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Abstract

A multi-objective optimization scheme for transportation planning is described. Multi-crite-
ria analysis provides a major advantage in its ability to take into account a range of different,
often unrelated criteria, even if these criteria cannot be directly related to quantitative out-
come measures. The approach described is specifically addressed to public transportation
networks but it is also applicable to other types of physical networks including computer
networks. Research into developing an evolutionary approach to public transportation net-
work optimisation, by use of a carefully chosen fitness function, is outlined.

1. Introduction

Transportation analysis within a GIS (Geographic Information System) environment has
become common practice in many application areas. Transport, by its very nature, lends itself
to a multi-disciplinary study. An every increasing need for complex path algorithms and path
computation has developed from the rapid emergence of GIS systems such as intelligent
vehicle systems. Optimal route planning is made complicated by the existence of factors such
as multiple modes, planned arrival and departure schedules, multiple fare structures, dynamic
changes to the network. Route or journey planning is the systematic search through a trans-
portation network to find anptimal journey specification. This specification is nearly al-
ways required to satisfy some initial set of constraints (times, road types, costs). The set of
constraints is better described as a preference for particular routes and departure/arrival times
and desired departure and destination locations. Constraints may be placed on variables or
criterion that are easy to quantify, for example departure and destination time. However,
other criteria are more difficult to quantify. Examples include preference for certain modes or
transport and preference for particular road types.

Optimal journey specifications can now be defined as a journey specification exhibiting
minimal values for all variables (criteria, objectives) considered. However, humans are sel-
dom capable of discovering these optimal solutions unless the network search space is rela-
tively small. It is very often the case that comprehensive searches are too expensive in terms
of information gathering and retrieval and search time. To avoid the costs involved in the
searching process, in terms of effort and time, humans will only attempt nfyrsatisfac-
tory journey specification. Behavioral scientists define the satisficing(Nijkamp and Van
Deft 1971) for this type of human behaviour in regard to information searching and decision-
making in large search spaces. Humans are risk aversive in selecting alternative journeys
when a journey specification that satisfies certain minimal, weak, conditions and criteria has
been found.
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We propose a series of computer-aided techniques to assist travellers in searching for and
planning more efficient journeys on a transportation network. A given (transportation route
finding) problem may have a set of solutions, some good, some not so good. Within this set of
solutions (if it exists), there also exists a subset of optimal (best) solutions. Depending on the
problem instance, there may be one optimal solution or a group of them. Using these tech-
niques we can find the best solution or set of best solutions corresponding to journey con-
straints and optimisation criteria. Optimisation may now be redefined as the task of finding
the(se) best solution(s).

2. Criteria and Objectives

Early routing models typically used the standard linear programming techniques to optimise
an objective function consisting of a single criterion or a weighted combination of multiple
criteria. This type of approach to multi-objective routing does not allow a complete analysis
of trade-offs between the various criteria when some weighted combination is optimised.
The weighted combination approach does not in any way guarantee that all non-dominated
paths will be discovered. It is those non-dominated paths that describe journey specifications
exhibiting minimal values for criteria such that they cannot be bettered by other journey
specifications on all criteria. A simple example provides motivation for these claims. Sup-
pose that a journey from Ato B is described by a 3-D vector AB with elements [time required,
financial cost, distance] and that for a particular network model (with A and B defined) this
vector is [100, 10, 200]. Another vector AB* (also describing a journey from A to B) has
elements [120, 5, 210]. If one compares the vectors AB and AB* on a weighted combination
or sum of elements it is easy to determinertiv@mal journey specification. However, this
naive analysis yields a decision on optimality that is not taken with respect to the entire
decision variable space. As the vector dimensions grow larger to incorporate more criteria
and objectives this analysis becomes more unpredictable and unstable.

When more than one optimisation criteria are involved, aggregate-sum approaches are
often applied to condense the multiple objectives into one to make the optimisation process
easier. For some problems, however, this approach may not be feasible, as trade-offs may
exist between criteria: an increase in one may result in a decrease in another (some or all of
the time), depending on the values of the other criteria. It is in cases like this that a technique
called Multi-objective Optimisation may be employed. For a survey of Evolutionary Multi-
objective Optimisation techniques, see (Coello 1999). Optimisation techniques are used to
achieve the ‘best’ (or as close to the ‘best’ as possible) solution(s) to a given problem. The
‘best’ solution may be the one that takes the least amount of time to compute, costs the least
financially or achieves the highest score according to some evaluation scheme. Many
optimisation techniques involve navigating gearch spacéor an optimal solution. Some
problems have very large search spaces, meaning that simple, brute-force searches are too
complex in terms of the time it would take (or the necessary resources) for the search to
complete. It is for this reason that approaches such as Tabu Search (Glover 1990), Simulated
Annealing (Metropolis and Rosenbluth 1958), and Genetic Algorithms (Holland 1975) (among
others) have evolved.
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3. Multi-Objective Optimisation.

In multi-objective optimisation problems, each objective may be represented as a vector
entry, with the vector itself representing a solution, for example:

represents a single solution to an n-objective optimisation problem. Given two vE&nds (
Y), we say that X <Y (X is partially less than ¥%r X dominates )if:

X<p Y & Vi(x, <y)ATi(x; <y,)

Solutions which are non-dominated (BPereto-optimaket) can be considered as better overall
solutions than those in the whole set as they have no other solutions that are better than them
on all criteria. While this process doesn’t necessarily identify any one outstanding solution, it
does narrow down the search space to a set of solutions, which may be more easily navigated.

Multi-modal, multi-criteria optimised route planning is not yet well studied in the litera-
ture. Methods for solving single objective planning problems have been studied extensively
for the past 40 years. However, almost every important real world problem involves more
than one objective. Multiple objective optimisation problems are similar to single optimisation
problems except that they have a stack (vector) of objectives (criteria) to optimise rather than
just a single one. (Costelloe et al. 2000) provides a solution methodology for multi-objective
optimisation of routes on a static network model with at least three objectives.

3.1 Producing the Pareto-optimal set

Our implementation produces a set of candidate solufidrsn a graplG (model of the
public transportation network) and extracts the Pareto-optimBifein C. Each member of
C has an associated path description vector of the form:

time
C,,| cost

changes

Each candidate represents a journey fadmb with its associated time, cost and number
of modal changes. Of course other choices of criteria are allowed depending on the situation.
P is then obtained by searching theGébr non-dominated solutions. The solution®iare
considered better than those that are nBtlixecause their path description vectors cannot be
bettered on all criteria. Ondé&has been constructed, the decision-maker must then choose
which P, to use. With this approach the path description vector may be extended to handle
more entrles (objectives) to analyse tradeoffs between these entries.

3.2 Computing the Pareto Optimal Set.

The first step in computing the Pareto Optimal Set is to produce the set of candidate solu-
tions C. Each node in the graph model G = (V,E,S) is either a intermediate stopping point or
major station (intersection) on the public transport network. The set S represents the set of
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routes operating on the entire network. Nodes can then be partitioned into departure destina-
tion pairs. Then for every departure destination pair, several different paths must be com-
puted. These are deemed the candidate solutions for the optimal path(s) between the depar-
ture and destination nodes. Individual candidate solutions are obtained by running several
different route finding algorithms each with different strategies for finding the shortest, cheapest
etc path between the pair of nodes in question. Examples of the route finding algorithms
implemented are A*, Dijkstra’s Algorithm and Bellman-Ford-Moore. Each of the algorithms
implemented optimise on one criteria. The problem in hand (as described above) has three
criteria. To deal with this, each algorithm is run three times optimising on a different variable
over each separate run. After the route finding algorithms have terminated g esat6S
containing paths and path description vectors for paths between nodes a and b. Each element
in the path description vector is the cumulative value of the corresponding criteria over the
entire path from node a to node b. The Pareto Optimal approach is then applied (as described
in section 3.1) to construct Pthe Pareto Optimal Set of journey specifications between the
nodes a and b. The path description vectors of candidate solutions are compared with each
other rather than with some predefined global optimum path description vector. This is a
consequence of the fact that it is not intuitive to define a global optimum vector for paths
between any two nodes.

However, this approach has worked very well for static network structures. Static network
structures are networks that do not change over time or any changes that occur are separated
by a long period of time. This type of static model is mathematically sound but hardly a
realistic model of a public transportation network. Transportation networks are inherently
dynamic. Changes in route patterns, traffic congestion, road/street availability can change
dramatically in a short space of time. Such dynamic changes often render previous estimates
of shortest paths or optimal journey specifications incorrect. After a dynamic change, a public
transportation information system must quickly update information on shortest/optimal path
specification, connectivity structures etc in order to provide up-to-date information to que-
ries. To capture this dynamic behaviour we adopt approaches from the field of dynamic graph
algorithms.

4. Dynamic Graph Algorithms

Graph theory and graph data structures and algorithms are inextricably linked with models
of any type of physical network. It is well known that computing shortest paths and connec-
tivity relations over a network is the most important task in many network and transportation
analyses. Transportation networks possess different levels of congestion, road availability
and throughput during different periods of the day. Therefore it is unrealistic to precompute
all shortest paths and connectivity at the start of the day and use these to answer queries over
the remainder of the day. Shortest paths and other network properties must be updated in real-
time that is as soon as a dynamic change occurs on the transportation network. Figure 1
below details the process of updating after a dynamic change. Queries regarding shortest
paths or connectivity relations at time t = T are answered regarding the network model in its
most up-to-date state.

Dynamic graph data structures and associated algorithms (Eppstein 1998) provide a robust
model with which to effectively model the dynamic nature of a public transport network.
When a dynamic change fundamentally changes some property or characteristic of the public
transport network it is inefficient to re-compute this and related properties from scratch each
time. Dynamic information updating (edge congestion, node availability) has a tremendous
effect on the planned optimised route causing it, in most cases, to deteriorate. Dynamic algo-
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rithms have been shown to be remarkably better than static shortest path algorithms for solv-
ing dynamic shortest path problems (Frigioni and Nanni. 1998).

Dynamic Change | Dynamic Change QUERY Dynamic Change

TIME t=0 t=t1 t=t2 t=t3 t=t4
ACTION | Budc=(vEs) | UFDATE UPDATE UPDATE
ACTION Compute UPDATE UPDATE  |Return Results| UPDATE

Optimal Paths

Figure 1: Atimeline table of process of dynamic update to a graph model G = (V,E,S) when
gueries are mixed with update requirements.

5. Graph Mutation

Evolutionary computation described by (Holland 1975) takes a set of candidate solutions
to a problem and, using techniques borrowed from natural selection and evolution, evolves
these solutions towards ‘fitter’ states. In our case ‘fitter’ states means better solutions in terms
of journey specifications. This process has been shown to be efficient at gaining near-optimal
solutions to hard problems in polynomial time. The fitness of a set of solutions is evaluated
by implementing some decision making process to quantify the relative merit of this evolved
set of solutions over the old set of solutions. The evolved set of solutions are deemed ‘fitter’
if and only if they are in some way quantifiably better that the old set of solutions.

This aspect of our evolutionary approach involves making random edge-insertions and edge
deletions to the original grapB, producingG’. In the context of a public transportation
network this mimics the addition of a route to some previously unused street or road or
alternatively the removal of a route link between two nodes. This can be viewed as a random
form of route service renewal. All choices regarding edge removal or addition are made ran-
domly. In essence we initiate an unbiased scheme to make alterations to the current graph
model of the transportation network. After each change is made a new graph is created. This
new graph (a solution) must be evaluated for its fithess to be evolved further. This fithess
evaluation requires the Pareto Optimal set of optimal journey specifications to be recom-
puted. The Pareto Optimal set of the evolved graph and that of the original graph are com-
pared. Based on this comparison conclusions may be drawn on the relative efficiency of the
new graph model over the original.

Formally, the insertion or deletion of edges causes the current graph to be mutated into
some different grap®’. The resultant candidate set of this grapltan be used to produce
another Pareto-optimal det. If it is the case that the cardinality of theReis less than that
of P (for a given journey between two nodes) then we know that the random insertion or
deletion has produced a better solution than was previously identified. The following ex-
ample illustrates this (2-d vectors are used for simplicity — modal changes have been omit-
ted):
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For journeys between node a and b, the following candidate set is produced from the graph G:

Figure 2: Depicting an original graph model G = (V,E) (with two optimisation criteria3. G
a graph with an edge inserted.

Extracting the Pareto-optimal set gives:

Path Time Cost
a->d->c->b 6 11
a->e->b 3 12
a->c->b 5 13
Path Time Cost
a->d->c->b 6 11
a->e->b 3 12

If a random edge-insertion were to produce G’, the new candidate set produced is:

The Pareto-optimal set now becomes:

Path Time Cost
a->d->c->b 6 11
a->e->b 3 12
a->c->b 5 13
a->b 2 8
Path | Time | Cost
a->b | 2 8
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Members of the Pareto-optimal set for the original graph G are no longer present; it is still
possible to use these routes however as the decision maker may choose an alternative route
based on other criteria that are not covered by this approach.

The application domain of the graph mutation scheme has, at present, only been applied to
public transportation networks in an effort to evolve more efficient network and route struc-
tures. Public transportation networks may be viewed as dynamic masks that overlay an exist-
ing network (i.e. a road and street network). To this end, this mask may be evolved and
changed in an effort to improve the configuration of the network and route structure of the
mask without any alteration to the underlying physical network. After a series of evolutions
the public transportation network mask (by inspecting the Pareto Optimal Set for journey
specifications between nodes) should admit ‘better’ or more ‘fitter’ solutions (in terms of
journeys and multi-criteria optimisation) than any of its predecessors. This mutant graph (and
mask) may then be strongly considered as a replacement for the existing mask. More efficient
and better-planned network structures allow the public transportation system operating on
this network to operate more effectively. For example there may be a better distribution of
routes or a more efficient distribution of these routes causing certain routes to avoid areas of
high congestion for example. Also, if the structure of the network is improved route-finding
algorithms may find it easier to compute optimal path specifications. The approach of graph
mutation is restricted to providing a more efficient and effective structure for journey plan-
ning i.e. in regard to network design. It is not necessarily a constituent part of multi-objective
analysis.

6. Conclusions and Further Work

The methodology described is designed for implementation as part of the design for Internet
based public transportation information systems. Such systems provide infrequent visitors
and users of public transportation with a set of optimal journey specifications to choose from
during the journey planning process. This set of optimal journey specifications provides valu-
able guidance during the process of navigating oneself in an unfamiliar urban or suburban
environment on a given transportation system. The multi-objective approach to decision making
is not in any way confined to the domain of transportation analysis and optimisation. In fact
any problem requiring the optimisation of solutions to problems defined in terms of a number
of (conflicting or independent) criteria when it is neither possible nor sensible to combine all
criteria in some form of aggregation of the criteria.

In this paper we have provided an evolutionary computation framework for the solution of
the problem of multi-objective optimisation on a transportation network. This framework has
been implemented for optimisation problems involving three criteria. However, more criteria
(provided that they can be quantified in some way) may be added without any major changes
to the theory. The Pareto Optimal processing stage B d(@omputational complexity and
remains so despite the addition of further criteria to the problem. This is a result of the defini-
tion of vector domination found in section 3. Preliminary results also found that no particular
route finding algorithm was dominant in finding solutions that turned out to be members of
the Pareto Optimal set of solutions. Dijkstra’s algorithm for example will always find the
shortest path (on one cost metric) over a graph structure (Cormen 1999). However there are
two reasons why it does not hold a majority on the number of solutions it provides to the
Pareto Optimal set. Firstly, while the algorithm will optimise on one criteria or metric the
other criteria in the problem are cumulatively gathered and specified in the path description
vector. It is then the vector itself (and the tradeoffs between criteria) that determine the solu-
tions suitability for inclusion into the Pareto Optimal set. Secondly, Dijkstra’s algorithm, as
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well as the other algorithms, performs well on easily quantifiable objectives such as path
length, overall path time. However, for criteria that are difficult to quantity i.e. level of conve-
nience of a route or number of modal changes the algorithms perform poorly. This is due to
the decision making involved in optimising such quantities. To try to optimise the total num-
ber of modal changes one needs to perform some form of look ahead in an attempt to predict
possible interchange and connection points further ‘downstream’ of the current node.

The issue of optimisation on a transportation network provides a fertile ground for further
research. Our proposal is novel in that it investigates ways of identifying inefficient network
structures and deals with multi-objective problems on a dynamic public transportation net-
work. On real-world networks such as these, many of the objectives may be loosely formu-
lated. Examples include, convenience of a route specification, favouritism towards particular
routes, road types etc. There has been little research work documented on a crossover ap-
proach to optimal design of transportation networks.
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