. The rest of the file contains the actual motion data. Each line is one

sample of motion data. The numbers appear in the order of the channel specifications

as the skeleton hierarchy was parsed. See appendix for example BVH file.

Figure 4.12: BVH Format
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4.4.5 Playback

The BVH format stores the local position and rotation of each segment (i.e. bone), that

is, its rotation and position relative to its parent. In order to animate a model correctly,

the absolute, or global, position of each bone needs to be worked with respect to the

root node, in this case the wrist. This can be achieved using matrix arithmetic. The

nomenclature used for matrix notation is right to left.

To calculate the global position of a segment you first create a transformation matrix

M from the local translation and rotation information for that segment, see Equation

4.7.

v′ = vM (4.7)

Where:

M : is the transform matrix

v: is the original vertex

For any joint segment the translation information will simply be the offset as defined

in the hierarchy section and can be described by a translation matrix T . Similarly, the

rotation information comes from the motion section of a BVH file.

The rotation matrix R can be constructed by multiplying together the rotation

matrices for each of the separate axes of rotation (X,Y,Z), in the order they appeared

in the BVH file, see Equation 4.8.

R = RzRxRy (4.8)

The resulting motion M of an individual segment is therefore calculated by applying

a translation T and a rotation R to that segment. The resulting translation matrix M

can be expressed as Equation 4.9.

M =


R R R Tx

R R R Ty

R R R Tz

0 0 0 1

 (4.9)

114



A Sensor Glove System for Rehabilitation in Instrumental Activities of Daily Living

Since the BVH format uses a hierarchical structure, the local transformation of a

bone only describes its orientation with respect to its local coordinate system, which in

turn is subject to its parent’s local orientations. To obtain a global matrix transform

for a given bone, the local transform needs to be multiplied by its parent’s global trans-

form, which itself is derived from multiplying its local transform with its parent’s global

transform and so forth, see Equation 4.10.

Mn
global =

n∏
i=0

M i
local (4.10)

Using Equation 4.10 and the derivations of the local transforms, the global positions

for each bone can be calculated. Then using this information, the bone can be drawn

using the offset information in the hierarchy section of the file.

4.4.6 System Testing and Analysis

4.4.7 Sample Rate

The analog to digital (ADC) conversion rate is the fundamental limiting factor of the

sensor glove sampling rate. The time required to complete one bit conversion on the

PIC16f688 is defined by the ADC Clock Period, known as TAD. One full 10-bit analog

to digital conversion requires 11 TAD periods. The source of the conversion clock is

determined by the frequency of the oscillator (FOSC) driving the micro-controller and a

clock divider factor. The fastest possible conversion time for the selected micro-controller

is FOSC/2. Therefore, with the selected 20Mhz clock signal, the conversion time for each

sensor is 1.1ms (909Hz). All five sensors can therefore be sampled in 5.5ms resulting in

a refresh rate of (181.81Hz).

4.4.8 Capture and Playback

Data captured from the glove was converted into the BVH format as described in Sub-

section 4.4.4, at a rate of 60 frames per second (fps). Testing was done to evaluate the

BVH conversion process in which data was captured using the sensor glove and subse-

quently converted it into the BVH format. This data was then loaded into an external

BVH player and played back successfully.
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4.4.9 Articulation of Sensor Data

Testing was done to evaluate the systems ability to render sensor data in real time,

achieving a high frame rate (60 fps) resulting in smooth and clean looking hand motions.

4.4.10 Discussion

The ability to capture, record and visualise hand movement is a valuable asset allowing

patients’ progress to be monitored and assessed by both patient and therapist. From

the perspective of healthcare there are numerous applications for this technology, which

has been open sourced and made freely available by the author.

From the therapist perspective, the system described here could be used as a tool

for remote analysis of patient exercise progression. The incorporated BVH capture

functionality allows for session data to be recorded in a highly portable format, which

for example could be emailed daily to the therapist. To review the data the therapist

only requires either a copy of the original software platform or any freely available BVH

player. Another advantage of this recording format is that unlike a video recording of

the movement, the motion is captured independent of a frame of reference, allowing

the therapist to change their viewing angle and to assess the motion from different

perspectives.

From the patient perspective, feedback on the quality of movement might be bene-

ficial in helping the patient to understand how they can improve functional skills. For

example, an interactive model such as that employed here could be used to first demon-

strate a hand gesture which the user then needs to mimic. After which, a gesture

recognition program could analyse the movement attempt and offer feedback on perfor-

mance. A dynamic difficulty adjustment variable could also be incorporated into the

program to ensure the patient is constantly being challenged.

4.5 A Hybrid Sensor System for Full Hand Motion Cap-

ture

Over the last decade, studies in behavioural, cellular and molecular science have shown

significant effects of enriched environments in animal models of neurological disease [265].

Van Dellen et al presented evidence that enriched environments helped to delay the

onset of Huntington’s disease in mice [378]. Arendash et al. showed that environmental
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enrichment improved cognition in Alzhemier’s transgenic mice [18]. Studies in stroke

patients have also shown that an enriched environment increases activity in patients

undergoing physical rehabilitation [166]. These studies provide some insight into the

mechanisms of experience dependent plasticity and suggest that enriched environments

might have important implications for enhancing motor learning after stroke.

Virtual reality (VR) (i.e. computer-simulated environments) is set to play a huge

role in the next generation of human computer interaction technology. We are currently

awaiting the release of commercial VR headsets, including the much anticipated Oculus

Rift [194]. Such devices enable advanced low-latency positional tracking allowing for

the accurate mapping of your real world head movements into the virtual world, shifting

and modifying your viewing experience as if you were really there. Body tracking and

in particular hand tracking can further enhance a user’s experience of immersive VR

allowing them to not only move around in a virtual environment but also to interact

with it in a natural manner. Subsequently, VR headsets are often coupled with other

wearable sensors such as sensor gloves and motion capture suits.

However, capturing the full three dimensional motion of a hand in a cost effective and

non-invasive manner is a complex problem. Sensor gloves are exceptional at capturing

fine finger movement, cheaply and effectively. However, most sensor glove designs lack

the veracity to make them useful for monitoring the full range of hand motions, prin-

cipally; translations and rotations of the hand. Developing an autonomous, integrated

solution to such a problem is challenging. That said, there have been commendable

attempts at embedding additional sensors (accelerometers, gyroscopes, and altimeters)

into the standard flex sensor based glove for this exact purpose. However, this class of

sensors use a local inertial-frame for reference, which suffers badly from integration drift.

To reduce this drift, existing algorithms make use of gravity and the earth’s magnetic

field measured by accelerometers and magnetometers respectively. These components

themselves are sensitive to local magnetic interference and require further compensation

mechanisms. Adding these to the lean sensor glove described earlier results in a design

which is cumbersome, heavy and fragile, increasing the cost, power requirements and

reducing the agility of the device. The software complexity also increases, requiring

additional routines for acquiring and processing each of the newly added sensors and in

some cases the implementation of computational expensive filtering algorithms, which

have a severe impact on the responsiveness of the glove.

An alternative is to use a vision based approach for the motion tracking. The motion

of an object from the camera perspective is used as a relative measure based on a static

reference frame i.e. the camera’s fixed position and field of view. One device that excels

at this form of tracking is a depth camera. In this work we utilise the LEAP motion
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controller7, an innovative, highly compact, affordable depth camera solution for hand

motion tracking, Figure 4.13. The LEAP aims to make motion control ubiquitous, with

a small device designed to be placed on a physical desktop, facing upward. It uses two

monochromatic IR cameras and three IR LEDs. The LEDs generate a 3D pattern of

dots of IR light and the cameras generate almost 200 frames per second of reflected

data, which is sent to the host computer, where it is analysed by the LEAP Motion

controller software. Using this approach the LEAP successfully tracks both translational

and rotational hand motion, fluidly and at very high frame rates. However, it is not

without its limitations. Visual forms of motion capture suffer from an alternative class

of problems, mainly that of visual occlusion. While adept at hand tracking, the LEAP

is poor at tracking finger positions, as the fingers become occluded from view when they

are bent and flexed [128],[339], [16], [134].

This is problematic for healthcare applications, as accurate finger tracking is an

important component of most exercise routines, such as pinching, or picking up an

object. In this work we describe our attempts to develop a hybrid sensor system which

combines our previously aforementioned sensor glove and the LEAP motion controller

for high fidelity, full hand and finger tracking.

4.5.1 Hardware

The LEAP Motion controller uses two wide angle cameras as sensors which track an

IR light source with a wavelength of 850 nanometres, emitted by three IR LEDs. The

device has a large visual field of approximately eight cubic feet, which takes the shape

of an inverted pyramid and can track movement at a rate of over 200FPS.

7LEAP motion controller
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Figure 4.13: The LEAP Motion controller showing coordinate system.

The LEAP Motion system uses a right-handed Cartesian coordinate system, with

its origin centred medially on the surface of the device, see Figure 4.13 8. The sensors

are directed along the y-axis, facing upwards when the controller is in its standard

operating position. The effective usable range of the LEAP extends from approximately

(25− 600)mm above the device.

4.5.2 Motion Tracking

4.5.2.1 Frames

The LEAP Motion application program interface (API) encapsulates motion tracking

data as a series of frames. Each frame may contain multiple tracked objects called en-

tities, including fingers, hands and tools. The frame object contains spatial information

about each entity in that frame, including their measured positions, rotation and ve-

locity with respect to the LEAP’s coordinate system. The Frame class defines several

functions that provide access to the data in the frame. If a hand is present in the field

of view, a hand object will be initiated in that frame, and will be subsequently updated

with relative information about its location and orientation in consecutive frames. Sim-

ply polling the LEAP controller for frames is the simplest and often best strategy for

retrieving motion data. However, when polling there is a chance that duplicate frames

might occur if the application frame rate exceeds the LEAP frame rate. To solve this

problem, each frame has a unique ID which can be used to mark processed frames.

8Leap Axes.png sourced from the leapmotion developer API
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4.5.2.2 Entities

The LEAP can label an entity as either, hand, finger or tool, depending on how the

object is classified. For this application only the hand model is of interest. The hand

model provides information about the identity, position, and other characteristics of a

detected hand, the arm to which the hand is attached, and lists of the fingers associated

with the hand.

The LEAP motion uses a model of the human hand to predict movement even when

parts of a hand are not visible, see Figure 4.149. The hand model always provides

positions for five fingers, although tracking is optimal when the silhouette of a hand and

all its fingers are clearly visible. The software uses the visible parts of the hand, its

internal model, and past observations to calculate the most likely positions of the parts

that are not currently visible.

Figure 4.14: Hand tracking using the LEAP motion controller, showing coordinate
system used.

The LEAP Motion controller provides information about each finger on a hand. If all

or part of a finger is not visible, the finger characteristics are estimated based on recent

observations and the anatomical model of the hand, see Section 4.5.2.210. Fingers are

identified by type name, i.e. thumb, index, middle, ring, and pinky. A Finger object

provides a Bone object describing the position and orientation of each anatomical finger

bone. All fingers contain four bones ordered from base to tip

9Leap Palm Vectors.png sourced from the leapmotion developer API.
10Leap Finger Model.png sourced from the leapmotion developer API
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Figure 4.15: Finger tracking model using by the LEAP controller, showing vectors
which provide position of a finger tip and the general direction in which a finger is

pointing.

4.5.3 Integration

Interfacing the LEAP controller with the software system “ditto” was facilitated by

an extensive well documented application programming interface (API), allowing the

seamless detection and tracking of hands and fingers within the LEAP field of view. The

LEAP controller is integrated with our system over USB, with data being communicated

to a virtual serial port.

As previously described, the sensor glove communicates wirelessly with the software

system through an embedded Bluetooth module, over a separate virtual serial port.

Once configured and connected, both the sensor glove and LEAP act as autonomous

entities, grabbing new sensory data and piping it into the software platform, through

their own independent pathways. See Figure 4.16 for system overview diagram.
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Figure 4.16: Hybrid system overview

4.5.4 Initial Investigation

It had been anticipated that the black matt fabric used in the sensor glove might pose

issues with absorption and scattering of the IR light used by the LEAP sensor to detect

objects. A preliminary test of the LEAP motion controller ability to detect a hand while

wearing the sensor glove described in section 4.2 confirmed this problem. While wearing

the glove, the LEAP was only able to partially detect and track the hand, reflected by a

relatively high frame drop rate. Subsequently, testing was done with different coloured

gloves to determine if a more suitable fabric would better reflect the IR light back towards

the controllers cameras. It was found that the lowest frame drop rate was achieved using

a high-visibility, reflective, fluorescent yellow glove. This material achieved a tracking

rate similar to that of the naked hand. Subsequently, the original cotton glove was

replaced with this new material.

4.5.5 Augmenting Finger and Hand Movement onto a 3D Model

Moving and rotating the model hand around the VR environment is trivial, and is

facilitated by high level functions for applying rotation and translations of an objects

orientation and position using the OGRE engine.

To accommodate any discrepancies between the LEAP motion controller’s and sensor

glove’s sensor acquisition speeds, each of the devices were set up on their own processing
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threads. When new data arrives from either the LEAP or the sensor glove, it is processed

separately and buffered. After a set amount of time (20ms) the buffers are then filtered

using an averaging filter and the resulting data from both, the LEAP (hand position

and rotation) and the sensor glove (finger flexion’s) are applied to the model hand.

4.5.6 Discussion

The resulting hybrid system can track hand position and rotations as well as fine finger

movement, resulting in accurate smooth manipulation of the 3D hand model. The

Ogre3D graphics rendering system which we integrated into our system offers great

flexibility for a developer, allowing importation of most well-known 3D model formats.

Hence, interactive objects can easily be added to the virtual environment, facilitating

the development of interactive environments. For example; a simple paper tossing game

could be implemented in which the user has to reach for, pick up and throw a virtual

piece of paper into a rubbish bin. Reaching, grasping and coordination are important

functional movements that are integral to many activities of daily living, which most

rehabilitation programs endeavour to incorporate. A simple scoring mechanism, adding

competition to the game might encourage more replay-ability in which users try to beat

their best scores or timing. Behind the screens, each movement made by the user can be

tracked, recorded and quantified, allowing for a semi-automated assessment of recovery

over time.

4.6 Summary

In this body of work, we present some of our recent efforts to leverage embedded tech-

nology to develop new and innovative approaches for promoting exercise training after

stroke. Systems such as the sensor glove described here might offer new exciting ways for

people to practise beneficial, therapeutic exercises as prescribed by their therapist. It is

important to note that these devices are not intended to replace the need for conventional

therapy but instead to be used as ancillary devices with the intention of supporting and

enhancing recovery. Research shows that patient adherence to physical therapy reduces

when they leave primary care (i.e. hospitals and clinics). This paradox can partially be

attributed to the reduction in environmental stimulus and decline in positive reinforcing

feedback, previously afforded by a team of trained professionals, without whom patients

find their exercises difficult, unrewarding and frustrating.
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The motivation for the work undertaken here was to engineer solutions which can

help encourage the increased use of the paretic hand, in an attempt to promote the

repetition deemed necessary for instigating neural plastic changes in the brain. Research

suggests that exercises which are meaningful, such as movements which reflect activities

taken from real life situations improve recovery in stroke survivors. Subsequently, our

approach couples gesture-based environmental control with functional hand movements

used in activities of daily living. It is hoped that there might be auxiliary benefits

to using this technology, such that the newly acquired functional control over their

environment might improve a person’s sense of ability and independence. A virtual

environment containing a realistic model of the human hand was also developed in an

attempt to create an open source platform for the capture and playback of exercise

training data. The intention of this platform is to reduce the gap between therapist

and patient by helping to monitor and track patient progression and to make this data

easily accessible to therapists. Finally a hybrid sensor solution for full hand and finger

tracking was described, extending our visualization platform into a three dimensional

virtual environment. This platform enables the development of enriched, stimulating

environment through the addition of interactive 3D models and could be used as a

foundation for the development of interactive therapy programs.

The author believes that such systems will play an active role in the future of health-

care, enhancing unsupervised forms of therapy through immersive interactive applica-

tions. Initial testing with healthy subjects was positive, finding the systems here easy

to use, engaging and stimulating. However, much further work is required towards in-

vestigating the practical therapeutic benefits of such devices. Future work will involve

conducting a pilot study with chronic stroke patients to investigate the potential of these

approaches for healthcare applications.
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Chapter 5

Developing Strategies for

Automating Movement Therapy

Post stroke patients require continuous medical care and intensive rehabilitation often

requiring one-on-one manual interaction with the physical therapist. Unfortunately,

present demands and budget restrictions do not allow this intensive rehabilitation.

Hence, there is an urge for new technologies improving the efficacy and effectiveness

of post stroke rehabilitation. Thus robotic therapy might represent a successful and

standard complement for post stroke multidisciplinary rehabilitation programs.

Robotic devices for rehabilitation are already starting to play a pivotal role in the

evolution of healthcare practise for stroke. Robot assisted therapy presents the poten-

tial to deliver, highly structured, repetitive rehabilitation in a cost effective manner,

reducing the burden on healthcare services and alleviating the dependency on health-

care specialists. However, the major drawback over manual rehabilitation is the loss of

human insight and intuition which is used by the therapist to regulate how and when

assistance is offered to a patient. For example, an experienced therapist will very quickly

notice when a patient is making less effort to engage during periods of assistance. In

such cases the therapist may reduce the amount of assistance they offer in order to coax

more effort from the patient. This is an example of a strategy adopted by the therapist

based on their experience of the patient’s behaviour. In the same situation, a robotic

controller lacking the therapist’s insight might instead increase the level of assistance to

such a patient in a näıve attempt to provide assistance. Subsequently, although there is

great potential in the application of robotics for healthcare, such devices are currently

struggling to deliver significantly functional improvement over conventional therapy in

clinical trails [52, 195, 217] and in some cases have even been shown to reduce the

effectiveness of training.
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Designing suitable robotic controllers for automating movement-based rehabilitation

therapy requires a better understanding of the interaction dynamics between patient and

therapist. Current control approaches ignore the complexity which drives a patient’s

actions, their motivation and behaviour in response to their therapist’s assistance and

therefore are not sufficient for administering optimized therapy. We feel that a better

understanding can be accomplished through framing the interaction as a problem in

game theory.

Accordingly, the focus of this Chapter is to investigate the potential application of

agent based modelling and game theory, for the design and analysis of patient/therapist

interaction dynamics, with a view to designing more sophisticated control strategies. We

demonstrate in a simplified implementation the effectiveness of this approach through

simulating known behavioural patterns observed in real patient-therapist interactions.

5.1 Motivation

As expounded in previous Chapters, the efficacy of a motor intervention program post

stroke depends heavily on its onset, duration, intensity and task-orientation. Treatment

of motor defects after stroke is subsequently labour intensive, requiring extensive one-

to-one training with a physical therapist. Such requirements put great stress on the

physical therapist, consuming much of their time and limiting their ability to engage

multiple patients. Consequently, these restrictions place limitations on the capacity of

stroke care units, reducing the availability of rehabilitation services [236]. In addition

and due to economic costs, the average duration of primary rehabilitation is getting

shorter, as healthcare providers struggle to cope with the rising incident of stroke and

subsequent need for rehabilitation services [49]. Subsequently healthcare providers are

actively seeking means to alleviate the burden on hard-pressed physical therapist staff,

in an attempt to cut costs and to improve the efficacy of treatment.

Given the repetitive nature of physiotherapy after stroke, there is both a need and an

opportunity to deploy technologies such as robotics in an attempt to automate aspects

of the rehabilitation process. While initially prohibitively expensive, over the past two

decades there has been a revolution in technological innovation which has made the cost

of developing such devices feasible. Subsequently, research into rehabilitation robotics

has grown rapidly and many promising applications for automating movement rehabili-

tation having since emerged, see Chapter 3 for literature review of robotics devices for

stroke.

126



Game Theory: A Potential Tool for the Design and Analysis of Patient-Therapist
Interaction Strategies

The majority of this research has focused on developing more sophisticated, multi de-

grees of freedom robotic end effectors, in order to support more complicated movements,

such as multi-joint arm and hand movements [67, 146, 209, 249, 294, 353, 367, 402]. In

contrast, less effort has been focused on the development of more effective control strate-

gies which specify how such devices interact with participants. This is partially because

there is are concrete guidelines for how best to control such devices in such a way as to

provoke plasticity and thereby maximise recovery outcomes. Therefore, current control

approaches are designed on an ad hoc basis, usually drawing on concepts from rehabili-

tation, neuroscience and motor learning literature [226].

As a result, clinical trials with robotic devices have had mixed results and there is

subsequently no significant evidence to suggest training with a robotic device in patients

with chronic stroke is superior to conventional physiotherapy. A recent comprehensive

survey comparing 120 robotic devices for upper limb rehabilitation sums up this con-

sensus, remarking that there is still significant need to improve the effectiveness and

reduce the cost of home-based devices for therapy and ADLs assistance [221]. These

findings suggest that the current control strategies used to administer the level of assis-

tance provided during robot movement therapy are sub-optimal. The issue of cost will

be addressed in a later chapter in this thesis. The current chapter focuses on concepts

related to the higher level control of the robotic assistance delivered in order to better

understand how more effective therapy may be delivered.

5.2 Background

Therapeutic robots further the therapist’s goal of facilitating recovery not only by de-

livering measured therapy but also by affording new ways to evaluate patients’ progress.

Robotic devices can help assist movement programs in a number of circumstances. They

can assist in active movements, where a patient has some ability to move but not enough

to complete a movement task independently. This scenario is very common during the

acute and sub-acute phases of recovery after stroke, when a patient is just starting to

regain some movement of their affected limb. Robotic devices can also assist with pas-

sive movement, such as movement which helps to increase range of motion and improve

flexibility.
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5.3 Conventional Control Strategies

The goal of any robotic control system, regardless of its control strategy is to aug-

ment the practise of therapeutic exercises in a way which provokes motor plasticity and

therefore improves recovery. There have been a number of different active assistive con-

trol strategies developed over the last two decades, of which can be broadly group into

four categories; assistive, challenge-based, haptic simulation and non-contact coaching

[226]. An assistive controller can help participants to move their weakened limbs in de-

sired patterns. For the upper extremity this involves assisting with motions involved in

grasping and reaching, using an approach similar to the “active assist” strategy utilised

by a rehabilitation therapist. An assistive controller effectively reduces the difficulty of

a movement task. In contrast, the challenge-based controller can be thought of as the

opposite to an assistive controller, in that it opposes motion, making them more difficult

or challenging. The third controller paradigm, Haptic simulation, refers to the practise

of functional movements in a virtual environment and is often used in patients with

chronic stroke who have some movement control over their limb, to encourage practise

of therapeutic exercise in the home setting. Finally, non-contact training is a paradigm

in which there is no physical assistance provided to aid in completing a movement task.

Instead the robot coaches the patient, helping to maintain motivation and to guide the

execution of the therapy task. The most developed of these robotic control approaches is

the assistive controller as it most closely resembles the strategy used by physical thera-

pists during conventional movement rehabilitation and is therefore the focus of the work

described here.

5.3.1 Assistive Controller

There are many reasons why the assistive controller has remained the dominant control

strategy used in rehabilitation. The active assist strategy promotes both passive range

of motion (PROM) and active assist range of motion (AAROM). PROM occurs when an

external device or therapist moves the joints through the range of motion with no effort

from the patient. Many people who lose the use of their arm and hand after a stroke

experience spasticity, uncontrollable muscle tightness, and stiffness, which make move-

ment difficult, stretching helps to reduce joint stiffness and to reduce spasticity [364].

AAROM occurs when the patient uses the muscles surrounding the joint to perform the

exercise but requires some help from the therapist or robotic othesis to complete the

movement. Another motivation is that moving the limb in a way which the participant

cannot without assistance might provide novel somatosensory stimulation which helps
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provoke plasticity [296] and that providing an example of the desired movement pattern

might help the participant to learn it.

Assistive control strategies typically follow a simple control paradigm. When a

participants movement is along a desired trajectory the robot should not intervene,

however, if the participant deviates from the desired trajectory then the robot should

create a restoring force which guides the participant back onto the desired trajectory.

For robotic assisted movement training this restoring force is typically generated using

some appropriately designed mechanical impedance.

5.3.2 Impedance-based Assistance

Impedance control was first proposed by Hogan [144] and is an approach to control

the dynamic interaction between a manipulator and its environment. Impedance as-

sistance is achieved by changing the relationship between the input and output of a

system, for example, between force and position, or velocity and acceleration. The MIT

Manus (upper extremity) and Lokomat (lower extremity), two of the first therapeutic

robotic assistive devices used in clinical trails post stroke both employed a combination

of impedance and proportional feedback control to guide movement along a fixed trajec-

tory [146, 191]. Since then many other robotic therapy devices have been built, a survey

by [221] reviews 120 devices for the upper extremity alone, taking into account only

those devices which support or retrain movement of disabled individuals. While much

advancement has been made, the focus of which is mainly directed at improving the

range of motion and degrees of freedom of the end manipulator, in addition to reducing

the overall costs of such systems. In contrast, little effort has been made to improve

upon the original control strategy utilised by their predecessors and subsequently most

robotic therapy devices [9, 192, 209, 215, 216, 249, 401], rely on an impedance based

proportional feedback controller or a variation of it for position feedback control.

5.3.3 Proportional Controller

The proportional or P-controller is the most basic form of the position feedback con-

troller. The p-controller attempts to decrease the steady state error of a system by

feeding back an error signal, which is the difference between the controllers current out-

put and some desired value. This error signal is then used to adjust the next output

state of the system, see Figure 5.1.
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Figure 5.1: Proportional Position Controller.

The output of the controller Pout can be mathematically expressed as 5.1,

Pout = K × e(t) + c0

e(t) = SP − PV
(5.1)

where:

K = proportional gain

e(t) = instantaneous process error at time t

c0 = controller output with zero error

SP = set point

PV = process variable

In practise more advanced variations of this controller are often used which increase

the complexity of the underlying algorithm to better estimate the resulting error. De-

pending on the application and required control, two additional parameters are typically

added to the standard proportional controller, the integral (I) and derivative (D) values,

resulting in the well known and widely used PID controller.

Controllers based on this approach deliver a form of “assistance as needed” (AAN),

since the restoration force generated is proportional to the intermediate error with re-

spect to some desired trajectory. If the error is very large, the resulting restoring force

will also be large, whereas if the error is small then the restoring force will also be small.
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5.3.4 Assist as Needed Paradigm

The assist as needed hypothesis can be summed up as follows; contributing excessive

assistance will cause the patient to decrease motor output, with negative consequence

for use-dependent neuroplasticity. In contrast, not providing enough assistance might

curtail the patient’s range of motion, reduce the number of executed movement repeti-

tions, and in some cases make the movement task impossible to accomplish, resulting in

frustration and decreased motivation.

The basic principles of the AAN controller is to promote learning through constantly

challenging the spinal cord and motor circuits by introducing uncertainty and variability

into the training patterns. To achieve this, strong feedback or assistance is given when

the subject’s performance is far outside the nominal pattern, however as they get closer

to the desired trajectory, gentler guidance is given, thereby allowing the subject to guide

their own motions when doing well. In this way, a reasonable amount of variability is

experienced during training as would be naturally experienced in normal movement.

Many approaches have thus been demonstrated which attempt to promote increased

variability during movement practise. One such approach is to include a dead-band

in the impedance control scheme which allows for some variations without evoking in-

creased assistance from the robotic device [303]. Another variant on the basic impedance

approach is to use some trigger to activate assistance. The intention here is to promote

self-initiated movement, after which assistance is offered if some performance threshold

is reached. Many different trigger variables have been proposed including; elapsed time

[62, 209], force generated [9], trajectory error [175], velocity [192] and muscle activity

[145, 294].

A comparison study of the efficacy of fixed trajectory algorithms against AAN algo-

rithms on recovery of locomotion ability in completely spinalized adult mice by Cai et al.

[42, 43] showed that mice who received AAN training showed higher levels of recovery

than those which received a fixed training trajectory control strategy.

5.4 Persistence of Motor Adaptation

Motor adaptation is a form of motor learning, described as a process of acquiring and

restoring movement skills. Motor adaptation can be thought of as the process by which

the nervous system learns to anticipate novel environmental forces in an attempt to

eliminate kinematic error. For example, motor adaptation plays an important role in
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learning to swing a new tennis racket or learning to walk in high heels. While an integral

component of the motor system without which we could not possibly function in a

dynamic world, motor adaptation poses complications for developing assistive robotic

devices for movement rehabilitation. There are two key problems caused by components

of the adaptation process which reduce the effectiveness of assistive robotics, referred to

as the guidance hypothesis [326] and the slacking hypothesis [98].

5.4.1 The Guidance Hypothesis

Originally suggested by Annett [15], the guidance hypothesis states that; assisting move-

ment changes the inherent dynamics of the underlying task and therefore what is learnt

is not the intended task itself [326]. Schmidt et al. suggest that although guidance can

be beneficial in reducing error during a movement, if relied upon heavily it may be detri-

mental for motor learning [325]. In order to promote neural plastic change which may

facilitate repair and reorganisation of the motor circuit, the brain needs to actively plan,

generate and execute motor commands. This process can be facilitated by assisting with

the targeted movement, for example by supporting the arm and reducing its weight, or

by gently guiding the movement trajectory. However, simply moving the paretic arm

passively will have little or no therapeutic value as there is no associated neural drive

with the movement. Therefore, robotic systems which passively guide movement along

a fixed path might be suboptimal for therapeutic applications as they abolish variability

which is an intrinsic property of neuromuscular control [170]. A significant concern is

that too much guidance may force the central nervous system into a state of “learned

helplessness” [405] since the neural systems are not being challenged to explore alter-

native motor patterns on their own accord. Cai et al. suggest that fixed trajectory

training might cause an extensive level of habituation to sensory inputs such that there

is eventually little or no response to the sensory inputs imposed by the robotic training

device and therefore little or no motor output generated [44].

In support of the guidance hypothesis, recent studies have highlighted that passive

guidance from a robot reduces the effectiveness of training [61, 193, 292].

5.4.2 The Slacking Hypothesis

Recent experimental evidence suggests that a fundamental property of the human motor

system is that it “slacks”; that is, that it continuously attempts to decrease levels of

muscle activation when movement error is small during repetitive motions [98, 302, 322].

For therapeutic applications of robotics, the implications of slacking are that it may
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reduce effort during movement training, with negative consequences for use-dependent

motor recovery. For example, a study in people with incomplete spinal cord injury

who walked with the assistance of a gait training robot consumed 60% less energy than

in conventional manually-assisted therapy [161]. Similarly, chronic stroke patients who

trained with an adaptively controlled assisitive robot gradually reduced their output,

letting the robot take over a reaching task [402]. These actions are counter productive

since the robot is taking more of the rehabilitation burden from the patient who can

complete the task with less effort than they have the ability to offer. In such cases the

patient is no longer contributing maximum effort and the resulting therapy will not be

as efficacious.

5.4.3 Discussion

The major drawback to an automated rehabilitation approach is the loss of human

insight and intuition afforded by the therapist to regulate how and when assistance is

offered to the patient. Current control system approaches do not take into account the

highly dynamic and interdependent nature of the relationship which exists between a

patient and their therapist. For example, an experienced therapist will very quickly

notice when a patient is making less effort to engage during periods of assistance. In

such cases the therapist may reduce the amount of assistance they offer in order to coax

more effort from the patient. This is an example of a strategy adopted by the therapist

based on their experience of the patient’s behaviour. In the same situation, a robotic

controller lacking the therapist’s experience might increase the level of assistance to such

a patient in a naive attempt to provide assistance. This situation highlights one of the

major concerns for using a triggered assistance approach, that is that after achieving the

required threshold to activate assistance, a patient might then essentially “piggy back”

on the robot who will complete the task for them.

Developing better models which describe both patient and therapist behaviour might

help in designing more sophisticated controllers for automating therapist movement

rehabilitation. Expanding on this idea, a novel approach to developing a dynamic control

system for rehabilitation might be achieved through framing the interaction between

patient and therapist as a problem in Game Theory.
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5.5 Game Theory

Game theory was first proposed by John Von Neumann and Oskar Morgenstern [263,

383]. Game Theory is a branch of mathematical analysis developed to study social

decision making in situations of competition and conflict. Typically a game consists of

a set of rules which govern a situation in which two or more competitive participants

(players) choose strategies designed to maximize their own winnings or to minimize their

opponent’s winnings. In such a game, the outcome of a players choice of action depends

critically on the actions of others, see Figure 5.2 1

Figure 5.2: Boxing metaphor illustration of game theoretic principles of how a players
choice of action depends critically on the action of others.

The payoff is the outcome of a move resulting from the actions or strategies taken by

players. When played iteratively, participants can go through the adoption of strategies

derived from the players model of their opponent to achieve improved pay-off over time

[56],[306]. A strategy should not be confused with a player’s move. A move is an action

taken each round by a player, for example; playing a card, picking up a coin, or moving

a chess piece. A pure strategy is therefore a complete set of rules or an algorithm which

1Source: tit-for-tat.jpg, id:20902799 licensed under Jantoo licence agreement.
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dictates a players move for every possible situation throughout the game. A player’s

strategy set defines what strategies are available for them to play. In contrast to pure

strategies, a player may also play a mixed strategy. A mixed strategy consists of possible

moves and a probability distribution (collection of weights) which corresponds to how

frequently each move is to be played. A mixed strategy approach can be useful when

a player is faced with a situation in which there is no obvious benefit from playing any

of their pure strategies, however they want to add uncertainty to their move so their

opponent cannot predict it. In essence, a mixed strategy allows a player to randomly

select a pure strategy to play, instead of playing deterministically.

Games analysed using a game theoretic approach can be divided into two main

branches: cooperative and non-cooperative games.

5.5.1 Non-cooperative (zero-sum) Games

In their original work, Von Neumann and Morgenstern restricted their attention to zero-

sum games, that is, games in which one player can only gain from another players loss. In

such games, if the total gains and losses of all participants are summed up they will sum

to zero. For this reason, a zero-sum game can be considered a strictly competitive game

also known as a non-cooperative game, since players cannot work together in order to

maximise both their pay-offs simultaneously. A simple game called “Matching Pennies”

will be used to illustrate a zero-sum game.

The game involves two players, Player A and Player B. Each player starts off with

an identical number of pennies. The rules of the game are that on each round players

must simultaneously place a penny on the table. The payoff for each player depends on

whether the pennies match or not. If the pennies do match, i.e. they are both heads or

both tails then Player A wins. On the other hand, if the pennies do not match, Player

B wins. The winner of each round gets to keep the other players penny and the game is

over whenever one player has won all of the pennies. The payoffs for Players A and B

are shown in Table 5.1.

Table 5.1: Payoff table for a game of Matching Pennies

(A,B) Heads Tails

Heads (+1,-1) (-1,+1)
Tails (-1,+1) (+1,-1)

The optimum solution to this game is not obvious as it appears that this game does

not have a unique solution. The minimum and maximum pay-offs for each of the two

strategies is the same, i.e. 1 and -1. There are two obvious pure strategies, either to
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play heads, or tails. However, doing so allows the opponent to simply play the counter

strategy which maximises their pay-off. For example, if Player A always plays heads

then Player B can maximise their pay-off by always playing tails. However, in the case

of such a game, a more optimum solution exists by playing a mixed strategy, that is,

a player can “randomize” their strategy by offering either a head or a tail, at random.

Therefore, the game of matching pennies has a solution in mixed strategies, and it is to

offer heads or tails at random with probabilities 0.5 each way.

5.5.2 Cooperative (non-zero-sum) Games

In contrast, a non-zero-sum game is a game in which players can gain without incurring

a loss from their opponent. The distinction between cooperative and non-cooperative

games was first clarified mathematically by John F. Nash [258]. Unlike cooperative

games, in non-cooperative games there is no central authority which assures players

conform to the predetermined rules, therefore while players can cooperate, any cooper-

ation must be self-enforced. A classic example of cooperative game is illustrated in the

“Prisoners dilemma” example [255].

Lets pretend two people, Mr. Blue and Mr. Red have been arrested for a minor

crime. The authorities believe they may have committed a much larger offence, how-

ever they do not have any evidence to convict them. Instead they need a confession

implicating the perpetrators in order to sentence them. The two detainees are put into

separate holding cells so they can’t talk and the police play a game. To try and force

a confession they are given a choice. Admit your partner committed the crime and you

will be pardoned but your partner will serve 3 years in prison. However, if you stay

silent and your partner implicates you, you will serve the 3 years and your partner will

be set free.

Now the detainees know that the police do not have any evidence and if they both

stay silent that they will only go to prison for 1 year each, for the minor crime committed.

However, if they both implicate each other then they will both have to serve a reduced

sentence of 2 years each.

Given this information the players have two options, they can stay silent (cooperate)

or betray (deflect). We can also develop a pay-off table for each player 5.2.

In terms of strategy, the players should co-operate since this is the best option for

the group as a whole. By staying silent both players would therefore serve 1 year in

prison. However, taking this game from Mr. Red’s perspective, if he thinks Mr. Blue
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Table 5.2: Pay-off table for a prisoners dilemma game

(Mr.Blue,Mr.Red) Defect Cooperate

Defect (2,2) (0,3)
Cooperate (3,0) (1,1)

might stay silent then he could maximise on the payoff by betraying him. On the other

hand if Mr. Red thinks that Mr. Blue might attempt to betray him then he should also

betray, since 2 years in prison is better than 3. Turning the tables on this perspective,

Mr Blue is in the exact same situation.

It now becomes clear that they should both co-operate, however from an individual

stand point they notice that if they betray, there is both a chance to minimise the

potential damage that could be caused by the other player while also having a chance

of getting off completely free. Since they have no control over each other actions, both

players will defect to try better there own situation, hurting both themselves and the

group. In this case this strategy is known as the dominant strategy, since it is the best

strategy a player can play, no matter what other players might do. If each player has

chosen a strategy and no player can benefit by changing strategies while the other players

keep theirs unchanged, then the current set of strategy choices and the corresponding

payoffs constitutes a Nash equilibrium.

Although this situation is contrived for the purpose of illustrating a non-zero-sum

game, it does have practical applications in the real world [7, 41, 371].

5.5.3 Repeated Games

So far the games which have been explored have been games which are played once,

known as stage games. However, things start to get more interesting when players play

multiple iterations of a game, known as a repeated game, iterated game or super game.

In an iterated game, players need to take into account the impact that their current

action might have on future actions of other players. This characteristic of a player is

often called the players reputation.

As opposed to one-shot games, repeated games introduce a new series of incentives:

the possibility of cooperating means that we may decide to compromise in order to carry

on receiving a payoff over time, knowing that if we do not uphold our end of the deal,

our opponent may decide not to either. Our offer of cooperation or our threat to cease

cooperation has to be credible in order for our opponent to uphold their end of the

bargain. Working out whether credibility is merited simply involves working out what
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weighs more: the payoff we stand to gain if we break our pact at any given moment and

gain an exceptional, one off payoff, or continued cooperation with lower payoffs which

may or may not add up to more over a given time. Therefore, each player must consider

their opponent’s possible punishment strategies.

This means that the strategy space is greater than in any regular simultaneous or

sequential game. Each player will determine their strategies or moves taking into account

all previous moves up until that moment. Also, since each player will take into account

this information, they will play the game based on the behaviour of the opponent, and

therefore must consider also possible changes in the behaviour of the latter when making

choices.

5.6 Agent Based Modelling

Agent-based modelling and simulation (ABMS) is a relatively new approach used to

model complex systems composed of interacting “agents” (human or otherwise). These

agents are often described by simple rules and behaviour for interacting with other

agents and completing tasks. The main strength behind this approach is the principle

of self-organization. Agents learn from their experiences, and adapt their behaviours so

that they are better suited to their environment. As the models evolve, structures, pat-

terns and behaviours can emerge that were not explicitly programmed into the original

models, but instead surface through the agent interactions with each other and their

environment [218]. An agent-based model (ABM) is one of a class of computational

models for simulating the actions and interactions of autonomous agents (both individ-

ual or collective entities such as organizations or groups) with a view to assessing their

effects on the system as a whole.

A typical agent-based model is made up of three components:

1. A set of agents, their attributes and behaviours.

2. A set of agent relationships and methods for how to interact.

3. An environment ‘i.e. a game’.

Agent-based modelling has been applied exhaustively in both the social sciences

(economics, management, political and social psychology) and the formal sciences (com-

puter science, biology, physics and statistics). This approach of modelling has proven to

be useful for modelling phenomena which are not easily modelled by other approaches
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[223]. The applications of agent based modelling are plentiful, ranging from modelling

the stock market [104] to networking engineering (P2P file share) and predicting the

spread of epidemics [412]. The interaction between a therapist and patient is clearly

then a problem for which an agent based approach is well suited as the individual inter-

acting elements are clearly non-linear decision making entities whose behaviour arises

out of a complex series of interactions. These interactions are driven by a range of

motivations, desires, beliefs and intentions which are difficult to quantify and simulate

through any other means.

5.7 Modelling Patient-Therapist Interactions

The interaction between a therapist and patient is clearly then a problem for which

a combination of an agent based approach and game theory are well suited, as the

individual interacting elements are clearly non-linear decision making entities whose

behaviour arises out of a complex series of interactions. These interactions are driven

by a range of motivations, desires, beliefs and intentions which are difficult to quantify

and simulate through any other means. Consequently we feel the approach will be of

utility here and merits investigation, as so far as the authors are aware, the methods of

agent based modelling or Game theory have not been previously applied to the design

of automated controller systems for neuro-rehabilitation.

In this section we apply the ideas of the previous sections through very simple models

of patient motivation and behaviour. Simple as the formulations are they demonstrate

significant exploratory and explanatory power through the production of plausible pat-

terns of behaviour in patient-therapist (therapist/agent/controller) interaction.

5.7.1 The Game

The interaction between a patient and their therapist can be considered as an instance

of a competitive game in which the patient is seeking maximum success at the reha-

bilitation task but with minimal energy expenditure. The therapist on the other hand

wishes to seek the patient deploy maximum effort or expenditure of energy during the

rehabilitation tasks. However it is not obvious from the therapist’s viewpoint how much

effort the patient possesses and how much of it they are expending on a trial by trial

basis. Consequently the therapist must balance giving assistance to complete the task
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and therefore maintain motivation with the need to engage the patient as fully as pos-

sible with the task. We start by defining each player’s desires, objectives and outcomes

according to a basic mathematical formulation.

5.7.2 The Patient Model

The patient’s primary input to the game is the effort they exhibit during a therapy

session. We called this parameter Ep (Patient Effort). Patient effort could be measured

through energy exerted, force applied, measures of central nervous system activity etc.

– the details of the physical measurement is not important at this stage as only an

abstraction of the interaction is examined in this work. We also assume that the patient

desires to recover the use of their effected limb, hence their objective is to successfully

complete each motor task they are assigned, to the best of their ability. We can model

this objective mathematically, see Equation (5.2).

The patient desires to maximize G where,

G =
N∑
i=1

Ti (5.2)

where:

T = Task completion status: Ti ε [0,1].

N = Number of trails in therapy session.

In this case Ti ε [0,1] where 0 represents the task has not progressed at all and 1

represents the task is complete. For example, perhaps the task is to move a weight

from one position to another. In such a case, patient effort might be measured in cm of

movement that the patient generates (similarly for robotic effort) and therefore T can

represent how far the patient movement task has progressed. In such a case T = 1 would

correspond to the weight being successfully moved to the target position.

One could consider this desire to maximize G as reflecting the patient’s motivation

through gratification. Clearly this is something which could be experimented with in

exploratory scenarios. We also need some measurement of the patient’s recovery. A

reasonable assumption would be that we can gauge the recovery of the patient based on

the amount of effort Ep they offered during the complete set of rehabilitation therapy

sessions. We can therefore say that a measure of the patient recovery is given by,
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R =

N∑
i=1

Ep(i) (5.3)

where:

Ep = Patient effort during ith interval

N = Number of trials in therapy session.

5.7.3 The Therapist Model

The therapist’s primary input to the game is the effort they offer to the patient in

order to complete a task. We called this parameter Er (Robot Effort). In a motor

rehabilitation task this robotic effort could as in the therapist example be a physical

measurement such as force applied, however as previously stated the details are not

important in this example. The simplified formulation of the therapist’s motivation is

to assist the patient in completing a motor task. In the ideal situation the therapist

desires to offer effort Er described by equation 5.4,

Er = [En − Ep] (5.4)

where:

En = Effort needed to complete task

Ep = Effort offered by patient

Now that we have defined the preliminary models for our patient and therapist

we can focus on designing a model of the interaction. The structure of this ‘game’

will determine how the agents interact with each other and will affect the behavioural

patterns that emerge. In the following section we develop three different behavioural

models for our robot therapist and describe the ‘game’ dynamics of each simulation

which will control the agent’s interactions.

5.7.4 Simulations

Our preliminary model defined above, which is admittedly very basic, can be used to

demonstrate plausible patterns observed in real patient-therapist interactions. In this

section we illustrate this by simulating interesting interactions between patient and
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therapist. We start by simulating a scenario in which learned dependency occurs; this

simulation is of significant interest as its occurrence is quite common in rehabilitation

therapy. However, we then proceed to show how through experimenting with alternative

robotic agent (the model therapist) behaviour we can predict and limit its occurrence,

thus optimizing the resulting recovery rate.

5.7.4.1 Simulation 1: Learned Dependency

In this instance we model the patient as being ‘lazy’, desiring to offer the minimal effort

possible to complete a task. To simulate this effect we program the patients to offer

less and less motor effort each turn so long as the task is cooperatively completed, see

equation 5.5.

Ep(i) = [Ep(i− 1) + ∆E] (5.5)

∆E =

+0.1, if T(i) = 0

−0.1, if T(i) = 1

Note: The values chosen for ∆E are arbitrary and only serve to reflect some change

in the patient’s effort.

We model the therapist in this instance (a näıve robotic actuator providing effort

Er) as a player who will always provide the additional assistance required to complete

the task, see Equation 5.6.

Er(i) = [En(i)− Ep(i)] (5.6)

where:

En = Effort needed to complete task

Ep = Effort offered by patient

We then model the interaction through a round based game with N=100.

Given the rules as designed, it is clear that after several iterations the patient will

offer almost no effort and yet still ‘successfully’ complete the rehabilitation task thanks

to the additional effort offered by the ‘over helpful’ therapist. This can be observed
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in Figure 5.3. It is interesting to note that, whereas the patient received constant

gratification of ‘successfully’ completing each motor task, their recovery R as defined as

the sum of the patient efforts (area under the curve) is low. This result is as we would

expect in the case of learned dependency.

Figure 5.3: Learned Dependency

Now that we have observed a plausible behaviour we can experiment with developing

alternative robot behaviour so as to reduce the likelihood of this occurrence through

basing the robot’s behaviour on its experiences of previous patient effort.

5.7.4.2 Simulation 2: Erratic therapist

The following simulations purpose is to explore how the patient will react to random

bursts of no assistance while they are falling into the pattern of learned dependency.

Instead of always assisting the patient to complete a task regardless of their input effort,

we instead modify the robot to näıvely assist the patient only for the first half of our

session. Then for the second half of the session we get the robot to randomly stop offering

assistance to the patient for short periods of time. For this example, the moment of no

assist will be chosen by generating a random number.

Er =

En − Ep, if x < 6

0, otherwise

The results of this simulation are interesting as they still show the effect of learned

dependency; however its occurrence is less severe and takes longer to manifest. This
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can be observed in Figure 5.4, since the gradient of the curve Ep is less linear than in

Figure 5.3. We can clearly see the patient effort level Ep declining up until the halfway

point (while the robot is still mindlessly assisting the patient). Then, as the robot

behavior switches to randomly offer no assistance we see a drop in the task completion

status. Consequently, as the patient loses the gratification of completing their task they

react by starting to increase their effort levels again. Whereas this is a very simple

simulation, it accurately replicates a plausible patient reaction. We can see that the

recovery rate R of the patient under this robotic therapist model is higher than that in

the previous model, since the patient was encouraged to offer more effort. In simulation

3 we take this model and try to advance it to show how we can effectively reduce learned

dependency even further and regain positive efforts from our patient.

Figure 5.4: Learned Dependency

5.7.4.3 Simulation 3: Replicating Therapist Coaxing Effect

In this simulation we show how it is possible to replicate a desired behaviour which

an experienced therapist might employ during periods of assistance when they realize a

patient is no longer contributing sufficient effort to complete a task. We call this strategy

‘effort coaxing’. To achieve this we take a similar approach as in simulation 2. However,

this time instead of randomly reducing the robot’s assistance to zero for short periods

of time, we instead reduce the amount of assistance it offers by some small amount. We

then hold this value constant for a random period of time, for example 10 trials.

Er =

En − Ep, if x < 6

En − Ep −∆E, otherwise
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Figure 5.5: Simulation 3 results.

Figure 5.5 clearly shows the patient effort levels responding to the periods of lack of

assistance. At these moment the patient loses gratification i.e. T (i) = 0, and therefore

starts to increase their effort until they rebalance the completion status T (i) = 1. Since

the assistance level is being held constant this coaxes the patient to keep increasing

their effort until they match the effort need to complete the task. This effect can be

observed as the slight rises in the plot of patient’s effort. We can also observe a rise in

the patient’s recovery R, as would be expected in a real therapy session.

To compare the three therapist behavioural models developed above, we simulated

10 therapy sessions consisting of 100 iterations for each of the control strategies. We then

computed the average recovery rate R as per Equation (5.3), for each of the models. The

results of this experiment are described in Table 5.3. It should be noted that we are using

the same patient model for each of the simulations and that only the therapist model has

been modified between simulations. Therefore, we can simply examine the magnitude

of the recovery R of the patient to determine how biasing the robots behaviour affected

the patient’s recovery.

Table 5.3: Statistical analysis of simulation results

Simulation 1 Simulation 2 Simulation 3

Recovery (R) 33.82% 35.90% 38.68%
(R / Max Patient Effort) 56.36% 59.82% 64.46%

At first glance the difference between the patient’s recovery rate R of the models

might seem non-substantial. To better appreciate these results we need to examine the
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percentage difference of patient effort between the simulations. For example, there is

approximately an 8 percentage point increase in patient effort between simulation 1 and

simulation 3.

5.8 Discussion

A key objective of this Chapter is to investigate if agent-based models are a suitable

approach for developing conceptual models of the interactions between a patient and

their therapist with a view to improving the design of robotic assistance devices for

automated therapy. As an illustration of this approach we have developed a simple

model which demonstrates behaviour which could be described as ‘learned dependency’

– a phenomenon observed in real patient-therapist interaction. We have shown that

it is possible to capture interesting patient-therapist dynamics with respect to patient

effort through such simulations. We further show how through minor adaptation of

the therapist agent we can alter the interaction elicited from the patient agent in a

way that is commensurate with observed real patient responses. The results of this

simulation show how appropriate interaction strategies for the therapist can reduce the

manifestation of suboptimal interactions such as learned dependency and as a result

increase the efficiency of the resulting therapy session (in this abstraction). Finally

we demonstrate how such simple models can be further adapted to replicate a desired

behaviour used by an experienced therapist to coax more effort out of their patient.

Our results clearly indicate an increase in patient effort during this simulation. Whereas

these simulations are admittedly simplistic, they serve to prove the potential of using

an agent based modelling approach in replicating some of the phenomena observed in

real patient-therapist dynamics.

The work described in this chapter is purely conceptual and is not intended to be put

into practise in its current form. Instead, this work is an exercise in creative thinking, of

aspiring to approach a well recognised problem from a distinct and innovate perspective.

The author believes that an approach such as that described here has great potential

merit and which might be put into practise to improve the current state of high-level

control of therapeutic rehabilitation devices. It is hoped that the ideas described here

will help promote and inform future work beyond this thesis, towards the development

of more sophisticated control systems for assistive technology.
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Chapter 6

Extrinsic Feedback for Automatic

Rehabilitation Systems

Traditionally rehabilitation is managed, coordinated and facilitated by professional health-

care specialists. However, due to the increasing number of stroke survivors and the sub-

sequent demand on healthcare systems, researchers are actively creating new technolo-

gies in the hope of enhancing and scaling conventional forms of therapy. The previous

chapter described efforts already under way to enhance rehabilitation in the sub-acute

stage of recovery after stroke, in which the physical therapist plays an active role in

assisting with movement. In this chapter effort is made towards developing approaches

to support the chronic stage of recovery, in which patients actively practise movement

exercises independently, with no physical intervention from a therapist.

At this stage of recovery, it is common for the patient to only see a therapist once

a week, if at all, and instead responsibility shifts towards the patient to continue their

prescribed exercise routines independently. While patients can still make significant

gains in the chronic stage of rehabilitation [228], emerging reports suggest that adherence

to physiotherapy in home programs is a major problem with up to 65% of patients being

either non-adherent or partially adherent, and with approximately 10% of patients failing

to complete their prescribed course of physiotherapy [25, 164, 370]. As a result, recovery

in the chronic stage often plateaus prematurely, not because of an inherent biological

limit of plasticity but instead because of a reduction in voluntary motor activity [359].

An obvious innovation then is the development of automatic rehabilitation systems

for the home setting which can be used to both monitor (and therefore measure compli-

ance) and encourage patient engagement in therapy by providing feedback. Subsequently

we would like to develop a form of “virtual therapist” which could help passively assist in
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the rehabilitation process by delivering concurrent feedback on performance during exer-

cise training. The provision of such feedback has been shown to enhance motor learning

and positively influences motivation, self-efficacy (i.e. patient belief in their ability to

complete a task) and compliance with exercise programs [14, 222, 328, 392]. The pre-

cise nature of such schemes and their potential application for automatic rehabilitation

systems are the focus of this chapter.

This chapter is divided into three parts. First, a brief introduction placing feedback

in the context of motor learning is given, including an objective examination of the role

of extrinsic feedback on implicit motor learning after stroke. Second, the design of a

novel automated feedback platform and a low cost digital hand dynamometer for the

investigation of feedback on motor performance are described. A preliminary investiga-

tion using this system to explore the effects of excessive feedback on motor performance

during a repetitive grip exercise is performed and results are presented. Following this,

a discussion of the shortcomings of the initial experimental protocol used in the previous

investigation, highlighting concerns that the dynamics observed might simply be a result

of local muscle fatigue. As a result, a secondary investigation of the effects of obfuscated

feedback on motor performance is performed. For the purpose of fatigue assessment,

additional custom designed, low-cost, hardware is described for the concurrent record-

ing of EMG data, throughout the experiment. In addition, a commercial isometric hand

dynamometer is used for this study and a more rigid experimental protocol is defined.

Finally, statistical analysis is performed on the resulting data and conclusions are drawn

regarding the affects of obfuscated feedback on motor performance.

6.1 Skill Learning

A skill is the learned ability to carry out a task with pre-determined results often within

a given amount of time, energy, or both [152]. A motor skill is a specific type of skill

resulting in the intentional movement of a body part that must be learned and voluntarily

produced to proficiently perform a goal-oriented task [185]. The acquisition of new

skills is made possible by the plasticity of the human brain and is an important part

of everyday life, from learning how to walk, to riding a bicycle. These motor skills

are acquired through the formation and development of sophisticated neuronal circuits

which arise from the intense practise of those skills.

Motor impairment after neurological injury is fundamentally caused by damage to

the normal organisation of motor circuits. Thus, after brain injury, neurological reorga-

nization plays an important role in the restoration of motor function. Based on initial
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research in animal models Nudo et al proposed that changes occurring during motor

learning, i.e. synaptogenesis and increases in synaptic strength, are likely the same type

of changes that occur during the reorganisation period after stroke [268]. Since then

a cohort of studies have confirmed this hypothesis and it is now well recognised that

recovery of motor function after traumatic brain injury is fundamentally a process of

relearning [117].

Regardless of the skill, learning how to ride a bike, to becoming a proficient golfer or a

world class marksman, it is well known that task performance improves with practise [3,

110]. However, although mastering a skill requires repetitive training of that skill, there

are other important factors, including the training conditions and quality of practise

which can enhance the rate of learning and improve retention [328]. Feedback given

during training is regarded as a critical variable for skill acquisition and has been shown

to effectively enhance motor learning.

6.2 Feedback

6.2.1 Intrinsic Feedback

During independent learning, inherent feedback derived from sensory-perceptual infor-

mation i.e. vision, audio and proprioception, help a learner to improve performance.

This type of feedback is called intrinsic feedback as it come from within. Intrinsic feed-

back helps to formulate a person’s internal representation of a movement task they are

trying to achieve. For example, when first learning to throw a basketball, players miss

the net very often, however as they practise they learn how to better judge the kinemat-

ics involved, i.e. the weight of the ball, the angle of the shot and the required power. The

learner can achieve a certain level of proficiency from task-intrinsic feedback, however

in order to attain a higher level of skill, augmented feedback is often required. When

intrinsic feedback is no longer good enough to provide information about the appropri-

ateness of the performance, or when the information required cannot be accessed by the

learner, then augmented feedback can play an essential role in effective skill learning.

6.2.2 Extrinsic Feedback

Augmented task-related feedback, or extrinsic feedback comes from an external source

and usually provides information which is not generally available to the user from intrin-

sic sources. For example, returning to our original basketball analogy, extrinsic feedback
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might be derived from a coach providing information which helps to correct the play-

ers posture, or release timing, while watching the player make free throws. Extrinsic

feedback is commonly categorized as either knowledge of performance or knowledge of

results. Knowledge of results (KR) is defined as extrinsic or augmented information pro-

vided to a performer after a response, indicating the success of their actions with regard

to an environmental goal [315]. For example, a tennis player might be told they served

a ball with a speed of 80 mph. Knowledge of performance (KP) or kinematic feedback

refers to information provided to a performer, indicating the quality or patterning of

their movement [328]. KP tends to be distinct from information which can be obtained

through intrinsic feedback, such as information which can be used to directly improve

a tasks. In contrast to KR, an example of KP would be information regarding how the

tennis player might have hit the ball too early, i.e. before it reached its maximum height,

resulting in an off center collision with the racket and subsequently a sub-optimal serve

speed. While it is possible to make significant learning gains without extrinsic feedback,

studies show that extrinsic feedback improves learning rate and retention [379].

6.2.3 Feedback Scheduling

Feedback scheduling is an important parameter in providing feedback, that is the timing

and frequency with which extrinsic feedback is provided during practise, and has been

shown to affect motor skill acquisition and retention [186, 202]. A brief discussion

of feedback scheduling modalities is given here, mainly to highlight the significance

of obfuscated feedback for motor learning, for a more thorough discussion of different

feedback modalities, see Literature review Chapter 3.

Concurrent or continuous feedback is a form of feedback which is given in real time

while a participant is performing a task. Intrinsic feedback can be considered a form of

concurrent feedback, however concurrent feedback can also come from external sources

such as manual guidance, where a therapist provides tactical cues to help guide move-

ment. Continuous feedback has been utilised for decades in physical rehabilitation ther-

apy as a means of training injured limbs. Superficially, continuous feedback appears

to be an effective method for augmenting the learning process as it strongly guides the

learner to the correct or desired response, minimises errors and holds behaviour on tar-

get. However, mounting evidence suggests that the gains observed during training do

not carry over to retention tests or transfer tests in which feedback is withdrawn [322].

It has been suggested that one reason for the detrimental effects of concurrent feedback

might be that they prevent spontaneous error estimations that might occur during or
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after the movement. Additional findings suggests that concurrent feedback has a nega-

tive effect on learning because it provides feedback too frequently, such that the learner

becomes dependent on it, thereby degrading learning [285, 315].

In contrast, research suggests that methods which obfuscated direct performance

(i.e. summary/averaged feedback, delayed feedback or bandwidth limited feedback )

improve learning as they increase movement stability and yield better performance in

retention tests when compared to concurrent feedback [50, 57, 334].

In both summary and average feedback, feedback is provided at the end of a set

of trials. Summary feedback refers to feedback which is given on each trial in the set,

while average feedback refers to feedback given about the average performance over the

course of the entire set. The benefits of both summary feedback [327, 330] and average

feedback [407] relative to single-trial feedback has been demonstrated in many studies.

Bandwidth feedback involves giving qualitative feedback when task performance

is within some acceptable range of error (e.g., 10%), and quantitative feedback when

performance is outside that range (e.g., 70 ms too fast) [379]. The capacity of bandwidth

feedback as a tool for augmenting motor learning is well documented and has been shown

to be highly effective in enhancing learning during physical practice [39, 50, 79, 202, 203,

334, 342].

6.2.4 Feedback after Neurological Injury

An important question is whether or not the research findings described above for healthy

subjects apply to persons with neurological injury after stroke! After stroke, intrinsic

feedback pathways may be damaged making it difficult for the learner to determine what

needs to be done in order to improve performance. For example, a patient suffering from

hemiparesis of the hand will more often than not also have proprioceptive impairment

of the hand and subsequently a loss in sensation. Therefore, extrinsic feedback might

even be more important for people with stroke.

While there is some research which indicates that feedback can enhance motor learn-

ing after stroke, there are many areas as yet not examined and there is clearly a need

for considerably more research in the area. An extensive review of extrinsic feedback for

motor learning after stroke undertaken by Vliet et al. suggests that there is a distinct

lack of research which analyses if variables which have been shown to positively influence

learning in healthy subjects are transferable to stroke patients [379].
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6.2.5 Discussion

During the early stage of training high frequency feedback might be necessary when a

participant is learning how to perform an exercise or functional task, however, in general

a basic principle of augmented feedback is that less is better! In support, studies suggest

that while concurrent feedback on performance has shown strong performance-enhancing

effects during practise, it typically results in clear performance decrements when it is

withdrawn in retention or transfer tests. Furthermore, erroneous extrinsic feedback on

performance has been shown to override a person’s own correct intrinsic feedback dur-

ing training with detrimental implications for learning. Therefore, mechanisms which

deliver extrinsic feedback on performance should encourage the development of desired

patterns in such a way that doesn’t completely override information coming from intrin-

sic pathways, thus allowing for innate self-correction and the development of internal

models of the task requirements. In addition, to be optimal, extrinsic feedback schedul-

ing should be dynamic, with less frequent feedback given as progression is made. In this

respect, the application of bandwidth feedback is of particular interest as it is an ideal

mechanism for delivering adjustable, obfuscated feedback on performance. What we

mean here by obfuscated feedback is that the feedback presented to the learner masks

or obscures direct performance by substituting it with more loosely defined contextual

feedback. For example, a performance bandwidth, i.e. the amount of error that will be

tolerated before providing feedback, can be established which best matches the skill level

of a performer attempting to learn a new skill. As long as the participant’s performance

falls within this tolerance zone, there is no need to give feedback on performance. As the

novice performer get better at completing the task, you can then narrow the bandwidth,

thereby increasing the difficulty of the task and better challenging the performer.

From the perspective of developing applications for enhancing home-based rehabili-

tation, a bandwidth based feedback mechanism might be an ideal means of incorporating

dynamic feedback into conventional training programs. Such feedback could easily be

administered by an application running on a desktop PC which presents feedback (eg.

visual, verbal, etc.) on task performance, based on some metric of performance mea-

sured through an input signal, for example, grip strength measure from a digital hand

dynamometer, or muscle activity represented by an EMG signal.

In the following section we describe the development of such an experimental plat-

form which integrates both a low cost, custom designed hand dynamometer and an

experimental bandwidth based feedback platform. We then demonstrate the use of this

platform for investigating the affects of bandwidth limited feedback on motor perfor-

mance during a repetitive motor task. We are particularly interested in whether the
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obfuscation of performance, as presented by bandwidth delimited feedback, might cause

any behavioural dynamics which seek to minimise effort, described previously as motor

slacking.

6.3 A Low Cost Hand Dynamometer and Custom Feed-

back System

Grip strength is commonly used as a quantifiable measure of effort/performance and is

an accepted indicator used as a measure of recovery after neurological injury [403]. The

ability to grasp is also a fundamental hand skill, used in a variety of activities of daily

living (ADLs). Studies have shown that increased use of arm and hand activity early

after a stroke can and does have significant impact on improving functional movement

recovery outcomes. So important is the ability to grasp that an initiative by the faculty

of medicine, funded by a Heart and Stroke Foundation of BC, has developed a program

called GRASP (Graded Repetitive Arm Supplementary Program), developed for stroke

patients with upper extremity impairments. GRASP is a stroke rehabilitation interven-

tion that anecdotally has had rapid translation from research to clinical practice [63].

Studies have shown that patients who supplemented standard rehabilitation exercise

with GRASP had better arm and hand function than control groups who only had stan-

dard rehabilitation care [136]. Better function was demonstrated when patients were

discharged from the rehabilitation hospital and also at 5 months post-stroke. However,

the study concluded that better outcomes were achieved if the patient was supervised

by family, friends or a caregiver throughout the GRASP program. This again highlights

the importance of the presence of an external administrator, be it a care giver, family

member or artificial therapist, to stimulate and motivate the patient in an attempt to

maintain adherence with the therapeutic exercise program.

For the purpose of grip strength measurement and assessment a hand dynamometer

is often used. There are many commercially available dynamometers for measuring grip

strength [224], however a computerized dynamometer which can graphically represent

force in real time and store the results is prohibitively expensive. The Jamar hand

dynamometer (Lafayette Instrument Company, USA) is the most widely cited in the

literature and accepted as the gold standard by which other dynamometers are evaluated

[304] and costs upwards of e 500. As one of the main aspirations of this thesis is to

endeavour to help make rehabilitation tools more affordable and accessible, a custom

designed affordable hand dynamometer is described next.
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6.3.1 Custom Hand Dynamometer

This simple yet satisfactory hand dynamometer was made by attaching a strain gauge

to an easily available hand exercise device. The strain gauge sensor was positioned and

epoxied to a curved section of the apparatus’ spring, see Figure 6.1. When force is

applied to the device’s handle, the spring is slightly deformed causing the strain gauge

itself to undergo deformation.

Figure 6.1: Photograph of custom designed hand dynamometer, showing A) Strain
gauge sensor, and B) Terminal connections.

The strain gauge consists of an insulating, flexible material on which a metallic

foil pattern is etched. When stress is applied the electrical conducting foil becomes

narrower and longer causing its electrical resistance to change. However, strain gauges

present a measurement challenge because the typical change in resistance over the entire

operating range may be less than 1% of its nominal rest valve. An appropriate set-up is

therefore to connect the gauge as a varying resistor in a Wheatstone bridge configuration,

see Figure 6.2. One side of the bridge consists of two well-balanced, identical fixed

resistors while the other side consists of a sensitive multi-turn potentiometer and a

strain gauge. The potentiometer allows for precise balancing of the bridge under null

conditions (no force applied to strength trainer). At this point the voltage difference

between the two sides of the bridge is zero. When force is applied the resistance of

the strain gauge changes thus unbalancing the bridge and generating a proportional

voltage. The output of the bridge is typically very small (a few millivolts) and so must be

amplified greatly before being converted to a digital signal. The amplification is handled

using an instrumentation amplifier, the AD620AN (Analog Devices Inc, Norwood, USA).
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Figure 6.2: Quarter bridge Wheatstone bridge and amplifier circuit

After amplification the signal is filtered using a low pass anti-alising filter (deter-

mined by R4 and C1, see Figure 6.2 ) to half the max sampling frequency. The filtered

signal is then processed by an open-source electronics prototyping platform the Arduino

Uno (Arduino, Smart Projects, Italy), sampled using an embedded 10-bit analog to

digital converter (ADC) at a rate of 1000 samples/s. The final output signal is then

transmitted to a receiving PC over USB through a virtual serial port connection, estab-

lished through the Arduino’s FDTI and UART hardware.
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Figure 6.3: Photograph of custom designed hand dynamometer and acquisition cir-
cuit, showing; A) Custom hand dynamometer (V.1.), B) Wheatstone bridge amplifier
and filters, C) Power regulation electronics, D) Isolated power supply, E) Status LEDs
and switch, F) Output signal to digital acquisition board, and G) Load cell input con-

nector.

6.3.2 Visual Representation and Recording Software

Custom software written in C# instigates a serial port connection with the Arduino to

facilitate the streaming and recording of data from the hand dynamometer. An open

source library, ZedGraph1, is used to visualize the incoming data and to allow plotting of

the sensor data in real time. The software also controls and produces appropriate visual

feedback depending on the selected error to feedback mapping chosen. All captured

data is labelled and time stamped before being saved to files which are later analysed

using Matlab (Math Works, Natick, Massachusetts, U.S.A). A system overview diagram

is shown in Figure 6.4 for reference.

1ZEDGraph - url: http://sourceforge.net/projects/zedgraph/
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Figure 6.4: System diagram of custom hand dynamometer and feedback System.

The software system integrates two different feedback modalities, concurrent feed-

back and contextual feedback.

6.3.2.1 Concurrent Feedback Mode

This mode presents concurrent (i.e. real-time) feedback, which shows direct highly

accurate feedback of grip strength through a moving window that plots “effort” against

“time”, with time on the horizontal axis and effort on the vertical axis, see Figure 6.5.

Figure 6.5: Real time plotting of Hand Dynamometer data.

6.3.2.2 Contextual Feedback Mode

This mode presents contextual feedback on performance using a vertical column of

linguistically defined satisfaction assessments of effort, i.e. the words (“poor”, “fair”,

“good”, “very good” and “excellent”). In this mode, the current feedback which best

describes performance is highlighted in bold text with an adjacent yellow arrow pointing

to it, see Figure 6.6.
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Figure 6.6: Contextual feedback on performance.

6.3.3 Feedback Mapping System

The resulting feedback which is presented to the learner using the contextual feedback

mode is determined by a bandwidth mapping system. Typically, in conventional band-

width feedback systems no feedback is given when task performance is within some

acceptable range of error, i.e. when error falls between a specified upper BU and lower

BL bandwidth limit, and quantitative feedback is given when performance is outside

that range, see Figure 6.7.

Figure 6.7: Conventional Bandwidth feedback paradigm, illustrating desired perfor-
mance with a dashed green line, and with upper BU and lower BL bandwidth limits

with a continuous red line.

This approach to feedback might be suitable for delivering feedback on performance

in healthy people but we speculate that for stroke, a more suitable feedback system
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which can better help the patient to quantify their effort and understand what needs to

be done to improve their performance can be achieved through the inclusion of multiple,

sequential bandwidth zones. Hence, in this work we experiment with a multi-level

bandwidth system. To achieve this, the potential force spectrum (i.e. from 0 (Kg)

up to the subject’s recorded MVC(Kg)) is divided into N adjacent bands. Bands are

allocated by limits which set the upper BU and lower BL error boundaries for that band.

It follows that the bandwidth of each band is given by the distance between its upper

and lower limits. See Figure 6.8 for illustration.

Figure 6.8: Custom bandwidth feedback paradigm, illustrating desired performance
with a dashed green line, and with upper BU and lower BL bandwidth limits for each

bandwidth zone with a additional continuous coloured lines.

A look-up table relates performance effort with feedback reward depending on which

band the current effort falls into, see Table 6.1. For example, for the inner band around

zero error the user might be presented with the feedback “Excellent”. If their perfor-

mance error outgrows this band into an adjacent band the feedback will then change to

be of lesser quality “Very good”.

6.3.4 Experimental Protocol

4 subjects, 3 male & 1 female, ageing between 23-27 years old, all right handed, willingly

participated in the experiments. Each subject was tested to ensure they could achieve

momentary grip strength which saturated the upper bounds of our recording device. A

preliminary test was then done with each subject to ensure they could easily maintain a
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Table 6.1: Agent output in response to quantitative task performance measures (nor-
malised error). The values indicate breakpoints above which the associated row label
is produced for each therapist. For example, only a score of 0.1 or above will elicit the

response “Excellent” for Therapist 1

Linguistic Therapist 1 Therapist 2
Feedback “demanding” “affirmative”

Excellent 0 0
V. Good 0.10 -

Good 0.20 -
Fair 0.35 -
Poor 1 1

constant grip target set at 15% of the maximum recordable value, without discomfort,

strain or fatigue (self-reported) for a prolonged contraction longer than the duration of

that required in the experiments. Using direct feedback as manual guidance Figure 6.5,

all subjects were given adequate time to become familiar with the mechanics of the task

and the relationship between error and effort, before commencing the experiments.

The experiment is divided into three parts, each consisting of a single sustained grip

contraction for 15 seconds. A target grip strength was set equal to 15% of the subject

MVC which stays constant throughout the experiment. The subjects are first given a

couple of minutes to get acquainted with both feedback systems (i.e. concurrent and

contextual) and to better understand the relationship between error and effort, during

this period a series of random grip targets are set, which the subjects practise achieving.

Before commencing the experiment, the subject is informed that their objective is

simply to attempt to achieve a static grip strength equal to the specified target and that

feedback would be given to assist them in achieving this.

6.3.4.1 Set (1) - Direct Error Feedback

In this set the subject is given direct (continuous and real time) visualization of their

applied force as feedback using the system described in Section 6.3.2.1 while attempting

to achieve the specified grip strength.

6.3.4.2 Set (2) – Demanding Therapist

In this set the subject is given obfuscated feedback on their performance using the

feedback described in Section 6.3.2.2. A mapping system, described as a “demanding

therapist” is used to control how error relates to feedback, see (Therapist 1, Table 6.1).

160



Extrinsic Feedback for Automatic Rehabilitation Systems

6.3.4.3 Set (3) – Excessively Affirmative Feedback

In this set the subject is given obfuscated feedback on their performance using the feed-

back described in Section 6.3.2.2. Initially a mapping system described as a “demanding

therapist” is used to control how error relates to feedback, however 5 seconds into the

session, the mapping system is instead switched to an “excessively affirming therapist”

see (Therapist 2, Table 6.1).

6.3.5 Results and Analysis

The results of the first Set show that when given direct access to performance all sub-

jects easily maintained their grip strength for the duration of the task, i.e. subjects

had relatively low error and average grip strength close to the target, see Figure 6.9

and Table 6.2. The results of the 2nd Set show that similar results were obtained when

subjects instead received verbal feedback from a ‘demanding’ virtual therapist. Interest-

ingly, all subjects initially overshot the target; however their overall performance during

the task had low error and average grip strengths close to the target, see Figure 6.10

and Table 6.3. The results of the 3rd Set show that subjects significantly reduced their

performance (much greater accumulative error) when we switched (after 5 seconds) from

a ‘demanding’ therapist to an ‘unconditional’ therapist, i.e. one who always reported

‘excellent’ regardless of the error, see Figure 6.11 and Table 6.4.

Figure 6.9: Experiment 1 results - effort over time for each subject while being given
direct access to performance.
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Figure 6.10: Experiment 2 results - effort over time for each subject while receiving
feeback from a ‘demanding’ therapist (therapist 3, table 1).

Figure 6.11: Experiment 3 results – switching after 5 seconds from a ‘demanding’
therapist (therapist 3, table 1) to a ‘unconditional’ therapist (therapist 4, table 1) who

reports ‘excellent’ feedback regardless of the error.

Table 6.2: Experiment 1 – Quantified Results

Effort Error

Min Max Avg Sum

Subject A 222.59 270.48 238.99 1.067*

Subject B 238.50 270.43 250.05 1.288*

Subject C 205.46 270.57 233.28 4.699*

Subject D 229.79 271.43 240.03 3.232*
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Table 6.3: Experiment 2 – Quantified Results

Effort Error

Min Max Avg Sum

Subject A 204.32 277.31 239.07 1.328*

Subject B 217.43 280.57 238.03 2.117*

Subject C 204.32 277.31 239.07 2.237*

Subject D 218.04 316.17 255.19 -1.890*

Table 6.4: Experiment 3 – Quantified Results

Effort Error

Min Max Avg Sum

Subject A 179.45 267.95 221.52 3.748*

Subject B 175.08 281.07 224.96 4.597*

Subject C 179.58 267.35 218.79 6.075*

Subject D 108 259.04 173.73 6.930*

6.3.6 Discussion

In the first experimental set, not surprisingly the subjects produced low error when

confronted with such a direct accurate measure of performance. These results might

suggest that to maximize performance we simply need to give subjects direct access to

error. However, as previously elucidated direct concurrent feedback of this form is detri-

mental for learning. In addition, direct error does not capture effort in a comprehensive

or forgiving fashion and therefore might be unsuitable for use in patients with neuro-

logical injury. A patient, particularly one recovering from stroke may produce initially

low error but as they progress their error may increase despite the patient’s best efforts.

Instead, the results from this set should be considered a reference which both validate

the ability of our custom hand dynamometer to accurately capture grip strength and as

an experimental control for comparing and contrasting the results of set 2 and 3.

The second and third experimental sets replace this unrealistic direct measure of

performance with a more appropriate form of obfuscated feedback that we feel better

resembles that given during real therapy situations, i.e. verbal feedback given inter-

mittently by a therapist to coax effort and to reinforce positive behaviour. In set 2

and 3, it is interesting to note that subjects initially over shot the required target force
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even thought the target force required was identical to that in both the training ses-

sion and first set. Perhaps from a motor program perspective this makes sense, since

by purposely over shooting and then slacking, the optimal level can be found quickly.

Additionally, in Set 3 the mapping between error and performance is gradually relaxed

making it easier to obtain a score of excellent over time. What is interesting here is

that all subjects initially over shot the target, gradually reduced their force below that

of the target to the minimum required to achieve “excellent” feedback (except one who

greatly overshot) and then held at the boundary between “excellent” and “very good”,

i.e. the minimum effort required to achieve the objective goal. After 5 seconds the

feedback system then switches to an “unconditional” therapist, essentially removing the

lower bandwidth limit and therefore always giving the feedback “excellent” regardless

of error, subjects gradually reduce their efforts to levels far below that required.

An interesting dynamic which is not captured in the data presented here is the

subjects perception of their performance across the three experimental sets. Surprisingly,

immediately after completing the experiment subjects were asked to assess their own

performance in each set. All subjects reported that they felt they managed to maintain a

sufficient and steady grip over the course of each set. These experimental results suggest

that once given overly affirming feedback on performance, even in the presence of errors

subjects exhibited “slacking” like dynamics.

6.4 A Low Cost EMG System and a Secondary Investiga-

tion

While the initial investigations suggest there are interesting dynamics at play which

are similar to those described as slacking, there are some concerns about the original

experimental protocol used in this investigation. Firstly, the custom hand dynomometer

used to collect data is an isotonic device, i.e. the device physically changes shape when

force is applied. Since the device is essentially a spring, it creates a non-linear reaction

force proportional but opposite to the applied force. This is problematic because the

reactive force works against the user and constantly attempts to restore the device to its

rest position, putting stress on the user to maintain force and causing fatigue. Second,

the experimental protocol adhered to during testing was not well defined. No strict

guidelines were followed to ensure consistency between grip attempts, for example to

ensure the measuring device was held in the same manner, or that subjects posture

was consistent throughout the experiment. Only a single sub-maximal grip attempt was

attempted in each set and all subjects attempted to achieve the same target force. While

this target force was selected to be achievable by each subject, i.e the required force was
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much lower than the weakest participants MVC, a more suitable target would have

been to set an individual target for each user, equal to a fixed percentage of their own

MVC. Finally, no estimation or indication of muscle fatigue was measured throughout

the experiment, thus the force dynamics observed could simply be a resultant of natural

peripheral fatigue, accumulated during the sets or throughout the experiment.

A second more rigorous experiment was therefore undertaken to more thoroughly

investigate the effects of obfuscating feedback on performance during a repetitive motor

task. This objective is approached through three processes. First the introduction of

additional hardware; a commercial isometric hand dynamometer and a low cost EMG

recording system. Second, through a revised more rigid experimental protocol. And

third, through a more stringent statistical analysis of the accumulated data.

6.4.1 Revised Hardware

The original custom designed isotonic hand dynanometer was replaced with a com-

mercial hand dynamometer, the Biopac-SS25L (BIOPAC Inc., CA, USA). The SS25L

is an isometric dynamometer that measures a variety of gripping strengths for several

muscle groups; clench force range (0-50)Kg. The isometric design improves experiment

repeatability and accuracy. Typically a proprietary data acquisition unit, the DA100C

general-purpose transducer amplifier, is used in conjunction with the SS25L hand dy-

namometer which facilitates the processing of the underlying sensor, a strain gauge, into

a digital quantised signal. However, the DA100C did not meet the requirements for the

work we wished to undertake. For this study we required direct access to the SS25L

sensor output in order to drive our feedback platform in real time. Furthermore, we

required some means of concurrently recording muscle activity during experimentation.

While Biopac offer a comprehensive modular solution for acquisition of bio-potential

data (i.e. Grip strength, Electrogastrogram, Microelectrode Recording, Noninvasive

Blood Pressure Measurement, and Electrical Bio-impedance) the cost of such systems

are prohibitive. Subsequently we developed our own custom designed data acquisition

unit, incorporating both the concurrent recording of EMG from two separate channels

(surface electrode pairs) and the recording of grip strength data from a hand dynamome-

ter. In conjunction, we also developed an accompanying real time visualisation tool for

the analysis and representation of the acquired physiological data (muscle activity and

grip strength).

165



Extrinsic Feedback for Automatic Rehabilitation Systems

6.4.1.1 Grip Strength Measurement

Measuring the strain applied to the gauge requires accurate measurement of very small

changes in resistance. Hence, the strain gage Rs is used in a bridge configuration with a

voltage excitation source (±5 V). The resulting output Vw is very small (typically µV)

and requires amplification before it can be digitally sampled. This was accomplished

using an instrumental amplifier with a gain (G) of 1122.5. The resulting circuit is

illustrated in Figure 6.12 and described by Equations (6.1) to (6.3).

Figure 6.12: Electronic schematic of custom hand dynamometer interface

Vw = Vin · (
Rs

Rs +R1
− R3

R2 +R3
) (6.1)

G =
49.4kΩ

Rg
+ 1 (6.2)

Vout = Vw ·G (6.3)

The analog output of the circuit Vout is subsequently digitized, using a 10-bit analog-

to-digital conversion.

The SS25L isometric range is 0-90 Kg with a nominal output of 13.2µV/Kg per

volt excitation. Therefore, at 5 V excitation, the nominal output is 66µV/Kg. Using

Equation (6.4), a resulting force F measured in Kg can be obtained.

F =
Vout

66x10−6V ×G
(6.4)
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Note, from here onwards all results presented in this section describing effort (i.e.

grip strength) are giving in (Kg) derived using the equations above.

6.4.1.2 EMG Acquisition

Electromyographic data (EMG) was collected with the intention of providing a mea-

surement of muscle fatigue and is used in the interpretation of our results. A fatigue

measurement was necessary in order to distinguish between back-off in effort due to pe-

ripheral phenomenon in the muscles involved versus any speculated central component.

EMG was recorded using a modified open source Electroencephalogram (EEG) sys-

tem, the ModularEEG2 device. This is possible since the principle recording methodol-

ogy of EEG and EMG are fundamentally the same. Both techniques measure bio-electric

potentials provoked by active tissue, measured through electrodes placed on the surface

of the skin. The two main differences between EEG and EMG are the source location

and frequencies of the underlying signals. EMG measures electrical activity in muscles

and is characterised by the frequency range 0-500 Hz. EEG on the other hand measures

electrical activity in the brain which is characterised by lower frequencies in the range of

(0-100)Hz. There is also a slight discrepancy in the related signal strength of EEG and

EMG. EEG typically ranges between 10-100 µV while EMG potentials range between

50 µV and up to 30mV , however this is not a concern since the gain of the system is

low enough not to cause acquisition saturation. Therefore, the main difference in the

equipment used to record EMG and EEG lies in the design of the active filters used

and the rate at which data is sampled. The ModularEEG device is made up of two

main acquisition boards, an analogue board and a digital board. The analogue board

supports two separate differential input channels from an electrode pair and facilitates

the isolation, amplification and filtering of these signals. The digital board supports up

to 6 input channels and facilitates the high speed sampling of these inputs signals and

communication with a PC via a standard serial cable.

Analogue board description

A bioelectric potential is acquired through silver-chloride common mode sense (CMS)

active electrodes. The resulting signal is potentially only a few microvolts in amplitude

and needs to be amplified several thousand times before it can digitalised, see Figure 6.13.

Since the amplitude is so small, the signal can very easily drown in noise, particularly

50/60Hz hum from the mains which is transmitted capacitively (i.e by an electric field).

Hence a low pass filter is applied before amplification. Afterwards the signal strength is

2hrefhttp://openeeg.sourceforge.net/doc/modeeg/modeeg.htmlModularEEG device - url:
http://openeeg.sourceforge.net/doc/modeeg/modeeg.html
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boosted first by a low noise instrumental amplifier and then by successive operational

amplifiers. Between the two stages there is a high-pass filter which removes undesirable

DC-voltage offsets which can occur due to electric charge accumulating on the surface

of the electrode. The resulting amplified signal is then passed through a low-pass filter.

This final filtering stage prevents distortion caused by the aliasing effect as a result of

the sampling process. Below the signal amplifiers, and the filter, sits a third amplifier

pointing in the opposite direction. This is called the Driven Right Leg (DRL) circuit.

The purpose of the DRL is to reduce common-mode signals such as 50/60Hz mains hum,

by cancelling them out. It replaces a ground electrode which older EEG designs use, and

can attenuate mains hum up to 100 times more than the instrumentation amplifier can

do by itself. A simplified block diagram of the analogue board is shown in Figure 6.13

for reference.

Figure 6.13: Simplified block diagram of the ModularEEG analogue board

Digital board description

After leaving the analogue board the signal is passed into the digital board. At this

stage the signal is ready for acquisition by an analog-to-digital (ADC) converter of the

embedded microcontroller. In the original design the sampled signal was then trans-

mitted to a PC via a standard serial cable. However, to improve noise immunisation

and to protect the user from electrical faults a bluetooth module was retrofitted instead,

isolating the user from the PC and external power sources. A simplified block diagram

of the digital board is shown in Figure 6.14 for reference.
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Figure 6.14: Simplified block diagram of the ModularEEG digital board

6.4.1.3 SPICE Modelling and Filter Response

As discussed in the previous section, in order to use the modularEEG board to record

EMG signals the original filter design needed to be modified. Analysing the analogue

filter schematics Figure 6.13 illustrates that there are three distinct filter stages. The

first two filter stages simply add a total gain of 640, or roughly 56dB to the captured

signal. The third filter stage, referred to previously as an anti-aliasing filter is in fact a

combination of a Bessel filter and a Butterworth filter. This filter is essentially a notch

filter, also known as a band-stop filter or band-rejection filter. However, in contrast to

a standard notch filter which simply passes most frequencies unaltered, but attenuates

those in a specific range to very low levels, the filter described here instead both amplifies

frequencies within the bandpass range and attenuates those outside this range. To

understand this filter better and in order to modify its effective bandpass frequency

range, the filter was modelled using SPICE (Simulation Program with Integrated Circuit

Emphasis) simulation software, LTspice3 (Linear Technology Corporation, California,

USA), see Figure 6.15.

From the frequency response of the filter we note that there is an approximate 19.2dB

rolloff per octave, and a cut-off point of effectively 500 Hz. The cutoff frequency referred

to here is the half power point of an electronic amplifier stage which is the frequency at

which the output power has dropped to half of its mid-band value, that is a level of -3

dB. It is also important to note that the unaltered filter amplifies frequencies which fall

within the respective frequency range of EEG, i.e. approximately 0-50 Hz. As is, this

filter cannot be used for the acquisition of EMG which falls between 0-500 Hz.

6.4.1.4 Analog Board Modifications

Tweaking the modelled filters coefficients can be achieved by modifying the capacitor

C9, C10 and C12, altering the filters response to instead match the desired EMG range,

3LTspice: - url: http://www.linear.com/designtools/software/
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see Figure 6.15. Note that the resulting filter shape is identical, however the cut-off

frequencies are now different.

6.4.1.5 Digital board Modifications

The second modification which needs to be made to the modularEEG system is increas-

ing the sampling rate of the digital board. This is achieved through modifying the digital

boards firmware4 to increase the ADC sampling rate, see footnote. First, the original

now obsolete AT90S4433P micro-controller was replaced with the newer pin compatible

ATmega8 microcontroller (Atmel Corporation, CA, USA). The ATmega8 supports a

faster 16Mhz external crystal oscillator, doubling the original ADC acquisition speed.

Adjustments were also made to the original source code, see AppendixB, to modify

the overflow counter used in triggering an ADC interrupt event, increasing the ADC

acquisition rate from 256Hz to 1000Hz.

6.4.1.6 EMG Software Filtering

The resulting raw EMG signal captured by the acquisition system is inherently noisy

and includes both movement artefacts and baseline noise contamination, including an

unwanted DC offset, potential interference from mains (50Hz hum) as well as both high

and low frequencies outside the effective range of EMG. Therefore, the resulting raw

EMG signal requires some additional software filtering. Subsequently, the raw EMG

signal is treated by multiple filtering stages.

1. De-trending (removal of DC offset)

2. Notch filtering (suppress 50Hz interfere)

3. Butterworth filter (bandpass filter EMG frequency range)

Figures 6.16 and 6.17 illustrate the various applied filter stages and demonstrates

their effect on both the raw EMG signal and the resulting power spectral density (PSD)

of the EMG data.

4modeeg firmware - url: http://openeeg.sourceforge.net/doc/modeeg/firmware/modeeg-p3.c
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Figure 6.16: Demonstration of EMG filtering stages, including plots of; A) Hand
dynamometer recording for reference, B) Raw unfiltered EMG signal, C) De-trended
EMG (removal of DC offset), D) 50Hz notch filtered EMG, and E) Bandpass filtered

(10-300Hz) EMG using a Butterworth filter
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Figure 6.17: Demonstration of EMG filtering stages, including plots of; A) PSD of
raw EMG, B) PSD of De-trended EMG, C) PSD of notch filtered EMG, and D) PSD

of butterworth filtered EMG.

6.4.1.7 EMG System Testing

Figure 6.18 illustrates a simplified system overview diagram of the hardware used. For

reference, photographs of the actual hardware are shown in Figure 6.19 and Figure 6.20.
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Figure 6.18: Simplified system overview diagram.

Figure 6.19: Picture of custom EMG rig, showing; A) Digital Board, B) Analogue
Board encased in RF shielding, C) Electrode interface, E) Bluetooth module, F) Isolated
power supply, G) Interface bridge between Analogue and Digital boards, H) Micro-

controller, I) Hand Dynamometer interface.
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Figure 6.20: Electrodes attached to arm connected to EMG rig, showing; A) CMS
active (+) electrode and B) CMS active (-) electrode, and C) DRL reference electrode

position on bone.

Figure 6.21: Screen cast of custom physiological data visualisation software, show-
ing; A) Plot of EMG Amplitude over time, B) Plot of load-cell output over time, C)
Calculated MNF over time, D) Debug window showing status output, and E) Virtual

COM port selection menu.

A comparison test was done against the Biopac DA100C amplifier to validate the

capability of our custom designed EMG amplifier. This test consisted of performing a
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unilateral maximum voluntary contraction grip while recording EMG data with identical

electrode placement using both systems. The corresponding power spectral density

(PSD) and frequency range were assessed for both devices.

Figure 6.22: Results of test using Biopac DA100C amplifier illustrating, A) Power
(EMG amplitude) against time and B) Power spectral density of EMG data.

Figure 6.23: Results of test using custom EMG amplifier illustrating, A) Power (EMG
amplitude) against time and B) Power spectral density of EMG data

6.4.2 Revised Feedback and Mapping System

A revised feedback mapping system was devised which improves upon the original system

described in Section 6.3.2.1. The feedback mechanism used here is essentially the same

as before, except now additional information is given which helps the user distinguish

whether too much or too little force is being applied.
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The new feedback interface consists of a vertical column of adjectives (i.e. ‘Poor,

Fair, Good, Very Good, Excellent’), centred around the most desirable adjectives ‘Ex-

cellent’, see Section 6.4.2. Feedback is given by highlighting the adjective that currently

best describes the effort of the subject compared to some set target force, with effort

being applied by squeezing the hand dynamometer. The error signal in this case is the

difference between some set target force (i.e. a grip strength the subject is attempting

to produce) and their applied grip strength.

Figure 6.24: Mechanism for delivering extrinsic feedback during training.

A band-width delimited mapping system determines the relationship between per-

formance and feedback. To achieve this, the potential force spectrum (i.e. from 0 (Kg)

up to the subject’s recorded MVC(Kg)) is divided into N adjacent bands. Bands are

allocated by limits which set the upper and lower error boundaries for that band. It

follows that the bandwidth of each band is given by the distance between its upper and

lower limits. A look-up table relates performance effort with feedback reward depending

on which band the current effort falls into. For example, for the inner band around zero

error the user might be presented with the feedback “Excellent”. If their performance

error outgrows this band into an adjacent band the feedback will then change to be of

lesser quality “Very good”. See Figure 6.25 for an illustration of this mapping system.

177



Extrinsic Feedback for Automatic Rehabilitation Systems

Figure 6.25: Illustration of feedback and grip strength mapping, showing grip strength
in blue, target force in green and bands in purple with correlating textual feedback

between bands.

6.4.3 Experimental Protocol

The experiment consists of attempting 24 repetitions of a unilateral sub-maximal grip

for 10 seconds. The procedure is broken down into three sets each containing eight

repetitions. A rest period of 60 seconds is included between attempts. The target grip

force is constant throughout the experiment and is set to 20% of the subject’s maximum

voluntary contraction (MVC), calculated as the mean of three sustained maximum grip

attempts measured before the experiment commenced. The subjects MVC is re-assessed

between sets with the intention of detecting any reduction in ability to produce force as

a result of muscle fatigue.

The subject is instructed to sit in a rigid chair with their feet firmly positioned flat

on the floor, their back straight, shoulders abducted and neutrally rotated with their

elbow flexed at 90%, with forearm and wrist in neutral position. The subject rests their

non-dominant hand on their lap and holds the hand dynamometer in their dominant

hand. The hand dynamometer is held according to best practice instructions close to the

bracket but not touching with the Dynagrip crossbar pointing towards the body. The

holding position and subject’s posture is checked before each trial to ensure consistency.

Muscle activity is recorded using the system described in Section 6.4.1.2. The sub-

ject’s dominant arm is prepared using alcohol based wipes with skin electrodes applied

according to a study on optimal electrode positioning for grip strength analysis [281].

Feedback is given on screen throughout the duration of the experiment as described

in Section 6.4.2. The subject is informed that their objective is simply to attempt to

match a target grip strength and that feedback will be given to them as assistance in

achieving this goal. However, unknown to the subject, the mapping system relating the

feedback and effort is altered between sets. For each consecutive set the band widths
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are increased by 2.5%. Therefore, Set 1 has a band width of 5%, Set two has a band

width of 7.5% and Set 3 has a band width of 10%.

6.4.3.1 Subjects

Eight subjects (6 male and 2 female, aged 23-27) participated in the experiment. Sub-

jects were tested for dominant handedness using the Edinburgh handedness inventory

[276], resulting in 6 right and 2 left hand individuals. Subjects were recruited from the

National University of Ireland Maynooth and all gave written consent. Ethical approval

for this body of work was obtained from the Biomedical and Life Sciences Research

Ethics Sub-Committee at the National University of Ireland Maynooth, reference num-

ber BSRESC-2014-006.

6.4.4 Results and Analysis

6.4.4.1 Data Preparation

In total, 48 individual data-sets were recorded per subject (24 grip strength data-sets and

24 EMG data-sets). This data comprises of 3 sets each containing eight 10 second grip

attempts. Each grip attempt contains approximately 10,000 sample points. Recording

of grip strength and EMG data was automatically initiated after the detection of a

nominal applied force (greater than 5% of the subjects MVC). This mechanism ensures

consistency in the length of recorded data and removes any ambiguity from when a trial

starts and ends. However, as a consequence each trial contains a transient period in

which force increases from rest to the target force. Accordingly, the first 1.5 seconds of

data from both the grip strength and EMG recordings are removed before analysis.

6.4.4.2 Grip Strength Analysis

Statistical analysis was performed on each set including analysis of the (minimum, maxi-

mum, mean, median, mode and variance) of grip strength. In addition, the accumulated

sum of effort and sum of absolute error were also calculated. Since there is too much

data to present all the results in a comprehensive way bar charts and box and whisker

plots are used to illustrate the results, see Figures 6.26 to 6.31.
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Figure 6.26: Minimum effort (Kg)

Figure 6.27: Mean effort (Kg)

Figure 6.28: Sum of effort (Kg)
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Figure 6.29: Sum of absolute error (Kg)

Figure 6.30: Mean group effort (Kg) across Sets

Figure 6.31: Variance of group effort (Kg) across Sets
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Figure 6.32: Random sample of trials chosen from Set 3 (i.e. Bandwidth = 20%)
illustrating reduction of force over time if feedback is optimal, illustrating grip strength
in blue, target force in green and bandwidth (upper and lower) dashed red line and

slacking in Purple.

An ANOVA test [372] was performed on the above results in order to gauge their

significance. Accordingly, a test for homogeneity of variance using the Levene’s test and

a test for normality using a Welch’s test were first conducted. The results show that

there were no statistically significant differences in group means (F(2,12) = 0.00829, p

= 0.992) or the group sum of efforts (F(2,12) =0.00326, p =0.997) across sets. However,

there was a significant difference between group variance (F(2,12) =4.332938, p =0.027)

and between groups absolute sum of error (F(2,12) =16.74603, p =0.000) across sets.

6.4.4.3 Fatigue Analysis

Intermediate recordings of MVC were obtained before and after each of the subsequent

sets, calculated from the average of three transient maximum contraction attempts,

Table 6.5. If significant fatigue has occurred throughout the experiment, there should

be a reduction in the ability to produce levels of force equivalent to that recorded at the

beginning of the experiment.

A secondary index of fatigue was generated using data collected from EMG. This

index was obtained by first generating a series of MNF values for each movement attempt

and then calculating the slope of the best fit line for that series, see Table 6.6. For
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comparison and to put the calculated results into context we have included the analysis

of an extended grip exercise in which fatigue is evident (20 second grip attempt at 80%

MVC), see row (REF) in Table 6.6. Since fatigue is characterised by a reduction in

the median frequency over time, it follows that the calculated slope can be used as an

indication of fatigue over the course of an entire set, see Figure 6.33 for illustration.

Table 6.5: Intermediate MVC recordings (Kg)

Subjects Initial Post Set 1 Post Set 2 Final

A 52.97 57.23 52.95 54.31

B 33.90 28.21 30.10 30.03

C 27.79 27.75 27.07 26.39

D 41.81 35.92 36.67 37.63

E 47.70 56.90 60.00 58.26

F 57.78 64.41 61.40 52.44

G 23.00 24.87 25.33 25.22

H 54.15 54.13 53.76 53.89

Table 6.6: MNF results - slope of best fit line

Subjects Set 1 Set 2 Set 3

A -0.0771 -0.1416 -0.0201

B -0.0650 -0.1368 -0.1579

C -0.0772 -0.0946 -0.0726

D +0.0312 +0.0408 -0.0409

E -0.0301 -0.0496 -0.0696

F -0.0964 -0.0537 -0.0659

G +0.0535 -0.0481 -0.0342

H -0.0578 -0.0484 -0.0670

REF -0.5652 -0.5652 -0.5652
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Figure 6.33: Reference signal showing extended grip exercise containing muscle fa-
tigue and the response of MNF.

6.4.5 Discussion

The results as outlined in Section 6.4.4 show that increasing the width of the band widths

had no significant effect on subjects mean (average) effort and subsequently there was

no significant difference in the accumulated effort over an entire set, see Figure 6.27

and Figure 6.28. In contrast, increasing the widths of the bands did have a statistically

significant effect on the variance of effort produced and subsequently the absolute sum

of error with respect to the target force, see Figure 6.29 and Figure 6.31. At first glance

these results might suggest that the relevant band width allocations and therefore the

extent of obfuscation, had little effect on the performance of the subject throughout

the experiment. However, time series analysis of the collected data indicates that the

allocated band widths have a distinct impact on the intermediate production of effort.

An intersection of motor performance against feedback reward shows that there is a

tendency across subjects to gradually reduce effort once feedback reward is optimum,

see Figure 6.32.

Studies of motor adaptation by the human motor system suggest that the motor

program incorporates a forgetting factor into an error-based learning law as it adapts

to novel dynamic environments, in order to minimize its own effort [98, 303]. Initial
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attempts to model the human motor system thus included a gain F , to account for

the attenuation in effort observed. This forgetting factor was rationalised as some form

of error in neural-recall from memory. However, Reinkensmeyer et al. [303] proposed

that this forgetting factor was instead an intentional effort by the motor program to

reduce effort when error was small, in an attempt to optimise energy efficiency. A

compelling computational model of slacking was described by Reinkensmeyer et al., and

the implications of slacking for assisted robotics was discussed. It was suggested that

slacking by the human participant could cause a naive robot controller to gradually

take over force production during assistive training, with negative consequences for use-

dependent rehabilitation.

We speculate that the attenuation in effort observed in our experiments might be

the result of motor control dynamics which are concerned with the minimisation of effort

once the error is small. However, this begs the question of why then is there no reduction

in mean effort and subsequently a reduction in accumulated effort in our experiment as

the band widths are increased between sets. Insight from motor control experiments

might provide an answer to this question as it is suggested slacking can be difficult to

detect because it typically increases movement errors as it progresses, triggering error-

corrective motor processes that raise muscle activation, resulting in no net decrease

in effort [302]. In a similar fashion, a reduction in feedback causes error correction

when effort falls below the lower band width limit. Subsequently, the sudden change

in feedback causes the subject to increase their effort, typically over estimating the

additional required “top-up” effort needed to correct the error. This effect is illustrated

by Figure 6.32 which clearly shows distinct periods in which there is an initial surge in

effort after the reduction of feedback reward, followed by a gradual reduction of force

which reduces effort back down towards the lower bandwidth limit. Therefore, slacking

followed by a tendency to over estimate the required error correction could account for

both the stable mean effort and the increase in effort variance seen in our results.

Of course, there might instead be alternative explanations for the gradual reduction

in effort as seen in our experiment. A gradual reduction in force could be explained

by physiological changes in the muscle’s dynamics, such as peripheral muscle fatigue.

However, care was taken when designing the experiment to reduce the onset of fatigue.

The target grip strength selected for the experiment was set at a fraction of the subjects

MVC, the time period required to sustain this force was kept short and ample rest

periods were scheduled between grip attempts. During the experiments the subjects

MVC was reassessed between sets as an indication of any reduction in the ability to

produce force. No significant reduction in the ability to produce force was observed

as can be seen from Table 6.5. Furthermore, analysis of concurrently collected EMG
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data suggests that no significant fatigue occurred throughout the experiment, this can

be inferred from the shallow slopes presented in Table 6.6, indicating a relatively static

MNF throughout the experiment.

In their experimental simulations, Reinkensmeyer et al. proposed that to counter-

act slacking by the human motor system the robot should also contain a similar slacking

term in its controller, designed to reduce its assistance when the error is small. They

show that if the robot’s slacking term is greater than that of the human participant then

it should offset the effects of slacking. However, we speculate that to be effective the

robotic slacking rate would need to be dynamic, to allow for variation in the patient’s

performance caused by psychological factors (i.e. mood, state of mind, concentration

levels etc.) and physiological factors (i.e. weakness, fatigue, pain etc.). Furthermore, we

speculate that including a robot slacking term might prompt the human to effectively

lower their own slacking rate, learned through iterative encounters with the robotic

controller, allowing the human to effective “game” the robotic controller into once again

taking over force production.

Hence, we contend that a game theoretic approach to designing an automated thera-

pist system, as described previously in Chapter 5 might be an appealing solution to this

problem. A game theoretic controller, with access to multiple sources of information

about a patient, for example effort afforded by a hand dynamometer, an indication of

fatigue afforded by an EMG signal, information regarding the patient’s history pertain-

ing to their abilities (i.e. their previous MVC, concentration levels, pain assessment etc.)

might be better suited to optimising performance.

6.5 Summary

The provision of extrinsic feedback during motor learning has been shown to enhance

motor learning and positively influence motivation. However, studies suggest that to be

optimal, mechanisms which deliver extrinsic feedback on performance should encourage

the development of desired movement patterns in such a way that supports information

coming from intrinsic pathways, thus allowing for implicit self-corrections to be made

and for the development of internal models of the task dynamics. Additionally, to be

optimal feedback scheduling should be dynamic, with less frequent feedback given as

progression is made. Therefore, methods such as bandwidth feedback are of particular

interest, as they both obfuscate direct performance and are easily adjustable.

There is currently a dearth of tools which can supplement the loss of feedback during

therapeutic exercise training, previously afforded by a physical therapist, after patient
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leave primary care and return home. Instead, patients are charged with continuing their

arduous training programs with little or no external support. In this chapter, efforts are

described towards developing automated solutions for supporting and complimenting

home based motor intervention programs.

Towards this goal, the design and development of two complimentary tools for the

acquisition and analysis of grip strength and muscle activity, two physiological signals

commonly used to assess motor recovery and as a prognostic indicator [34, 301], were

described. First, a low-cost, reproducible, digital hand dynanometer system, including a

grip strength measuring apparatus and acquisition unit. Second, an affordable, satisfac-

tory, two channel EMG acquisition unit, built from open source hardware for measuring

muscle dynamics. In addition, a supplementary software system for the real-time data

capture and plotting of these two systems was presented.

Using the above systems, a novel bandwidth based experimental feedback paradigm

was designed as a means of delivering obfuscated feedback on performance during a grasp

and release exercise. This solution incorporates a band width based mapping system

which determines the relationship between performance and feedback reward. To assess

the potential of such a feedback controller, two separate experiments were conducted to

investigate the effects of obfuscated feedback on motor performance.

However, preliminary results suggest that feedback systems which obfuscate perfor-

mance errors might encourage motor control processes which seek to minimise effort, a

variable believed to be critically important in the success of any motor function reha-

bilitation program. Therefore, care should be taken when designing feedback systems

which obfuscate direct performance as they might reduce the effectiveness of the exercise

program. Subsequently, further research is required to better understand the underlying

interaction dynamics observed here and to elucidate the potential of obfuscated feedback

for improving the efficacy of automated solutions for rehabilitation.
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Chapter 7

Machine Learning for Augmented

Biofeedback

Machine learning refers to a sub field of computer science that deals with the develop-

ment of models which can learn from and make predictions on data. Machine learning

algorithms operate by formulating models based on example input data in order to make

“intelligent” data driven predictions or decisions of future events. Initially a machine

learning model is essentially blank and needs to be trained to do a certain task. During

training new data is fed to the “machine”, which in reality is an algorithm, that then

generates an output which is subsequently graded by a human expert. The machine

then uses this expert assessment to adjust its internal algorithm to better model the

desired response. After a while the model becomes sufficiently complex so that the ma-

chine becomes adept at completing the task automatically. The power behind machine

learning is that rather than following some strict predefined static program instruction,

these models are designed to change and adapt, allowing the machine to essentially learn

over time.

Biofeedback is the process of providing information regarding the physiological func-

tioning of systems of the body, in an attempt to help control the activity of those systems.

For example, an electrocardiogram (ECG) presents feedback regarding the electrical ac-

tivity of the heart, which could be used by an individual to control their heart rate,

through decisive manipulation of breathing. Biofeedback has many potential applica-

tions for rehabilitation and can be particularly useful in situations where there is little

or no information originating from intrinsic sources that can help inform a person how

to better their performance. For example, when practising a photogenic smile, it can

be useful to practise in front of a mirror since the bodies sensory apparatus provides

no inherent feedback about the quality of the performance of a facial expression. In a
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similar manner, after neurological injury damage to the somatosensory system or motor

system can impair normal feedback pathways, making it difficult for an individual to

improve their performance of a movement task.

The work in this chapter draws on elements of both machine learning and biofeedback

to develop two separate applications for enhancing rehabilitation post stroke. The first

part of this chapter introduces a portable and inexpensive, EEG based biofeedback brain

computer interface (BCI). This system uses machine learning techniques to develop

a prediction model based on common spatial patterns (CSP), to distinguish between

different brain states relating to two different classes of motor activity, (i.e movement

and rest). The output of this model is then used in deciding weather or not sufficient

effort has been contributed by an individual during a movement attempt, in order to

trigger haptic feedback to help complete the movement task. The focus of the work here

is on the development of the biofeedback system as a whole and not on the advancement

of the machine learning techniques employed therein.

The second part of this chapter investigates the potential application of active ap-

pearance models (AAMs), a machine learning technique used for matching a statistical

model of object shape and appearance to locate objects of interest in new images. The

system described here utilises AAMs to tracking key facial features with the objective

to automatically assess facial paralysis according to the House Brackmann (HB) scoring

system. The aspiration of this work is to provide a proof of concept for the design of

an intelligent feedback mirror, suitable for use in the home setting, that can provide

subdued visual feedback during training in an attempt to enhance facial motor system

(FMS) rehabilitation.

7.1 A Portable and Inexpensive Biofeedback BCI

After stroke, most patients suffer from some form of motor disability, typically weakness

on one side of the body and/or partial loss of functional movement of a limb. In such

cases, motor therapy comprising task-specific, repetitive, prolonged movement training

with learning, often guided by a therapist who assists in the completion of movement

tasks [112], may have significant impact on recovery. However, in the case of severe

impairment where motor skills have been highly affected there is often little or no move-

ment available which the therapist can work with. Patients with such severe disability

then have few if any therapy options for the required type of motor rehabilitation. In

such cases the application of a brain-computer interface (BCI) may provide an alterna-

tive approach for neurorehabilitation [333]. A BCI can serve a number of rehabilitation
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purposes for recovering stroke patients, for example a BCI can be used to substitute

for loss of neuromuscular functions by using brain signals to interact directly with the

environment. Another mode of application is to provide a means by which a severely

disabled patient can engage in activities that may help restore function. In such an

application coincident activation of sensory feedback loops and the primary motor cor-

tex may reinforce previously dormant cortical connections through Hebbian plasticity

and thereby support functional recovery [300]. A BCI can help achieve this through

a neurofeedback process in which measures of motor program engagement can be de-

tected with appropriate feature extraction and machine learning, to produce a control

signal which is then used to close the feedback loop through triggering of appropriate

feedback [125]. Such an approach may have tremendous utility in providing closed loop

neurorehabilitation to patients with severe deficits.

For a detailed discussion of BCI for neurofeedback, see Chapter 3.

7.1.1 Motivation

Recently, there has been much interest in neurofeedback with many researchers at-

tempting to incorporate aspects of neurofeedback into robotic or haptic rehabilitation

systems. However, current commercially available devices for Brain Computer Interface

(BCI) controlled robotic stroke rehabilitation are prohibitively expensive for many re-

searchers who are interested in the topic, and physicians who would utilize such a device.

In addition, while these systems represent the state of the art in clinical rehabilitation

and are capable of fine measurement and performance, they are however unsuitable for

home deployment given their costs, complexity and technical operation requirements.

There are two costly elements of a BCI biofeedback system; the haptic feedback

component, typically a robotic end effector, and the BCI component, usually an EEG

acquisition system. While much effort has been made to develop cost effective methods

to record electrical activity of the brain, less progress has been made on developing

affordable biofeedback devices. As a consequence, the BCI component of such systems

is now relatively inexpensive in comparison to the haptic feedback component.

As discussed in the previous chapter, one of the major disadvantages of home-based

rehabilitation programs is the current lack of specialized equipment and insufficient

data as to their efficacy. Unfortunately this lack of data makes it difficult for companies

which might provide BCI-driven robotic systems to justify the investment required to

make this technology widely available. This, in turn, makes collection of the required

evidential data even less likely to happen. Therefore, presented in this section is the proof
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of concept design, implementation and test of an inexpensive, portable BCI-controlled

hand therapy device, which provides haptic feedback using a lightweight inflatable glove.

We believe that the relatively inexpensive, albeit very simple, BCI-driven haptic system

described here is an example of the type of approach which may help “bootstrap” the

process of creating the necessary studies which can build evidence as to the effectiveness

and utility of home-based BCI rehabilitation systems.

7.1.2 Pneumatic Glove

The haptic feedback component of the system is a pneumatically controlled hand therapy

glove which provides finger and wrist extension to a limp or paralysed hand. The glove

consists of numerous air pockets, located along the spine of the glove and along each

digit. The hand is secured to the glove by a series of Velcro� straps, at the wrist and at

each digit. When deflated, as shown in Figure 7.1 the glove is completely flaccid. When

inflated the glove becomes rigid, encouraging the hand to conform to the shape of the

glove as shown in Figure 7.2.

Figure 7.1: Photograph of hand in pneumatic glove when fully deflated, illustrating
rest state of the hand and fingers.
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Figure 7.2: Photograph of hand in pneumatic glove when fully inflated, illustrating
wrist extension and flexion of digits.

The glove (Romover Exercise Air Glove, Model: RA-100A, Nitto Kohki CO LTD)

utilised here is re-purposed and is no longer in production. However, a similar pneumatic

glove, the PneuGlove, has been described elsewhere [64, 65] and would be a suitable low-

cost replacement.

7.1.2.1 Pneumatic Control System

A custom air control system, shown in Figure 7.3, was designed to facilitate the inflation

and deflation of the glove through a computer-controlled interface.

Figure 7.3: Custom pneumatic control system, showing; A) Air inlet valve, B) Air
outlet valve, C) Vacuum pump, D) Electronic control system, E) Arduino, F) USB data

interface, G) Power supply, H) Intersection to air glove.
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A 12 V DC diaphragm vacuum pump (Airpo-D2028B, Ningbo Forever Electronic

Appliance Co., China.) supplies both pressure and vacuum to our system. Inflation

and deflation of the glove is determined by control of two electro-mechanic 3/2 solenoid

valves (SMC Corporation, Japan. S/N: VDW250-6G-1-01F-Q). The valves exhibit bi-

nary control allowing for the selective routing of air from their input port to one of their

two output ports. For both valves, the input port is connected to the vacuum pump,

one output port is connected to the glove and the other is connected to the atmosphere.

The set-up configuration is illustrated by Figure 7.4.

Figure 7.4: Illustration showing configuration of pumps, (A) intake value, (B) outlet
value, arrows show the direction of airflow.

7.1.2.2 Electronic Control System

An open-source prototyping platform, the Arduino Uno (Arduino, Ivrea, Italy), acts as

a mediator between the BCI and pneumatic glove system. The Arduino receives instruc-

tions over a serial communication link from the PC and carries out appropriate control

of the pump and solenoid valves. Thus, inflation and deflation of the glove is controlled

via serial communication with the PC. The system incorporates two independent power

supplies: 5 V DC supplied by USB to power the Arduino platform and 12 V DC to power

the pump and solenoid valves. In order to safely control the higher voltage components

using 5V logic, additional electronics are required, as shown in Figure 7.5.

193



Machine Learning for Augmented Biofeedback

Figure 7.5: Custom electronic control system for controlling air flow to glove.

7.1.3 EEG Brain-Computer Interface

Electroencephalogram (EEG) was recorded from 27 Ag/AgCl electrodes placed over the

sensori-motor area from positions FCz, FC1 - FC8, Cz, C1 - C8, CPz and CP1 - CP8

according to the 10/20 system of electrode placement, see Figure 7.6.
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Figure 7.6: Electrode placement on the scalp according to 10-20 system, highlighting
in green the 27 active electrodes positioned over the sensori-motor area that were used

to record data for experiment.

Data was recorded using a g.USBamp system (g.tec Medical Engineering GMBH,

Austria) at a sample rate of 256 samples per second. We used a modified version of g.tec

software to implement a real-time two-class Common Spatial Patterns (CSP) based BCI

[127], which was used to send appropriate control signals to the Arduino.

All sampled EEG was band-pass filtered in the 0.5-30 Hz frequency range and had a

50 Hz notch filter applied. EEG was further filtered to the 8-30 Hz range before the CSP

stage of processing. g.tec software1 was used to remove artifact-affected trials and noisy

channels, carry out CSP analysis, produce CSP filters and train a Linear Discriminant

Analysis (LDA) [414] classifier for real-time testing. During real-time testing, EEG was

filtered as before, decomposed by the trained CSP filters and classified by the trained

LDA classifier. The classifier output was smoothed with a moving-average filter of length

0.5 seconds. At a specific time after instruction onset (determined during BCI training),

the smoothed classifier output was sampled. The control signal sent to the Arduino was

based on this sample value. An overview of the entire system is presented in Figure 7.7.

1g.BSanalyze-Specs-Features
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Figure 7.7: BCI system overview

7.1.4 System Testing and Validation

7.1.4.1 Subjects

Three healthy subjects (all male, aged 24-28), recruited from Maynooth University,

participated in a system validation test. Subjects were all self-reported right handed

and gave oral consent before participation.

7.1.4.2 Experimental Protocol

To demonstrate the operation and feasibility of the system, subjects participated in the

training and testing of an overt movement BCI. During training and testing sessions,

subjects were seated in a comfortable chair, wore the glove on their dominant hand and

followed instructions presented on a PC monitor in front of them at eye level. Both the

training and test procedure consisted of 40 trials, 20 rest trials and 20 active trials, which

were presented in a randomized order in each session. During an active trial, the subject

was instructed to perform self-paced dominant hand digit contraction and extension, as

this action resembles the movement induced by glove inflation and deflation. During a

rest trail, the subject was instructed to simply relax while not attempting to move their

body or to imagine movement.

For the training session, each trial lasted 8 seconds. At 0 s, a fixation cross is

displayed in the center of the monitor. At 2 s a warning stimulus is given in the form of

a “beep”. From 3 s to 4.5 s, an instruction arrow appeared (i.e. a cue stimulus), pointing

right to indicate a movement instruction or pointing left for a rest instruction. From 4.5
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s to 8 s, the fixation cross remained on-screen. The subjects were instructed to perform

the action (rest or movement) as soon as the arrow appeared. For each subject, the

recorded EEG was analyzed separately to produce optimal CSP filters, train the linear

discriminate analysis (LDA) classifier and determine the optimal delay after instruction

onset to sample the smoothed classifier output.

For the test session, each event lasted 30 seconds. Instruction presentation was the

same as before except that the fixation-cross remained on-screen from 4.5 s to 30 s.

The additional time allocated during testing reflects the maximum duration required

for the pump to fully inflate and deflate the glove. During these 25.5 s, feedback of the

classifier output was also presented on-screen in the form of a bar extending to the left

or right of the centre of the screen. The sign of the sampled classifier output determines

the decision to inflate then deflate the glove or to let it remain deflated. A positive

sample value indicates movement classification while a negative sample value indicates

rest classification. As inflation and deflation of the glove takes 22 seconds, there is

sufficient time per trial for full range of hand movement induced by the glove.

Figure 7.8: Experiment set-up showing BCI system and monitor with feedback arrow
indicating activity to perform.

7.1.4.3 Results

A table of classification accuracy results of the BCI test sessions is shown in Table 7.1.

Presented in Figure 7.9 is a representative section of the time course of classifier output
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with timings for active and rest instruction onset, classifier sample times, classifier sam-

ple points and an illustration of the changing air pressure in the glove over time as it

reacts to the classifier output. The inflation time taken for the glove to move the subject

hand from minimal to maximal deflection was 12 seconds. The time to deflate the glove

back to its initial state was 10 seconds. Therefore, total time for inflation then deflation

of the glove, producing maximal range of hand motion, was 22 seconds.

Figure 7.9: LDA classifier output with event timings (top) and illustrated air pressure
in the glove (bottom)

Table 7.1: Rehabilitation BCI classification accuracy results.

Subjects Classification Accuracy

A 92.5%

B 90.0%

C 80.0%

7.1.5 Discussion and Future Work

A system such as the one described here may be used to explore closed loop neuro-

feedback rehabilitation in stroke relatively inexpensively and potentially in home en-

vironments. The main goal of this work is to report on the development of a simple,

affordable and accessible neuro-rehabilitation system which could fulfil the need for

home-based motor therapy with somatosensory feedback. The focus is the novelty of
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the system as a whole and not the results of classification as the BCI software used here

is quite basic and available commercially. The system presented here uses a basic form

of CSP, simple classification with LDA and a relatively easily-classifiable EEG pattern of

overt movement activity. Any stage of the BCI could be replaced by a more sophisticated

design and implementation. For example, there are many improvements to the CSP al-

gorithm which could be used, a more advanced classification method such as Neural

Networks or Gaussian Process classification could be utilized. Additionally, an imag-

ined movement-based protocol could be used to explore BCI-based stroke rehabilitation

methods [333, 350, 375].

Many considerations were made while developing this platform. The pneumatic

glove used is comfortable to wear and uses adjustable Velcro� straps, allowing it to fit

different size hands. It is easy to don and doff therefore it is entirely possible for a

family carer or even the user to use the system without technical assistance. From a

safety perspective the glove is ideal as there is no electrical energy transmitted to the

glove. In fact, all the materials in the glove are insulators and do not conduct electricity.

In addition, the glove design inherently minimises movement restrictions placed on the

user as there are no stiff mechanical parts and it is completely flaccid without air. The

pneumatic control system was designed with portability in mind, weighing less than 2

kg and is housed in a compact case. The system can be used with any PC, requiring

only installation of the software.

We believe that the relatively inexpensive, albeit very simple, BCI-driven haptic sys-

tem described here is an example of the type of approach which may help “bootstrap”

the process of creating the necessary studies which can build evidence as to the effec-

tiveness and utility of home-based BCI rehabilitation systems. In collaboration with

the Movement To Health Group of the University of Montpelier, France, a preliminary

investigation involving chronic stroke patients is currently being undertaken with this

device [157]. The objective of this investigation is to assess the practicality and usability

of the biofeedback platform for use with chronic stroke patients and in addition, to gain

insight into how the device and protocols adhered to during use, can be improved.
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7.2 Machine Vision for Enhancing Facial Neuromuscular

Re-education

Facial expressions play an important role in non-verbal communication, they are the

primary means by which we convey social information, from the way we express our-

selves to conveying our emotional state. The loss of fine facial muscle control is a serious

impairment for an individual, effecting their ability to communicate effectively and of-

ten causing disfigurement which can affect the individual socially and psychologically

[71, 261]. Paresis of the facial nerve after stroke causes functional and aesthetic defects,

manifested by facial asymmetry with muscle impairment of the lower half of the face,

drooping of the corner of the mouth, dribbling from the corner of the mouth, asymmet-

rical smile and a speech explicitness disorder with atonia of the lips, tongue and throat

[188].

In addition, if not treated acute facial paralysis can lead to facial synkinesis, that is,

unintentional movement in one area of the face produced during intentional movement

in another area. Facial synkinesis is caused by aberrant facial nerve regeneration of

fibers during the neural repair process [72] and therefore typically results in progressive

facial asymmetry which worsens with time. This is because facial synkinesis promotes

unbalanced muscular activity, unbalanced muscular hypertrophy, and unbalanced pat-

terns of facial expression [201]. Subsequently, untreated FMS disorders can attribute to

low self-esteem, have a profound impact on the quality of life and as a result may affect

an individuals ability to perform ADLs.

Until recently there has not been much research interest in rehabilitation for facial

movement dysfunction after neurological injury. This is partially due to the prioriti-

sation of rehabilitation services, traditionally intervention efforts after stroke tend to

focus on rehabilitating aspects of the central nervous system that lead to functional

improvements in the activity of daily living, but also due to the lack of benefits observed

from traditional approaches to facial paralysis rehabilitation, i.e. programs consisting

of repetitive facial expression exercise, light massage and electrical stimulation ther-

apy [380]. However, increasingly biofeedback interventions (e.g. mirror feedback and

surface-electromyographic (sEMG) feedback) are being shown to significantly enhance

facial rehabilitation when used in conjunction with a daily training regime or other in-

terventions. Several investigators have described improvements in facial movement as an

outcome of facial neuromuscular reeducation using surface EMG biofeedback or mirror

feedback [22, 188, 201]. The rationale behind biofeedback for facial rehabilitation is that,

unlike other skeletal muscles, facial muscles contain few if any intrinsic muscle receptors

or joint receptors, i.e. the primary source of peripheral proprioceptive feedback to the
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central nervous system [380]. Therefore, since there is little natural feedback about fa-

cial muscle posture and movement, voluntary attempts to guide facial movements rarely

result in an accurate approximation of the desired movement. The principle benefit of

using biofeedback as an adjunct to facial muscle reeducation is the ability to provide

accurate and immediate feedback about facial muscle activity.

From the perspective of home based therapy, mirror feedback is a particularly ap-

pealing method of delivering feedback on performance as it is easily and cheaply im-

plemented, only requiring a standard mirror. In contrast, EMG based biofeedback is

relatively burdensome, requiring additional expensive hardware (i.e an EMG acquisition

unit), time consuming preparation (i.e. removal of hair and dead skin cells), and signal

validity testing (i.e impedance testing, inspection of the raw EMG-baseline quality).

However, the uses of a mirror for biofeedback has some disadvantages. For an individual

with facial paralysis, exercising while watching oneself move with facial paralysis and the

psychological distress of looking at an abnormal facial appearance may be more detri-

mental to recovery than beneficial [380]. Therefore developing ways to deliver visual

feedback in a manner which is less disconcerting to the user and which has a positive

impact on the patient’s experience of the process might have value for augmenting the

rehabilitation process.

7.2.1 An Intelligent Mirror for Facial Neuromuscular Re-education

Developing suitable training programs which can encourage self initiated practise of

facial muscle exercises in the home is important, as the success of neuromuscular re-

education depends on attention and practice to make any long lasting improvements.

Positive results have been shown in clinical practise where patients are trained to perform

a couple of exercises accurately without feedback guidance, or with only an occasional

need to look in the mirror to “check” that the facial expression they are attempting is

correct [380].

An alternative more effective approach to generating “compassionate” visual feed-

back might be achieved through the application of machine vision techniques. A pre-

liminary investigation of the use of machine vision techniques by Delannoy & Ward [84]

described the use of Active Appearance Models [69] for tracking of key facial points and

for the automation of facial disability scoring.

In this work we elaborate on the use of AAMs for the real-time extraction and

tracking of facial landmarks, for the automatic scoring of facial function using the House

Brackman scoring system, towards the development of an intelligent feedback mirror.
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The purpose of the work here is to illustrate and demonstrate how AAMs can be used

to manipulate an image to exaggerate or subdue facial features, a sort of feedback

gain control, either to encourage further effort from the patient, or to assist slightly in

completing a facial expression in an attempt to increase motivation. Subdued feedback

can be considered a form of compassionate feedback, which might make it easier for the

patient to focus on the feedback presented. See Figure 7.102 for an abstract overview

of this concept.

Figure 7.10: Abstract overview of intelligent mirror approach.

7.2.2 Active Appearance Model (AAM)

The active appearance model (AAM) was first introduced by Cootes and Taylor in [94]

and is a highly flexible deformable statistical model for modelling both the shape and

texture (i.e. appearance) of an image. An AAM contains a statistical model of the shape

and grey-level appearance of the object of interest, built from analysing the appearance

of a set of labelled examples. An AAM based location algorithm for facial feature points

is divided into two procedures: face modelling and model searching. For face modelling,

a training set of annotated images are required where the corresponding points have

been manually marked on each example, then Procrustes analysis [85] is applied to align

2Source: Standing desk illustration.svg Creative Commons Attribution 3.0 Unported
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the sets of points and a statistical shape model is built. After this, Eigenanalysis is

applied on the texture vectors to reduce the dimensionality of the coordinates and to

build a texture model, see [95] for details. Finally the correlations between shape and

texture are learned to generate a combined appearance model.

In model searching, an iterative approach is constructed to adjust the model param-

eters, while there are two kinds of main iterative methods: the Lucas-Kanade algorithm

and the inverse compositional algorithm. A new image can be interpreted by finding

the best plausible match of the model to the image data. Matching the model to an im-

age involves finding model parameters which minimise the difference between the image

and a synthesised model example, projected into the image. The benefits of the AAM

approach are that the model can be generalised to any valid object, only requiring the

correct annotation of training images to develop new models. Expert knowledge can

therefore be captured in the system in the annotation of the training examples. The

models give a compact representation of allowable variation, but are specific enough not

to allow arbitrary variation different from that seen in the training set. The system

need make few prior assumptions about the nature of the objects being modelled, other

than what it learns from the training set. With this approach, a good overall match

can be obtained in a few iterations, even from poor starting estimates. Furthermore, as

the model get better at matching the desired object in new images, these new matches

which are essentially automatically annotated images, can be added to the training set

if deemed accurate enough by the expert. Thus, while the initial process of manually

annotating images can be tedious, the model can quickly start to assist in improving

itself, rapidly speeding up the process of improving the model.

7.2.2.1 AAM Algorithm

In this section we outline the algorithm used to model shape and appearance as described

by Tim Cootes et al. The reader is directed to the following work for further details

[68, 69].

The process of developing an AAM starts with a series of annotated training images,

i.e. images labelled by landmarks points which represent key features of the object to

be modelled. For example, to model a face we select key facial points such as the eyes,

nose, mouth and jaw line, see Figure 7.11.
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Figure 7.11: Example of face image labelled with 54 landmarks

Annotating the images results in a series of images each labelled with a set of points

pi, where pi = (xi, yi). Assuming all the sets of landmark points are in a common

co-ordinate frame, each set of points can be represented by a vector, x. The resulting

vectors form a distribution of points in 2n dimensional space. To reduce the modelling

complexity of the resulting data set, principal component analysis (PCA) [363] is applied

to the data. An approximation of the shape x in any of the training sets is then given

by Equation (7.1).

x ≈ x+ Psbs (7.1)

where x is the mean shape, Ps is a matrix of t eigenvectors of the covariance matrix

of the training set and bs is a set of shape parameters. Since the eigenvectors which

form P are linearly independent it is possible to rearrange Equation (7.1) to extract the

shape parameters, bs:

b = P T (x− x) (7.2)

The vector, b defines a set of parameters of a deformable shape model. By varying

the elements of b we can vary the shape of x. Therefore, it is possible to approximate

any plausible face shape by choosing values of b, within limits derived from the training

set.

To model the grey-level appearance g, a shape-normalised image is developed by

warping each of the training images so its control points pi match the mean shape x.
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The grey-level information gim is then sampled for the shape-normalised image over

the area covered by the mean shape. To minimise the effects of environmental lighting

variations, the samples are normalised by applying a scaling factor α and an offset β.

g =
gim − β

α
(7.3)

The goal is then to chose values for α and β which best match the vector to the

normalised mean. Letting g be the mean of the normalised data, both scaled and offset

so that the sum of elements is zero and the variance of elements is unity α and β can

therefore given by

α = gim · g

β =
gim · 1
n

(7.4)

where n is the number of elements in the vectors, i.e the number of landmark points.

By applying PCA to the normalised data we obtain a linear model for grey-level

appearance:

g = g + Pgbg (7.5)

where g is the mean normalised grey-level vector, Pg is a matrix of t eigenvectors of

the covariance matrix of the training set and bg is a set of grey-level parameters.

The shape and appearance of any example can thus be summarised by the vectors bs

and bg. Finally, since there are correlations between the shape and grey-level variations,

a further PCA is applied to the concatenated vectors to obtain a combined model of the

form:

x = x+Qsc

g = g +Qgc
(7.6)

where c is a vector of appearance parameters controlling both the shape and grey-

levels of the model, and Qs and Qg map the values of c to change the shape and

shape-normalised grey-level data. A face can be synthesized for a given c by generating

the shape-free grey-level image from the vector g and warping it using the control points

described by x.
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7.2.2.2 Model Fitting

Matching the appearance model to a face in a new image is a two part operation. No

prior knowledge is assumed about where the face may be in an images or it’s scale and

orientation. Instead, a simple eigen-face model is used for initial face detection. A

correlation score S, between the eigen-face representation of the image data M , and the

image itself I, can be calculated at various scales, positions and orientations:

S = |I −M |2 (7.7)

In principle the image could be searched exhaustively, however a much more efficient

process is to use a stochastic approach. Therefore, both the image and the model are

sub-sampled to calculate a correlation score using only a small fraction of the models

sample points.

After finding a good starting approximation of the face, the model parameters b can

then be adjusted to best fit the model to the new image. The objective of the search

algorithm is therefore to minimise the difference between a real face image and one

synthesised by the appearance model.

A difference vector δI can be defined as:

δI = Ii − Im (7.8)

where Ii is the vector of grey-level values in the image, and Im is the vector of

grey-level values for the current model parameter.

To locate the best match between model and image, we wish to minimise the mag-

nitude of the difference vector:

∆ = |δI|2 (7.9)

This can be achieved by varying the model parameters c. Since there are typically

a large number of parameters involved this becomes a difficult optimisation problem.

However, to overcome this problem some priori knowledge of how to adjust the model

parameters during search leads to an efficient run-time algorithm.
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Therefore, there are two parts to the problem: learning the relationship between

δI and the error in the model parameter δc and using this information in an iterative

algorithm to minimise ∆.

The simplest model that could be chosen is linear:

δc = AδI (7.10)

This turns out to be a good approximation to provide decent results. Finding A

involves performing multiple multivariate linear regression on a large sample of known

model displacements δc and the corresponding difference images δI.

7.2.3 Setup

7.2.3.1 Hardware Description

The following section describes the hardware and software systems used in this work as

well as the environmental setup used.

Harware

PC:

– 3.4GhZ (Intel i7 processor)

– 6Gb ram

– 1Gb Ati Radeon HD 6800 graphics card

– 1TB Harddrive

Logitech Quick Cam Deluxe

– Resolution: Up to 1.3 megapixel

– Frame rate: Up to 30 frames per second

– Image Format: 640x480

Software:

– Ubuntu 10.04 LTS

– QT4
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– OpenCv 1.1.0

– AAM Library

The camera was positioned on top of a 17” monitor screen. Images were taken

approximately 1/4 of a metre away from the subject, who was seated in a chair, with

the camera’s focus aligned with the centre of the subjects face. The room was moderately

lit with one ceiling light (a fluorescent beam) directly above the subject. In addition, a

large window to the left of the subject also let in natural light. No attempt was made

to normalise this light as it did not cause any complications during preliminary testing.

7.2.3.2 Software Description

A cross platform application (supporting both Windows and Linux) was developed using

the Qt Framework (software development framework with graphical user interfaces sup-

port), in conjunction with the OpenCv3 library (Open Source Computer Vision Library)

and the AAM library developed by Tim Cootes (Active Appearance Model Library).

Images are acquired and displayed to screen using OpenCv. Some initial preprocess-

ing is then done to locate any faces in the captured image, as the AAM library requires

a starting point for searching. This is accomplished using a Haar feature-based cas-

cade classifier, an effective object detection method proposed by Paul Viola and Michael

Jones [381]. The OpenCV library comes with many pre-trained classifiers for detecting

faces, eyes, smiles etc.

7.2.4 Building Models

To build a statistical model of appearance we require a set of annotated “training” images

which contain different examples of the object to be modelled, in this case a face. Before

annotating the image we must first decide upon a set of suitable landmarks, i.e. points

of interest, which describe the shape of the object we wish to model. It is important

that the chosen points of interest are evident in every training image.

Choosing appropriate landmarks is important, good choices include distinct, easily

recognisable points such as points of high curvature or junctions (e.g corners and bound-

aries). However, when modelling an object there is typically not enough well defined

3BSD-3-Clause
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points to give more than a basic description of the objects shape, therefore some addi-

tional lesser points are often added, for example intersecting points which lie between

strong landmark points. See Figure 7.12 for illustration.

Figure 7.12: Image articulating landmark points: blue points illustrate strong land-
marks while red points illustrate weaker supplementary points.

7.2.4.1 Annotation

Images were manually annotated with a custom devised 54 points model shown in Fig-

ure 7.13. The mark-up scheme is as follow:

Legend:

L - Left

R - Right

C - Center

LOC - Left Of Center

ROC - Right Of Center

Points:

1. C Forehead

2. L Lower Temple

209



Machine Learning for Augmented Biofeedback

3. L Temple

4. L Cheek Bone

5. L Jaw Bone

6. LOC Chin

7. C Chin

8. ROC Chin

9. R Jaw Bone

10. R Cheek Bone

11. R Lower Temple

12. R Upper Temple

13. R Outer Eyebrow

14. R ROC Eyebrow

15. R LOC Eyebrow

16. R Inner Eyebrow

17. Supraglabella

18. Glabella

19. L Inner Eyebrow

20. L ROC Eyebrow

21. L LOC Eyebrow

22. L Outer Eyebrow

23. L Outer eye

24. L LOC Upper eye

25. L C Upper eye

26. L ROC Upper eye

27. L Inner eye

28. L ROC Lower eye

210



Machine Learning for Augmented Biofeedback

29. L C Lower eye

30. L LOC Lower eye

31. R Outer eye

32. R LOC Upper eye

33. R C Upper eye

34. R ROC Upper eye

35. R Inner eye

36. R ROC Lower eye

37. R C Lower eye

38. R LOC Lower eye

39. LOC Nose

40. C Nose

41. ROC Nose

42. R Nostril

43. L Nostril

44. L Outer Mouth

45. LOC Upper Mouth

46. LOC Lower Mouth

47. C Upper Mouth

48. ROC Upper Mouth

49. R Outer Mouth

50. ROC Lower Mouth

51. L Lower Cheek

52. L Upper Cheek

53. R Lower Cheek

54. R Upper Cheek
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7.2.4.2 Model Generation

The AAM model used in this work was developed using Tim Cootes software kit

(aam tools). The models were generated using a set of 60 images; 10 images (taken

at slightly varying angles focused at the centre of the face) of 6 different people (in-

cluded 2 women and 4 men). The images were manually annotated using the 54 point

system described in 7.2.4.1.

After annotation, the aam tools were used to generate a base shape model and shape

variation model. The following AAM model resulted from this process, see Figures 7.13

and 7.14.

Figure 7.13: Base shape showing annotation points.
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Figure 7.14: Base shape showing triangulated mesh.

7.2.4.3 Model Fitting

Fitting an AAM to an image consists of minimizing the error between the input image

and the closest model instance, i.e. model parameters are found that maximize the

match between the model instance and the input image, see 7.2.2.2 for details on the

model fitting process. However, the AAM fitting procedure is computationally expensive

and tends to fail when the initial position of AAM model is far away from a face in an

image. See Figure 7.15.
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Figure 7.15: Image showing the misclassification of a face by an AAM after 50 steps.

Therefore in order to reduce the fitting time and to improve the performance of the

model, a good initial approximation of the location of the face is required. This can be

achieved through a face detection algorithm [413]. There are many methods which can

be used for this purpose, however one of the most robust and often used facial detec-

tion approaches is the Haar cascade classifier, described previously. The Haar classifier

method is a machine learning based approach that uses statistical characteristics of facial

features to train a cascade function from a series of positive images (i.e. images contain-

ing faces) and negative images (images which do not contain faces). The resulting Haar

classifier is then used to detect faces in new images, not unlike an AAM.
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Figure 7.16: Initial detection and localisation of face in image using Haar cascade
classifier. Red bounding box identifies location of face.

After a face has been detected using the Haar Classifier the AAM model is then ap-

plied and can then be fit much more accurately and quickly than before, see Figure 7.17.

Figure 7.17: Successful detection and classification of face in 6 steps, using Haar
Cascade Classifier to constrain search space.
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7.2.5 Automatic Facial Paralysis Scoring

After a face has been located with OpenCv and surrounded by a bounding box, the AAM

model described in Section 7.2.4 is applied to find and track specific facial features.

Initially it may take a couple of seconds for the model to find and fit a face in the image,

however afterwards subsequent tracking is smooth and relatively seamless. Once the

model is fit we can then focus on key points of the AAM model which are related to

facial feature points unused to calculate the HB score, i.e. for facial paralysis of the right

side, points (13-15) and (48-50) and for facial paralysis of the left side, points (20-22)

and (44-46).

A HB based score can easily be generated by comparing the difference between the

facial feature points on the normal side of the face to that of the paralysed side.

7.2.5.1 House-Brackmann Scoring

The House-Brackmann (HB) facial nerve grading system [151] is a standardised grading

system developed to objectively quantify and describe facial nerve damage. The HB

score is calculated by measuring the upwards (superior) movement of the mid-portion of

the top of the eyebrow, and the outwards (lateral) movement of the angle of the mouth.

A score of one point is associated with each 0.25 cm movement, up to a maximum of 1

cm. A total score is then added up to give a number out of 8, see Table 7.2.

Table 7.2: House-Brackmann Scoring System.

Grade Description Measurment Function % Estimated function %

I Normal 8/8 100 100

II Slight 7/8 76-99 80

III Moderate (5/8)-(6/8) 51-75 60

IV Moderately severe (3/8)-(4-8) 26-50 40

V Severe (1/8)-(2-8) 1-25 20

VI Total 0/8 0 0

7.2.6 Facial Feature Warping

Due to the lack of publicly available datasets containing images of individuals with var-

ious levels of FMS damage we instead illustrate the reverse process which the intelligent

mirror will apply, that being the synthesis of images with facial paralysis, starting with

images of healthy subjects. First the AAM model is fitted to an image of a healthy
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subject, with a normalised facial expression. Then the points pertaining to the corner

of the mouth and eyebrow are shifted laterally to cause asymmetrical facial expressions

and the image is then re-rendered, see Figure 7.18.

Figure 7.18: Illustration of relocating key facial points to synthesis FMS paralysis.

In practise, the intelligent mirror would apply the process described in reverse, first

fitting a model to an image of a patient with facial paralysis, estimating the level of

facial paralysis according to the asymmetry of key facial features and finally shifting

the relevant facial feature points in an attempt to generate a feedback image with more

symmetrical facial features.

7.2.7 Results

7.2.7.1 Facial Feature Tracking

The resulting AAM model described above was tested on 50 new images, i.e. images

not contained in the original training group but which did include some images of the

original 6 subjects, as well as new unused subjects.

The accuracy of the classifier was visually inspected and reported on after automatic

classification of these images. The classifier achieved an accuracy of 46 correctly fit

AAMs, an accuracy of 92%. Two of the unclassified images were due to false negative

by the Haar Classifier, (i.e. no face was detected in these images and thus the fitting

of the AAM was not attempted). The other two misclassification resulted from poorly
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fitted AAMs, which despite being in the correct region bounded by the Haar classifier,

the resulting model was skewed and stretched.

While this image set is quite small, it was intended to be used as a proof of concept

for tracking interesting facial features, towards the automatic scoring of facial paralysis

and the development of the proposed intelligent mirror.

7.2.7.2 Synthesising FMS paralysis

Figures 7.19 and 7.20 illustrate the function described in Section 7.2.6 to systematically

generate images with various degrees of paralysis according to the HB scoring system.

The point displacement used for each consecutive image is based on the HB scoring

system described in Section 7.2.5.1.
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Figure 7.19: Image sequence showing generation of progressive HB scored facial paral-
ysis; (I) Normal, (II) Slight, (III) Moderate, (IV) Moderately severe, (V) Severe.
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Figure 7.20: Image sequence showing generation of progressive HB scored facial paral-
ysis; (I) Normal, (II) Slight, (III) Moderate, (IV) Moderately severe, (V) Severe.
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7.2.7.3 Software Bench Testing

The entire process used to manipulate and re-rendering an image, (once the user has

selected the points they wish to move and has released the right mouse button) takes

approximately 1/4 of a second.

Table 7.3: AAM fitting and image warping timings

Operation Time (ms)

Model Fitting 55

Warp Image 131

Re-draw Image 6

Total 192

This means the image can be transformed approximately 5 times a second. This

software was designed with the intention of manipulating still images, however with some

tweaks to the software base and by utilizing more advanced computer vision techniques

this frame rate could easily be increased to real time (25-30) frames per second (FPS)

allowing the user to manipulate live video stream.

7.2.8 Discussion

The goal of the work described here is to demonstrate how one could develop an am-

bient (mirror) technology that can be incorporated for the purposes of home based

rehabilitation of motor facial paralysis. The results described here illustrate how ma-

chine learning techniques such as active appearance models can be used to locate and

track key facial features for the automatic scoring of FMS paralysis and for the syn-

thesis of distorted facial expressions. While in the demonstration of the latter process,

images of healthy subjects were morphed to synthesize facial paralysis, in practise the

reverse process would be applied to normalise the appearance of facial paralysis in an

image. Subsequently, this image would then be presented to the individual as a form of

“compassionate” feedback during training.

Our preliminary bench testing results demonstrate that with the current set-up a

distorted image can be rendered 5 times a second. While this rate is much lower than

that required to present fluid, real-time feedback (approximately 30 FPS), the work

described here is intended as a proof of concept only. No effort was made to optimise

the efficiency of the AAMs used or any other aspect of the solution. Subsequently, there

is plenty of work which can be done in the future to increase the rate at which images
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can be manipulated using the technique described. In this work a standard unoptimised

AAM was used. Much effort has already been made to optimise the efficiency of the

AAM fitting procedure, [318, 374, 413]. Furthermore, more efficient facial detection

algorithms could be used instead of the expensive Haar Classifier. In addition, while the

computer used in this project was relatively powerful at the time, no effort was made

to take advantage of its multi-core architecture or to offload any visual processing to its

external graphics card. The author is confident that innovations here could drastically

increase the resulting frame rate achieved.

It is hoped that the technology described here will contribute towards ultimately

developing a low cost, intelligent mirror which can provide real-time feedback, suitable

for augmenting facial motor paralysis rehabilitation training in the home setting.

7.3 Summary

This chapter described efforts to utilise aspects of machine learning for closed loop

neurofeedback rehabilitation, with emphasis on developing low cost systems suitable for

deployment in the home setting.

The first section of this chapter focuses on describing the design, implementation

and test of an inexpensive and portable BCI-controlled hand therapy device, which

provides haptic feedback to the user using a lightweight inflatable glove. The device

works by classifying patterns of brain activity using a machine learning technique (i.e. a

CSP classifier) to detect efferent motor activity relating to a specific class of movement

activity. The chosen activity in this case is the intentional tapping of the fingers of

the dominant hand. Correct classification of this movement subsequently triggers our

custom designed pneumatic pump system which controls the inflation and deflation of a

glove, thereby delivering somatosensory (i.e. afferent) feedback to the user and closing

the motor control loop. System tests demonstrate that glove control can be successfully

driven by a real-time BCI.

The second section of this chapter illustrates how a particular machine vision method

called Active Appearance Models (AAM) can be used to develop an intelligent mirror

for the provision of biofeedback for facial muscle system rehabilitation. We describe the

use of AAM for automating a standard facial disability scoring procedure, the House

Brackmann system, and for distorting images to generate subdued visual feedback during

practise of facial motor exercises.
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Although currently in their infancy, we believe that systems like those described here

are preliminary examples of the promising applications of machine learning techniques,

which in the future may help acutely improve the effectiveness of unsupervised exercise

training and subsequently the efficacy of home-based rehabilitation.
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Chapter 8

Conclusion

8.0.1 Summary and Discussion

As global ageing converges with technology and globalization, new challenges as well

as opportunities emerge. Challenges arise as social and economic structures attempt to

adjust to the shifting age demographic, that is the diminishing population of youth and

the rising population of elders. An ageing population inevitably leads to a rise in the

number of people living with chronic illness and disability while at the same time reduces

the proportion of young healthy people able to support them. With healthcare systems

worldwide already struggling to cope with current demands for healthcare services, there

is a drastic and immediate need to confront this problem now and to prepare for the

future. Reducing severe disability from stroke and increasing the independence of those

affected are key to holding down healthcare costs. However, to do this, effort needs to be

made to alleviate the stress on healthcare services. This might be achieved by moving

away from conventional rehabilitation services and towards more community supported,

home-based rehabilitation programs. To accomplish this, cost effective healthcare tools,

suitable for deployment in the home-setting are required, which can with some effect

automate, enhance and support the ongoing rehabilitation process. However, to be

successful, the efficacy of the resulting rehabilitation service needs to be at the very

least comparable to that of clinical programs, if not better, while also being cheaper.

Currently there is a dearth of such tools for this purpose and subsequently a major

disadvantage of home-based rehabilitation programs is the lack of affordable specialized

equipment and insufficient data as to their efficacy. Unfortunately this lack of data

makes it difficult for companies which might provide systems to justify the investment

required to make this technology widely available. This, in turn, makes collection of
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the required evidential data even less likely to happen. Subsequently, there is a se-

rious need to improve on the development of affordable and accessible technology for

enhancing conventional rehabilitation and towards improving the efficacy of home based

rehabilitation.

Recently innovations in computer and communication technology have resulted in the

ubiquity of computer systems and as a result there is an unprecedented amount of readily

available, cost effective technology at our disposal. From the perspective of healthcare,

there is great utility in the application of such technology for augmenting rehabilitation

efforts. A key aspiration of this thesis has been to contribute toward increasing the avail-

ability of such technology for healthcare purposes, as well as to demonstrate the tenable

potential of such technology for improving home-based rehabilitation after stroke. This

goal has been achieved through the development of novel, low cost technology, with

emphasis on enabling further research in the area of motor intervention and towards

improving the efficacy of home-based rehabilitation. It is further supported through the

presentation and demonstration of novel applications which utilise the technology.

To summarise, the contributions of this thesis are as follows.

After introducing the necessary physiological background information in Chapter 2,

a literature review identifying various challenges and opportunities for advancement

in technology-assisted rehabilitation was presented in Chapter 3. In particular, this

chapter found that while there is currently some commercial technology available for

stroke rehabilitative purposes, there is little technology which has been demonstrated to

be practical, inexpensive and effective for the home.

Chapter 4 introduced the design of a novel sensor glove system for finger tracking and

hand gesture recognition. The ambition of this work was to demonstrate how wearable

and mobile technology can produce inexpensive technology which may be suitable for

use in a home-based rehabilitation setting. In a preliminary test using healthy subjects,

we demonstrate the ability of this glove system to control a TV through the use of

therapeutic hand gestures, resembling those practised in therapist driven rehabilitation

therapy.

Chapter 5 explores the application of game theory and agent based modelling for

studying patient-therapist interaction dynamics, with a view to designing more efficient

and effective controllers for automated therapeutic intervention in motor rehabilitation.

Chapter 3 identified that although exhaustive effort has been afforded to advancing the

mechanical design of robot devices for motor rehabilitation, little work has been done on

improving the high-level control systems which ultimately provoke neuroplasticity and as
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a result such devices are struggling to make a difference in clinical trials. While the work

described in Chapter 5 is purely conceptual, it demonstrates the sort of innovative think-

ing which is likely required to advance the current state of high-level control strategies.

We contend that designing suitable assistive controllers for automating movement-based

rehabilitation therapy requires an understanding of the interaction between patient and

therapist. We propose that a better understanding can be accomplished through framing

the interaction as a problem in game theory. In this work, we advocate the use of such

agent based models for analysing patient-therapist interactions. We demonstrate in a

simplified implementation the effectiveness of this approach through simulating known

behavioral patterns observed in real patient-therapist interactions, such as learned de-

pendency.

Chapter 6 discusses the issue of adherence to unsupervised exercise training in the

home setting and explores the application of extrinsic feedback for enhancing unsuper-

vised motor learning. We propose the development of automatic rehabilitation systems

for the home setting which can help improve patient engagement during unsupervised

training. For this purpose we investigate the use of obfuscated extrinsic feedback on

motor performance, the provision of which has been shown to enhance motor learn-

ing, positively influence motivation and improve patient self-efficacy during conventional

physical therapy interventions. Towards this goal we introduce the design of two novel

systems. First, a low cost digital hand dynamo-meter which can record and process

(filter, plot etc.) grip strength in real time. Second, we present a low cost open source

EMG acquisition system for monitoring muscle activity and for extracting features of

muscle dynamics. We demonstrate the systems ability to record and extract interesting

muscle dynamics, in the form of an indication of peripheral muscle fatigue using mean

frequency analysis.

Chapter 7 investigates the potential application of machine learning to stroke re-

habilitation, through two distinct applications for the provision of biofeedback during

exercise training. The first section of this chapter describes a portable and inexpensive

BCI-controlled hand therapy device for delivering neural activated haptic feedback using

a light-weight inflatable glove. The second section of this chapter focuses on the applica-

tion of active appearance models (AAMs), a machine vision technique for detecting and

tracking key facial features. We describe the use of AAMs to both track facial features

for the automatic scoring of facial paralysis based on the House Brackmann system, and

for synthesizing new facial expressions of a subject given their current appearance and

the displacement of key facial points. We demonstrate this ability by generating images

of progressive paralysis, according to the HB scoring system, from base images of healthy
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subjects. We then discuss how such techniques could be used to develop an intelligent

mirror for the provision of subdued feedback during facial muscle system rehabilitation.

8.0.2 Concluding Remarks

This thesis describes many novel technology derived solutions for the enhancement of

motor intervention post stroke. Emphasis has been placed on the development of inex-

pensive, open source technology for improving the capacity of home-based rehabilitation

programs. The author hopes that the work described in this thesis is thought-provoking

and that the affordable technology described therein will help bootstrap the process of

creating the necessary studies which can build evidence as to the effectiveness and utility

of such approaches for improving the efficacy of home-based rehabilitation. Towards this

goal, the author advocates the replication of any of the systems describe here, in the

hopes that it might help reduce the ever increasing cost of healthcare and assist in the

alleviation of suffering in stroke survivors.
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Appendix A

Recorded Demonstrations of

Tools

The following appendix contains links to video demonstrations of the various tools de-

veloped for this thesis.

A.0.1 Sensor Glove Videos

Title: Sensor glove and Ogre 3D.

Url: https://www.youtube.com/watch?v=4hqJqB1ZNxg&feature=youtu.be&a

Brief: This video shows off the sensor glove ability to capture hand motion in real time

and to animate a 3D hand in a virtual sandbox using custom designed visualisation

software.

Title: LEAP motion controlling 3D hand Demo

Url: https://www.youtube.com/watch?v=diusooUZH E

Brief: This video demonstrates the depth camera (LEAP motion controller) aspect of

the sensor glove project. The videos illustrates the systems ability to track the hand’s

spatial location and orientation, as well as its integration into the custom designed

visualisation software.

Title: Sensor Glove controlling a simple robotic hand interface device

Url: https://www.youtube.com/watch?v=5H3GHXqE6go

Brief: This video shows the sensor glove driving a novel robotic hand which was also

developed by the author of this thesis but not described therein. This system was

developed as part of an university open day demonstration and as a potential device for

demonstrating the ability of the sensor glove to control a suitable hand interface device.

228

https://www.youtube.com/watch?v=4hqJqB1ZNxg&feature=youtu.be&a
https://www.youtube.com/watch?v=diusooUZH_E
https://www.youtube.com/watch?v=5H3GHXqE6go


Appendix A. Links to various videos demonstrating aspects of tools developed for this
thesis

A.0.2 Custom Hand Dynamometer and EMG system Videos

Title: Early test of the grip strength and muscle assessment rig.

Url: https://www.youtube.com/watch?v=WvqCSHOCIR0

Brief: This video shows an early demonstration of the real-time capture and streaming

of grip strength measured through the custom designed hand dynamometer and EMG

acquisition system, described in chapter 6. At this stage the EMG signal has not been

filtered or de-trended, hence the noise and weakness of the signal. In addition, the

graphing software is zoomed in and therefore plotting at a reduced sampling rate. Also,

it might be noted that the hand dyamometer signal is clipped as it approaches the upper

plotting boundary, this was an early bug which was promptly fixed by adjustment of

the hardware.

A.0.3 Pneumatic Glove Videos

Title: Original Romover Pneumatic Glove system

Url: https://www.youtube.com/watch?v=IimjNGtmcnY

Brief: This video shows off the original unmodified Romover glove system and its

Analog pump system.

Title: Description of Custom designed digital pump system

Url: https://www.youtube.com/watch?t=1&v=hEjZlYD5Cvw

Brief: This video details a short description of the custom designed electronics/pneu-

matic control system used in the pneumatic glove system.

Title: Demonstration of the glove inflating and deflating

Url: https://www.youtube.com/watch?t=1&v=ymlxQsNCbDM

Brief: This video demonstrate one of the early tests of the custom digital pump system

ability to inflate and deflate the pneumatic glove on command.
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Appendix B

Addition resources

Data-sheets and Schematics for ModularEEG system

Figure B.1: Analog Schematics
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Figure B.2: Digital Schematics
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fatigue evaluation in biomechanics. Clinical Biomechanics, 24(4):327–340, 2009.

[59] C. Cirstea, A. Ptito, and M. Levin. Feedback and Cognition in Arm Motor Skill

Reacquisition After Stroke. Stroke, 37(5):1237–1242, may 2006.

[60] M. C. Cirstea and M. F. Levin. Improvement of arm movement patterns and

endpoint control depends on type of feedback during practice in stroke survivors.

Neurorehabilitation and neural repair, 21(5):398–411, 2007.

[61] I. Collantes, G. Asin, J. C. Moreno, and J. L. Pons. Analysis of biomechanical

data to determine the degree of users participation during robotic-assisted gait

rehabilitation. In Proceedings of the Annual International Conference of the IEEE

Engineering in Medicine and Biology Society, (EMBS), pages 4855–4858. IEEE,

2012.

[62] R. Colombo, F. Pisano, S. Micera, a. Mazzone, C. Delconte, C. Carrozza, P. Dario,

and G. Minuco. Robotic techniques for upper limb evaluationn and rehabilitation

of stroke patients. IEEE Transactions on Neural Systems and Rehabilitation En-

gineering, 13(3):311–324, 2005.

[63] L. A. Connell, N. E. McMahon, C. L. Watkins, and J. J. Eng. Therapists’ use

of the Graded Repetitive Arm Supplementary Program (GRASP) intervention: a

practice implementation survey study. Physical therapy, 94(5):632–43, 2014.

237



Bibliography

[64] L. Connelly, Y. Jia, M. L. Toro, M. E. Stoykov, R. V. Kenyon, and D. G. Kam-

per. A pneumatic glove and immersive virtual reality environment for hand re-

habilitative training after stroke. In IEEE Transactions on Neural Systems and

Rehabilitation Engineering, volume 18, pages 551–559. IEEE, 2010.

[65] L. Connelly, M. E. Stoykov, Y. Jia, M. L. Toro, R. V. Kenyon, and D. G. Kamper.

Use of a pneumatic glove for hand rehabilitation following stroke. In Proceedings

of the 31st Annual International Conference of the IEEE Engineering in Medicine

and Biology Society, (EMBC), pages 2434–2437, Minneapolis, USA, 2009. IEEE.

[66] S. S. Conroy, J. Whitall, L. Dipietro, L. M. Jones-Lush, M. Zhan, M. A. Finley,

G. F. Wittenberg, H. I. Krebs, and C. T. Bever. Effect of gravity on robot-

assisted motor training after chronic stroke: a randomized trial. Archives of phys-

ical medicine and rehabilitation, 92(11):1754–61, nov 2011.

[67] S. Coote, B. Murphy, W. Harwin, and E. Stokes. The effect of the GENTLE/s

robot-mediated therapy system on arm function after stroke. Clinical rehabilita-

tion, 22(5):395–405, may 2008.

[68] T. Cootes, E. Baldock, and J. Graham. An introduction to active shape models.

In Image Processing and Analysis, chapter 7, pages 223–248. Oxford University

Press., 2000.

[69] T. Cootes, G. Edwards, and C. Taylor. Active appearance models. In In Proceed-

ings of the European Conference on Computer Vision, pages 484–498. Springer,

1998.

[70] A. Coronato and G. De Pietro. Pervasive and Smart Technologies for Healthcare:

Ubiquitous Methodologies and Tools. Medical Information Science Reference, 1st

edition, 2010.

[71] S. E. Coulson, J. O’Dwyer N, R. D. Adams, and G. R. Croxson. Expression of

emotion and quality of life after facial nerve paralysis. Otol Neurotol, 25(6):1014–

1019, 2004.

[72] L. Crumley, Roger. Mechanisms of synkinesis. Laryngoscope, 89(11):1847–1854,

1979.

[73] P. R. Culmer, A. E. Jackson, S. Makower, R. Richardson, J. A. Cozens, M. C.

Levesley, and B. B. Bhakta. A control strategy for upper limb robotic rehabilitation

with a dual robot system. IEEE/ASME Transactions on Mechatronics, 15(4):575–

585, 2010.

238



Bibliography

[74] R. D. Currier, C. L. Giles, and M. R. Westerberg. The prognosis of some brain

stem vascular syndromes. Neurology, 8(9):664–668, 1958.
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