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Abstract 
 

For the watershed segmentation algorithm to be 

successful it must be implemented on a realistic 

gradient image. In most watershed implementations, 

gradients are extracted using an operator optimal for 

ideal step edges. However, image edges are never 

ideal steps and more closely resemble ramp edges at 

multiple scales. Therefore this strategy results in an 

inaccurate measure of image gradients and in turn 

lessens segmentation performance. In this paper we 

propose a new multiscale gradient operator for ramp 

edges. This strategy merges the properties of accurate 

gradient estimation of a large scale kernel with 

accurate localization of a small scale kernel by 

tracking gradients from larger to smaller scales. 

Quantitative performance evaluation of segmentation 

results shows this approach to outperform a traditional 

single small scale gradient operator optimal for step 

edges. 

 

1. Introduction 
 

Low-level segmentation of a given scene into a set 

of meaningful objects represents the first step in many 

object recognition systems. Although research in the 

area is very active, it is often difficult to produce 

segmentation of sufficiently high quality that would 

allow reliably calculation of object specific information 

like shape. In fact as a result of this failing, the current 

best approaches to object recognition do not employ 

low-level segmentation  [1, 2]. The goal of this work is 

to provide an accurate low level segmentation 

algorithm which could later be used as input to such an 

object recognition system. 

Most segmentation strategies can be classified as a 

region or boundary based approach. In region based 

approaches grouping of homogenous areas is 

performed to produce segmentation. In contrast, 

boundary based approaches attempt to extract the 

boundaries between homogenous areas. The watershed 

transform combines both region and boundary based 

techniques [3]. Pixels are grouped around the regional 

minima of a gradient image and boundaries are located 

along the crest lines of this image. In order to achieve 

accurate segmentation using the watershed transform 

accurate boundary gradients must first be extracted 

using a suitable gradient operator. This paper presents 

a strategy for computing such gradients accurately for 

natural scenes. 

Most current strategies for extracting gradient 

images are based on the assumption that the underlying 

edges can be modelled accurately by a step edge. 

Canny [4] designed an optimal gradient operator for 

step edges emersed in Gaussian noise of a single scale 

in terms of three criteria. Most edges in natural images 

are immersed in noise or texture of varying scales. To 

address this issue many multiscale edge detection 

techniques do exist with all based on the assumption 

that edges are ideal steps immersed in different scales 

of noise or texture [5-7]. These techniques basically 

involve fusing edge information extracted from a 

Gaussian scale space. 

 The edges contained in natural images will never 

match this classic step edge model upon which these 

techniques are founded. Most edges will consist of a 

gradual as opposed to sudden change in intensity 

values. Even if edges have idealized steps edges to 

begin with, during the process of image capture and 

digitization these will be converted into ramps. This is 

due to the fact that any imaging system will have finite 

bandwidth and therefore it will behave approximately 

as a low pass filter, blurring the edges [8]. To 

overcome this obstacle the work of Canny was 

extended in [8] and [9] to derive the optimal edge 

detector for ramp edges of a single scale in terms of the 

same three criteria. The ramp edges contained in 

natural images will never be of a single scale though. 

Even if they are of a single scale initially, any imaging 

system will have a finite depth of field. This results in 

edges at different distances from the focal plane 

receiving different amounts of blur. 
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In [10] Laligant defined a strategy for merging 

detected ramp edges at multiple scales using a 

classification algorithm. The result of this strategy is a 

binary edge image with no information regarding 

relative gradient magnitudes available. Laligant in [11] 

proposed another algorithm for merging ramp edges at 

multiple scales in which a local maximum is classified 

as an edge if it exists at multiple scales in a fine-to-

coarse and coarse-to-fine search. Again this approach 

does not calculate the relative gradient magnitude 

values returning only a binary edge image. Wang [12] 

described a method to merge gradients at multiple 

scales by simply taking a summation of gradients over 

multiple scales. This technique will respond to ramp 

edges more strongly than those designed for step edges 

but gradient values are inaccurate with poor 

localization. Guimaraes introduced a gradient pile up 

algorithm in [13] also to enhance gradients 

corresponding to ramp edges. Again this strategy will 

respond to ramp edges more strongly than those 

designed for step edges but these values are inaccurate 

with imprecise localization. 

In the second section of this paper we define our 

ramp edge model and illustrate the multiscale ramp 

edge gradient estimation problem. In section 3 we 

propose a new multiscale ramp edge gradient operator 

which extracts accurate and precisely localized gradient 

values for noisy ramp edges at multiple scales. This is 

followed by a presentation of results in section 4. 

Finally in section 5 we draw conclusions from this 

work and propose future research directions. 

 

2. Ramp Edge Model and Properties 
 

In this work we model a ramp edge as the filtering 

of an ideal step edge with a low pass Gaussian function 

of a given scale. This is regarded as an accurate ramp 

edge model and can be approximated by the erf 

function [10]. An example of this edge model is 

displayed in figure 1. 

 

 
Figure 1. Edge model defined as the smoothing of a 

step edge with a Gaussian function. The contrast d 

represents the correct gradient of this ramp edge. 

For this ramp edge model the correct gradient is the 

distance between the two uniform regions on either side 

of the edge. This is represented by d in figure 1. The 

gradient of this ramp edge is calculated using the kernel 

[.5 0 -.5] designed for step edges with the result 

displayed in figure 2. The correct localization of this 

edge is the point where the first derivative is maximum 

and this corresponds to the zero crossing in the second 

derivative [14]. Although this local maximum offers 

correct localization, this value does not have the 

desired gradient magnitude d. 

 

 
Figure 2. First order derivative of figure 1 

calculated using the kernel [1 0 -1]. The location of the 

maximum value is the correct boundary location. 

 

 Applying a gradient operator designed for step 

edges to such ramp edges does not return a true 

measure of edge gradient. Figure 3 shows a one 

dimensional signal containing three ramp edges at 

various scales. The result of filtering with the kernel 

designed for step edges which contains the values [-.5 0 

.5] and taking the absolute value is displayed in figure 

4. From this figure we see that this strategy gives an 

under-estimation of the gradient for all edges apart 

from the step edge in the signal. 

 

 
Figure 3. Examples of three 1-D edges, from left to 

right; a ramp edge, a step edge and a larger scale ramp 

edge. All edges have an equal contrast d of value 1. 

 

As just shown, applying a gradient operator for step 

edges to a signal containing ramp edges will result in 

an under-estimated measure of edge gradient. This will 

in turn lead to under-segmentation when the marker-

controlled watershed transform is applied. To 

d 
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overcome this difficulty many authors initially run the 

transform at a very small scale then post-process with a 

region merging step [15-17]. Segmentation run at a 

small scale ensures regions are not under-segmented 

due to under estimated boundary gradients. The region 

merging step considers the contrast between regions at 

a larger scale than the original gradient operator 

therefore reducing the effect of ramp edges. A problem 

with this approach is that the region merging step 

assumes that each region is completely homogenous 

but this is obviously not the case due to the existence of 

ramp edges at region boundaries. 

 

 
Figure 4. The result of convoluting the gradient 

operator [1 0 -1] with figure 3 and taking the absolute 

value is display. This operator only assigns the correct 

gradient value of 1 to the centre step edge. 

 

3. Multiscale Ramp Edge Gradient 

Calculation 
 

In this section we propose a new multiscale gradient 

operator for ramp edges which tracks gradient values 

from large to small scales. This strategy fuses the 

benefits of accurate gradient values with accurate 

localization. In the following sub-section we detail the 

1-D implementation of this algorithm. We then discuss 

how this technique can be extended to two dimensions 

and made robust to noise. 

 

3.1. Multi-Scale Gradient Tracking 
 

A possible solution to this problem of inaccurate 

gradients would be to calculate the gradients at scale 

greater than the greatest ramp edge scale. An example 

of this procedure applied to figure 3 is displayed in 

figure 5. The problem with this approach is that 

although truthful gradient values will be returned for all 

ramp edges, boundary localization will be lost on all 

ramp edges having a scale smaller than the scale of the 

gradient operator. 

We now describe a multiscale ramp edge gradient 

operator which tracks gradient values from larger to 

smaller scales. This strategy merges the benefits of 

accurate gradient values of a larger scale gradient 

operator with the accurate localization of a smaller 

scale gradient operator. 

 

 
Figure 5. The result of convoluting figure 3 with the 

gradient operator [1 (23 zeros) -1] and taking the 

absolute value is displayed. The operator returns a 

correct boundary gradient measure for all edges, but 

accurate boundary localization is lost on the left and 

centre edges. 

 

Our algorithm takes as input a one dimensional 

signal from which we want to extract gradients, and 

two parameters LScaleMax and SScaleMin both of 

which must be odd numbers. LScaleMax represent the 

largest possible ramp edge scale, and SScaleMin the 

scale we want to localize edges to. A loop operation is 

then performed to track gradient values from larger to 

smaller scales. Each iteration of this loop utilizes two 

gradient images at different scales. A larger scale 

gradient image gradLScale at the scale LScale and a 

smaller scale gradient image gradSScale at the scale 

SScale. Within this loop the gradient at each location i 

in gradLScale, referred to as gradLScale(i), is 

transmitted to gradSScale as follows. Every location 

gradSScale(j) for which the smaller scale gradient 

kernel is contained within the larger scale gradient 

kernel positioned at i is searched for a maximum value. 

An illustration of this is displayed in figure 6. 

 

 
Figure 6. A larger scale gradient kernel is shown 

above and a smaller scale gradient kernel below. Every 

location for which the smaller scale kernel is contained 

within the larger scale kernel is searched for a 

maximum value. 

 

 The location of this maximum value is referred to 

as trackLoc. Then if the value of gradLScale(i) is 

greater than gradSScale(trackLoc), 

 i 

 j 
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gradSScale(trackLoc) is assigned the value 

gradLScale(i). 

The above procedure tracks the gradient values from 

a single larger scale to a single smaller scale. This step 

is repeated, each time the previous SScale becomes the 

new LScale, and the previous gradSScale becomes the 

new gradLScale. Finally the process is terminated when 

LScale reaches the value SScaleMin. The pseudocode 

for the algorithm is as follows: 

 

Input: data, MaxScale, MinScale. 

Output: gradSScale. 

Algorithm: 

LScale = MaxScale. 

SScale = MaxScale-2 

gradLScale = diff(data, LScale); //Large scale gradients 

gradSScale = diff(data, SScale); //Small scale gradients 

 

while SScale >=  MinScale 

    for each gradientLScale(j) 

        trackLoc = maxContainedSScale(j); // see figure 8 

        if gradientLScale(j) > gradientSScale(trackLoc) 

            gradSScale(trackLoc) = gradLScale(i); 

        end 

    end 

    gradLScale = gradSScale; 

    SScale = SScale - 2; 

    gradSScale = diff(data, SScale); 

end 

return gradSScale; 

      

The result of applying this algorithm to the signal 

displayed in figure 1, with parameters LScaleMax and 

SScaleMin given the values 25 and 3 respectively is 

displayed in figure 7. It can be seen from this result that 

the algorithm combines the properties of accurate 

localization of a smaller scale kernel (see figure 2 for 

an example of this) with accurate gradient values of a 

larger scale kernel (see figure 5 for an example of this). 

 

 
Figure 7. The result of applying the proposed 1D 

algorithm to figure 3. Accurate localization of a smaller 

scale kernel is merged with accurate gradient values of 

a larger scale kernel. 

 

3.2. Extension to 2D and Dealing with Noise 
 

In the previous sub-section we described a method 

for accurately measuring and localizing the gradients of 

multiscale ramp edges in 1-D. We now show how this 

strategy can be extended to 2-D and made robust to 

noise. 

A 1-D filter can be extended to 2-D by applying the 

filter perpendicular to the edge and a projection 

function parallel to the edge. The projection function 

averages along the edge reducing noise. This 

implementation is almost impossible without prior 

knowledge regarding edge orientation. Therefore a 

low-pass projection function is generally utilized [18]. 

Then making use of the fact that the slope of a surface 

in any direction can be determined from the slope in 

two orthogonal directions, we apply 2-D separable 

filters in x and y directions. In previous work where a 

Gaussian noise model was assumed the projection 

function derived closely resembled a Gaussian function 

[8]. We therefore decided to use a Gaussian as our 

projection function. When deriving our multiscale 

ramp edge gradient operator we assumed the data was 

noise free which is not the case in most real data. 

Therefore we also smooth the data in a direction 

parallel to the filter direction.  

Smoothing a noisy ramp edge with a Gaussian filter 

will cause to edge to approach a noise free ramp edge 

but of a larger scale. Figure 8 displays the sample 1-D 

ramp edges of figure 3 with added Gaussian noise. 

These edges are smoothed with a Gaussian function 

with the outcome displayed in figure 9. These edges 

now match the desired ramp edge model. The result of 

applying our multiscale ramp edge gradient operator to 

these smoothed edges is displayed in figure 10. We can 

see these ramp edge gradients are of a correct 

magnitude and localized accurately. 

 

 
Figure 8. Result of adding Gaussian noise of mean 0 

and variance 0.01 to figure 3. 
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Figure 9. Smoothing of noisy edges in figure 8 

causes them to approach the desired edge model. 

 

 
Figure 10. The result of applying the proposed 

gradient operator to figure 9. Accurate gradient values 

and localization is obtained. 

 

 An example of a synthetic 2-D dataset containing 

two ramp edges of different scales with added Gaussian 

noise is displayed in figure 11. The contrasts d of both 

edges contained in this image are equal. 

 

 
Figure 11. Synthetic image containing two ramp edges 

of different scales immersed in Gaussian noise of mean 

0 and variance 0.001. The contrast (d from figure 3) of 

both edges is equal. 

 

 Smoothing with a Gaussian function of sigma 1.5 is 

performed to remove noise. This is followed by the 

application of the single small scale kernel [.5 0 -.5] in 

x and y directions. Gradient magnitudes are calculating 

from the resulting values and this is displayed in figure 

12. Although both edges have equal contrast, using this 

single small scale kernel results in very different 

gradient magnitude values for each edge. Also these 

responses are not very localized. We applied our 

proposed multiscale ramp edge gradient operator to the 

smoothed image in x and y directions followed by 

calculation of gradient magnitudes. From the result 

displayed in figure 13, we can see that this strategy 

returns similar gradient magnitude values which are 

localized to a fine scale for both ramp edges. 

 

 
Figure 12. Gradient magnitude values for figure 11 are 

calculated with a single small scale kernel. Although 

each ramp edge has equal contrast, the use of this small 

scale gradient operator results in very different gradient 

magnitude values for each edge. 

 

 
Figure 13. Gradients for figure 11 are tracked from 

a large scale kernel of size 23 to a small scale kernel of 

size 3. This is followed by the calculation of gradient 

magnitudes. Both ramp edges receive similar gradient 

magnitudes values which are localized to the scale of 

the smaller kernel. 

 

To perform segmentation the marker-controlled 

watershed transform was used. The watershed 

transform combines region growing and edge detection 

techniques. Pixels are grouped around the regional 

minima of a gradient image and boundaries are located 

along the crest lines of this image. In practice, direct 

computation of the watershed algorithm results in over-

segmentation due to the presence of spurious minima. 

To overcome this, the gradient image is first filtered 

using a marker function; in this case the H-minima 

transform, to remove all irrelevant minima [3]. The H-

minima transform takes one parameter H which 

specifies the scale of minima to be suppressed and 

therefore the resulting scale of segmentation. From 

figure 13 we can see that the boundaries defined by our 
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proposed gradient operator are very narrow. Therefore 

it is important to use 4- not 8-connectivity to prevent 

one region flowing into a neighbour resulting in under-

segmentation. 

 

4. Results 
 

Figure 14 displays an image taken from the Berkeley 

segmentation dataset [19]. Smoothing with a Gaussian 

of sigma 1.5 to reduce noise is performed. This is 

followed by the application of a small scale gradient 

operator and our proposed multiscale gradient operator 

with the results displayed in figures 15 and 16 

respectively. To allow a closer examination of these 

images a magnified region of figures 15 and 16 is 

displayed in figures 17 and 18 respectively. Gradient 

magnitude values along the arm are more uniform when 

extracted with the proposed multiscale gradient fusion 

strategy than when extracted with a single small scale 

kernel. 

 

 
Figure 14. sample image taken from the Berkeley 

segmentation dataset. The black square represents the 

area which is magnified in figures 17 and 18. 

 

 
 Figure 15. Gradient magnitudes extracted from 

figure 14 with a single small scale kernel of size 3. 

 

 
Figure 16. Gradients tracked from a kernel of size 9 

to a kernel of size 3 using the proposed multiscale 

gradient tracking strategy. 

 

 
Figure 17. Magnified section of figure 15. 

 

 
Figure 18. Magnified section of figure 16. 

 

As mentioned in the introduction the goal of our 

algorithm is to segment a given scene into a set of 

useful objects. To evaluate the calibre of our proposed 

multiscale gradient operator against a single small scale 

gradient operator at extracting gradients for use in the 

marker-controlled watershed transform, the Berkeley 

segmentation dataset [19] was used. 

To quantitatively measure the accuracy of 

segmentation results, the Normalized Probabilistic 

Rand (NPR) Index was utilized [20]. Given a 

segmentation and corresponding set of ground-truths, 

the NPR index quantifies the agreement of 

segmentation with ground-truths. Greater agreement 

results in higher index values. Three hundred images 

were taken from the Berkeley segmentation dataset for 

evaluation. This was divided into one hundred training 
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images to optimize the segmentation scale or H 

parameter and two hundred test images. All images 

were smoothed with a Gaussian of sigma 1.5 before 

any gradients were calculated. Single small scale 

gradient images were calculated using the same 

procedure described in section 3.2. Within the 

proposed multiscale gradient operator gradients were 

tracked from a kernel of size 9 to a kernel of size 3. On 

the test dataset our proposed multiscale gradient 

operator achieved an average NPR index value of 0.37. 

This result outperformed the single scale gradient 

operator which accomplished an average NPR index 

value of 0.33 on the same data. 

 

 
Figure 19. Watershed segmentation result with 

watershed lines represented by white.  

 

 
Figure 20. Watershed segmentation result with 

watershed lines represented by white. 

 

 
Figure 20. Watershed segmentation result with 

watershed lines represented by black. In this non-

textured image, segmentation quality is high will edges 

localized accurately to a small scale. 

 

 
Figure 22. Watershed segmentation result with 

watershed lines represented by white. Significant over-

segmentation is evident due to texture. 

 

A selection of segmentations achieved using the 

proposed multiscale gradient operator are displayed in 

figures 19, 20, 21 and 22. These segmentations are run 

at the scale which optimized performance on the 

training dataset. From these figures we see that the 

segmentation quality is high in non-textured regions. 

However in textured regions the segmentation quality 

is poor with significant over-segmentation evident. 

 

5. Conclusions 
 

Most natural edges do not match the ideal step edge 

model upon which the majority of existing gradient 

estimation techniques are based. In fact they more 

closely resemble ramp edges of varying scales. The 

main contribution of this paper is the introduction of a 

new multiscale ramp edge gradient operator. It was 

shown that this technique can extract accurate gradient 

values for ramp edges of varying scales while 

maintaining accurate boundary localization. 

Qualitatively performance evaluation of segmentation 

results demonstrates that this strategy outperforms a 

single small scale gradient operator optimal for step 

edges. 

Visual inspection of these results shows significant 

over-segmentation to be evident in textured regions. To 

tackle this problem texture information needs to be 

integrated into the segmentation process. Prior to 

calculation of image gradients all locations were 

smoothed with a Gaussian of equal scale. Different 

regions will contain varying amounts of texture or 

noise and consequently require different amounts of 

smoothing. Utilizing a locally adaptive smoothing 

process which could apply the correct amount of 

smoothing to each location would therefore also reduce 

over-segmentation. 

Colour is another important cue used by the visual 

system to define boundaries. In this work we have 

ignored its presence and concentrated on the visual cue 
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of brightness. Incorporating colour information would 

almost certainty improve segmentation performance. 

Addressing the above issues will be the focus of 

future work. 
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