
EXPOSE : an animation
tool for process-oriented
specs-ications
by Adam C. Winstanley and David W. Bustard

This paper describes and evaluates
EXPOSE, an animation tool for
process-oriented formal specifications
of concurrent systems. EXPOSE takes
as input the text of a formal
specification and, from it, generates
static views (interpretations) of the
specification structure and dynamic
views of the behaviour of the system
specified. The views are constructed and
explored using the hypermedia facilities
of the Apple Macintosh Hypercard
system. EXPOSE has been implemented
experimentally for LOTOS, but most of
the animation concepts and techniques
described are relevant to other
process-oriented languages, such as
CCS and CSP.

1 Introduction

A formal notation provides an altemative to natural lan-
guage when defining aspects of a computing system. It can
either replace a natural language description or help make
its interpretation more exact. The process of producing a
formal specification gives the developer an improved under-
standing of the system described and yields a precise defini-
tion of requirements against which an implementation can
be verified. Unfortunately, despite these advantages, the use
of formal specification in system development is still the
exception, rather than the rule. One reason for the lack of
uptake is that both developers and customers find such spe-
cifications difficult to understand. The two main contrib-
uting factors are

0 the mathematical notations involved are symbol-based,
rather than text-based, and so must be learned before
reading fluency can be attained.
0 clear communication tends to rely on reinforcing con-
cepts through repetition, perhaps by presenting the con-
cepts in several different ways, or by using illustrations;
formal specifications are concise descriptions that avoid

Software Engineering Journal November 1991

redundancy, and so their meaning is not always imme-
diately apparent.

In practice, the comprehension of formal specifications can
be a problem with relatively short descriptions of only one
or two pages, and for large specifications of 50 pages or
more, for example, the difficulties encountered may be
severe.

A previously published paper [l] discussed how an
understanding of process-oriented specifications, in particu-
lar, can be improved by using animation techniques. These
involve the generation of altemative interpretations or views
of a formal description that help to illuminate its meaning;
static views show the structure of a specification, whereas
dynamic views reveal the behaviour of the system
described. Subsequent papers identified possible static
views for process-oriented specifications [2] and described
an experimental specification browser [3]. EXPOSE
(Experimental Process-Oriented Specification Elucidator) is
an animation tool that builds on this earlier work. It oper-
ates by taking the text of a complete process-oriented
description as input and, from it, automatically generating
various static and dynamic views of the description that
may be examined using hypermedia techniques.

The basic goals guiding the development were

0 to focus on the needs of the specifcation developer,
rather than those of the customer. The views produced
relate primarily to the nature of the specification, rather
than to the system being specified. However, as the two are
closely related, EXPOSE does offer some improvement in
customer presentation.
0 to support existing specification developers who are
familiar with the textual notation involved. EXPOSE has
been designed to assist those who are currently developing
specifications in a textual form. It is expected, however, that
the improvements made to the underlying development
process will also help those new to this area.
0 to use a combination of graphical and textual represen-
tations in specification views. In effect, views of a specifi-
cation focus on relationships among its components. Some
of these relationships can be expressed in a graphical form,
some in a textual form and some in either representation.
Graphical representations are given prominence, but, where

463

appropriate, both styles are made available to cater for the
different preferences of users.

to keep Views simple. Each view covers a particular
inter-relationship among specification components, and,
where necessary, descriptive information is suppressed to
enable that interrelationship to be evident; in most cases,
the suppressed information can be obtained when required
by selecting a representative icon in the view.

EXPOSE has been implemented experimentally for the
formal description language LOTOS [4], using the hyper-
media facilities of the Apple Macintosh Hypercard system
[5, 61. In this paper, we provide some background to the
LOTOS notation and an example of its use; we present
details of the static and dynamic views of LOTOS specifi-
cations that are supported by EXPOSE; and we discuss the
implementation of EXPOSE, and assess its strengths and
weaknesses.

2 The LOTOS language

Within the broad range of formal notations, there are
several aimed at the specification, design and analysis of
concurrent systems, including CCS (Calculus of Communi-
cating Systems) [8], CSP (Communicating Sequential
Processes) [9], LOTOS (Language Of Temporal Ordering
Specifications) [4] and ACP (Algebra of Communicating
Processes) [lo]. This paper is mainly concerned with
LOTOS, but many of the concepts discussed are equally
applicable to the other notations in this category. These are
all based on a model of interacting sequential processes and
have many basic features in common. The nature of these
languages make them amenable to symbolic execution, and
the definition of LOTOS, in particular, was formulated with
this possibility in mind [111.

LOTOS is a process-oriented description language de-
veloped for the definition of OS1 (Open Systems
Interconnection) protocol standards. In practice, it is equally
applicable to the definition of many types of concurrent
system. Its model of concurrency is based on those of CCS
and CSP, and it includes an algebraic data-typing facility
largely drawn from ACT ONE [12]. A full intemational
Standard for LOTOS was released by IS0 in February 1989
[4]. Useful introductions and tutorial guides to the lan-
guage can be found in References 7, 13 and 14; additional
research material can be found in References 14-16. For a
general discussion of the use of tools and development
methods with LOTOS, see Reference 17. This paper also
identifies the three Esprit projects, PANGLOSS, SEDOS and
LOTOSPHERE, that have contributed most to the pro-
duction of such tools and methods.

As an example of the use of LOTOS, consider how a
formal description of the basic behaviour of a photocopying
machine might be expressed. The machine has two buttons;
one to request a copy to be made, and the other to switch
off the machine. An LCD shows the message out of paper
when a sensor on the paper feed-tray detects that there is no
paper left on attempting to make a copy; once paper is
loaded, the copy is produced.

A LOTOS description, known as a specification, consists
typically of a hierarchy of process and data type definitions.
Processes describe system behaviour, and data types
describe the data manipulated within the system. Behaviour
is defined by placing constraints on the order of system

464

events. The set of events that are significant varies with the
level of system observation. For example, a photocopier
service engineer will be aware of events associated with the
internal operation of the machine, whereas a user of the
photocopier may only know about external events. The
events of this latter category might be as follows:

event meaning
copyrequest the depression of the copy button
producecopy the emergence of a copy
outofpaper the display of the message that

the paper tray is empty
puperloaded the return of the paper tray to the

machine after loading paper
poweroff the depression of the button to

switch off the machine

Such visible events would be named in the heading of a
LOTOS specification of the photocopier :

specification photocopier [copyrequest, producecopy,
outofpaper, paperloaded, poweroff] : exit

The heading also includes the name of the specification and,
an indication (exit) that the system described terminates.
The events (strictly event gates) define the interaction
(conceptually synchronisation) that can occur between the
photocopier and its environment.

A LOTOS specification is a single process. Typically, the
behaviour of that process is described in terms of local sub-
processes, which, in turn, may be described by further sub-
processes. For example, a top-level description of the
photocopier might be represented by two processes; thus

behaviour
nomaloperation [copyrequest, producecopy,

[>
(poweroff; exit)

outofpaper, paperloaded]

The first process, nomloperation, describes the behaviour
of the photocopier while it is available for copying. The
second process (poweroff; exit) is implicit and unnamed. It
describes the termination of the system when the power
supply is switched off. Connecting the two processes is a
disable operator [>. It indicates that the occurrence of an
event in the implicit process, the poweroff event, will ter-
minate or disable all activity described by the normul-
operation process.

Normaloperation can be represented by two communicat-
ing processes; thus

process normuloperation [copyrequest, producecopy,
outofpaper, paperloaded] : noexit :=

hide page in
(copier [copyrequest, producecopy, page]
I [paeel I
papertray [page, outofpaper, paperloaded])

endproc (* normaloperation *)

Process copier describes the sequence of events that lead to
the production of a copy. Process papertray describes how
pages are provided to the copier and also the procedure fol-
lowed when the paper supply needs to be replenished.

Software Engineering Journal November 1991

These processes operate in parallel and have a shared event
page, denoting the transfer of a page from the paper tray to
the copier. This link is described by the parallel operator
I[page]l between the two process references. The page
event is local to the normal operation description (and inter-
nal to the photocopier), and so is hidden from the rest of the
specification. Note that the normuloperution process has no
explicit exit, as this occurs only as a consequence of the
power being switched off.

The copier process can be described by a sequence of
events ; thus

process copier [copyrequest, producecopy,
getpage] : noexit :=

copyrequest ;
getpage ;
producecopy ;
copier [copyrequest, producecopy, getpage]

endproc (* copier *)

After a copy request is received, the copier obtains a page
from the paper tray, produces a copy and returns to its orig-
inal state, as represented by the recursive instantiation of
the copier process.

The pupertruy process might have the following form:

process pupertruy [sendpage, outofpaper,
paperloaded] : noexit :=

(sendpage ; pupertruy [sendpage, outofpaper,
paperloaded 1)

[I
(outofpaper; paperloaded ; pupertruy

[sendpage, outofpaper, paperloaded])
endproc (* papertray *)

The behaviour of the paper tray depends on the availability
of paper. The two possibilities are defined in a choice
expression, with the alternatives separated by the operator
[1. If a page is present, it is sent to the copier and the paper
tray returns to its initial state; otherwise, the out-of-paper
event is reported and a return made to the initial state once
paper has been loaded (or at least the paper tray taken out
and returned).

The full LOTOS description of the photocopier is as
follows :

specification photocopier [copyrequest, producecopy,

(*This is a specification of the behaviour of a
outofpaper, paperloaded, poweroff] : exit

simple photocopying machine. *)
behaviour

normuloperution [copyrequest, producecopy,

[>
outofpaper, paperloaded]

(poweroff; exit)
where
process nomloperation [copyrequest, producecopy,

outofpaper, paperloadd] : noexit :=
hide page in

(copier [copyrequest, prcducecopy, page]
I [pagel I
PuPertru~ [page, outofpaper, paperloadd])

where

Software Engineering Journal November 1991

process copier [copyrequest, producecopy,
getpage] : noexit :=

copyrequest ;
getpage ;
producecopy ;
copier [copyrequest, producecopy, getpage]

endproc (* copier *)
process pupertruy [sendpage, outofpaper,

paperloaded] : noexit :=

paperloaded])
(sendpage ; pupertruy [sendpage, outofpaper,

[I
(outofpaper; paperloaded ; pupertruy [sendpage,

outofpaper, paperloaded])
endproc (* papertray *)

endproc (* normaloperation *)
endspec (* photocopier *)

This example has provided an informal introduction to the
main features of the behavioural component of LOTOS, in
order to provide a flavour of the process-oriented approach
to formal description and to show the typical appearance of
such a specification. In the rest of the paper, we consider
how alternative views of process-oriented descriptions
might be presented to help make their meaning clearer.

A fuller, more formal definition of the LOTOS features
shown in the example above may be found in the Appendix.
One notable aspect of LOTOS not illustrated by the photo-
copier example is its data type facility. For the photocopier,
the only data items involved are the pages being copied,
and these do not require explicit representation. In specifi-
cations where such representation is needed, abstract data
types are used to define operations on the data and explicit
data values are attached to events in which data are com-
municated. This area of LOTOS is not explored here. The
purpose of this paper is not so much to discuss LOTOS, but
rather show how the structure and implied behaviour of
process-oriented descriptions, in general, might be present-
ed. Below we discuss the use of Hypercard in providing
specification views of this type.

3 Static views

EXPOSE presents static and dynamic views of LOTOS spe-
cifications using Hypercard [5, 61. This is a hypermedia
system currently supplied free with each new Apple Macin-
tosh computer. Hypercard is used mainly to build simple
databases and to construct application prototypes. The de-
cision to use HyperCard for EXPOSE, rather than develop a
more integrated self-contained system, was mainly based on
a perceived need for flexibility. When EXPOSE was initially
designed (in 1988), a graphical version of LOTOS [191 was
under development through ISO, and it was felt desirable to
retain compatibility with any proposals they produced.
Hypercard was seen as a way to attain that flexibility, as it
would enable changes of interface representation to be
implemented relatively quickly. It did have several obvious
technical disadvantages when first released, such as slow
performance and restrictions on the type of drawings that
could be produced, but it seemed likely that many of these
problems would disappear in later releases. Improvements
to Hypercard have indeed occurred but much slower than
expected. Overall, however, the flexibility that has been

465

I DhotocoDier: Confiquration (qraohical) I

Static Dynamic
structure Structure

Locate Library 1 -
Views

H Execute

Fig. 1 Top view of photocopier specification

achieved with Hypercard still leaves it a valid choice for
use in an experimental tool such as EXPOSE. Further,
detailed comments on the limitations of HyperCard may be
found in the concluding Section of this paper.

HypeIcard supports the manipulation and presentation of
textual and graphical data, and provides a means of com-
municating with other applications. Data are stored on
curds (screens) that may be linked as desired in stacks. Data
are held as either bit-mapped images or as text in fields.
Movement from one card to another is usually achieved by
the selection of buttons. HrperCard stacks can be con-
structed using operations issued at the keyboard. Altema-
tively, all such operations can be programmed explicitly in
HyperTalk [MI. EXPOSE makes use of this latter facility
to build animation stacks from LOTOS specifications.

EXPOSE constructs LOTOS specification views as a col-
lection of Hypercard cards. For example, Fig. 1 shows the
top-level card for the photocopier specification.

Each card is divided into three parts.

0 The main window (top left) contains a view; the com-
ponents of each view eifher\have links to other views or
yield further information when selected.
0 The elaboration window (bottom left) is used to display
the further information on selected components.
0 The control panel (right) contains buttons that are used
to browse through the views. (Note that the current imple-
mentation is based on Hypercard 1.2, which is limited to
showing one card at a time on the screen. Thus, views are
inspected individually.)

The view in Fig. 1 identifies possible environment links
to the specification. In general, a specification may define
external event interactions, values that instantiate the spe-

466

cification and data types that are global to the spec/fication.
A rectangular box is used to denote each of these specifi-
cation components, and the connecting lines indicate
relationships among the components. Components that are
not applicable in any instance are shown as faded. Thus, in
this case, the diagram reveals that the specification refers to
environment events, and that there are no instantiating
values or global types involved.

EXPOSE diagrams, in general, have been designed to
clarify various aspects of a formal description. More specifi-
cally, the diagrams are intended to highlight the main static
and dynamic relationships of interest in a specification.

The static views for LOTOS identify

the specification configuration; the links between a
specification and its environment (as illustrated in Fig. 1).
0 the library types used in the specification.

the nesting of process and type definitions.
0 the instantiation interdependence of processes.
0 the types defined in the specification.
0 the permitted behaviour of each process, defined in
terms of the interdependence of the events in which that
process may participate.

These views are arranged at three logical levels, as shown
in Fig. 2. At each level, there is a main graphical view and
one or more alternative interpretations of that view. The
interpretations are connected in a cyclic fashion and may be
inspected successively, using the Views button in the
control panel. For example, the top level shows three views
relating to external connections :

0 a graphical configuration diagram, as illustrated in
Fig. 1.
0 an alternative representation of the configuration,

Software Engineering Journal November 1991

Fig. 2 Specification static view map

showing the information in the specification heading in text
form.
0 a list of the library types imported by the specification.

The graphical configuration diagram is presented by
default, and the other two views can be accessed in the
order shown.

The second level in Fig. 2 identifies interpretations of the
specification structure. The nesting of process and data type
definitions is the default view at this level. It has an alterna-
tive textual representation, in which processes and types are
named in a list reflecting their definition order; indentation
is used to indicate their relative nesting. A third view at this
level is a diagram showing the interdependence of process
definitions. More specifically, it indicates where one process
makes an instantiation reference to another. The final view
at this level is the full text of the specification.

The third level shows the structure of individual pro-
cesses and types. Each has a graphical representation and a
textual representation - the full text of the process or type

Software Engineering Journal November 1991

in each case. Type definitions have a diagram identifying
other types on which they depend. Process diagrams show
the interconnection of events and process instantiations that
define their behaviour.

The graphical nesting diagram at level 2 acts as a central
view map for level 3. The diagram for the photocopier spe-
cification, for example, is shown in Fig. 3. The diagram
indicates that the specification defines one process at the
top level, normaloperation, local to which are two other pro-
cesses, copier and papertray. The graphical nesting view
may be selected from any other card using the Nesting
button. Owing to its central role, the nesting diagram is also
revealed when the specification box is selected in the top
level view, or when the Up button is selected from any
third-level view.

The graphical representation of individual processes is
based on G-LOTOS, the IS0 Draft Standard for a graphical
version of LOTOS [19]. G-LOTOS diagrams contain all the
information present in the equivalent textual representation.
In practice, this means that diagrams can contain a su t~~ tan -

467

Values

normaloperation [copyrequest, producecopy, outofpaper. paperloaded]

Events

I

c
€
E

+--I normalo per.

Fig. 3 Photocopier nesting view

tial amount of text. To make the structure of the diagrams
more apparent, EXPOSE suppresses certain parts of each
diagram, which may then be revealed by selecting the rele-
vant icon. For example, consider Fig. 4, which is a view of
the behaviour of the photocopier.

Here, the instantiation of process normaloperution is rep-
resented by a rectangular box, of standard fixed size,
labelled with as much of the process name as will fit. By
selecting this component of the diagram, as shown, the full
instantiation description is revealed in the elaboration

window. Similarly, the photocopier external events may be
revealed by selecting the labelled edge connector at the top
left-hand side of the view. (Note the Values and Types boxes
are shown as faded to indicate that the specification has
neither value parameters nor global types.)

Process behaviour expressions typically make reference
to other processes, which means, in practice, that anyone
exploring a specification may need to inspect a succession
of process behaviour views in order to understand the
behaviour of a particular process. Each process view can be

Values

ivents Types

I I

Fig. 4 Photocopier behaviour view

460 Software Engineering Journal November 1991

Values

Ivents Tvpes

I I

NO EXIT

copyrequest ,

producecopy ,
copier [copyrequest, producecopy. getpage]

0 4 getpage I

Fig. 5 Dynamic views of copier process

selected from a nesting view, but, as an optimisation, the
same selection can be made by clicking on any process
identified in a behaviour diagram while holding down the
option key.

4 Dynamic views

Dynamic views of a specification result from exploring the
event sequences defined by that specification. In the initial
defined state, there should be at least one, and possibly
several, events that can occur. Where there are multiple
events, some are independent and others are mutually
exclusive. A dynamic view shows event transitions. From
the initial state, the occurrence of an event leads to a new
state defined by the set of events that are permissible. This
‘execution’ of the specification either proceeds until no
further events are possible or the observer decides to stop.

Dynamic views are largely obtained by superimposing
representations of event offers (the events permitted) and
event transitions on static behavioural views. Fig. 5, for
example, illustrates the appearance of the graphical and
textml representations for the copier process at a point
where the getpage event is offered and able to proceed. In
the graphical view, the event icon flashes; selecting this
icon (with the option key pressed) causes the event tran-
sition to OCCUT, and all views to be updated accordingly.

Indications of activity are transmitted up to higher level
views. Thus, for example, when the getpage event is

Software Engineering Journal November 1991

enabled, both the copier process icon (in a behaviour view of
the normaloperation process) and the normaloperation
process icon (in the behaviour view of the photocopier) will
flash.

The state of a process is defined by the events that it
offers, and so these must be identifiable by the observer. In
circumstances where a process offers an event that cannot
proceed, because no other process is offering synchro-
nisation, the corresponding event icon does not flash but
instead is shown highlighted.

A dynamic view is obtained by first selecting the execute
button in the control panel. It is possible to execute the full
specification or one of its processes in isolation, and so a
menu is shown allowing a selection to be made. Three
buttons, go, step and abort, replace the execute button. The
go button causes execution to proceed non-interactively,
with the selection of events being determined automatically
(randomly) until interrupted by the user. The abort button
terminates the execution. As an alternative to selecting
events directly, the step button can be used to bring up a
list of permissible events inviting user selection, as illus-
trated in Fig. 6.

Events in the list are identified by the names that they
are given when first defined in the specification. Those
events that are passed as parameters to process instanti-
ations may acquire different local names. For example, the
page event in the n m l o p e r a t i o n process of the photo-
copier specification has a formal parameter name getpage in

469

1

Values

Events

I

I
normaloperation . page
copler . getpage
papertray : sendpage

papertray: behaviour (graphical) instantiation

m Up m,i Revert

Static Dynamic
Structure Structure

U -

Structure Structure I 1 Static Dynamic

Locate Library 1 I

I I V I

Fig. 6 The event selection menu and descriptive table

the copier process and sendpage in the papertray process.
As events may be passed through several instantiations,
with effective renaming at each stage, a mechanism is
needed to unravel this complexity. The technique used in
EXPOSE is to associate a descriptive table with each
offered event. This table is presented when an event is
selected from the menu with the option key depressed. The
table contains a list of all the process instances to which the
event has been passed, together with the local name used in
each case. The descriptive table is also used as a naviga-
tional aid; selecting a process instance in the table brings
up the graphical view of that instance. In this way, the
observer can explore the meaning of any event before selec-
ting it.

A LOTOS specification is a single process, whose execu-
tion results in the successive instantiation of other processes
interspersed with event transitions. Fig. 7 shows the
dynamic views through which this behaviour may be
observed. The instantiation view is an indented list,
showing the process instantiations that have occurred.
Ideally, this view should have a graphical equivalent [2].
However, although such a view was implemented experi-
mentally, it is not the final system because of the unaccept-
able time required to redraw diagrams dynamically through
Hypercard. To avoid an explosion in the size of the instanti-
ation list, tail recursive process references are recognised
and suppressed, as suggested in Reference 1. The number of
such instantiations is recorded in brackets after each
process name in the instantiation list to maintain a full
execution history.
Process behaviour is alternatively shown in terms of the

trace of events that have occurred; arguably a more general
description, since it is independent of the way in which the

470

specification has been constructed.
Dynamic views of particular process instances may be

selected from the instantiation list or from the dynamic
views in which they appear. As with static views, graphical
representations of processes are shown by default and
textual views selected via the view button.

5 Implementation

EXPOSE is largely written in Pascal Plus [20], a superset
of standard Pascal with extensions for modular program-
ming. It is executed as a distributed program on a DEC
VAX, running the VMS operating system, and an Apple
Macintosh running Hypercard. EXPOSE operates in two
phases :

0 view generation, during which static views of specifi-
cations are created.
0 view animation, during which static views are inspect-
ed and dynamic views constructed from the static represen-
tations.

The software for both phases has been designed and imple-
mented in a modular fashion, which, apart from the advan-
tage of clarity, security and reusability, allows the isolation
of device-dependent facilities, particularly those concerned
with graphics. This enables the system to be more easily
ported between machines and between different graphics
packages. It also facilitiates experimentation with the repre-
sentation of views.

The b s i c data-flow diagram for the system is shown in
Fig. 8. The input is a sequential text file containing a
LOTOS specification, and the output is a HypeICard stack

Software Engineering Journal November 1991

I I I I

-
instantiations

t t 1
U

event-trace

I I ’ I

behaviour
(graphicet)

behaviour
(textual)

Fig. 7 Dynamic view summary

containing graphical and textual views of the specification.
These views are copied and updated by the animator to
show the behaviour defined by the specification.

5.1 View generation

EXPOSE performs a syntux analysis on each LOTOS spe-
cification that it receives and constructs an equivalent inter-
nal representation in tree form. A full listing of the
specification is produced with the position and nature of
any errors reported. If errors are present, the specification is
rejected; otherwise, a semantic analysis is performed. The
syntax tree is decorated with information describing the
nature of all identifiers in the specification, and identifiers
that are related are linked. When an error is encountered, a
marker is left in the tree, but processing continues so that
animation can be performed on those parts of the specifi-
cation unaffected by the error. Following semantic analysis,
a f o m t t e r puts the specification text into a standard form.
The format chosen reflects the graphical representation of
the specification and also simplifies the task of animating
the textual form.

The formatted text is written to an output file, and the
syntax tree updated with information on the location of sig-
nificant actions identified in the specification, essentially
events and process instantiations. From the resulting tree,
the view generator produces a sequence of Hypercard com-
mands, which, when executed, will create a stack of specifi-
cation views.

The view generator produces views through various
layers of abstraction that turn high-level operations, such as
‘draw a process view’, into the sequence of drawing com-
mands needed to achieve that effect with the representation
chosen. In this way, the representation of the views is iso-
lated, as is the identity of the graphics package in use.

5.2 Vaew animation

To initialise animation, an animator (on the Macintosh) pro-

Software Engineering Journal November 1991

duces a set of static vitws from the HypeKard instructions
generated in the view generation phase of processing. These
views can be examined. When execution of the specification
is requested, the animator starts up a dialogue with the
interpreter, which executes the specification and supplies
dynamic view information via the view generator.

Execution is performed using the LOTOS transition rules
given in Reference 7. Initially, a copy of the relevant part of
the syntax tree is taken to produce the execution tree. The
animator uses two basic execution functions. The first,
when given an execution tree, returns the set of next pos-
sible events (the initials), together with information about
the processes involved, and the renaming and synchro-
nisation of events within them. This information is used to
indicate which events are available in the relevant views
and to construct the event-selection menu, as illustrated in
Fig. 6. A second function is applied when an event is
chosen. The transition rule associated with the selected
event is applied, and the execution tree updated by the
interpreter. In addition, the animation instructions to
advance the views to the new state are returned to the
animator.

6 Evaluation

EXPOSE was developed to explore ways of presenting
static and dynamic interpretations of a process-oriented
formal specification that might help to make the meaning of
such specifications more apparent. It sought to provide
clarity, by highlighting the significant relationships among
specification components, and was designed specifically to
be useful to developers who were already familiar with
textual notations. The relationships are given as a set of
views, presented in a mixture of graphical and textual rep-
resentations as appropriate.

A user of EXPOSE submits a textual specification as
input, and all views are generated automatically for inspec-
tion. In this way, the tool can be judged a success if even

471

semantic
analysis

syntax tree

+
annotated
syntax tree

+
view

generation
b

4
HyperCard

interpreter instructions

77- animator

Fig. 8 EXPOSE data-flow diagram

one view is of benefit to the user. Such a conclusion see"
very probable, since several of the views provide summary
and navigational information that is not present in the
textual representation. In many respects, these views have a
similar function to the table of contents and the index of a
book, two facilities whose usefulness are not in doubt.

Other views give altemative equivalent graphical repre-
sentations to text, and the value of these views is perhaps
debatable. Certainly, there are some people in the formal
community who are suspicious of the use of diagrams and
think it preferable to 'learn to concentrate attention on the
cold dry text of the mathematical formulae, and cultivate an
appreciation for their elegant abstraction' [9]. EXPOSE
sidesteps this debate by providing equivalent support for
text and graphics, although it does show some bias by pre-
senting graphical representations by default.

472

EXPOSE does not, at present, include full support for
data types. They are analysed and static diagrams prduc-
ed, but a rewriting rule interpreter is required to evaluate
data values during the execution of a specification. This
limits the application of EXPOSE to so-called Basic LOTOS
[7], LOTOS that makes no explicit reference to data, as
illustrated in the photocopier example. Work is continuing
to complete the implementation.

Based on current experience with EXPOSE, the following
additional points can be made.

0 Showing dynamic behaviour by superinpasing some
representation of activity on the static structure of a specifi-
cation is very successful; the effect is to bring the static
description to life. No particular sophistication is required to
achieve this result, and the basic HyperCard facilities to

Software Engineering Journal November 1991

highlight or flash objects on the screen have proved ade-
quate.
0 Reformatting the user‘s text for animation purposes
helps maintain a visual link between each textual represen-
tation of a component and its graphical equivalent.
However, it is recognised that this is not good practice, and
it would be preferable for EXPOSE to operate on the orig-
inal form or to provide the user with an integral editor that
allowed the specification to be built in an acceptable form in
the first instance.
0 Automatic generation of views gives a good first
approximation to the layout of various aspects of a specifi-
cation structure, but, for fine tuning, the user should be pro-
vided with some mechanism to edit the resulting diagrams.
0 The decision to present views in a clean uncluttered
way by hiding details is largely successf~~l. However, dis-
playing the details in a separate elaboration window one
item at a time is not always convenient. It would be prefer-
able to have each expansion as a separate object that could
be placed anywhere on a view and compressed again when
no longer needed.
0 Using hypermedia-type links among views provides a
convenient browsing facility, but some additional operations
are needed to enable experienced users to access some
views more directly; this could be achieved by using
defined control keys.
0 Having access to only one view at a time is very incon-
venient when viewing dynamic behaviour. Recent improve-
ments to Hypercard allow several cards to be shown
simultaneously, and the use of this facility is being
explored.
0 The time taken to produce a set of views for a given
specification is relatively lengthy. This may be satisfactory
when a substantial period is then spent inspecting the
views. However, taken as a step in the successive develop-
ment of a specification, it would be preferable to be able to
have access to views immediately after a change. This could
be achieved by using a more direct graphical facility than
HyperCard, but a better alternative might be to develop and
maintain the views in parallel with the text. In this way,
small adjustments to the text can be expected to have an
equally small effect on views, and so require considerably
less processing time than is needed to reconstruct them all.

On balance, the current EXPOSE system has been very
beneficial as an experimental tool. In particular, the facilities
for static browsing are good, and improvements in Hyper-
Card are likely to make them even better. In the longer
term, however, progress must be made towards integrating
the construction and animation of specifications to both
shorten animation time, and avoid any modifications to the
specification representation as developed by the user. Work
in this direction is continuing in the SCAFFOLD project,
which is funded by the Science and Engineering Research
Council and undertaken collaboratively by the University of
Ulster, York University and British Aerospace.

7 Acknowledgments

Part of the work described here was supported by the
kpartment of Education for Northern Ireland and by SERC
Grant GR/G 03700.
Part of the paper was prepared by David Bustard while

on sabbatical leave at the Software Engineering Institute at

Software Engineering Journal November 1991

Carnegie Mellon University in Pittsburgh.
The authors would like to thank colleagues at British

Telecom’s Research Laboratories in Ipswich, who collabor-
ated on the early animation work from which EXPOSE was
derived, particularly Mark Noms and Rodney Orr.

8 References

BUSTARD, D.W., NORRIS, M.T., and ORR, R.A.: ‘A pic-
torial approach to the animation of process-oriented formal
specifications’, Softw. Eng., J., 1988, 3, (4), pp, 114-118
BUSTARD, D.W., WINSTANLEY, A.C., NORRIS, M.T.,
ORR, R.A., and PATEL, S.: ‘Graphical views of process-
oriented specifications’ in TURNER, KJ. (Ed.): ‘Formal
description techniques 88’ (North-Holland, 1988)
PATEL, S., ORR, R.A., NORRIS, M.T., and BUSTARD,
D.W.: ‘Tools to support formal methods’. Proc. 11th Int.
Conf. on Software Enaineerina. Pittsburzh. USA, Mav 1989

[41 1SO: ’Information Processing Systems - Open Systems
Interconnection ~ LOTOS - a formal description technique
based on the temporal ordering of observational behaviour’.
I s 0 8807,1989

[5] ‘Macintosh Hypercard User‘s Guide’ (Apple Computer, 1987)
[6] GOODMAN, D.: ‘The complete hypercard handbook’

(Bantam, 1987)
[7] BOLOGNESI, T., and BRINKSMA, E.: ‘Introduction to the

1SO specification language LOTOS’, Comput. Netw. ISDN
Syst., 1987,14, (l), pp. 2>59

[8] MILNER, R.: ‘A calculus of communicating systems’, Lect.
Notes Comput. Sci, 1980,9 (Springer-Verlag)

[91 HOARE, C.A.R.: ‘Communicating sequential processes’
(Prentice-Hall Intemational, 1985)

[lo] BERGSTRA, J.A., and KLOP, J.W.: ‘Process algebra: specifi-
cation and verification in bisimulation semantics’ in HAZE-
WINJSEL, M., LENSTRA, J.K., and MEERTENS, L.G.L.T.
(Eds.): ‘Mathematics and computer science II’ (CWI Mono-
graph 4, pp. 61-94)

[l l] VALENZANO, A., SISTO, R., and CIMINIERA, L.: ‘An
abstract execution model for basic LOTOS’. Softw. Eng. J.,
1990, 5, (6), pp. 311-318

[12] EHRIG, H., and MAHR, B.: ‘Fundamentals of algebraic spe-
cification 1’ (Springer-Verlag, 1985)

[13] BRINKSM.4, E.: ‘A tutorial on LOTOS’ in DIAZ, M. (Ed.):
‘Protocol specification, testing and verification V’. Proc. IFIP
Workshop (North-Holland, 1985)

[141 VAN EIJK, PHJ., VISSERS, CA., and DIAZ, M.: ‘The formal
description technique LOTOS‘ (Elsevier, 1989)

[15] TURNER, KJ. (Ed.): ‘Formal description techniques 88’
(North-Holland, 1988)

[16] WONG, S.T. (Ed.): ‘Formal description techniques 89
(North-Holland, 1989)

[17] TURNER, K.J.: ‘A LOTOS-based development strategy’ in
WONG, S.T. (Ed.): ‘Formal description techniques 89’
(North-Holland, 1989)

[181 SHAFER, D.: ’Hypertalk programming‘ (Hayden, 1988)
[19] ISO: ‘Proposed draft addendum to IS0 8807:1988 on G-

[ZO] BUSTARD, D.W., ELDER, J.W.G., and WELSHJJ.: ‘Concur-
LOTOS’, ISOjIEC JTCl/SC21,1990

rent program structures’ @entice-Hall International, 1988)

9 Appendix : The LOTOS language

The LOTOS language consists of two largely independent
components:

0 a process algebra, based mainly on ideas used in CCS
[8] and CSP [9]. This is used to express the temporal
behaviour of a system.

473

0 an abstract data type component, based on the alge-
braic language ACT ONE [12]. This is used to specify the
data within a system in terms of their types or sorts, and
the operations to construct and manipulate them.

It is possible to construct some specifications using only the
process algebra component of the language. This restricted
form is usually referred to as basic LOTOS. The discussion
below concentrates on this form.

In general, a system is described in LOTOS in terms of a
hierarchy of interacting processes. Syntactically, this is
expressed using a structure of nested process definitions,
each one having a scope in much the Same way as pro-
cedures in declarative programming languages.

The behaviour of a process is described by a behaviour
expression. This is a combination of atomic events (or
actions) and the instantiation of processes, linked using
operators provided by the language. Processes interact by
sharing events, and this may involve the interchange of
data. The events through which a process can interact are
declared as formal parameters in its definition; when a
process is instantiated, corresponding actual parameters are
given. In a similar way, data can be passed to processes
through parameters. A process can be recursively instanti-
ated to specify repeated behaviour.

There are two basic processes built into LOTOS: stop
and exit. These represent inactivity and successf~d ter-
mination, respectively. A special event 6 is implicitly
offered by exit.

A special event i is used (explicitly) to represent an action
that does not involve interaction with any other process. It
is internal to the process in which it appears.

The meaning of LOTOS operators is defined formally
within the IS0 Standard in terms of their operational
semantics. These are expressed as axioms and inference
rules, based on a system of labelled transitions. Using these,
it is possible to derive

E, e, U, n = the set operators for inclusion, exclusion,

0 = the empty set
B, B1, B2 = behaviour expressions
g E G, where G is the set of user-defined actions
i = the unobservable internal action
p E Act, where Act = G U {i}, i.e. the set of explicit actions
S = [gl . . . g,], a finite set of user-defined action names
6 = successful termination
g+ E G + , where G’ = G U {6}, i.e. the set of observable

p+ € A c t + , where Act+ = A c t U {a}, i.e. the set of all

gig‘ = the replacement of occurrences of the name g by g
9 = [gl/g; . . gJg‘,] = a sequence of such replacements

union and intersection

actions

actions

inactivity (stop)

Stop defines a totally inactive process that cannot engage
in any events. Therefore, there are no appropriate axioms or
inference rules, and the initials function returns the empty
set.

initials (stop) = 0

successful termination (exit)

Exit represents successful process termination. It is defined
as the offering of the special event 6. If this offer is accepted
by the environment, the process becomes inactive, equiva-
lent to stop.

exit -6 stop

This axiom can be read as ‘the process exit may perform
the event 6 and transform into the process stop’. The ini-
tials of exit is the singleton set containing 6

initials (exit) = (6)

action prefix (;)

Any behaviour expression can be prefixed by an action. For
example, P ; B means that action p is followed by (or
prefixes) behaviour B. Action prefix is the basic building
block, from which sequences of actions can be composed
into processes.

0 a behaviour expression’s initials, the set of possible
actions in which it can immediately take part. These actions
are offered to the expression’s environment for interaction.
They can be defined using a fundon with the following
signature :

p;B-p-B initials: behaviour expression + set of events

0 the expression specifying the behaviour subsequent to
the performance of one of these initials. For an action to
occur, it must be accepted by a matching offer in the
environment. The effect of this is defined using axioms in
the simple cases of exit and action prefix expressions, plus
inference rules to derive results for more complicated behav-
iour expressions.

The semantics of each operator used in basic LOTOS are
given below. In each case, they are first described inform-
ally. The formal axioms and inference rules defining the
effect of each operator within a behaviour expression are
also given, followed by the definition of the znitiak fimction
derived from them. These have been used as the basis for
the implementation of the basic LOTOS interpreter used by
the EXPOSE animation system. In the discussion, the fol-
lowing symbols are used :

initials (p; B) = { p }

choice ([I)
B1 [] B2 means that either the behaviour B1 or B2 can
occur. The outcome depends on the events offered by the
environment, unless the initial events of B1 and/or B2 are
identical or involve the internal event i. In this case, the
choice is non-deterministic between B1 and E?. Each choice
can be guarded by a predicate; only those events whose
predicates evaluate to true are allowed to occur. The infer-
ence rules for choice expressions state that if the initial
action of either sub-expression occurs to produce a resulting
behaviour expression (as shown above the horizontal line),
the overall construct will perform the same action to
produce the Same resulting expression (shown below the
line) :

474 Software Engineering Journal November 1991

I

B1 -U+- B1' and Bl's termination. The initials of the compound expres-
sion are simply those of the enabling process.

R1 -11- RI'

The initials of a choice expression is the union of the initials
of the individual sub-expressions :

initials (B1 [] B2) = initials (Bl) U initials (B2)

parallel composition ([[a, b, . . ,111
B1 [[a , b, ...]I B2 means that B1 or B2 occur in parallel
and share, or synchronise on, the events listed within the
brackets. Two special cases of this operator have special
symbols. Where no events are shared by the processes, the
events from each are interleaved. This can be represented as
B1 1 1 1 B2. Where all events are shared, the behaviour is rep-
resented by B1 11 B2. The implicit event in successful ter-
mination 6 is always shared between parallel processes.
This means that behaviours composed in parallel always
terminate together.

There are three inference rules for parallel composition.
The first two express the effect of events that are not
shared between processes (i.e. p $ S); the third expresses
those that are (g+ E S U (6)) :

B1 -p- Bl', p $ S
BlISIB2-p+Bl'ISIB2

B2-p+B2' ,p$ S
B1l S 1 82 -p+ B1l s 1 82'
B1 -g+- Bl', B2 -g+- E?, gf E S U {6}

B1 1 SI B2 -g++Bl ' 1 SI B2'

initials (B1 I S I B2) = (initials (Bl) - S)

U (initials (B2) - S) U (initials (B l) n initials (B2) n S)

disabling (I >)

B1 [> B2 means that the behaviour B1 will be interrupted
and not resumed if an event occurs in B2. If B1 terminates
naturally before €2 interrupts, the events in B2 never
occur. This is expressed in three inference rules: for the
occurrence of an event in B1, for the termination of B1 and
for the occurrence of an event in B2. The initials of a
disable expression are the union of its two parts.

B1 -p+ B1'
B1 [> B2-p-B1'[> B2

B1-6- B1'
B1 [I> B2 --6. B1'

B2 -p++ B2'
B1 [> B2 -p++ B2'

initials (B1 [> B2) = initials (Bl) U initials (B2)

sequential composition (>>)

B1 >> 82 signifies that, when B1 successfully terminates
(represented by the special event a), the behaviour B2 is
enabled. The 6 event that triggers B2 is not visible to the
environment, and so is equivalent to an internal event i.
Inference rules are needed to effect a normal event in B1

Software Engineering Journal November 1991

B1 >> B2 -/I- B1' >> B2

initials (B1 >> B2) = initials (Bl)

hiding (hide . . . in)

Hiding makes named events internal to a behaviour expres-
sion, and so unavailable for interaction with the environ-
ment, essentially giving them the characteristics of the
intemal event i. Inference rules are given as follows:

B -g- B', E k, ' ' ' g.1
hide g, . . . g, in B -i- B'

initials (hide g, . . g, in B)

= initials (B)[z/g, . . . z/gn]

process instantiation

Process instantiation is the main structuring tool within the
behaviour part of a LOTOS specification. It is used to
decompose complex constructs into simpler more manage-
able units. Its use also allows the parameterisation of behav-
iour expressions and, by recursive instantiation, the
specification of repetitive behaviour. The effect of instanti-
ating a process is that of substituting the instantiation by
the behaviour expression given in the process's definition.
All occurrences of events given as formal parameters are
replaced by the corresponding actual parameters. Given a
process definition

process P [g', . . gk] := B, endproc

process instantiation is expressed by the inference rule

B,[g,lgl ' ' . g,/g,l -p+- B'
P[g, ...g.] -p+-B'

The effect of the renaming [g,/g1 ' . . g,/g',] on a behav-
iour expression is given by two inference rules:

B -g+ B', 4 = kllg'l ' . ' gn/&!lp gig' E 4

B -p++ B', p + 4 {A . ' . gk}

B4 -g- B'4

B4 -p++ B'4
The initials of a process instantiation are those of the
behaviour expression in the corresponding process defini-
tion, renamed in line with the formal and actual parameters:

initials (P[g , . ' . g,]) = initials (B,)[g,/g, . . . g,/&!l

Adam C. Winstanley is with the Department of Computer Science,
Queen's University of Belfast, Belfast BT7 1"; and David W.
Bustard is with the Department of Computing Science, University
of Ulster, Coleraine BT52 SA.

The paper was first received on 20th September 1990 and in
revised form on 9th April 1991.

475

