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Abstract

It is difficult to understand data and statistical models in high-dimensional space.

One way to approach the problem is conditional visualisation, but methods in this

area have lagged behind the considerable advances in statistical modelling in recent

decades. This thesis presents a new approach to conditional visualisation which

uses interactive computer graphics, and supports the exploration of a broad range

of statistical models.

The new approach to conditional visualisation consists of visualising a single low-

dimensional section at a time, showing fitted models on the section, and enhancing

the section by displaying observed data which are near the section according to a

similarity measure. Two ways of choosing sections are given —choosing sections

interactively using data summary graphics, and choosing sections programmatically

according to some criteria.

The visualisations in this thesis necessitate interactive graphics, which are im-

plemented in the condvis package in R.
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Chapter 1

Introduction

This thesis concerns visualisation for statistical models, and is chiefly motivated by

the development of ever more complicated models over the last 50 years, and the

apparent lag in the development of visualisation techniques to support the use of

these models. With increasing emphasis being placed on prediction performance as

opposed to inference, it has become common practice to trade interpretability for

prediction performance when modelling data. In many cases, the only real contact

an analyst has with a given model is through evaluation metrics, validation and

testing results. It would seem a shame to develop a successful predictive model, and

make no effort to interpret what it says about predictor effects. This work attempts

to make the process of interpreting complicated models with high-dimensional inputs

slightly less painful.

This thesis is accompanied by the condvis package in R; available from CRAN,

with the most up-to-date version on Github. Most of the examples in this thesis

will work with package version 0.3-x, but some require version 0.4-x.

1.1 Conditional visualisation

When a model consists of a single continuous predictor and a single response, the

fitted model is simply visualised as a curve in two dimensions (Figure 1.1a). When a

model involves two predictors, it may be visualised as a surface in three dimensions;

either as a contour plot or a perspective mesh (Figure 1.1b). When a model involves

more than two predictors, there is no direct way to visualise the model behaviour

(Figure 1.1c). Clearly, there is a need for producing low-dimensional visualisations

of models in high-dimensional space. One approach is conditional visualisation.

In a geometric sense, conditional visualisation means taking a section. Consider

a simple model with two predictors, relating fuel efficiency (mpg) to car weight (wt)

and horsepower (hp) in the mtcars data in R (R Core Team, 2015). The fitted model

may be visualised as a surface as in Figure 1.2a. If we want to visualise the modelled

effect of wt conditional on hp, we take a section. The intersection of the fitted model

and the section is then a curve in two dimensions as in Figure 1.2b. In this sense,

1
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(a) 1 predictor. (b) 2 predictors.

?
(c) . . . more predictors.

Figure 1.1: Visualising fitted models. With one predictor, the model may be visu-

alised as a curve. With two predictors, the model may be visualised as a surface in

three dimensions. What can we do for more predictors?

(a) (b)

Figure 1.2: Visualising a section. (a) Visualising a 2 predictor model, and taking a

section at hp = 200. (b) Visualising the section through model at hp = 200.

conditional visualisation offers a way to produce low-dimensional visualisations of

models in high-dimensional space. It is important to note that such sections typically

have no observed data lying on them (Figure 1.2b), and so it is difficult to understand

how the observed data support the fitted model. In this work, we choose to display

observed data points which are deemed to be close to the section (discussed further

in Chapter 3).

1.2 Example: Forced Expiratory Volume data

The Forced Expiratory Volume (FEV) dataset in Kahn (2005) (originally in an

earlier edition of Rosner (2010)) provides some useful discussion material for condi-

tional relationships in statistical models. We use it here to launch into an example

of conditional visualisation using the condvis package (O’Connell, 2016) in R, which

2
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Figure 1.3: Boxplot of FEV versus smoking status. Suggests smoking is associated

with higher FEV values.

forms the software implementation part of this thesis. The dataset concerns the

relationship between lung health and smoking in children. The response is fev (the

amount of air an individual can exhale in the first second of a forceful breath, used

as a proxy for lung health), and the predictors are gender, age, height and smokes

(binary smoking status).

In making a plot of FEV versus smoking status, we get our first surprise (see

Figure 1.3). In the marginal view, it seems as though smoking is associated with

better lung health! To illustrate the use of condvis, we fit a support vector machine

(Smola and Vapnik, 1997). We then produce an interactive conditional expectation

plot with ceplot and start looking at sections through the fitted model, focusing on

the smoking status predictor. See Code Snippet 1.1 for the code to reproduce this

example, and Chapter 4 for more on interactive conditional expectation plots.

Taking a section around age = 14, height = 67, with either gender, shows a

more sensible result (see Figure 1.4. The user can choose this section by clicking on

the condition selector plots on the right. Here, gender = male). In these parts of

the predictor space, the fitted model suggests that smoking is associated with slightly

lower FEV values. This is an example of Simpson’s paradox, where the modelled

conditional association is of opposite sign to the apparent marginal association. The

observed data near these sections also seem to support the fitted model, although

it is worth noting that, for each section, there are consistently more observations in

the non-smoking group compared to the smoking group.

Taking a section around age = 6, height = 55, gender = female, the model

is suggesting that smoking is related to higher FEV values (see Figure 1.5), as in

the marginal view before! Why is this? On examining the section, we see there are

no observed data points in the smoking group in this part of the data space. It is

not surprising that there are no 6 year old smokers! Such a prediction for 6 year

3
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Figure 1.4: Section showing the modelled effect of smoking on FEV conditional on

height = 67, age = 14, gender = male, shown in pink. Suggests that smoking

is associated with lower FEV values, and observed data near this section seem to

support this. From Code Snippet 1.1.
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Figure 1.5: Section showing the modelled effect of smoking on FEV conditional

on height = 55, age = 6, gender = female, shown in pink. Model suggests that

smoking is associated with higher FEV values, but there are no observations in the

smoking group near this section. From Code Snippet 1.1.
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old smokers should clearly be considered an extrapolation and held in suitable sus-

picion accordingly. This example demonstrates how ‘black-box’ models can mislead

analysts just as easily as more rigid linear models. A good defence against this is

to take sections through the model and see how nearby observed data support the

model.

library("condvis")

library("e1071") # to fit model

library("covreg") # for FEV data

data(fev)

## Tidy up the data.

fev$male <- as.factor(c("female", "male")[fev$male + 1])

names(fev)[4] <- "gender"

fev$smoke <- as.factor(c("no", "yes")[fev$smoke + 1])

## Visualise marginal relationship of FEV with smoking.

plot(fev$smoke, fev$fev, xlab = "smokes", ylab = "FEV",

col = "gray", boxwex = 0.35)

## Fit a support vector machine.

m <- list(svm = svm(fev ~ gender + smoke + age + height,

data = fev))

## Create interactive conditional visualisation.

ceplot(data = fev, model = m, sectionvars = "smoke", type = "separate")

Code Snippet 1.1: FEV example. Resulting visualisations in Figures 1.4 and 1.5.

Video of this example at youtu.be/rKFq7xwgdX0?t=270.

1.3 Contribution

The main research contribution of this thesis is a new, flexible approach to condi-

tional visualisation for statistical models. This approach may be implemented using

either an interactive or automated methodology. A large portion of this work has

been implemented in the condvis package (O’Connell, 2016) in R, available from

CRAN (Comprehensive R Archive Network). An introduction to condvis, and some

content of Chapters 3 and 4 have been published in O’Connell et al. (2016).

5
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1.4 Thesis outline

An outline of the proposed approach to conditional visualisation is presented in a

flowchart in Figure 1.6. The thesis proceeds as follows:

• Chapter 2 discusses conditional visualisation in general and reviews some lit-

erature on the topic.

• Chapter 3 presents a new approach to conditional visualisation. This new ap-

proach involves visualising sections one at a time, showing where fitted models

intersect the section, as well as nearby observed data.

• Chapter 4 introduces interactive conditional expectation plots. This is an

implementation of the conditional visualisation described in Chapter 3, where

sections are chosen interactively.

• Chapter 5 introduces the conditional tour, a framework for automatic explo-

ration of sections in data space. This is an implementation of the conditional

visualisation described in Chapter 3, where sections are chosen in advance.

• Chapter 6 presents real data applications of the proposed techniques for con-

ditional visualisation.

• Chapter 7 gives a brief discussion on the potential of using conditional visual-

isation for model ensembles.

• Chapter 8 describes some of the software options available for programming

interactive graphics, with a focus on the production of interactive graphics in

R.

• Chapter 9 concludes the thesis and provides an outlook on further research

possibilities.

A list of acronyms is provided at the end for the convenience of the reader. Ap-

pendix A describes a computer simulation which provides the data for one of the

applications in Chapter 6. Appendix B contains R code to support the examples

throughout the thesis. The workspace of each script in the appendix is saved to

a .rda file named ‘xxxx-workspace.rda’, which is then loaded by the code snippets

throughout the main text of the thesis. The scripts and previously saved workspace

files are available for download at http://tinyurl.com/condvisthesis. Certain pack-

ages are required to exactly replicate the graphics produced in this thesis, particu-

larly RColorBrewer (Neuwirth, 2014) for colour palettes, and gplots (Warnes et al.,

2015) for two-dimensional histograms. Appendix C provides an excerpt from the

documention for the condvis package.

6
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Have data and fitted model.

Choose one or two section predictors.

Choose approach to selecting sections.

Choose sections with

interactive condition selectors.

ceplot, Chapter 4

Choose sections in advance

from clustering or some criteria.

condtour, Chapter 5

Visualise one section at a time.

Show fitted models on section. (predict)

Show observed data near section. (similarityweight)

Chapter 3

Figure 1.6: Overview of workflow in condvis. This flowchart summarises the new

approach to conditional visualisation proposed in this thesis. Also shown is where

the main functions of condvis: ceplot, condtour, and similarityweight fit into

the process, as well as the chapter references for the relevant detailed discussions.
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Chapter 2

Conditional visualisation

2.1 Introduction

This chapter explores the role of conditional visualisation in understanding and

assessing statistical models. Some notation is introduced, and a brief review of

relevant literature is made.

Chapter goal

The goal of this chapter is to give a brief summary of previous efforts in the area

of conditional visualisation for data and models. Both research publications and

software implementations are discussed. Basic notation is also introduced, which

will be used throughout the remainder of the thesis.

Chapter outline

The remainder of this section describes the notation used throughout this thesis,

and discusses the main difficulty with conditional visualisation. Section 2.2 dis-

cusses trellis graphics and related methods. Section 2.3 discusses partial residual

plots and their long history in the literature. Section 2.4 discusses effect displays,

which combine elements of trellis and partial residual plots. Section 2.5 discusses

Individual Conditional Expectation plots and the Partial Dependence Plot. Sec-

tion 2.6 concludes the chapter with a summary.

2.1.1 Notation

In this work, notation is taken from the Individual Conditional Expectation (ICE)

plots of Goldstein et al. (2015), which is similar to that used by Friedman (2001)

to describe the Partial Dependence Plot (PDP). Consider training data {xi, yi}Ni=1,

where xi = (xi,1, ..., xi,p) is a vector of predictors and yi is the response. We construct

a fitted model f̂ that maps the predictors x to fitted responses f̂(x). Let S ⊂
{1, ..., p} and let C = {1, ..., p} \ S, the complement set of S, and partition x into

xS and xC accordingly. We may refer to xS as section predictor(s) and xC as

8



conditioning predictor(s). We have interest in observing the relationship between y

(or ŷ, or f̂) and xS , conditional on xC . In other words, we want to visualise the

dependence of the observed response or fitted response on a subset of the predictors,

conditional on the remainder of the predictors.

2.1.2 Difficulty with conditional plots

The crux of the problem in producing conditional plots lies in what is meant by

conditioning. We take conditioning on xC to mean setting each element of xC to a

certain value, defining a set of points in data space, which we call a section. In the

case of |S| = 1, this section is a two-dimensional plane. If we want to visualise any

data given this condition, we restrict ourselves to data points lying on this plane

section. With the exceptions of well designed experiments or xC being categorical

data, most such sections contain no data points.

Some ways around this problem have been developed, most of which relax the

conditioning requirement to one of approximate conditioning; conditioning on a

neighbourhood, or subregion. Linked brushing (Stuetzle, 1987, 1991; Becker and

Cleveland, 1987; Buja et al., 1991) allows the user to colour points in one view of

the data, clearly defining an approximate conditioning in that view, which can then

be seen in all other views where the conditioning would not otherwise be visible.

Producing separate plots for different subregions of xC results in the trellis graphics

of Becker et al. (1996). Partial residual plots (Larsen and McCleary, 1972) visualise

a section along a predictor in an additive model, and project all the data onto this

single section. Effect plots (Fox, 1987) combine elements of trellis and partial resid-

ual plots. ICE plots (Goldstein et al., 2015) show sections through f̂ at each value

of xC plotted against xS . While not directly addressing conditional visualisation or

statistical models, Furnas and Buja (1994) describe the use of sections and projec-

tions in visualising multivariate data. With the exception of linked brushing, all of

these visualisation methods are static.

2.2 Trellis graphics

Trellis graphics (Becker et al., 1996) are a framework for the conditional visualisation

of data and models. The framework comprises (in their own words) an “overall visual

design, reminiscent of a garden trelliswork, in which panels are laid out into rows,

columns, and pages. On each panel of the trellis, a subset of the data is graphed by

a display method such as a scatterplot, curve plot, boxplot, 3-D wireframe, normal

quantile plot, or dot plot. Each panel shows the relationship of certain variables

conditional on the values of other variables.” In the specific context of this work,

we take this to mean separate plots of (xS , y) made conditional (or approximately

conditional) on xC by displaying subsets of the data, where y (observed responses)

may be substituted with f̂ (a fitted model) or ŷ (fitted responses, that is f̂ evaluated

9



at observed predictor values).

When xC are all categorical predictors, a panel is produced for each combination

of the levels of xC . For continuous predictors in xC , the data are binned according

to intervals which are allowed to overlap, and so the special term ‘shingles’ is used

to describe the structure. The process continues as though the shingles were levels

of a categorical predictor. The basic difficulty when using trellis for continuous

variables is the choice of these shingles. An even grid of shingles can produce many

panels containing little or no data. An alternative is to allow shingles to vary in

size according to the data density across the predictor space, but this results in

panels which may not be directly comparable because they represent subregions of

different sizes. Becker et al. (1996) gives the ‘equal count’ algorithm to try obtaining

shingle arrangements with as close to equal counts of observations in each shingle

as possible. Anand and Talbot (2016) propose a method for the automatic choice

of shingles for a trellis display using scagnostics (Wilkinson and Wills, 2008).

Trellis graphics are implemented in the lattice package (Sarkar, 2008) in R. The

coplot function in graphics produces a trellis graphic. Trellis graphics are also used

by higher level plotting functions found in ggplot2 (Wickham, 2009) and effects (Fox

et al., 2016).

2.2.1 Example of trellis

Consider an exploratory analysis of the mtcars data in R, where we are interested in

the effect of car weight (xS = {wt}) on fuel efficiency (y = mpg) while taking account

of the number of cylinders (xC = {cyl}). We produce a trellis plot (Figure 2.1)

using the coplot (Cleveland, 1993) function in the graphics package in R. The plot

involves three panels, each being a scatterplot of mpg versus wt, conditional on a

level of cyl. The trellis plot allows us to see the conditional distribution of wt and

mpg, and in each panel the variability in mpg may be attributed to either wt or some

other unobserved covariate, but not to cyl.

Suppose we are interested in the effects of wt and qsec (time to cover a quarter

mile from a standstill) on mpg. We produce a trellis plot (Figure 2.2) as before,

with the only difference being that qsec is continuous. As a result, each panel

of the trellis is conditional on a range of qsec, or approximately conditional on

qsec. As with the previous example, the trellis plot gives an impression of the

conditional distribution of wt and mpg. In this instance, however, there may be

variability in mpg attributable to qsec present in each panel due to the approximate

conditioning. To eliminate this variability completely requires exact conditioning.

As discussed in Section 2.1.2 however, this would necessitate potentially as many

panels as observations, most of which would contain no more than a single data

point. The approximate conditioning using shingles is a useful compromise. In this

work, we intend to make use of a similar compromise with more flexibility.
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Figure 2.1: Trellis plot of mpg versus wt, conditional on cyl. The conditioning is

exact because cyl is categorical.
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is approximate because qsec is continuous. Note the overlapping shingles repre-

sented in the upper half of the graphic, particularly the shingle for the far-right

plot, encompassing almost half the range of qsec.
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2.2.2 An interactive approach to trellis

There is a clear difficulty when conditioning plots on continuous predictors with

trellis graphics. It seems that even with careful thought, any single choice of shingles

may be unsatisfactory for some reason or another; either a lack of data to display

in each panel, or a single panel representing a disproportionately large sub region

of xC . The problem is that there are infinitely many choices of shingles, their size,

their overlaps, and the number of them. Yet, we attempt to select just one set of

shingles and produce a single plot, as in Figure 2.2.

This thesis proposes a more flexible approach to conditional visualisation, pro-

ducing a single plot which we interactively (or programmatically) condition on xC .

This allows us to visualise many more of the potential conditionings mentioned

above in a very practical way. For example, the trellis plot in Figure 2.2 shows six

static panels each approximately conditioned on a continuous variable. Using an

interactive or animated approach, we can visualise several such conditional plots in

a matter of seconds. Interactively visualising sections one at a time sacrifices di-

rect comparison of different sections, but if done smoothly, we can observe how the

section changes as we change the conditioning. See Chapter 3 for a more complete

discussion.

2.2.3 CARTscans

CARTscans (Nason et al., 2004) are a trellis of coloured contour plots of the fitted

regression f̂ conditioned on xC . A CARTscan is used in a situation where we

want to take a section on two predictors (|S| = 2). The ideal CARTscan has

|C| = 2, where xS are two continuous predictors (termed inner variables), and xC

are two categorical predictors (termed outer variables), where ideal means that the

conditioning is exact and the entire graphic can be reasonably produced on one

page or computer screen. A contour plot of (xS , f̂) is then produced for each unique

combination of levels of xC in a rectangular grid. On each contour plot, the xS

coordinates of the observed data may be plotted. CARTscans are named for their

similarity to images from computerised axial tomography, and their application to

the Classification and Regression Trees (CART) of Breiman et al. (1984).

As with trellis, if xC contains continuous predictors, Nason et al. (2004) resort

to binning and producing an average f̂ over the relevant subspaces. If |C| > 2, they

apply the trellis technique recursively, resulting in multiple CARTscans of the basic

type with |C| = 2, each of which are made conditional on further predictors. Nason

et al. (2004) acknowledge that this solution works well with binary predictors in

xC , but is not very practical otherwise. Another approach given in their paper is

to order the predictors according to some importance measure, take the top four as

xS and xC , and take the f̂ averaged over the remaining predictors.

To my knowledge, there is no software implementation of CARTscans available

at the time of writing.
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Figure 2.3: CARTscan of support vector machine fitted to the FEV data. Outer

variables are smoking status and gender. Inner variables are height and age. The

contours show the different modelled effects for each combination of conditioning

predictors, and we also get an impression of the conditional distribution of observed

data.

2.2.4 Example of CARTscans

Consider again the FEV data referred to in Section 1.2. This is the same data used

by Nason et al. (2004) to demonstrate CARTscans, and we use it here to visualise

a support vector machine fit to the data (Figure 2.3). Each panel of the plot shows

the expected response as a coloured contour map, conditional on smoking status

and gender. The plotted points show the coordinates of observed data. We can see

that there are less observations in the smoking group than the non-smoking group,

and that height and age are correlated.

2.3 Partial residual plots

In general, a partial residual plot (Larsen and McCleary, 1972) displays the pairs

(xS , f̂S(xS) + e) (2.1)

for a fitted additive regression model f̂ , where f̂(x) =
∑

j f̂j(xj), f̂S denotes the

component(s) of f̂ involving xS , and e denotes the residuals from the model. The

main purpose of these plots is

1. to assess the appropriateness of the curvature of f̂S ,
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2. to aid in the understanding of the effect of xS on f̂ , and

3. to observe the distributional properties of xS , particularly in relation to the

two previous points.

The function f̂S(xS) is often superimposed on the partial residual plot, to show the

fitted model, conditional on xC . Regarding item 3 above, partial residual plots can

afford the analyst some sense of the values of xS for which model predictions should

be considered extrapolation or interpolation. In standard partial residual plots, this

usefulness diminishes with higher dimensionality of xC , where even the concept of

interpolation and extrapolation is not straightforward.

Cook (1993) points out that the partial residual plot can be misleading if the

model is misspecified for the effects of xC (to use the notation of this work). The

reason for this may be seen if we rewrite (2.1) as

(xS , y − f̂C(xC)) (2.2)

and so the partial residual plot clearly depends on f̂C . Here, f̂C(xC) may refer to∑
j∈C f̂j(xj) in an additive model.

Partial residual plots are implemented in the plot.gam methods for additive

models from the gam (Hastie, 2013) and mgcv (Wood, 2015) packages. Some plots

produced by the effects (Fox et al., 2016) package and the visreg (Breheny and

Burchett, 2016) package involve partial residual plots.

Partial residual plots do not provide an extension to non-additive models, and

rely on the conditioning predictors being modelled well to produce meaningful plots.

The approach to conditional visualisation presented in this thesis aims to overcome

both of these problems.

2.3.1 Literature

The term partial residuals appears to have its first use in Larsen and McCleary

(1972), but they point out (subsequently to the article being accepted) that the

basic idea had been previously published in Ezekiel and Fox (1959). Ezekiel (1924)

arguably contains the earliest appearance of partial residual plots, where they are

referred to as “dot charts showing relations of dependent variable [with independent

variables], adjusted for approximate curvilinear effects of other variables,” and are

used as an aid to an iterative method of fitting several non-linear effects simulta-

neously. Cook (1998) provides a discussion of the origins of partial residual plots

referring to work by Ezekiel (1924) and Bean (1929, 1930).

Larsen and McCleary (1972) point out the use of residual versus predictor plots,

that is plots of the pairs (xS , e), for

1. detection of outliers

2. assessing the presence or absence of inhomogeneity of variance, and
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3. determining if a transformation or basis expansion is needed.

and go on to describe two further applications of partial residual plots:

4. assessing the importance (in terms of predicting power) of a predictor in the

presence of all other predictors

5. assessing the importance of the non-linearity, if any, and helping the choice of

a suitable transformation.

However, they concede that item 4 above may not be a fruitful endeavour, especially

when there are large correlations between the predictor used in the plot and other

predictors in the model (between xS and xC in the notation of this work).

Wood (1973) argues that “none of the forementioned [uses of partial residuals]

has discussed dealing with problems that exhibit distributional pecularities [sic] in

xi,” and uses the term “component-plus-residual” rather than partial residual. He

summarises the applications of the partial residual plot as an aid

1. to choose an appropriate form of the equation

2. to observe the distribution of observations over the range of each predictor

3. to estimate the influence of each observation on each component of the equa-

tion.

Partial regression plots (Mosteller and Tukey, 1977) are similar to partial residual

plots in that both show the same slope and residuals (in the sense of a regression on

the plot itself), but differ in their construction and display. The partial regression

plot displays the pairs (r̂y, r̂x), where r̂y are the residuals from regressing y on

xC , and r̂x are the residuals from regressing xS on xC . Henderson and Velleman

(1981) discuss the use of partial regression (also known as added variable) plots in

building multiple regression models interactively. They briefly mention the use of

partial residual plots for identifying suitable solutions to problems of non-linearity

in predictor effects.

Atkinson (1982) reviews the use of partial residual plots and partial regression

plots in assessing constructed variables and transformations, where they can be

used to investigate the effect of adding a new predictor to a multiple regression. In a

comment on the paper, Welsch (1982) draws a distinction between partial regression

and partial residual plots, saying: “The choice about which partial plot to use should

most certainly not be made on computational grounds. Partial residual plots seem

to be better for the analysis of transformations, while partial regression plots help

more with leverage and influential data.”

Augmented partial residual plots from Mallows (1986) are partial residual plots

with a quadratic term for xS included in the regression to encourage non-linear ef-

fects to exhibit themselves in the plot. The motivation is to detect non-linearity

with minimal computation, comparing partial residual plots with and without the
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quadratic term, instead of examining all the possible basis expansions or transforma-

tions. Johnson and McCulloch (1987) discuss both partial residual plots and partial

regression plots. They advocate the use of more flexible models in constructing

partial residual plots.

O’Hara Hines and Carter (1993) suggest improved partial residual plots and

partial regression plots for generalised linear models mainly concentrating on using

partial regression plots for assessing influence. In a comment by Landwehr and

Pregibon (1993), the use of partial residual plots for examining non-linearities is

stressed, as opposed to being used as a cheap (and less effective) alternative to

partial regression plots for assessing influence.

Cook (1993) discusses partial residual plots, placing emphasis on detecting cur-

vature, and warning against the temptation to use them as omnibus diagnostic plots

(e.g., for assessing influential observations, or the strength of a predictor effect). He

points out that the plot can not only show the relationship between the fitted model

and the predictor, but the relationship between the errors and the predictor, should

one exist. He also introduces CERES (Combining Conditional Expectations and

Residuals) plots for situations where the usual linear model may be poorly specified,

and hence the conditioning provided by traditional partial residual plots may be

misleading.

2.3.2 Example of partial residual plot

Consider again the exploratory analysis of the mtcars data in Section 2.2.1. Suppose

we continue the analysis by fitting an additive model (Hastie and Tibshirani, 1990)

relating mpg to wt and cyl (as categorical, with levels 4, 6 and 8), with a smoothing

spline term for wt.

y = β0 + β1xcyl6 + β2xcyl8 + f(xwt)

We produce a partial residual plot for wt as in Figure 2.4. This allows us to see

the estimated effect of wt on mpg, controlled for the effect of cyl (insofar as the

model can account for this effect). The problem of a partial residual plot relying on

reasonable modelling of the effects of xC (cyl in this case) is documented by Cook

(1993). Becker et al. (1996) points out the benefits of using the trellis technique

on partial residual plots, and given our exploratory analysis, it seems only natural

to apply it to our partial residual plot. The partial residual plot conditions on

xC through a fitted model, and the trellis technique allows us to investigate this

conditioning further.

We can apply trellis conditioning to a partial residual plot using the visreg pack-

age (Breheny and Burchett, 2016). Figure 2.5 shows the partial residual plot from

Figure 2.4 decomposed into panels for each level of cyl. This conditional version

of the partial residual plot makes two things clear. Firstly, there is a bivariate re-

lationship between wt and cyl. This means that interpreting the smoothing spline

16



2 3 4 5

−
10

−
5

0
5

10

wt

f(
w

t)

● ●
●

● ●

●

●

●

●
●

●
●

●

●

● ●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●
●

●

●

●

cyl

4
6
8

Figure 2.4: Partial residual plot for wt from the model in Section 2.3.2. The fitted

model is shown on the plot as the solid line, with the dashed lines showing ±2

pointwise standard errors for the fitted mean. Levels of cyl are given by colour.

across the full range of wt as simply being the effect of wt may not be appropriate,

and rather implies an extrapolation which may not be justified. This is not so clear

from the original partial residual plot in Figure 2.4. Secondly, we can see that the

confidence bounds are actually different for each level of cyl. This is certainly not

obvious from the original partial residual plot. However, the trellis conditioning does

not improve our direct understanding of the modelled effect of wt compared to the

partial residual plot. This is an additive model, and so the modelled effect is the

same in each panel, except for a different intercept.

2.4 Effect displays

Effect displays (Fox, 1987, 2003) visualise the response surface of complex additive

parametric regression models by conditioning and slicing the surface, producing a

sequence of two-dimensional line graphs. In a basic sense, effect displays apply trellis

graphics to fitted additive models in a similar way to CARTscans (Section 2.2.3)

and the example from Section 2.3.2. Effect displays are implemented in the effects

package (Fox et al., 2016). Similar displays can be produced with the visreg package

(Breheny and Burchett, 2016), with the chief difference being that medians are

plugged into the model formula for ranges of continuous predictors in xC where an

effects plot would average over them. The visualisations provided by visreg are not

limited to additive models.
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Figure 2.5: Trellis graphic where the partial residual plot from Figure 2.4 is condi-

tioned on cyl. Produced by visreg package.

2.4.1 Effect displays with partial residuals

The functionality to add partial residuals to effect displays was added to the effects

package in version 3.0-0 in March, 2014.

2.4.2 Example of effect display

Consider again the FEV data from Section 1.2. We now fit a linear model with

all two-way interactions (in R, fev ∼ .*.) in order to demonstrate the use of an

effect display. Effect displays are not capable of visualising non-additive, ‘black-box’

models such as radial kernel models or gradient boosted trees at the time of writing.

Figure 2.6 shows an effect display for the effect of smoking on FEV according to the

linear model. As with our interactive approach for the support vector machine in

Section 1.2, this display reveals that the bivariate relationship of lung health and

smoking was misleading. This graphic lacks observed data, however, which makes

it more difficult to understand the apparently ‘positive’ effects of smoking in the

left-most panels. The wider confidence intervals for the smoking group at young

ages hint at the lack of observed data, but visualising the observed data directly on

the panels would make this more clear. It is worth noting that that partial residuals

could indeed be added to this plot, and are likely planned for inclusion in such an

effect display by the authors of the effects package.

2.5 ICE plots and PDPs

Section 2.3 discusses the use of partial residual plots for additive models. These

plots can only be produced if f̂(x) can be decomposed into f̂C(xC) + f̂S(xS), and
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Figure 2.6: Effect display showing the effect of smoking from a linear model with

interactions, conditioned on age and height. Produced by effects package.

are usually employed in cases where f̂(x) =
∑

j f̂j(xj). Clearly then, partial residual

plots are not of any use in examining the non-additive models of modern machine

learning techniques, such as gradient boosted trees (Friedman, 2001). Some non-

additive alternatives to partial residual plots may be found in Individual Conditional

Expectation plots (Goldstein et al., 2015) and Partial Dependence Plots (Friedman,

2001). These plots have some goals in common with partial residual plots, and are

presented here in reverse chronological order for clarity of exposition. The common

goals with partial residuals plots are the visualisation of the curvature of f̂ with

respect to xS , and hence understanding of the effect of xS , as well as the distribution

of xS .

2.5.1 Individual Conditional Expectation plots

Individual Conditional Expectation (ICE) plots, introduced by Goldstein et al.

(2015), visualise sections through fitted models. A section is defined by rewriting

f̂(x) as f̂(xS ,xC), considering xS to be free variables and xC to be fixed parameters

of each section. By setting xC to observed values, we can obtain functions which

define sections through the fitted model at each observed data point, f̂(xS ,xCi).

For the purpose of visualisation, these functions are evaluated at various values of
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xS . Two choices for these values are the observed values of xS , or a grid of values

in the range of xS . For each plotted section, the associated observation is plotted

as (xS , ŷ)

The central purpose of ICE plots is a basic understanding of the fitted model.

Other uses include exploring how the fitted model extrapolates in the data space,

and assessing whether modelled effects might be additive. Goldstein et al. (2015)

also present a few variations on the basic ICE plot, namely a centred ICE plot and a

derivative ICE plot. A centered ICE plot vertically translates each section to place

them on top of one another inasmuch as is possible, with the goal of making certain

patterns more visually obvious. A derivative ICE plot shows an approximate first

derivative of f̂(xS ,xCi) with respect to xS , and so attempts to highlight important

regions of curvature in the fitted model. Goldstein et al. (2015) also point out that

the observations or sections can be coloured in ICE plots to allow the display of a

further dimension in the plot.

ICE plots are implemented in the ICEbox (Goldstein et al., 2016) package in R.

2.5.2 Partial Dependence Plots

Following the notation of Goldstein et al. (2015), Friedman’s (2001) partial depen-

dence function is defined as

fS = E [f(xS ,xC)] =

∫
f(xS ,xC)dP(xC) (2.3)

giving the average value of f when xS is fixed and xC varies over its marginal

distribution dP(xC). Since f and dP(xC) are not known, the integral in Equation 2.3

is estimated by

f̂S =
1

N

N∑
i=1

f̂(xS ,xCi) (2.4)

where xCi are the observed values of xC for the ith observation. A Partial De-

pendence Plot (PDP) visualises f̂ against xS . From Equation 2.4, a PDP may be

considered a simple average of the sections defined for an ICE plot. The main goal

of the PDP is to show the average effect of a predictor in a ‘black-box’ model. The

main drawback with the PDP is that it does not represent predictor effects well

in situations where the curvature of the effect varies significantly throughout the

predictor space. This seems to be a considerable drawback, because ‘black-box’

models are often employed in situations where their flexibility in modeling complex

predictor interactions is required.

PDPs are implemented alongside ICE plots in the ICEbox (Goldstein et al., 2016)

package. The partialPlot function in randomForest (Liaw and Wiener, 2015) pro-

duces a partial dependence plot for a random forest model.
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Figure 2.7: ICE plot of support vector machine fit to FEV data, with the PDP

shown as a thick line highlighted in yellow. Shows the modelled effect of height on

a sample of sections at observations. Produced with the ICEbox package.

2.5.3 Example of ICE plot and PDP

Consider again the FEV example from Section 1.2 and the CARTscans example in

Section 2.2.3. Figure 2.7 shows an ICE plot of the same support vector machine

model. In this case, we are visualising the effect of height controlled for the other

predictors. Each grey curve represents a section through the fitted model at an

observed data point. The thick line highlighted in yellow is the average of these

curves, known as the PDP. From the sections in the ICE plot, we can conclude

that the modelled effect of height on most sections is an increasing function with a

plateau at higher values, but it is very difficult to tell if these effects are supported

by the observed data. This is a disadvantage of ICE plots, that they do not show

how curves relate to the conditioning predictors xC . The curves can be coloured,

but this only allows one dimension of xC to be represented.

Consider now the additive model we used to demonstrate a partial residual plot

in Section 2.3.2. An ICE plot of this model (Figure 2.8), taking sections along the

wt predictor, shows only three unique curves; the same smoothing spline with three

different intercepts for different levels of cyl.
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Figure 2.8: ICE plot of additive model fit to mtcars data, with the PDP shown as a

thick line highlighted in yellow. Shows the modelled effect of wt on sections at each

observation, of which there are only three unique curves. Produced with the ICEbox

package.

2.6 Chapter summary

We split the predictor vector into section predictors xS and conditioning predic-

tors xC . We are particularly interested in visualising the response or fitted model

against the section predictors given some value of the conditioning predictors. Trel-

lis graphics provide a reasonable way to produce conditional plots, but come with

the difficulty of choosing the conditioning for the panels. CARTscans apply trellis

to fitted models. Partial residual plots provide a single, relatively straightforward

graphic for each predictor (occasionally two predictors) in an additive model. Effect

displays apply trellis to parametric models and combine partial residuals with the

plots. ICE plots and the PDP provide a similar type of plot for more flexible models

without the additive constraint.
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Chapter 3

A new approach to conditional

visualisation

3.1 Introduction

This chapter introduces a new approach to conditional visualisation. This approach

involves taking sections in data space, visualising models where they intersect the

section and displaying observed data points which are near the section. The prox-

imity of data to the section is quantified using distance measures.

This method may be considered mainly as a flexible adaptation of trellis graph-

ics (Becker et al., 1996), but it also draws on aspects of Nason et al. (2004) and

Furnas and Buja (1994). Whereas methods for conditional visualisation in the past

have been developed for the printed page, this new approach necessitates computer

graphics, making use of interactivity and animation. The method works for classical

statistical models, Bayesian models, and modern machine learning methods. Two

approaches to the implementation of the ideas explored in this chapter are discussed

in Chapters 4 and 5. These implementations can be found in my R package condvis,

available from CRAN and hosted at github.com/markajoc/condvis. Examples of

the application of these methods are presented in Chapter 6.

Chapter goal

The goal of this chapter is to introduce a novel approach to conditional visualisation.

Chapter outline

Section 3.2 discusses how to choose a section to visualise. Section 3.3 discusses

how to visualise fitted models on the chosen section. Section 3.4 discusses how to

display observed data in the section visualisation. Section 3.5 gives an example of

visualising a section and nearby observed data. Section 3.6 describes how the ideas in

this chapter can be applied to modelling problems. Section 3.7 describes the software
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Figure 3.1: Example of sections in medical imaging. Five slices from an MRI scan

of a human head. (Genesis12 Wikipedia contributor, reproduced under Creative

Commons Licence CC-BY-SA-2.5)

Figure 3.2: Example of a section view of a machine part in technical drawing. (Sven

Gleich, reproduced under Creative Commons Licence CC-BY-SA-2.5.)

implementation of section visualisation in my R package condvis. Section 3.8 gives

a summary of the chapter.

3.2 Choosing a section

Sections are used in many fields to reveal detail that would otherwise be obscured

—in the study of anatomy, in medical imaging (Figure 3.1), and in engineering

drawings (Figure 3.2). Sections are also useful in connecting simple geometric shapes

to their analogues in higher dimensions. For example, the intersection of a disk and

a plane (other than the plane in which the disk lies) gives a line segment. Similarly,

the intersection of a sphere and a plane gives a disk. Continuing with this idea

allows us to consider a hypersphere in terms of spheres.
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Sections may not capture every important aspect of a high-dimensional object,

but in return for this weakness, sections are typically quite simple to visualise and

understand. Consider Figure 3.1 and the difficulty in creating a suitable 3-D visu-

alisation of the cranium which would still provide a detailed view of its interior. In

contrast, the 2-D sections are trivial to produce as monochrome images, and are

relatively easy to understand.

In this work, we restrict ourselves to conditioning on all but one or two predictors,

and so visualising two-dimensional and three-dimensional sections. It is, of course,

possible to consider a section of dimension higher than three, and consider the inter-

section of yet higher-dimensional shapes with this section. Such high-dimensional

sections are not the focus of this work, but it may be feasible to employ other multi-

variate visualisation techniques to visualise these sections —for example, projection

tours (Asimov, 1985).

The general goal of taking a section may be summarised as reducing the amount

of data to be visualised in order to reveal details that would otherwise be obscured.

3.2.1 Defining a section in data space

A section in the directions of xS and y in the data space is defined by a single

point in the space of xC . Considering a section as a point simplifies the treatment

of sections so that we can consider simple distance measures between sections and

observed data points, and make use of functions which take points in the space of

xC as input.

3.3 Displaying fitted models

In this work, fitted models are visualised on two-dimensional and three-dimensional

sections only. Figure 3.3 shows how the basic section visualisations in condvis dis-

play fitted models. Regression models (top row of Figure 3.3) are represented as

curves or surfaces (either a perspective view, or a colour map), and classifiers are

visualised as colour maps (bottom row of Figure 3.3). Two broad types of regression

models are considered: classical models, where the fitted model (f̂) is determined by

fixed parameter values (maximum likelihood estimates, for example), and Bayesian

models, where f̂ is determined up to probability distributions on its parameters.

3.3.1 Classifiers

For classification problems, we follow Hastie et al. (2009) in visualising a classifier as

assigning colours to regions of the predictor space. When considering binary class

probabilities, we can proceed as for a regression model below. If we are interested in

multi-class probabilities (see Section 6.3), we can produce a grid of barcharts similar

to embedded plots (Grolemund and Wickham, 2015) instead of the basic colour map

in Figure 3.3.
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Figure 3.3: Displaying a fitted model on a section (quant = quantitative, cat = categorical). For a categorical response, and a single section

predictor, it is preferable to consider the class probability as a quantitative response, or add an extra section predictor.
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3.3.2 Classical regression models

The f̂ from classical regression models can be interpreted as a surface in data space,

and so we can easily show its intersection with the section we have chosen. We then

simply have the task of visualising the function f̂(xS ,xC) where xS are seen as free

parameters which can vary across their range and xC are fixed parameters defining

the section. This is the same approach to visualising sections through fitted models

as for ICE plots (see Section 2.5).

3.3.3 Bayesian regression models

Bayesian models, on the other hand, provide a probability distribution for the ex-

pected response via a probability distribution on the parameters of the model. To

visualise such models, a simple approach is to evaluate the posterior distribution

on a grid, calculating the median (or some other measure of central tendency) each

time, and finally visualise a surface joining these medians together.

If Markov Chain Monte Carlo (MCMC) is used when the posterior is difficult to

calculate, we have a sample of predictive functions, and can produce a sample from

the posterior of E[y | x] on the section. One option here is to show all of the sampled

predictive functions on the section and use transparency to give an impression of

the probability distribution of E[y | x] on the section. For implementation reasons,

this option has not been explored in this work as transparency is not possible on

some of the graphics devices needed for interactivity in R. Instead, for each of our

points on the grid of xS values, we have a sample of f̂ . We calculate quantiles of

each of these samples and then show the median values, as well as percentiles for

2.5% and 97.5%. In this way, we can visualise a Bayesian model as a surface in data

space, and therefore in the same manner as in Section 3.3.2. See Section 6.6 for an

example of visualising sections through a Bayesian model.

3.3.4 Implementation: predict

In R, predictions for a fitted model are often calculated using a method for the

generic predict function. This can be a function which accepts as arguments the

fitted model object and a new data frame of observations, and returns the predictions

of the model. See, for example, the documentation for ?predict.lm in R.

In condvis, fitted models are evaluated on the section using the generic predict

method. The predict methods are not implemented in a consistent manner across

all model objects in R. Sometimes, there is simply no predict method, for example,

when the parameters of a Bayesian model are sampled using external software.

Model objects of class S4 can be very specific about their inputs, and fail with an

error when unnecessary arguments are supplied, instead of ignoring them as in the

less strict S3 paradigm. The best way to deal with these situations is to make an

S3 object which acts as a wrapper to the fitted model object, and behaves like an
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(a) (b)

Figure 3.4: Visualising a section. (a) Visualising a 2 predictor model, and taking a

section at hp = 200. (b) Visualising the section through model at hp = 200. There

are no observed data points on this section.

object of class lm in terms of input and output of its predict method. Examples of

this kind of wrapper object can be seen in the examples in Chapter 6.

3.4 Displaying observed data

Whenever we visualise a fitted model, it is desirable to enhance the visualisation

with the observed data, to see if the data support the fitted model or if model

assumptions are violated. However, it is not useful to plot all observed data points

on a section visualisation. We want to show only observed data which are relevant

to the section being visualised. We achieve this by showing observed data which

are near the section (recall the discussion in Section 1.1 of Figure 1.2, shown again

in Figure 3.4), and so we must formalise what we mean by near. We do so using

distance or dissimilarity measures, displaying only data within a certain distance of

the section. This gives rise to a fixed radius near neighbour search.

The main tasks when displaying observed data points on a section can be sum-

marised as follows:

1. Given a section and an observed data point, calculate the distance between

the section and the observed point.

2. Convert the distance between the section and observed point to a similarity

weight, which is a similarity measure scaled to be between 0 and 1 – observa-

tions on the section are assigned similarity weight 1, while observations with

increasing distance from the section are assigned lower values.

3. Plot the observation with a colour intensity based on the similarity weight

– observations with similarity weight 1 are plotted normally using a given
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Have section xCo and observed data point xCi

Calculate distance dtot(xCo,xCi)

Convert distance to a similarity weight ki ∈ [0, 1]

by comparing to a reference distance σ

Find observations with non-zero similarity weight,

and arrange in ascending order of similarity weight

Plot points, changing base colour of (r, g, b) to a linearly interpolated

value between (r, g, b) and the background; usually white, or (1, 1, 1).

Figure 3.5: Process for displaying observed data on a section visualisation.

plotting colour, while observations with similarity weight 0 are plotted as the

background colour (or not plotted at all, in practice). Colours for observations

with intermediate similarity weights are chosen on a linear scale from the

plotting colour to the background colour in Red, Green, Blue (RGB) space.

An overview of the process of displaying observed data on a section is shown in a

flowchart in Figure 3.5.

3.4.1 Distance function

We consider both the section and observed data as points in the space of the con-

ditioning predictors. We use a dissimilarity function of Minkowski distance on the

quantitative conditioning predictors and a simple mismatch count on the categorical

conditioning predictors.

We define dcont as the Minkowski distance between the quantitative coordinates

of two points in data space, u and v, written as

dcont(u,v) =

∑
j∈J
|uj − vj |q

1/q

: J indexes the numeric elements of u and v.

(3.1)

where q ≥ 1 is a real number. We define the dissimilarity between the categor-

ical coordinates of two observations as the number of mismatches between those

categorical coordinates, written as

M(u,v) (3.2)
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This is equivalent to the Hamming (1950) distance between the categorical coordi-

nates, if categorical variables are recoded as single symbols (for example, integers).

We then define the total dissimilarity between two observations as

dtot(u,v) = dcont(u,v) + λM(u,v) (3.3)

where λ ∈ R+ is an arbitrary scaling constant. This distance is calculated after

standardising the quantitative conditioning predictors to have zero mean and unit

variance. Of course, other more robust methods of scaling the quantitative pre-

dictors could also be used. We do not apply any standardising to the categorical

predictors, aside from the single constant λ. This implies a certain disregard for the

relative importance of a level mismatch on one categorical predictor as compared to

a level mismatch on another categorical predictor. For example, we would expect

more level mismatches on a categorical predictor with many levels than on a bal-

anced binary categorical predictor. There are alternatives to the mismatch count

dissimilarity measure. One such example is Gower’s (1971) general coefficient of

dissimilarity, which allows special consideration for unbalanced class distributions,

ordinal categorical variables, and other cases. For the purposes of this work, we find

the mismatch count to be an adequate dissimilarity measure between categorical

predictors. Changing the distance measure to Gower’s (or any other distance mea-

sure) does not materially affect any of the steps in the methodology of this thesis,

and so it has not been given any detailed discussion. In particular, none of the

data sets discussed have enough complicated categorical variables to merit the use

of Gower’s distance/similarity.

3.4.2 Conversion from distance to similarity weight

We use the distance measure to obtain a similarity weight value as follows. The

distance between the section and observation i is calculated as

di = dtot(xCo,xCi) (3.4)

where xCo describes the section in the coordinates of the conditioning predictors,

and xCi describes an observation in the coordinates of the conditioning predictors.

We then assign a weight ki to an observed data point xi based on its distance di

from the section:

ki = max

(
0, 1− di

σ

)
(3.5)

where σ > 0 is a threshold parameter set by the user. Letting σ equal 0 gives

exact conditioning; that is, we only plot points which lie exactly on the section

with di = 0. Increasing σ gives more approximate conditioning. The choice of σ is

rather arbitrary. An optimal choice of σ might be one that is as small as possible

while maintaining enough data to visualise patterns in a plot. Setting λ > σ means

that only observations which match exactly the categorical levels of the section
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can be assigned non-zero weight. Setting λ = 0 means that categorical predictors

are ignored by the calculations for distance and similarity weight. Setting λ to a

value in the interval (0, σ] means that observations with some but not all categorical

predictor levels matching may be considered for visualisation, and observations with

less mismatches are given more similarity weight than those with more mismatches.

The plotting colour may be considered a point in three-dimensional RGB (Red,

Green, Blue) space, (r, g, b). We then fade this colour in steps to the background

colour of the plotting device with increasing distance from the section. A typical

background colour is white, or (1, 1, 1) in RGB. For a similarity weight of 1, we

plot the observation with its full colour. For a similarity weight of 0, we give the

observation the background colour, or in practice, do not plot it at all. For example,

with a black plotting colour and a white background, points will be plotted as black,

dark grey, light grey and white with decreasing similarity weight from 1 to 0.

The condvis package currently implements two special cases of the Minkowski

distance (Equation 3.1), namely maximum norm and Euclidean distance. Euclidean

distance is the Minkowski distance with q equal to 2. The maximum norm is the

limit of the Minkowski distance as q tends to infinity. See Figure 3.6 for an example

of both distance measures with two conditioning predictors. Using the maximum

norm results in conditioning which is essentially the same as that of trellis graphics

(see Section 2.2), where intervals are used to define conditioning. For example,

consider the conditioning shown in Figure 3.6a by choosing points within a certain

maximum norm distance of the section in the space of the conditioning predictors.

If we ignore the colour intensities, we can obtain the same approximate conditioning

using the shingles method from trellis to choose a subset of the data, that is, using

the intervals 0.4− sd(x1) < x1 < 0.4 + sd(x1) and 0.4− sd(x2) < x2 < 0.4 + sd(x2),

shown in Figure 3.7. The sd(x1) and sd(x2) arise from the fact that the threshold

σ is set to 1, so that points within one standard deviation of the section are given

similarity weight greater than zero.

3.4.3 Plotting observed data points

Observed data points with a similarity weight below a certain value are discarded

and not plotted. The purpose of this is to avoid plotting observations which would

be visually indistinguishable from the background colour if plotted. This saves on

computation time for the plotting function, and reduces the storage space taken by

a PDF version of a static plot. The points with sufficient weight to be visible are

plotted in increasing order of similarity weight, so that the points nearest the section

are plotted last, giving them more visual prominence.

When plotting observed data points on a colour map, the circles representing

observations are coloured according to their similarity weight, as with the other

section visualisations. These circles are then filled with the colour of their observed

value, for both numeric and categorical responses. See the example in Section 6.3
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Figure 3.6: Choosing data to display using distance between section and observa-

tions. Condition on x1 and x2 by taking a section defined by x1 = x2 = 0.4. There

are no points exactly at these coordinates, so we take points nearby (σ = 1). (a)

Maximum norm distance. (b) Euclidean distance.

for an example of this for a categorical response.

When plotting observed data points on a perspective mesh plot, line segments

representing the residual are also plotted to give extra context to the observations.

If the observations are far from the section, the residuals may not touch the fitted

model on the section.

3.4.4 Implementation: similarityweight

The similarityweight function calculates the similarity weight for observations

given a section in data space. It is a wrapper to the internal .similarityweight

function which first standardises the data, and returns another function which calcu-

lates the similarity weights for the observations given a single section. The wrapper

function is vectorised to accept a data frame describing multiple sections in data

space. The inputs to similarityweight are:

• x A dataframe describing sections in the coordinates of the conditioning pre-

dictors.

• data Observed data, a dataframe with same names as x.

• threshold Threshold distance outside which observations will be assigned

similarity weight zero. This is numeric and should be > 0. Defaults to 1.

Called σ in Section 3.4.2.

• distance Either "euclidean" (default) or "maxnorm".
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Figure 3.7: Obtaining a similar conditioning to Figure 3.6a using the intervals

method from trellis.

• lambda A constant to multiply by the number of categorical mismatches, be-

fore adding to the Minkowski distance, to give a general dissimilarity mea-

sure. If left NULL (the default), behaves as though lambda is set larger than

threshold, meaning that one factor mismatch guarantees zero weight. Called

λ in Section 3.4.1.

Other people have found practical uses for similarityweight, for example, Grole-

mund and Wickham (2016) use it to evaluate the reliability of predictions on grids

in data space.

3.5 Example of visualising a section and nearby data

This section presents a brief example with accompanying R code to visualise a section

through a fitted model, and display nearby observed data points. This example

serves to give a simple view of how a plot may be made conditional using the

similarity weight concept, and demonstrates the central task of the condvis package

without the need for trawling through source code. Furthermore, this example shows

that the idea of making a plot conditional on a region of data space is not specific

to visualising a section in data space, but rather the conditioning is achieved via

the colouring of individual observations, and so any plot of individual observations

can be made conditional. This is not evident in the condvis package, due to its

organic development as a toolset for visualising models in data space, but we give

an example of this broader view of conditional plots in Section 7.

The code for this example is in Code Snippet 3.1. We first generate some data

from the process

y = x1 + x2 + ε
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Figure 3.8: Visualising a section, showing the fitted model and nearby observed

data. From Code Snippet 3.1.

ε
iid∼ N(0, 0.05), x1, x2

iid∼ U(0, 1)

and fit a linear model. We define a section at x2 = 0.4, and calculate the similarity

weight of observations relative to this section. We use this to choose the plotting

colours for the observations, giving prominence to observations near the section. We

then visualise the section, showing the fitted model by evaluating the fitted response

on a grid of values on the section. We plot the observations first to avoid obscuring

the fitted model. Figure 3.8 shows this visualisation, which has the appearance of a

simple linear regression with well behaved residuals.

Next, we try a section nearer the edge of the data at x2 = 0.05, shown in Fig-

ure 3.9. This time, the plot suggests a strong bias towards negative residuals. This

is not a problem with the model, as we know it to be well specified in this case.

Rather, it is a symptom of approximate conditioning —showing nearby data. The

observations near this section are subject to variability due to their x2 coordinates,

which is biased because we are at the edge of the data; we reduce the variability

by visualising only nearby points, but cannot remove it completely for continuous

conditioning predictors. This is something we must always be aware of when at-

tempting conditional visualisation. Particularly, in the conditional visualisation in

this thesis, the conditioning predictors are dealt with using the one-dimensional sim-

ilarity weight. This means that we cannot discern information such as “which side

of the section is this observation on?”
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Figure 3.9: Visualising a section, showing the fitted model and nearby observed data.

The nearby observed data seem to show a bias in this instance. From Code Snip-

pet 3.1.

3.6 Practical applications of new method

3.6.1 Interpreting fitted models

Additive models have a comparatively straightforward interpretation by way of pa-

rameter estimates in the case of linear regression, or component function shapes in

the case of additive spline models.

While such interpretable models are still popular, much of the focus in modern

applied statistics lies in kernel methods, neural networks, tree methods, and ensem-

bles of models. These methods allow for the fitting of large and complex models,

typically trading interpretability for predictive performance. It would seem a shame

to develop a successful predictive model, and make no effort to understand it on

the basic level of predictor effects. Moreover, statistical analyses are arguably less

valuable if their core messages cannot be communicated with ease to non-experts.

By visualising sections, we show fitted models as curves, surfaces and colour maps

while taking advantage of the caeteris paribus (“all else equal”) concept, which is

reinforced by the fact that the user is visualising one section at a time. We can say

to ourselves, and non-expert colleagues alike, that this graphic shows the modelled

effect of one or two predictors, holding other predictors at fixed values.

35



3.6.2 Understanding how observed data support a fitted model

It is standard practice when regressing on a single predictor to plot the data, with the

fitted model superimposed on the plot. This allows the analyst to identify potential

problems with relative ease; for example, the suitability of the functional form of

the model, or assumptions on the error structure (though, this is perhaps better left

to residual plots).

As more predictors are added to a model, this becomes less practical. It quickly

becomes a problem of simultaneously visualising a function as well as a point cloud

in p-dimensional space. As discussed in Section 1.1, this is easy with one predictor,

achievable with two predictors, and rather difficult otherwise.

Conditional visualisation, as presented in this thesis, produces simple two-dimensional

and three-dimensional graphics which are intended to be as easy to interpret as direct

visualisations of fitted models with one or two predictors.

3.6.3 Comparing fitted models

When visualising fitted models on a section along one predictor, fitted models are

represented by curves, and so multiple models can be compared quite easily. This is

not so easy for two section predictors, and as such, it is not currently implemented in

condvis. Consider the perspective mesh plot for two quantitative section predictors

and a quantitative response in Figure 3.3. If we add another regression surface to

this graphic, it will either be in front of, or behind, the model already visualised.

See Chapter 7 for further discussion of visualising multiple models.

3.7 Implementation: plotxs

The visualisation of sections in data space is implemented in the plotxs function in

condvis. The plotxs function produces a section in data space (of each type shown

in Figure 3.3), showing fitted models where they intersect the section, and observed

data according to their similarity weights. The fitted model is calculated via the

predict method, the model objects being supplied in a list argument to plotxs.

The similarity weights are calculated with the similarityweight function, and

supplied as an argument to plotxs. The plotxs function returns an S3 object

which contains the relevant information for updating the plot, as is needed when

changing the current section being visualised by user interaction. The updating is

accomplished by the update.xsplot S3 method, which is not exported.

3.8 Chapter summary

This chapter introduced a new approach to conditional visualisation. The approach

visualises two-dimensional and three-dimensional sections in data space, showing

fitted models where they intersect the section and data which is near the section.
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The concept of proximity in data space is formalised with a dissimilarity measure

composed of Minkowski distance on numeric predictors and mismatch counts on

categorical predictors. The sections can be visualised in R with the plotxs function

in condvis.
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library("condvis")

## Generate some data.

set.seed(746182481)

x1 <- runif(1000); x2 <- runif(1000)

y <- x1 - x2 + rnorm(sd = 0.05, n = 1000)

d <- data.frame(y, x1, x2)

## Fit a model

m <- lm(y ~ ., data = d)

## Define a section.

section <- data.frame(x2 = 0.4)

## Calculate similarity weight of observations, given the section.

sw <- similarityweight(x = section, data = d[, "x2", drop = FALSE],

threshold = 1)

colours <- condvis:::weightcolor(col = "black", weights = sw)

## Initialise a plot with reasonable ranges.

plot(x1, y, col = NULL)

## Display nearby observed data.

plotorder <- attr(colours, "order")

points(x1[plotorder], y[plotorder], col = colours[plotorder])

## Display the fitted model on the section.

predgrid <- expand.grid(x1 = seq(0,1, length.out = 10), x2 = 0.4)

points(predgrid$x1, predict(m, predgrid), type = "l", col = "red", lwd = 2)

## Repeat the process for a section nearer the edge of the data.

section2 <- data.frame(x2 = 0.05)

sw2 <- similarityweight(x = section2, data = d[, "x2", drop = FALSE],

threshold = 1)

colours2 <- condvis:::weightcolor(col = "black", weights = sw2)

## Initialise plot and display nearby observed data.

plot(x1, y, col = NULL)

plotorder2 <- attr(colours2, "order")

points(x1[plotorder2], y[plotorder2], col = colours2[plotorder2])

## Display the fitted model on the section.

predgrid2 <- expand.grid(x1 = seq(0,1, length.out = 10), x2 = 0.05)

points(predgrid2$x1, predict(m, predgrid2), type = "l", col = "red", lwd = 2)

Code Snippet 3.1: Visualise a section through a fitted model, and display nearby

observed data. Related visualisations in Figures 3.8 and 3.9.
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Chapter 4

Choosing sections interactively

4.1 Introduction

This chapter presents an interactive approach to implementing the conditional vi-

sualisation described in Chapter 3. The resulting graphics are called interactive

conditional expectation plots, and are implemented by the ceplot function in my R

package condvis.

An interactive conditional expectation plot consists of two main parts. The first

part is a section through the fitted model, showing values of f̂ evaluated on a grid of

values of xS , with xC held constant. We call this a conditional expectation plot. The

second part is a collection of data visualisations, which show both the distribution

of the predictors and the current condition (i.e., the values to which xC are set).

We call these condition selector plots. The user interacts with the condition selector

plots in order to choose the section to be visualised.

This chapter shows one example of an interactive conditional expectation plot

with some simulated data, deferring the real data applications to Chapter 6.

Chapter goal

The goal of this chapter is to present a way to implement the conditional visualisation

techniques from Chapter 3 using interactive graphics to choose the section. The

focus will be on ways to choose the section, and how to encourage the choice of good

sections, that is, sections of interest to the analyst, or near observed data.

Chapter outline

Section 4.2 presents condition selector plots, the various graphics for interactively

choosing a section to visualise. Section 4.3 discusses how condition selector plots

can be arranged to provide some protection against unwitting extrapolations in the

data space. Section 4.4 briefly discusses some of the difficulties encountered with

condition selector plots. Section 4.5 gives an overview of the software implementation

of interactive conditional expectation plots. Section 4.6 shows the use of interactive
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conditional expectation plots on some simulated data. Section 4.7 concludes the

chapter with a summary.

4.2 Condition selector plots

Condition selector plots depict the data in xC and allow a section to be selected

interactively.

4.2.1 Univariate and bivariate condition selectors

These plots depict the data in xC by way of one-dimensional or two-dimensional

marginal views. Examples of each are given in Figure 4.1.

• Histogram for one quantitative predictor in xC .

The histogram gives a univariate view of the marginal distribution of a quan-

titative predictor. The selected predictor value is shown as a vertical line.

• Barplot for one categorical predictor.

The barplot gives a univariate view of the marginal distribution of a categorical

predictor. The selected predictor value is shown by highlighting one of the bars

with colour.

• Scatterplot for two quantitative predictors.

The scatterplot gives a bivariate view of the joint distribution of two quantita-

tive predictors. The selected pair of predictor values is shown by a cross hairs

of a vertical and a horizontal line. If there are a large number of observations,

it is prudent to use a two-dimensional histogram or heatmap of data density

instead of a scatterplot of individual observations.

• Boxplot for one quantitative predictor and one categorical predictor.

The boxplot gives a bivariate view of the joint distribution of a single quantita-

tive predictor and a single categorical predictor. The selected pair of predictor

values is shown by a cross hairs of a vertical and a horizontal line.

• Spineplot for two categorical predictors.

The spineplot gives a bivariate view of the joint distribution of two categorical

predictors. The selected pair of predictor values is shown by highlighting one of

the rectangles with colour. A spineplot is also known as a segmented barchart.

4.2.2 Full scatterplot matrix condition selector

A scatterplot matrix is a grid of bivariate data visualisations. This provides all

possible bivariate views of the conditioning predictors. It provides the most views

in which to detect extrapolation, but can be very cumbersome for selecting sections,

and requires a lot of updating as an interactive graphic. It is difficult to fit any more

40



Histogram for one quantitative predictor in xC .
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Figure 4.1: Five different types of condition selector plots.
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Figure 4.2: Full scatterplot matrix condition selector, showing the same condition

as Figure 4.3.

than 15 predictors in a scatterplot matrix condition selector on regular computer

displays. We coerce categorical predictors to integers when producing scatterplot

matrices. It would be possible to use a generalised scatterplot matrix (Emerson et al.,

2013) to better represent mixed quantitative and categorical data, but we opt for

the standard scatterplot matrix here in order to have the current section represented

by straight lines on the scatterplot matrix. Figure 4.2 shows a scatterplot matrix

condition selector.

4.2.3 Parallel coordinates condition selector

A parallel coordinates plot (Inselberg and Dimsdale, 1990) is a visualisation tool for

multivariate data. Whereas scatterplots arrange axes perpendicular to each other,

a parallel coordinates plot places the axes for each dimension parallel to each other,

allowing the visualisation of high-dimensional data. As condition selector plots,

parallel coordinates plots are relatively neat and easy to understand, but spotting

extrapolations is certainly not easy. As with the scatterplot matrix, categorical pre-

dictors are coerced to integers when producing a parallel coordinates plot. Figure 4.3

shows a parallel coordinates condition selector plot.
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Figure 4.3: Parallel coordinates condition selector plot, showing the same condition

as Figure 4.2.

4.2.4 Implementation: plotxc

The plotxc function in condvis produces the univariate and bivariate condition

selector plots described in Section 4.2. The internal functions plotxc.full and

plotxc.pcp produce a full scatterplot matrix condition selector plot and a parallel

coordinates condition selector plot respectively. The plotxc functions all return an

S3 object which contains the necessary information to update them, as is needed

when reacting to user input. The updating is accomplished by the update.xcplot

method, which is not exported.

4.3 Predictor pairings for condition selector plots

In producing an interactive conditional expectation plot, we are presented with a

choice in our representation of xC . This ranges from |C| univariate condition selector

plots to around half as many plots when using bivariate condition selector plots. We

have choices in what predictors we pair in bivariate plots, and the order in which

we arrange the plots. In the absence of any more pressing criteria, we would like

to choose bivariate pairings that minimise the chance of unwitting extrapolation in

xC , and reduce the number of condition selector plots required.

Consider xC consisting of two categorical predictors, gear and cyl from the

mtcars data. To condition on xC , we set each of gear and cyl to a single value. If

we consider each predictor in isolation when assigning a value, we run the risk of

assigning a combination of values which has not been observed before, for example,

setting gear to 4 and cyl to 8. This is what can happen when a univariate condition

selector plot is used for each predictor – a barplot in this case. If we consider the

two predictors together, we can limit ourselves to combinations of predictor values

which have been observed, and eliminate extrapolation in xC . This can be achieved

with a bivariate condition selector plot – a spineplot in this case (Figure 4.4). The
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Figure 4.4: Two categorical predictors visualised in a spineplot. 8 predictor combi-

nations are observed out of a total possible 9 combinations.

spineplot makes it plain to see that a case with gear = 4 and cyl = 8 has not been

observed.

For a quantitative measure of the usefulness of a bivariate condition selector

plot over two univariate condition selector plots, we calculate ratios that reflect the

proportion of predictor value combinations which are shown to not be extrapolations

by the bivariate view. The smaller this ratio, the more advantage is gained from

using a bivariate condition selector plot over two univariate condition selector plots.

A definition of extrapolation is required for this.

• For a single quantitative predictor, we consider any value outside the range of

the observed data to be an extrapolation.

• For a pair of categorical predictors, we consider any combination of predictor

levels that has not been observed before to be an extrapolation.

• For a pair of quantitative predictors, we may conservatively consider any com-

bination of predictor values which fall outside the convex hull of the observed

data to be an extrapolation. The convex hull is defined as the convex polygon

of minimal area to contain all of the data. This is conservative because, when

the data exhibit concave shapes, there may very well be regions inside the con-

vex hull which would be considered to be extrapolations by most statisticians.

• For a categorical predictor paired with a quantitative predictor, we consider

an extrapolation to be a combination of predictor values which lies outside the

range of observed values of the quantitative predictor given the level of the

selected categorical predictor.
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4.3.1 A general comparison measure of bivariate and univariate

distributions

Let S(xj) be the support of a predictor xj , and S(xj , xk) be the bivariate support

of two predictors xj and xk. We then define a ratio

|S(xj , xk)|
|S(xj)||S(xk)|

(4.1)

of which small values indicate an advantage to using a bivariate view of the pre-

dictors over two univariate views. Clearly, this ratio would be difficult to calculate

directly (for example, we do not necessarily know the distribution of predictors, the

support for a normally distributed predictor is (−∞,+∞), and the cardinality of the

support for any continuous predictor is infinity), so we use the following heuristics

in calculating the ratio:

• For a quantitative predictor, we take |S(xj)| to be the length of the range of

observed values of xj .

• For a categorical predictor, we take |S(xj)| to be the number of levels for xj .

• For two quantitative predictors xj and xk, we take |S(xj , xk)| to be the area

of the convex hull of the observed data. We might alternatively use the area

of a ‘confidence region for future observations’ (Geisser, 1993, Section 2.1).

• For two categorical predictors xj and xk, we take |S(xj , xk)| to be the total

number of unique observed predictor level combinations.

• For one quantitative predictor xj and one categorical predictor xk, we take

|S(xj , xk)| to be the sum of the ranges of xj for each level of xk,
∑

c S(xj | xk = c).

The following sections demonstrate the use of these heuristics with the mtcars data.

4.3.2 Two categorical predictors

To assess the advantage of a spineplot over two barplots, we first calculate the total

number of possible predictor level combinations. We then calculate the number of

these predictor level combinations we have observed. We calculate the ratio

# possible combinations observed

# possible combinations
(4.2)

of which small values indicate an advantage to using the bivariate plot. For example,

consider the gear and cyl predictors from the mtcars data shown in a spineplot in

Figure 4.4. Nine combinations of predictor values are possible with two predictors

having three levels each. Eight of these combinations are observed in the data.

Therefore, this bivariate pairing would not provide much improvement over two

univariate plots in avoiding extrapolation on these predictors.
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Figure 4.5: One categorical predictor and one quantitative predictor visualised with a

boxplot. The average length of the conditional ranges of disp (in red) is considerably

less than the overall range of disp.

4.3.3 One quantitative, one categorical predictor

To assess the advantage of a boxplot over a histogram and a barplot, we first calculate

the average range of the quantitative predictor across the levels of the categorical

predictor. We then divide this by the total range of the quantitative predictor to

give the ratio∑
range(quantitative predictor) given categorical predictor level

(# levels of categorical predictor)(range(quantitative predictor))
(4.3)

of which small values indicate an advantage to using the bivariate plot. For example,

consider the cyl and disp predictors from the mtcars data shown in a boxplot

in Figure 4.5. The average length of the conditional ranges of disp (in red) is

considerably less than the overall range of disp. So there is an advantage to using

the bivariate pairing in this case, rather than two univariate plots.

4.3.4 Two quantitative predictors

There are a few possible approaches to assessing the advantage of a scatterplot

over two histograms. The first option is the ratio of area of the convex hull to the

bounding rectangle of data. The second option is the ratio of area of a confidence

region from a kernel density estimate to the area of the bounding rectangle. The

third option is a scagnostics (Wilkinson and Wills, 2008) measure, which is a number

in [0, 1] describing the shape of data in a bivariate view.
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Figure 4.6: Two quantitative predictors visualised in a scatterplot, with the convex

hull of the data shown. The grey region is where extrapolation might occur when

using two univariate views.

Ratio of convex hull to bounding rectangle

We first standardise both predictors to have mean zero and unit variance. We

calculate the area of the bounding rectangle as the product of the ranges of the two

predictors. We calculate the area of the convex hull of the observed points in the

two-dimensional projection. We then calculate the ratio

area of convex hull

area of bounding rectangle
(4.4)

of which small values indicate an advantage to using the bivariate plot. For example,

consider the hp and disp variables from the mtcars data shown in a scatterplot in

Figure 4.6. The grey area represents the region where extrapolation might occur

accidentally when using two histograms to choose values for hp and disp.

It is possible that alpha-hulls (Edelsbrunner et al., 1983) would be more suited to

the task of comparing a joint distribution of data to two marginal distributions, but

this has not been explored in this work. Alpha-hulls are arbitrarily defined by the

choice of parameter, while the convex hull is well defined for a set of points, making

the convex hull a more firm concept to work with. An alpha-hull (or alpha-shape)

may be thought of as a straight-line graph which captures the ‘shape’ of point sets.

Ratio of confidence region to bounding rectangle

Perhaps the most direct way to assess the bivariate distribution of quantitative data

is to produce a kernel density estimate. We can extract from this density estimate
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what Geisser (1993) refers to as a ‘confidence region for future observations’ for the

data in the two-dimensional projection and substitute this for the convex hull in the

ratio described previously, giving the ratio

area of confidence region

area of bounding rectangle
(4.5)

of which small values indicate an advantage to using the bivariate plot. It is pos-

sible to produce two-dimensional confidence regions in R using the hdrcde package

(Hyndman et al., 2013).

Scagnostics

Scagnostics (Tukey and Tukey, 1985; Wilkinson et al., 2005; Wilkinson and Wills,

2008), or scatterplot diagnostics, are numeric values describing specific attributes of

a scatterplot. While scagnostics do not fit neatly into the ratios described before,

they certainly have potential for assessing bivariate relationships for the same pur-

pose of avoiding extrapolations. They have descriptive names like Stringy, Clumpy

and Convex. These measures are already scaled to the unit interval by their con-

struction, and can be useful in assessing the advantage of a scatterplot over two

histograms in avoiding extrapolations. Scatterplots which score highly on Skinny,

Stringy, Monotonic or Clumpy would be good candidates for predictor pairings in

condition selector plots, because these are the kinds of bivariate patterns which

might be obscured in univariate visualisations. Scagnostics are implemented in the

scagnostics package (Wilkinson and Anand, 2012) in R.

4.3.5 Implementation: arrangeC

The arrangeC function in condvis implements a default arrangement of conditioning

predictors as discussed in Section 4.3. It relies on the savingby2d function which

implements the bivariate relationship summary values described in the preceding

sections. The predictors are paired in a greedy fashion until less than two predictors

remain. If there are a large number of observations (say more than 20, 000 observa-

tions on 10 predictors), arrangeC performs its calculations on a sample of the data

to keep computation time on the order of seconds on typical processors. There are

two arguments to arrangeC:

• data A data frame containing observations on the conditioning predictors.

• method Character string describing the pairing criterion for quantitative con-

ditioning predictors as discussed in the preceding sections. "default" uses

the convex hull, "DECR" uses the confidence region, or it can be the name of a

scagnostic measure.

It is difficult to suggest any single best way to organise condition selectors for

all problems, so it is anticipated that users would supply their own ordering or

48



pairings, reflecting domain knowledge or variable importance. For example, with a

motor insurance pricing model, a salesperson may wish to have quick access to the

effect of voluntary excess or engine size (inputs which may be changed) in negotiating

a policy, but may not have any need to understand the effect of age or claims history

(inputs which cannot be changed).

4.4 Difficulties with condition selector plots

4.4.1 Large number of factor levels

Using barplots and boxplots to represent categorical predictors (as in Section 4.2.1)

with a large number of levels is rather difficult. Fifteen or even ten levels would really

start to crowd most instances of these data visualisations, and so make it impractical

to choose sections with these visualisations. As it stands, there is no obvious solution

to this problem, but it would certainly be worth considering collapsing some levels

into each other to reduce the overall number of levels.

4.4.2 Large number of conditioning predictors

Clearly, there are limits to the number of conditioning predictors which can be used

to choose sections interactively. For univariate and bivariate condition selectors,

the limit arises from the number of plots we can fit on the screen. The scatterplot

matrix is further restricted, owing to its rigid square structure. The parallel coordi-

nates condition selector arguably allows the largest possible number of conditioning

predictors, but it would be very difficult to use with any more than a few dozen pre-

dictors. Whichever condition selectors we use, we can certainly condition on more

predictors than is possible with trellis graphics (Section 2.2).

When the number of conditioning predictors is too large, the only choice left

is to set all elements of xC to reasonable values (mean, mode, median, etc.) and

then proceed to interactively change only the most important predictors, where

importance is very much subject to the opinions and goals of the analyst. This

amounts to essentially taking some conditioning predictors, setting them to a fixed

value, and absorbing them into the intercept of the model.

Another solution is to give up on trying to choose interesting sections interac-

tively, and use the automated approach, detailed in Chapter 5.

4.4.3 Skewed conditioning predictors

Skew is a common problem in data analysis and visualisation. Skew makes it difficult

to simultaneously capture the full range of observed data as well as a detailed view

of the distribution of the data. Condition selector plots are no exception, and can be

rendered quite useless by a few extreme outliers, causing the more interesting parts

of a plot to be compressed into a few pixels. This section offers a few suggestions to
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overcome the problem of skew, although the solution will often need to be tailored

to the specific application.

Logarithm transformations are often used to deal with skewed data as part of the

modeling process, and so this can also solve the problem for condition selector plots.

In tree models, the results are invariant under monotonic transformations of the

predictors, and so logarithm transformations may be used to aid the construction

of good condition selector plots without affecting the fitted model.

The main purpose of this thesis is to create an easily interpreted interface to

fitted models and data spaces. Unless it has specific meaning in the context of the

data, the logarithm transform is not helpful in this endeavour. It may very well

be better to limit the range of the predictors to certain quantiles, for example, the

2.5% and 97.5% percentiles. In this way, the predictor is displayed in its natural

units, ignoring any long tails or extreme values. This is implemented in the plotxc

function in condvis, controlled by the trim parameter. In some cases, it may only be

necessary to remove extreme values from the condition selector plot, but this would

be more difficult to implement in an automated fashion.

Another solution might be to convert the predictor values to ranks for the visu-

alisation, allowing the axis labels to show the actual predictor values.

4.4.4 Interactive arrangement of condition selector plots

Given the discussion in this chapter, it is fair to say that any attempt to objectively

specify a single, effective arrangement of the conditioning predictors for visualisation

will be met by considerable difficulty in general. It seems ideal then to allow the user

to visually/interactively arrange and rearrange the condition selector plots. Due to

the restrictive nature of interactivity in R graphics, this option has not been explored

in this work, but would certainly be worth considering in further work.

4.5 Implementation: ceplot

The ceplot function is one of the main exported functions in the condvis package.

It produces an interactive conditional expectation plot. The user has the option

of using an R graphics device, or a Shiny web application. Within the R graphics

device option, the user can place all graphics on one device, or place the section

on one device with the condition selectors on another device. These options are

set with the type argument. When using the R graphics device, we can alter the

threshold parameter with the ‘,’ (to decrease) and ‘.’ (to increase) keys. In the

Shiny implementation, we can change the threshold parameter with an interactive

slider.

The most important arguments to ceplot are

• data The data frame containing the observed data.

• model A list of model objects to be passed to plotxs (see Section 3.7).
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• response The character name of the response in data.

• sectionvars The character name of the section predictor(s) in data.

• conditionvars The character name of the conditioning predictors in data. If

NULL, an attempt will be made to extract these from a fitted model in model.

• threshold The value for σ as in Section 3.4.2. The default value is 1. Larger

values make the conditioning more approximate, smaller values make the con-

ditioning more strict. Larger values show more data, smaller values show less.

4.6 Simulated data example: Interaction between con-

ditioning predictors and section predictors

This section shows the use of interactive conditional expectation plots on some

simulated data. We do not explore the idea of arranging condition selector plots,

only the advantage of interactive conditional visualisation.

We consider a modified version of the simulated data from Goldstein et al. (2015)

which they use to demonstrate ICE plots (Section 2.5.1), involving a data generating

function with slightly more complex interactions than the original example.

Y =


0.5X1 − 5X2 + ε if − 1 ≤ X3 < −0.5

0.5X1 + |5X2|+ ε if − 0.5 ≤ X3 < 0

0.5X1 − |5X2|+ ε if 0 ≤ X3 < 0.5

0.5X1 + 5X2 + ε if 0.5 ≤ X3 ≤ 1

(4.6)

ε
iid∼ N(0, 1), X1, X2, X3

iid∼ U(−1, 1)

We generate a data set with 2, 000 simulated observations from this process. We fit

the same kind of model to the data as Goldstein et al. (2015), a gradient boosted tree

using the gbm package (Ridgeway, 2013), and produce ICE plots using the ICEbox

package (Goldstein et al., 2016). The code for this example is given in Appendix B.1.

Figure 4.7 shows the marginal view of Y versus X2. The ICE plot in Figure 4.8a

shows sections (thin grey lines) through the fitted model along the X2 predictor

at observed data points. The Partial Dependence Plot (PDP) is the average of

these sections, shown as a thicker line. Goldstein et al. (2015) argue that the ICE

plot demonstrates a shortcoming of the PDP by showing sections through the fitted

model that deviate strongly from the PDP. From the ICE plot, the analyst might

be tempted to conclude that the relationship of Y with X2 (conditional on other

variables) consists of two linear functions, one increasing, the other decreasing. The

centered ICE plot (Figure 4.8b) shows that this is not the case, and demonstrates

that the standard ICE plot may obscure some conditional relationships. A centred

ICE plot is an ICE plot where each section is vertically translated so that the fitted
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Figure 4.7: Scatterplot of Y versus X2.

model equals zero for some specific value of the section predictor (for X2 = −1 in

this case). While the centered ICE plot may highlight a problem with the standard

ICE plot, it does not clearly show the dependence of Y on X2, conditional on X1

and X3. The most direct way to visualise the modeled relationship of Y and X2 is to

condition the ICE plot in Figure 4.8a on X3 as with trellis graphics as in Figure 4.9.

Now, four different effects of X2 are plain to see. We can only produce this trellis

graphic because we know the correct intervals of X3 to condition on, and that we

can safely ignore X1 as having no effect.

We can arrive at a similar level of understanding of the fitted model by using

an interactive conditional expectation plot, without any a priori knowledge of the

data generating process. Figures 4.10 and 4.11 show snapshots from an interactive

expectation plot, taking sections along X2 and conditioning on X1 and X3, where

the modeled effect of X2 is shown clearly, with nearby observed data supporting the

fitted model.

4.7 Chapter summary

This chapter presented an interactive approach to conditional visualisation as pre-

sented in Chapter 3. The approach is to interactively choose sections to visualise,

with the aid of data summary graphics called condition selector plots. Condition

selector plots can be univariate, bivariate, or more generally multivariate, and help

the user to select sections to visualise which are relevant to the observed data.
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(a) (b)

Figure 4.8: (a) ICE plot. (b) Centered ICE plot.

Figure 4.9: ICE plot from Figure 4.8a conditioned on X3 in style of trellis.
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Figure 4.10: Conditional expectation plot. The left panel shows a section in data

space. The upper-right panel shows the section in the space of conditioning predic-

tors. From Code Snippet 4.1.
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Figure 4.11: Conditional expectation plot. From Code Snippet 4.1.

54



library("condvis")

library("gbm")

load("interaction-workspace.rda") # from script in Appendix B.1

## Visualise sections along X2.

ceplot(data = dat, model = list(gbm = model), response = "Y", sectionvars =

"X2", threshold = 0.5, xcplotpar = list(cex = 0.2))

Code Snippet 4.1: Code to produce interactive conditional expectation plot to ex-

plore gradient boosted model trained on simulated data. Related visualisations in

Figures 4.10 and 4.11.
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Chapter 5

Choosing sections in advance

5.1 Introduction

This chapter presents an automated approach to implementing the conditional visu-

alisation described in Chapter 3, whereby all of the sections to visualise are chosen in

advance, and then visualised one after the other. This method is called a conditional

tour, named for its similarity in concept to projection tours (Asimov, 1985; Cook

et al., 1995). Whereas a projection tour moves through projections of the data, the

conditional tour moves through sections in data space. This method is especially

useful when there are many predictors, or categorical predictors with many levels;

essentially when it is difficult to choose sections interactively as in Chapter 4.

This chapter shows one example of a conditional tour with some simulated data,

deferring the real data applications to Chapter 6.

Chapter goal

The goal of this chapter is to introduce an automated method of implementing the

conditional visualisation technique described in Chapter 3. The focus will be on

sensible ways to automate the choice of a sections, and ordering them so that they

may be visualised in a meaningful or convenient way.

Chapter outline

Section 5.2 describes the conditional tour, the main concept of this chapter. Sec-

tion 5.3 describes the path, the sequence of sections which are the main input to

the conditional tour. Section 5.4 briefly discusses how to visualise the conditional

tour. Section 5.5 describes some basic diagnostic plots that can be used to assess

the usefulness of a given conditional tour configuration. Section 5.6 gives a brief

overview of the software implementation of the conditional tour. Section 5.7 shows

the use of the conditional tour on some simulated data. Section 5.8 concludes the

chapter with a summary.
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5.2 Conditional tour

The conditional tour involves visualising a number of sections in data space, one

after another. Rather than choosing the section manually, as in Chapter 4, the

sections for a conditional tour are all selected in advance. We give the name path to

the sequence of xC values defining these sections. We may order these sections so

that each section visualised is near the previous section in predictor space. This is

often the case, but not at all necessary. The path may be composed of points which

are in no way meaningfully ordered in the predictor space.

5.3 The path

Let a path be defined by a sequence of points (xCt)
T
t=1 in the space of xC , giving a

sequence of sections in data space. The path is used to guide the tour through the

data space.

In the absence of any other requirements, one of the most desirable aspects of

a section is proximity to observed data. Another useful section to visualise would

be one near points which have a large contribution to the loss function, so problems

with lack of fit might be addressed or diagnosed. Sections which show high model

curvature may be of interest if the analyst is concerned about unstable extrapolations

(see example in Section 6.2).

The remainder of this section suggests some different ways of selecting sections

to form a path in predictor space for the conditional tour.

5.3.1 Path from clustering

A path derived from a clustering analysis allows the conditional tour to visit the

parts of the predictor space where observations are located. It is important to note

that we are not trying to identify actual clusters in the data. Consider two k-means

(MacQueen, 1967) clusterings, one with k equal to 1 and another with k equal to

the number of observations. If we visualise a section at the single centroid from the

first clustering, it is unlikely to represent the entire data space well. If we visualise

a section at every single observation, we are sure to see every section near observed

data, but we may have to compute hundreds of thousands of sections! It seems

reasonable then to use a clustering with 10-100 clusters, so that a large proportion

of the data will be visited by the conditional tour, while keeping computation within

feasible limits. It is worth noting that this approach can result in singleton clusters,

and so it would be prudent to check the clustering and remove very small clusters

before forming a path with the cluster centroids.

To produce a path from a clustering analysis, we first perform the clustering

analysis, and then order the cluster centroids (or whatever data points are chosen

to represent clusters). The methods mentioned here are suggestions. The field of
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clustering is vast and diverse, and there may be many other methods of clustering

data suited to the purpose of forming a path for the conditional tour.

Clustering quantitative data

For quantitative data, the path is chosen by first standardising and clustering the

data in the space of xC using k-means (MacQueen, 1967). The centroids of these

clusters are guaranteed to be within the convex hull of the data, and so make for

reasonable candidate locations for visualising sections. Theorem 2.2 from Rockafellar

(2015) states that a subset of Rn is convex if and only if it contains all the convex

combinations of its elements. A convex combination is defined as a vector sum with

non-negative coefficients which sum to 1. A centroid of any cluster is a convex

combination of the data, and hence must be within the convex hull of the data. By

the same argument, line segments joining the cluster centres must also be contained

within the convex hull of the data, so we can linearly interpolate between the centres

without going outside the convex hull.

Clustering categorical and mixed data

Clustering categorical and mixed categorical and quantitative data can be accom-

plished with a general dissimilarity measure and a method for clustering which

operates on a distance matrix. An example of this is partitioning around medoids

(Kaufman and Rousseeuw, 2009) using the Gower (1971) dissimilarity coefficient. A

full discussion of clustering for categorical and mixed data is beyond the scope of

this work.

Ordering cluster centroids

The cluster centroids are then ordered using a seriation algorithm to find the short-

est path through the centroids —dendrogram seriation (Earle and Hurley, 2015) is

used here, implemented using the DendSer package (Hurley and Earle, 2013). The

path is made by joining the ordered centroids with line segments. For a practical

choice of path, we may take a sequence of evenly spaced points along each each

line segment. For quantitative predictors, this means linear interpolation, and for

categorical predictors, we simply transition from one category to the next at the

midpoints on the linear scale.

Cluster centroids could also be ordered by number or density of observations in

the clusters, or indeed a combination of shortest path while putting larger clusters

as early as possible. See the ‘lazy path length’ in Earle and Hurley (2015) for an

example of a path cost function combining path length and a second criterion.
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Implementation: makepath

The makepath function in condvis provides a path for a conditional tour from cluster

centres, as described in the previous paragraphs. The most important inputs are

• x A data frame containing the observed data, typically the columns of the

conditioning predictors. Can contain numeric as well as factor types.

• ncentroids The integer number of cluster centroids to use.

5.3.2 Path from interesting observations

Another option for choosing sections to visualise is to select interesting observations;

for example, observations with large contributions to a loss function. Taking a

section along a predictor through a poorly fit observation allows us to see if it is

feasible to make adjustments to the model’s treatment of the section predictor to

improve the fit. We can examine the observed data near the section to see if there

is a pattern that the fitted model is missing, or if the poorly fit observation is just

difficult to fit. See Section 6.4 for an example of a conditional tour with a path from

poorly fit observations.

5.4 Visualising the tour

An obvious way to visualise a conditional tour, as with the grand tour (Asimov,

1985), is to produce an animation. This can be achieved by simply visualising the

sections one after the other. Animation is not easily implemented in R at the time

of writing, so this option has not been explored for this thesis.

The conditional tour can also be explored interactively, where instead of advanc-

ing the tour by time, the user can advance or reverse the tour at will. For ease of

implementation, the conditional tour provided by condvis is controlled interactively.

5.5 Basic diagnostics

Three basic diagnostic plots are used to monitor aspects of the conditional tour.

• Plot of decile of maximum similarity weight (k) attained versus proportion of

data. This plot is used to see what proportion of the data has been ‘ignored’

by the conditional tour. This is achieved by observing the proportion of data

whose maximum k never exceeds the visibility threshold. See the upper panel

of Figure 5.1 for an example of this diagnostic plot.

• Plot of approximate proportion of observations currently visible. This plot is

used to give an overall impression of how exact or approximate the conditioning

is. The approximate proportion of observations visible is calculated as
∑
ki/n.

If the number is near 1, the conditional tour does not provide any improvement
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over a basic marginal visualisation. If the number is too close to 0, no data

can be seen on the section. In either case, the path or weighting function or

both may need to be altered. See the lower panel of Figure 5.1 for an example

of this diagnostic plot. The vertical line in the plot shows the current position

of the conditional tour along the path.

• Data summaries of the conditioning predictors to show current values of xC .

These are the same kind of plots as the condition selectors in Section 4.2.1,

and shown in Figure 4.1.

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
4

0.
8

max k attained

pr
op

or
tio

n 
of

 d
at

a

●

●

●

●

●

●

●

●

●

●

●

0 10 20 30 40 50

0.
02

0.
06

0.
10

0.
14

Path index

su
m

 o
f k

/n

Figure 5.1: Diagnostic plots for conditional tour. The upper panel plots the propor-

tion of data versus the maximum similarity weight attained. This can be considered

an empirical cumulative distribution function for the maximum similarity weight

given to the observed data. The lower panel plots
∑N

i=1 ki/N versus the path index

of the tour, where ki is the similarity weight for observation i. This shows an ap-

proximate proportion of data visible on each section of the tour. These plots can be

seen in the context of a conditional tour in Figure 5.5.
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5.6 Implementation: condtour

The conditional tour is implemented in the condtour function in condvis. Three

graphics devices are opened when the function is called. One device shows the

current section. A second device shows some diagnostic plots showing how much

observed data is ‘visited’ by the tour (see Section 5.5). A third device shows uni-

variate condition selector plots (as in Section 4.2) which highlight the location of the

current section. The tour is animated by pressing the ‘[’ and ‘]’ keys. The arguments

are quite similar to those of ceplot:

• data The data frame containing the observed data.

• model A list of model objects to be passed to plotxs (see Section 3.7).

• path A data frame describing the path for the tour as described in Section 5.3.

• response The character name of the response in data

• sectionvars The character name of the section predictor(s) in data.

• conditionvars The character name of the conditioning predictors in data. If

NULL, an attempt will be made to extract these from a fitted model in model.

• threshold The value for σ as in Section 3.4.2. The default value is 1. Larger

values make the conditioning more approximate, smaller values make the con-

ditioning more strict. Larger values show more data, smaller values show less.

Figure 5.5 shows a snapshot from a conditional tour on a simulated data set.

5.7 Simulated data example: Correlation in condition-

ing predictors

Consider a data generating process

Y = sin(10X1) +X2 +X3 (5.1)

X1
iid∼ U(0, 1), (X2, X3)

iid∼ MVN(µ,Σ)

µ = (0, 0) Σ =

(
1 0.6

0.6 1

)
with no error component. We create a data set by simulating 500 observations from

this process. Figure 5.2 shows a scatterplot matrix of the data. The scatterplot

matrix shows that the bivariate view of Y versus X1 does not reveal their underlying

relationship, and that some of the variables are positively correlated.

As with the example in Section 4.6, we can try using trellis to reveal conditional

relationships. Figure 5.3 shows a trellis plot of Y versus X1 conditional on X2 and

X3. This plot makes the relationship of Y and X1 clear, but there are two problems

with the choice of shingles arising from the correlation of the conditioning predictors:
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Figure 5.2: Scatterplot matrix of simulated data. The bivariate view of Y and X1

reveals little about their relationship. X2 and X3 are positively correlated.

• Some panels contain very few data points, such as the top-left and bottom-

right panels.

• In an effort to alleviate the problem just mentioned, some of the conditioning

intervals are made very large. This means that different panels on the trellis

plot are representing different amounts of the predictor space, and hence are

difficult to compare.

The conditional tour offers a convenient solution to these problems. We begin by

fitting a support vector machine model with a radial kernel, a flexible model which

can easily handle the sinusoidal shape of the data. We then choose sections to

visualise by the clustering method from Section 5.3; using 15 clusters and 3 evenly

spaced points between each cluster centroid, resulting in 57 sections to visualise.

The resulting path is shown in the space of conditioning predictors in Figure 5.4.

This path gives a number of sections chosen in an automatic fashion, which are all

near some observed data, in contrast to any grid-like approach as in trellis. We

then visualise a conditional tour of sections along X1 using this path. Figure 5.5

shows a snapshot of this conditional tour. The full tour can be seen online at

youtube.com/nsr3edvblnU. The sections in the tour clearly show the relationship of

Y and X1, conditioned on X2 and X3, and each section has a reasonable amount of

observed data nearby. We confirm this from the diagnostic plot of
∑
ki for the tour

(bottom-right panel of Figure 5.5), which shows a minimum value of around 5% of

the data. The code for this example is in Code Snippet 5.1.
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Figure 5.3: Trellis plot of Y versus X1 conditional on X2 and X3. The relationship

of Y and X1 is made clear, but some panels lack data, and some panels represent

very large intervals on the conditioning predictors (represented by the bars in the

margins of the plot).
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Figure 5.4: Path visualised in space of conditioning predictors. Filled circles are

cluster centres, and the lines show the ordering and interpolation. The start and

end points for the tour are rather arbitrary in this case. The red cross shows the

point along the path giving the snapshot in Figure 5.5. Path from Code Snippet 5.1.
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library("e1071")

load("correlated-workspace.rda") # from script in Appendix B.2

## Choose a path, the sections to visualise.

set.seed(746182481)

path <- makepath(x = d[, c("x2", "x3")], ncentroids = 15)

## Visualise sections along X1 with a conditional tour.

condtour(data = d, model = list(svm = model), path = path$path, response = "y",

sectionvars = "x1")

Code Snippet 5.1: Code to visualise conditional tour on simulated data. The path

is shown in Figure 5.4, and a snapshot of the conditional tour is in Figure 5.5.

5.8 Chapter summary

The conditional tour is the automated approach to visualising sections as described

in Chapter 3. Sections to visualise may be selected in advance either by clustering

the data and travelling from centroid to centroid, or by picking sections at interesting

observations. The sections may be ordered and then visualised one after the other.

This can be implemented using interactivity, animation or a combination of both.
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Figure 5.5: Snapshot of conditional tour. The left panel is a section in data space. The middle panel shows the current section in the space

of conditioning predictors. The right panels are diagnostic plots. The upper-right panel shows how much of the data is visited by the tour. A

high level of max(k) means that this proportion of data was close to at least one of the sections along the path. The lower-right panel shows

the approximate proportion of data visible on each section, with the current section highlighted by a vertical line. From Code Snippet 5.1.
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Chapter 6

Applications

6.1 Introduction

The conditional visualisation methods described in Chapters 4 and 5 are imple-

mented in the condvis package in R. This chapter presents several applications of

these methods to real data sets. The R code to reproduce the examples is spread

between snippets labelled ‘Code Snippet’ in the text and scripts in Appendix B. In

most cases, the code to fit the models is in the appendix, and the workspaces from

these scripts are loaded by the code snippets in the chapter where the visualisation

code is.

Chapter goal

The goal of this chapter is to demonstrate the use of conditional visualisation in

exploring statistical models using real data.

Chapter outline

• Section 6.2 examines an additive spline model, a radial kernel support vector

machine, and a neural network in a regression setting.

• Section 6.3 looks at a classification problem in six-dimensional space.

• Section 6.4 looks at the use of a gradient boosted tree model with a binary

response.

• Section 6.5 examines an ensemble of gradient boosted tree models applied to

count data with 280 predictors.

• Section 6.6 examines a penalised Bayesian linear regression.

• Section 6.7 presents an example where statistical models are used to explore

a computationally expensive function as found in simulation studies. We can

then learn about the expensive function by applying conditional visualisation

to these models.
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6.2 Power plant data

This example uses conditional visualisation to investigate the differences between an

additive spline model, a radial kernel support vector machine, and a neural network

trained on the same data.

Data

The power plant data from Tüfekci (2014) were collected for the purpose of pre-

dicting full load electrical power output of a power plant. The underlying processes

are well understood, and can be modelled using differential equations —however,

the computation of these differential equations is quite difficult. Tüfekci (2014)

suggests machine learning techniques as an alternative and proceeds to fit several

different ‘black-box’ models. One interesting aspect of the original article is that, in

presenting these complex models to an arguably non-statistical audience, there are

no graphics produced to visualise a predictor effect. The response is power output

(PE), and there are four continuous predictors; ambient temperature (AT), vacuum

pressure (V), relative humidity (RH), and atmospheric pressure (AP). There are 9, 568

observations in total, with no missing values. Figure 6.1 shows a scatterplot matrix

of the power plant data.

Figure 6.1: Scatterplot matrix of power plant data.

Models

We fit three models to the power plant data; an additive spline model (as in (Hastie

and Tibshirani, 1990)), a support vector machine (Smola and Vapnik, 1997) with
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a radial kernel, and a neural network (McCulloch and Pitts, 1943; Widrow and

Hoff, 1960). We fit the additive spline model using the default settings provided

by the gam function in mgcv (Wood, 2015). We fit the support vector machine

using e1071 (Meyer et al., 2014), using epsilon regression with epsilon = 0.4, and

gamma = 0.25. We fit a single-hidden-layer neural network using nnet (Ripley, 2016;

Venables and Ripley, 2002). The network has 30 nodes, and we train the network

with decay = 0.5, stopping training at 300 iterations. These parameter choices

give three models with similar train errors, but not necessarily the best predictive

models. The parameters for the additive spline model are chosen automatically by

penalized likelihood methods within mgcv. The parameters for the support vector

machine and the neural network were then chosen by hand to provide a similar

training error. The code to fit the models is in Appendix B.3.

Visualisation

The fitted model in this example can be considered as a surface in five-dimensional

Euclidean space. This would be rather difficult to visualise directly, but using con-

ditional visualisation we can produce simple, interpretable sections in data space.

Figure 6.2 shows an interactive conditional expectation plot, with a section along

the AT predictor (xS = {AT}, xC ={AP, RH, V}), with all three fitted models shown.

The conditioning predictors have been arranged as in Section 4.3. The observed data

points on the section are coloured according to their similarity weight as defined in

Equation 3.5 (darker if near the section, lighter if further away). The threshold is

set to 0.3 (see Section 3.4). We can see that the fitted models capture the shape

of the data well, and that the models are all quite similar to each other on this

section. Figure 6.3 shows another section along AT from a different part of the

predictor space, where the models exhibit different extrapolation behaviour. Near

this section, the observed data are distributed in a restricted range of AT, and so we

are seeing extrapolations for the fitted models to parts of the predictor space where

no observations have been made. Although the fitted models are quite near each

other in the region near observed data, they are further apart in the region away

from observed data, most notably the kernel support vector machine. This means

we have models that can produce very different predictions for extrapolations to new

cases, despite having similar training errors. This fact is well known to most experts

in statistical modeling, but would certainly not be obvious to the broader range of

end-users of statistical models. A graphic like Figure 6.3 can make this point quite

directly to a non-expert audience. Figure 6.4 shows another section where the fitted

models differ considerably in extrapolation, this time along the AP predictor.

Figure 6.5 shows a three-dimensional section taken along the V and AT predictors

(xS = {V, AT} , xC = {AP, RH}), with the regression surface from the support vector

machine. The residuals are shown in this plot as line segments to give extra context

to the observed data. This graphic allows us to consider the interaction of V and AT
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Figure 6.2: Power plant data. Snapshot from call to ceplot in Code Snippet 6.1.

Section along AT, showing similar model predictions. From Code Snippet 6.1.

given by the model, and certainly this section suggests that the effect of V changes

from relatively flat at high values1 of AT to a pronounced curvature at low values of

AT. This is what the model is telling us, but what is the observed data telling us?

The observed values of V and AT near this section seem to be correlated with each

other, and we can see that most of the observed data are located along a relatively

narrow band across the fitted regression surface in this section. In this way, the

changing curvature that we observe in the fitted model in Figure 6.5 is not directly

supported by nearby observed data, and so might be no more than an artefact

of the model’s underlying kernel smoothing structure. This demonstrates how we

can visualise an interaction on a three-dimensional section, and the importance of

enriching section visualisations with observed data.

Figure 6.6 shows a conditional tour exploring sections along AT throughout the

whole predictor space. From the top-right diagnostic plot in Figure 6.6, we can

see that the tour ignores approximately 20% of the data. From the bottom-right

diagnostic plot, we can see that each sections displays somewhere in the region of

0.5 – 1.5% of the data.

1Please note that the value of AT is increasing from the back to the front of the plot.

69



1000 1020

30
40

50
60

70
80

AP

V

RH
40 60 80 100

0
40

0
80

0
12

00

5 10 15 20 25 30 35

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Conditional expectation

AT

P
E

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●● ●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●
●

●
●

●

●

●
●

●
●

●

●

gam
svm
nnet

Figure 6.3: Power plant data. Snapshot from call to ceplot in Code Snippet 6.1.

Section along AT, showing differing model predictions in extrapolation. From

Code Snippet 6.1.
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Figure 6.4: Power plant data. Snapshot from call to ceplot in Code Snippet 6.1.

Section along AP, showing differing model predictions in extrapolation. From

Code Snippet 6.1.
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library("condvis")

library("mgcv"); library("e1071"); library("nnet")

load("powerplant-workspace.rda") # from script in Appendix B.3

## Look at 2-D sections along AT showing all three models. Change ‘sectionvars‘

## to AP, V or RH to take sections along those predictors.

ceplot(data = powerplant, model = models, response = "PE", sectionvars = "AT",

threshold = 0.3)

ceplot(data = powerplant, model = models, response = "PE", sectionvars = "AP",

threshold = 0.3)

## Look at 2-D sections along AT for the neural network, across the whole

## predictor space using a conditional tour.

set.seed(746182481)

path <- makepath(powerplant[, c("AP", "V", "RH")], ncentroids = 35)$path

condtour(data = powerplant, model = models["nnet"], path = path,

response = "PE", sectionvars = "AT", threshold = 0.5)

## Look at 3-D sections along predictor pairs. Get an impression of 2-way

## interactions for the support vector machine.

ceplot(data = powerplant, model = models["svm"], response = "PE", sectionvars

= c("AT", "V"), threshold = 0.2, view3d = TRUE)

Code Snippet 6.1: Power plant data. Related visualisations in Figures 6.2, 6.3, 6.4,

6.5, and 6.6.
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Figure 6.5: Power plant data. Snapshot from call to ceplot in Code Snippet 6.1.

Three-dimensional section along AT and V. From Code Snippet 6.1.
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Figure 6.6: Snapshot of conditional tour on power plant data. The path is given by k-means clustering, attempting to visit most of the predictor

space occupied by data. The left panel shows a section in data space. The middle panels show the current section in the space of conditioning

predictors. The top-right panel shows how much of the observed data is ‘visited’ by the tour. The bottom-right panel shows approximately

how many observations are near each section given by the path. From Code Snippet 6.1.
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6.3 Wine data

This example uses conditional visualisation to explore a classifier in six-dimensional

predictor space.

Data

The wine data (Aeberhard et al., 1992) are the results of a chemical analysis of

wines grown in the same region of Italy but derived from three different cultivars.

The basic task is to produce a classifier which can take the numeric chemical mea-

surements and identify the correct cultivar. The response is a categorical variable

denoting the cultivar by 3 levels. There are 13 continuous predictors describing the

chemical measurements; alcohol content, malic acid, ash, alcalinity of ash, magne-

sium, total phenols, flavanoids, non-flavanoid phenols, proanthocyanins, colour, hue,

OD280/OD315 of diluted wine, and proline. There are 178 observations, with no

missing values. Figure 6.7 shows a scatterplot matrix of six predictors from the wine

data, with the cultivar shown by colour.

Model

We choose six of the predictors —arbitrarily, to reduce dimensionality for a simpler

discussion— and train three classifiers on the wine data; a support vector machine

(Cortes and Vapnik, 1995) with a radial kernel, a random forest (Breiman, 2001),

and a gradient boosted tree (Friedman, 2001). In each case, we choose the relevant

parameters by 5-fold cross-validation, with the help of the caret package (Kuhn,

2015). The code to fit the models is in Appendix B.4.

Visualisation

It is difficult to comprehend how a classifier assigns regions to different classes in

six dimensions, but visualising this on a two-dimensional section is straightforward

(|S| = 2). We can then use interactive conditional expectation plots to explore

aspects of the fitted models which might be implicitly known by expert statisticians,

but not at all familiar to non-experts. This example does not involve a large number

of observations, so we will concentrate more on examining the behaviour of the

classifiers themselves.

We can see that the support vector machine’s radial kernel gives a classifier

with smooth boundaries, and many spherical shapes intersecting in high-dimensional

space. Figure 6.8 shows a section that we might expect to see from such a classifier.

Figure 6.9 shows some of the more peculiar classification boundaries that can arise

from a radial kernel method in six dimensions. On these sections, the colour of

the circle representing an observation is controlled by its similarity weight as in

Equation 3.5(darker circles near the section, lighter circles away from the section),

and the circle is filled according to the observed value. We might be tempted then
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1
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3

Figure 6.7: Scatterplot matrix of six variables from the wine data. Class of cultivar

is shown by colour according to the legend.

to conclude that an observation whose filled colour does not match the predicted

class is misclassified. This is not necessarily true, since the observation may not lie

exactly on the section, and the classification boundaries may change quite abruptly

across the space of conditioning predictors.

The random forest model (Figure 6.10), on the other hand, makes for more

blocky and square classification boundaries. The boundaries of the random forest

are also quite rough, with small ‘islands’ of a predicted class being separated from

the main region for that class, on some sections through the predictor space. Of

course, these regions may not be disjoint in the full data space, but it is indicative

of rough and complex classification boundaries.

The gradient boosted tree (Figure 6.11) has a similar appearance to the random

forest model, but has smoother class boundaries, owing to the ensembling inherent

in gradient boosting. Looking only at predicted class ignores any uncertainty the

model might have in making its prediction, so it is also useful to look at predicted

class probabilities if the model provides them. We can produce a grid of small bar

charts —similar to embedded plots (Grolemund and Wickham, 2015)— to represent

predicted class probabilities on the section. An example of this is shown for the
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gradient boosted tree in Figure 6.12. This section shows considerable uncertainty in

the predictions for the upper-right part of the section, whereas the predicted class

alone would be 2 on this whole section. Observed data is not shown on this kind of

section, to avoid the graphic becoming too visually ‘busy.’

Figure 6.13 shows a conditional tour of sections along Magnesium and Flavanoids

across the whole predictor space. The top-right diagnostic plot tells us that approx-

imately 20% of the data are ignored by our tour configuration (choice of path and

threshold). We can see this from the top-right panel of Figure 6.13, where the max-

imum similarity weight (ki) attained is zero for 20% of the data. The bottom-right

diagnostic plot tells us that the sections show roughly between 1% and 6% of the

observed data at any given time.

library("condvis")

library("kernlab"); library("randomForest"); library("gbm")

load("wine-workspace.rda") # from script in Appendix B.4

ceplot(data = wine, model = final.svm, response = "Class",

sectionvars = c("Phenols", "Malic"), conditionvars = c("Ash", "Magnesium",

"Alcohol", "Flavanoids"), threshold = 1.2)

ceplot(data = wine, model = final.rf, response = "Class",

sectionvars = c("Alcohol", "Malic"), conditionvars = c("Ash", "Magnesium",

"Phenols", "Flavanoids"), threshold = 1.2)

ceplot(data = wine, model = final.gbm, response = "Class",

sectionvars = c("Alcohol", "Malic"), conditionvars = c("Ash", "Magnesium",

"Phenols", "Flavanoids"), threshold = 1.2)

ceplot(data = wine, model = final.gbm, response = "Class",

sectionvars = c("Alcohol", "Ash"), conditionvars = c("Malic", "Magnesium",

"Phenols", "Flavanoids"), threshold = 1.2, probs = TRUE)

## Visualise sections along Magnesium and Flavanoids for the support vector

## machine across the whole predictor space using the conditional tour.

set.seed(746182481)

path <- makepath(wine[, c("Alcohol", "Ash", "Malic", "Phenols")], ncentroids =

15)$path

condtour(data = wine, model = final.svm, path = path, response = "Class",

sectionvars = c("Magnesium", "Flavanoids"), conditionvars = colnames(path))

Code Snippet 6.2: Wine data. Related visualisations are in Figures 6.8, 6.9, 6.10,

6.11, 6.12, and 6.13. Figure 6.12 uses the additional parameter probs = TRUE.
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Figure 6.8: Wine data. Snapshot from Code Snippet 6.2. Section on the support

vector machine classifier with radial kernel, showing spherical classification bound-

aries.

●

●●

●
●

●

●

●

●●
●

●
● ●

●

●
●

●
●

●

●

● ●
● ●

●

●●

●

●
●

●●

●

●

●

●

●●

●

●

●

●●
●

●
●●●

●

● ●

●
●●● ●

●
●

●

● ●
●

●

●
●

●●

●

●

●

●●

●

●
●

●

●

●

●

● ●
●

●
●

●
●●

●

●

●
●

●
●

●

●

●

●●●
●

●

●

● ●
●

●
●

●●

●

●

●

●
●● ●

●

●
●

●

●

●

●
●● ●
●

●
●

●

●
●

●

●
●

●
●

●

●
●

●
●
●

●

●

●
●

●

●

●

●
●

●
●

●
●

● ●
●●

●●●

●●

●

●

●
●

●

●
●

●
●

●●

●

11 12 13 14

80
10

0
14

0

Alcohol

M
ag

ne
si

um

●
●

●
●

●

●

● ●
●●●

●
●

●●

●
●

●

●

●●

●
●

●
● ●
●

●

●

●

●●

● ●
●

●
●

●
●

●
●

●

●

●
●

●

●
●

●

●
●

●

●

●● ●
●

●
●

●

●
●

●

●

●

●

●

●

●●
●

●

●

●

●

●
●

●

●

●
●

●

●●

●
●
● ●●●●

●
●

●●●

●

●

●

●

●

●

●
●

● ●●
●

●

●
●

●
●●

●●

●
●

●
●

●

●

●

●
●

●

●

●
●

●

●●●●

●● ●●● ●●● ●
●●

●
●

●●

● ●
● ●

●
● ●

●
●

●
●●

●●●●
●

●
● ● ●
●●

●●●●● ●

1.5 2.0 2.5 3.0

1
2

3
4

5

Ash

F
la

va
no

id
s

Class

1
2
3

1.0 1.5 2.0 2.5 3.0 3.5

1
2

3
4

5
6

Conditional expectation

Phenols

M
al

ic

●

●

●

● ●
● ●

●

●

●●

●

●

●●

Figure 6.9: Wine data. Snapshot from Code Snippet 6.2. Section on the support

vector machine classifier with radial kernel, showing peculiar shapes of the classifi-

cation boundaries. Same model as Figure 6.8.
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Figure 6.10: Wine data. Snapshot from Code Snippet 6.2. Section on the random

forest classifier. Note the rough classification boundary.
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Figure 6.11: Wine data. Snapshot from Code Snippet 6.2. Section on the gradient

boosted tree classifier. Note the classification boundaries are smoother than those

of the random forest in Figure 6.10, where the section is in the same part of data

space.
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Figure 6.12: Wine data. Snapshot from Code Snippet 6.2. This section shows the

actual predicted class probabilities from the gradient boosted tree classifier on a

section by setting probs = TRUE. The predicted class probabilities in the upper-

right part of this section suggest uncertainty in the class prediction.
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Figure 6.13: Snapshot of conditional tour on wine data. The path is given by k-means clustering, attempting to visit most of the predictor

space occupied by data. From Code Snippet 6.2.
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6.4 Credit card defaults data

This example uses conditional visualisation to explore a gradient boosted tree model.

Data

Yeh and Lien (2009) present a comparison of data mining techniques on credit card

defaults data. We use the data for an example of a moderately sized machine learning

exercise, with 30, 000 observations on 23 predictors describing gender, marital status,

education, age and various measures of payment history on an account. Defaults are

given by a binary response (default = 1), but the probability of default is of primary

interest in risk management, rather than classification. We hold out 8, 000 cases at

random for testing, and train a model on the other 22, 000 cases.

Model

We train a gradient boosted tree (Friedman, 2001) on 22, 000 cases from the credit

card data. We set the parameters for shrinkage, minimum observations in a node,

and the interaction depth to reasonable values and choose the number of boost-

ing iterations by 5-fold cross validation. The final model is trained using the

gbm package (Ridgeway, 2013), with 402 boosting iterations, shrinkage = 0.03,

interaction.depth = 4, n.minobsinnode = 10, and bag.fraction = 0.7. This

gives a model that achieves a logarithmic loss2 of 0.4162 on the training data, and

0.4258 on the 8, 000 test cases that we held out. The code to train the gradient

boosted model is in Appendix B.5.

Visualisation

First, we apply a jitter to the binary response in order to alleviate overplotting

when visualising a large number of observations. It is difficult to explore this high-

dimensional predictor space by manually choosing sections, hoping that observed

data may be nearby. This is a symptom of the well-known curse of dimensionality.

Figure 6.14 shows an interactive conditional expectation plot, exploring the twenty

most important predictors (where importance is given by the gbm package, using

the reduction in the total loss function attributable to each predictor). While it

is easy to interpret the model with this graphic, it is difficult to find sections near

observed data, both because of the high-dimensionality of the predictor space and

the strong skew of some of the conditioning predictors. Indeed, Figure 6.14 shows

no observations nearby.

As an alternative way to explore the space, we use a conditional tour (Section 5)

which visits some of the worst fit observations and see how the model is failing

2Logarithmic loss (abbreviated to logloss, and equivalent to cross entropy) is a loss function

used in binary classification problems, defined as − 1

n

∑
i [yi log(pi) + (1− yi) log(1− pi)], where

yi ∈ {0, 1} is the observed class, and pi ∈ (0, 1) is the predicted class probability.
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in these situations. Figure 6.15 shows a snapshot of such a conditional tour. The

poorly fit observation in this case is a default which was assigned a low probability of

default. There are around 100 observations near this section (see bottom-right panel

of Figure 6.15, the vertical blue line gives the current section, and 0.005n ≈ 100 ),

many of which are defaults. The nearby observed data do not suggest that a different

curvature for the this section predictor could improve the fit to the data, rather that

we need to look along some other dimension to separate these cases. The code for

these visualisations is in Code Snippet 6.3.

library("condvis")

library("gbm")

load("creditcard-workspace.rda") # from script in Appendix B.5

train$default <- jitter(train$default, amount = 0.05)

## Take a 2-D section on the most important predictor, conditioning on the

## next 14 most important predictors.

ceplot(data = train, model = list(gbm = model), response = "default",

sectionvars = varimp[1], conditionvars = varimp[c(2:15)], view3d = TRUE)

## Tour through sections taken on the same predictors, at the locations of the

## worst fit observations, according to log loss contribution.

logloss.order <- order(logloss.contrib.train)

condtour(data = train, model = list(gbm = model), path = train[logloss.order[

1:30], varimp[2:15]], response = "default", sectionvars = varimp[1],

conditionvars = varimp[2:15], view3d = TRUE)

Code Snippet 6.3: Credit card data. Related visualisations in Figures 6.14 and 6.15.
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Figure 6.15: Snapshot of conditional tour on credit card data. The tour allows us to locate interesting sections; in this case, a section through

a poorly fit observation. The left panel shows a section in data space. The middle panels show the section in the space of conditioning

predictors. The top-right panel is not of much interest here, as we are not trying to explore the whole data space. The bottom-right panel

shows approximately how many observations are near each section. Many of these poorly fit observations are clearly isolated, but some have a

large number of other observations nearby, as can be seen from the peaks in the bottom-right panel. From Code Snippet 6.3.
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6.5 Blog comments data

This example uses conditional visualisation to explore an ensemble of gradient

boosted tree models trained on a large data set.

Data

Buza (2014) presents an application of machine learning to the prediction of blog

feedback. The original task of interest is to predict the number of comments a blog

will receive in the next 24 hours (relative to the base time, when measurements are

taken).

There are 52, 397 observations on 280 predictors, which are described by Buza

(2014) as follows.

• 62 basic features – number of links and feedbacks in the previous 24 hours

relative to base time; number of links and feedbacks in the time interval from

48 hours prior to base time to 24 hours prior to base time; how the number of

links and feedbacks increased/decreased in the past (the past is seen relative

to base time); number of links and feedbacks in the first 24 hours after the

publication of the document, but before base time; aggregation of the above

features by source.

• 200 textual features – measuring occurrence of a pre-determined bag of words.

• 14 weekday features – binary indicator features that describe on which day of

the week the main text of the document was published and for which day of

the week the prediction has to be calculated (i.e., the base time).

• 4 parent features – a blog post P is a parent of blog post B, if B is a reply

(trackback) to blog post P. Parent features are the number of parents, mini-

mum, maximum and average number of feedbacks that the parents received.

Models

Rather than addressing the original prediction problem for number of comments, we

train a classifier ensemble for the simpler task of predicting the probability of there

being any comments on a blog over the next 24 hours. The code for training these

models is in Appendix B.6.

We first create a new binary response variable which is 1 if there are any com-

ments, and 0 otherwise. We split the training data into 5 randomly selected folds,

and train 5 boosted tree models with a logarithmic loss objective function, holding

out one fold each time. We set the shrinkage (0.03), interaction depth (6), minimum

number of observations in a node (1), and other parameters to reasonable values,

and choose the number of boosting iterations for each model which produces the best

logarithmic loss on the held-out fold. Rather than fitting another boosted model
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with the number of iterations chosen from these models, we directly ensemble these

models by taking an equally weighted mean of their predictions. The final result

is a model ensemble giving predicted probability of there being any comments on a

blog. This is called a cross-validated committee by Parmanto et al. (1996).

The gradient boosted tree models for this example are trained using the xgboost

package (Chen et al., 2016b), which provides an interface to the XGBoost library

(Chen and Guestrin, 2016). The XGBoost library provides fast, efficient boosting

algorithms which have become very popular amongst competitors in open machine

learning competitions such as those run by Kaggle (www.kaggle.com) or Numerai

(numer.ai).

In order to clarify, we are not considering the boosted models as ensembles,

though they are indeed ensembles of trees themselves.

Visualisation

We can visualise the entire ensemble directly on a section along a single predictor

(as discussed in Section 7.3). We apply a jitter to the binary response in order to

alleviate overplotting when visualising a large number of observations. Figure 6.16

shows a section along the most important predictor (according to the measure of

variable importance provided by xgboost, using frequency in trees and logloss im-

provement). It is easy to visualise the ensemble as individual curves on this section,

using colour to identify each model. The modelled effect of predictor V52 (number

of comments received in the last 24 hours) is easy to interpret on this section. For

V52 = 0 the predicted probability of any comments in the next 24 hours is around

0.2, with the predicted probability increasing to a plateau of around 0.8 for values

of V52 above 20. Further to this, we can see that the five models from our cross-

validated committee are essentially giving the same effect shape on this section, with

some variability.

Figure 6.17 shows a similar section to Figure 6.16, but this time we have added

the average ensemble prediction. This visualisation really shows the value of en-

sembling on the level of predictor effects. Clearly, these models have returned fitted

predictor effects with substantial variability, even for the most important predictor,

and so it makes sense to ensemble their predictions.

As with the example in Section 6.4, some of the conditioning predictors are

rather skewed, so the basic condition selector plots are not easy to use in this case.

There are a large number of observations, so we prefer two-dimensional histograms

to scatterplots for the condition selectors. Due to the skew present in many of the

conditioning predictors, we must also be careful to choose sensible bins and colouring

for the two-dimensional histogram. We achieve this by capping the observation

counts for the bins with the fullbin parameter that is passed to plotxc. This loses

some information regarding the precise density of observations in areas with a high

density of observations, but allows us to see areas of low density more easily.
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Figure 6.16: Blog data. Snapshot from Code Snippet 6.4. We visualise the model

ensemble directly on the section, with a single curve for each model in the ensemble.
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Figure 6.17: Blog data. Snapshot from Code Snippet 6.4. On this section, we show

the ensemble prediction with a thick black line. We can clearly see the value of

ensembling here, with such broad model disagreement.
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library("condvis")

library("xgboost")

load("blog-workspace.rda") # from script in Appendix B.6

train$target <- jitter(train$target, amount = 0.05)

ceplot(train, classifiers, "target", varimp$Feature[1], varimp$Feature[2:10],

threshold = 0.6, xcplotpar = list(fullbin = 10), xsplotpar = list(xlim =

c(0, 50)))

model.colours <- c(rep("gray", length(classifiers)), "black")

model.lwd <- c(rep(1.5, length(classifiers)), 4)

ceplot(train, ensemble, "target", varimp$Feature[1], varimp$Feature[2:10],

threshold = 0.6, xsplotpar = list(xlim = c(0, 50)), modelpar = list(col =

model.colours, lwd = model.lwd), xcplotpar = list(fullbin = 10))

Code Snippet 6.4: Blog data. Related visualisations in Figures 6.16 and 6.17.

6.6 Prostate data

This example looks at a penalised Bayesian linear regression, applied to data con-

cerning prostate cancer. This is a straightforward example, and mainly serves to

demonstrate how the conditional visualisation in this thesis extends to a Bayesian

model involving MCMC samples from the posterior distribution (see Section 3.3.3).

In this way, we can visualise Bayesian models alongside classical models in data

space.

Data

The prostate data (Stamey et al., 1989) are used to demonstrate variable selection

and shrinkage methods by Hastie et al. (2009). The goal is to predict the log of

prostate specific antigen (lpsa) from a number of clinical measurements. There are

97 observations on 9 clinical measurements.

Model

We apply Bayesian inference to a penalised linear regression model for the prostate

data, preferring MCMC sampling in order to demonstrate visualisation of models

described by posterior parameter samples. We use Stan (Stan Development Team,

2015) for the MCMC sampling, via the rstan package (Stan Development Team,

2016). We set up a ridge regression model as per the Stan manual, and take samples

with the ridge parameter set to three different values —0.5, 15, and 50. The code

to perform this analysis is in Appendix B.7.
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Visualisation

As mentioned in Section 3.3.3, we need to give special consideration to the visuali-

sation of a fitted model which is defined by a sample from the posterior distribution

of its parameters. In R, this means we need to construct a wrapper object with its

own predict method, so that it behaves like other standard model objects. For this

example, we follow the style of an lm object, providing posterior sample medians

instead of expected values, and 2.5% and 97.5% posterior sample percentiles instead

of a 95% confidence interval.

Figure 6.18 shows a section through one of the penalised regression models, with

the ridge parameter set to 0.5 (i.e., not shrinking the parameters very much). The

posterior distribution of the expected value of lpsa is summarised by sample medians

and 2.5% and 97.5% percentiles. Figure 6.19 shows a similar section to Figure 6.18

with two more models with the ridge parameter set to 15 and 50 respectively. We can

see that increasing the ridge parameter (changing our prior on the other parameters)

reduces the magnitude of the modelled effect from the posterior distribution, while

also reducing the variance of the posterior distribution.

## Create object containing posterior parameter estimates. The ‘stanpred’ class

## allows us to create our own predict method, and ‘custompred’ lets ceplot

## know that it can look for confidence intervals in the style of predict.lm.

stanobj <- structure(beta.postsample, class = c("stanpred", "custompred"))

predict.stanpred <- function (object, newdata, interval = "none", ...){

## Create design matrix. ‘f‘ is a formula object assumed to be in the global

## environment here.

newx <- model.matrix(f, data = newdata)

## Make posterior samples for the response.

y <- newx %*% t(object)

## Return fits like predict.lm, replacing means with medians and confidence

## intervals with sample quantiles.

if (identical(interval, "none")){

out <- apply(y, 1, median)

} else if (identical(interval, "confidence")){

out <- data.frame(

fit = apply(y, 1, median),

lwr = apply(y, 1, quantile, 0.025),

upr = apply(y, 1, quantile, 0.975)

}

out

}

Code Snippet 6.5: Custom predict method for MCMC samples from posterior of a

Bayesian linear model. This is a simplified version of the predict method used for

the prostate data, which can be found in Appendix B.7.
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Figure 6.18: Prostate data. Section showing Bayesian ridge regression model with

shrinkage parameter set to 0.5. The solid line is the posterior sample median on the

section, and the broken lines are the 2.5% and 97.5% posterior sample percentiles.

From Code Snippet 6.6.
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Figure 6.19: Prostate data. Section showing Bayesian ridge regression models with

shrinkage parameters 0.5, 15 and 50. Larger shrinkage parameters flatten the slope

and reduce the variance of the posterior distribution. The solid lines are posterior

sample medians on the section, and the broken lines are the 2.5% and 97.5% posterior

sample percentiles. From Code Snippet 6.6.
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library("condvis")

load("prostate-workspace.rda") # from script in Appendix B.7

ceplot(data = prostate, model = models[1], response = "lpsa", sectionvars =

"lcavol", conf = TRUE, threshold = 2)

ceplot(data = prostate, model = models, response = "lpsa", sectionvars =

"lcavol", conf = TRUE, threshold = 2)

Code Snippet 6.6: Prostate data. Related visualisations in Figures 6.18 and 6.19.
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Figure 6.20: Traded prices for an asset across one day at one second intervals.

6.7 Trading strategy data

This example presents an application of conditional visualisation which is slightly

different to the previous examples. The data we are considering represent the output

and inputs to some complex computer simulation, and so by using conditional visu-

alisation in that data space, we can explore the effect of the simulation parameters

on the simulation outcomes.

We address a situation where a statistical model is used to explore a computa-

tionally expensive simulation which is given by a deterministic algorithm (see, for

example, the discussion by Chen et al. (2016a)). The basic problem is that of under-

standing (with a view to optimising) a function which is computationally expensive

to calculate.

For illustration, we consider the assessment of a financial trading strategy based

on a simulation of that strategy on a single day of one-second quote and price data.

For a quick view of some of the underlying raw data, Figure 6.20 shows the full time

series of traded price data for one day.
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Figure 6.21: Trellis plot of sharpe versus window, conditioned on PL and BAlim.

Circles are simulation results, lines are for illustration. The vertical axis is the same

in each plot. Some negative Sharpe ratios and large positive Sharpe ratios are not

visible.

Data

The data for this example are the result of a simulation which is described in Ap-

pendix A, where the reader may also find a glossary of financial terms. The response

is Sharpe (1994) ratio (sharpe) which is a measure of return controlled for variabil-

ity of return. There are 3 predictors, the input relating to opening trades (BALim),

the time window over which to calculate a moving average of BA (window), and the

input relating to closing trades (PL). We run the simulation on a three-dimensional

grid of these input values to create the response. For more information on the

predictors and the simulation, refer to Appendix A. There are 456 observations, 7

of which have missing responses. We simply ignore the missing responses, which

represent situations where simulated trades were not closed.

Figure 6.21 shows a trellis plot of sharpe versus window, conditional on BALim

and PL. These positive Sharpe ratios suggest that the strategy has some ‘edge’ on

this trading day, but not very much. The Sharpe ratios do not look particularly

stable across any of the inputs, but there is some promise there, for example, for

window between 1500 and 2500, with PL = 0.15 and BAlim = 0.10.
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Model

Gaussian processes (Williams and Rasmussen, 1995) are a popular way to model

the output of computer simulations. These models are based on the assumption

that nearby observations convey information about each other. This is a reasonable

assumption in modelling the output of a trading strategy simulation, in that small

changes in the inputs most often result in small changes of the output.

We fit a Gaussian process to the simulation output data using the gausspr

function from kernlab (Karatzoglou et al., 2004, 2016). The code for training this

model is in Appendix B.8.2.

Visualisation

We now have a data set consisting of observed simulation outcomes in the input

space of the trading strategy, and a fitted model which can be used to predict

simulation outcomes in other parts of the strategy input space, at a much lower

computational cost than running the simulation again – fractions of a second for the

model, on the order of minutes for the simulation. The model not only allows us to

make predictions, but by using conditional visualisation, we can also try to directly

interpret the effects of the parameters on the simulation outcome.

Figure 6.22 shows a section along the window predictor taken between observed

data points (grid points with evaluations from the simulation (xS = {window}, xC

= {BAlim, PL}). The Gaussian process model here is telling us that sharpe may be

increasing with increasing window, but the curvature is complicated, showing two

peaks across the range of window. There are certainly no quick and easy conclusions

to draw from this kind of section visualisation, but the observed data nearby in the

predictor space seem to support the fitted model.

A three-dimensional section allows us to consider two-way interactions. Fig-

ure 6.23 shows a section along BAlim and PL (xS = {BAlim, PL}, xC = {window}).
The fitted model on this section suggests very little interaction between BAlim and

PL, and the nearby observed data support the model quite well in this case (in

contrast with the power plant example in Figure 6.5).
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library("condvis")

library("kernlab")

load("trading-workspace.rda") # from script in Appendix B.8.2

ceplot(data = dat, model = list(gp = gp_wrapper), response = "sharpe",

sectionvars = "window", threshold = 0.8)

ceplot(data = dat, model = gp_wrapper, response = "sharpe", sectionvars =

c("BAlim", "PL"), view3d = TRUE, threshold = 0.3)

Code Snippet 6.7: Trading strategy data. Related visualisations in Figures 6.22 and

6.23.
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Figure 6.22: Snapshot from Code Snippet 6.7. Conditional expectation plot showing

a section through a Gaussian process fit to the trading strategy data. We can

interpret the modeled conditional effect of window quite simply on a two-dimensional

section, although it is not telling us much useful here! The section shown here is

taken in between two actual simulation runs, as shown by the condition selector plot

on the right.
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Figure 6.23: Snapshot from Code Snippet 6.7. Conditional expectation plot showing

a three-dimensional section through a Gaussian process fit to the trading strategy

data. A three-dimensional section allows us to investigate the modeled interaction

of BAlim and PL, if any.
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Chapter 7

Visualising model ensembles

7.1 Introduction

Model ensembles are of great importance in modern statistical learning (see, for

example, the discussion by Rokach (2010) or Dietterich (2000)). From gradient

boosted models to Bayesian model averaging, ensembling can provide a practical

approach to variable selection, reduced bias, and improved out-of-sample predictions.

The preceding chapters focus on producing conditional versions of response ver-

sus predictor plots. This chapter looks at more abstract visualisations involving

residuals from an ensemble of different models.

Chapter goal

This chapter discusses the use of conditional visualisation on ensembles of fitted

models. The goal of ensemble visualisation is to discover the basic behaviour of a

model ensemble: Are the models telling us the same thing? Are some observations

fit poorly by all models, and hence perhaps difficult to fit? The message of the

chapter is that conditional visualisation can be used to reveal detail anywhere that

individual observations are the input to the visualisation.

Chapter outline

Section 7.2 discusses a small selection of research articles that address visualisa-

tion for model ensembles. Section 7.3 discusses the direct visualisation of a model

ensemble in the data space. Section 7.4 discusses the application of multivariate

visualisation to data derived from a model ensemble. Section 7.5 concludes the

chapter with a summary.

7.2 Literature

Unwin et al. (2003) apply multivariate visualisation – specifically, parallel coordi-

nates plots (Inselberg and Dimsdale, 1990) – to data arising from model ensembles.
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The data take the form of parameter estimates or residuals.

A ridge trace plot (Hoerl and Kennard, 1970) visualises the parameter estimates

from an ensemble of models resulting from fitting penalised linear regressions across

a range of values for the penalty parameter. Friendly (2013) applies multivariate

visualisation to the parameter estimates from this same model ensemble, using both

scatterplot matrices and dimension reduction by principal components, as well as

visualising the covariance of parameter estimates.

Wickham et al. (2015) provide a broad discussion of model visualisation and point

out the advantage of considering model ensembles over single models. They refer to

the idea of visualising a model in data space, which is the approach taken in the other

chapters of this thesis. It is also feasible to visualise models in parameter space, or

residual space, as mentioned in Section 7.4. In this thesis, we make plots conditional

on regions of data space, so we only consider model ensemble visualisations that

involve plotting values relating to individual cases (e.g., fitted values or residuals)

rather than parameter values.

7.3 Direct visualisation of a model ensemble in data

space

If we are only interested in the effect of a single predictor, we can visualise a model

ensemble directly in data space as described in Chapters 3, 4 and 5. Each model is

represented as a curve, and each curve can be made distinct using colour, line type,

or line thickness. See Figure 7.1 for an example of visualising a model ensemble

directly in data space; three models trained on the power plant data, as introduced

in Section 6.2.

Direct visualisation of model ensembles is far more difficult in the case of two

section predictors (|S| = 2), where we are actually visualising a two-dimensional

projection of the three-dimensional section, and one regression surface can easily

obscure another. Consider the colour map and perspective mesh in Figure 3.3, and

note that a second model would necessarily be ‘in front of’ or ‘behind’ the first model

visualised in these cases. One alternative is to arrange the section visualisations for

each model from an ensemble in a grid as with trellis (see Section 2.2), though this

has not been implemented in condvis at the time of writing.

7.4 Multivariate visualisation of residuals

A typical approach to visualisation for model ensembles is to consider meta-data

relating to the models, for example, a data set containing residuals where rows are

observations with a column for each model in the ensemble.

Friendly (2013) examines the parameter estimates from penalised regressions

(columns are parameter estimates, rows are models given by choice of shrinkage
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Figure 7.1: Direct visualisation of a model ensemble in data space. It is relatively

easy to visualise several models on a two-dimensional section, using colour to identify

the models.

hyperparameter), and employs dimension reduction in order to produce a smaller

number of scatterplots of parameter estimates than the full scatterplot matrix. This

is useful in cases where a model has more parameters than are practical for producing

a full scatterplot matrix of parameter estimates (say ten or more parameters, for

the sake of argument).

One distinct advantage to working with residuals is that they are more compa-

rable across different models than parameter estimates. For example, we can easily

compare the residuals from a linear model to the residuals from a tree model, but

the parameters that make up the respective models cannot be compared directly.

For the purpose of this discussion, we use the residuals from the regression ensemble

fit to the power plant data (Section 6.2) —an additive spline model, a radial ker-

nel support vector machine, and a neural network predicting the power output of

a power plant— and the logarithmic loss contributions from the classifier ensemble

trained on the blog comments data (Section 6.5) —five gradient boosted tree models

which differ mainly in the training and validation data supplied to them, predicting

the probability of there being future comments on a blog.

7.4.1 Conditional visualisation of scatterplot matrix of residuals

Scatterplot matrices of residuals plot a point for each observation, and so can be

made approximately conditional on a part of predictor space in the same way as

the conditional plots in Section 3, using the concept of similarity weight to colour
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observations.

The conditional visualisations presented in this section are not implemented in

condvis at this time, but they could certainly be incorporated in the same framework

as the interactive conditional visualisations presented in Chapters 4 and 5.

Power plant data

Figure 7.2 shows a scatterplot matrix of the residuals from three different models in

a regression setting (power plant data, see Section 6.2). The fact that the points are

all tightly concentrated around a line of slope 1 shows that the three models fit the

data in quite a similar way. Even the most poorly fit observations are all showing

a similar residual for each model (see the long sparse tail of large negative residuals

in the lower-left of each panel in Figure 7.2). It is clear from the scatterplot matrix

that ensembling cannot help to improve predictions on these kinds of observations,

because the models all seem to be agreeing with each other.

Figure 7.3 shows a conditional version of the same scatterplot matrix, showing

only observations near (in predictor space) an arbitrary observation; the first row

of the data (highlighted by a red cross). The distribution of data in this plot looks

slightly different to the full plot in Figure 7.2, suggesting that there is more model

agreement in this part of the predictor space, because the data are more tightly

distributed around a straight line of slope 1. We typically expect these kinds of

bias; for example, we expect there to be more model agreement in parts of data

space with a high density of observations. See Section 6.2 for a further discussion of

this concept. The code for this example is in Appendix B.9.2.

Blog comments data

Residuals are only one example of a measure of contribution to a loss function. We

can also consider more general concepts of residuals. Figure 7.6 shows a scatterplot

matrix of the logarithmic loss contributions of training observations for five boosted

tree classifiers (blog comments data, see Section 6.5). Logarithmic loss contribu-

tion values near zero denote good predictions, with large negative values meaning

over-confident, incorrect predictions. In this situation, it seems there is more model

disagreement than in the previous example, as can be seen by the increased dis-

persion of the points around a line of slope 1. Of course, we cannot take a visual

comparison of plots of residuals with plots of logarithmic loss contributions too se-

riously, as they are measuring different things. All the same, models with lower

correlations between their predictions bode well for ensembling the models in order

to achieve more robust predictions.

Figure 7.6 displays over 50, 000 observations, and so can only reveal some over-

all patterns in the data. Conditional visualisation allows us to reveal extra detail

in this situation. Figure 7.7 shows the same scatterplot matrix, but showing only

observations near (in predictor space) one of the worst fit cases for all models (high-
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lighted by a red cross, with worst meaning the maximum contribution to logarithmic

loss averaged across the models). A reader familiar with the logarithmic loss ob-

jective function will not be surprised by this picture, as this loss function punishes

over-confident, incorrect predictions the most. We see that many of the observations

nearest this poorly fit observation score quite well on logarithmic loss, which is likely

part of the reason for this over-confident, incorrect prediction on the training data.

The code for this example is in Appendix B.9.3.

7.4.2 Conditional visualisation of parallel coordinates plots of resid-

uals

Parallel coordinates plots (Inselberg and Dimsdale, 1990) provide an alternative

way to visualise the same data that a scatterplot matrix can display, and are advo-

cated by Unwin et al. (2003) for visualising the residuals from a model ensemble.

Figures 7.4 and 7.5 show the parallel coordinates versions of Figures 7.2 and 7.3

respectively. Likewise, Figures 7.8 and 7.9 show the parallel coordinates versions of

Figures 7.6 and 7.7, respectively. These parallel coordinates plots demonstrate one

of the great strengths of conditional visualisation —to reveal detail by plotting less

data— because a parallel coordinates plot of a full dataset can be overcrowded with

a lot of overplotting (see Figures 7.4 and 7.8), making it very difficult to see patterns.

By plotting a subset of points and colouring them according to their proximity to

a point in predictor space, the parallel coordinates plots become easier to read (see

Figures 7.5 and 7.9).

7.5 Chapter summary

This chapter briefly discussed the research area of visualising model ensembles. The

conditional visualisation of models as described in the preceding chapters can be

applied directly to model ensembles, as long as the fitted model is represented as a

curve on a two-dimensional section. Conditional visualisation can also be used to

reveal detail in different kinds of plots involving individual observations, for example,

a scatterplot matrix or parallel coordinates plot of residuals from a model ensemble.

Conditional visualisation is particularly useful for parallel coordinates plots where

overplotting is a common problem.
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Figure 7.2: Scatterplot matrix of residuals from a model ensemble; an additive spline

model, a radial kernel support vector machine, and a neural network, trained on the

power plant data from Section 6.2. The horizontal and vertical lines show zero

residuals.

Figure 7.3: Conditional scatterplot matrix of residuals from a model ensemble

trained on the power plant data. The same scatterplot matrix as in Figure 7.2

but showing only observations near (in predictor space) the first observation (the

red cross) in the dataset. The horizontal and vertical lines show zero residuals.
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Figure 7.4: Parallel coordinates plot of residuals from a model ensemble; an additive

spline model, a radial kernel support vector machine, and a neural network, trained

on the power plant data from Section 6.2.

Figure 7.5: Conditional parallel coordinates plot of residuals from a model ensemble

trained on the power plant data. The same parallel coordinates plot as in Figure 7.4

but showing only observations near (in predictor space) the first observation (in red)

in the dataset.
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Figure 7.6: Scatterplot matrix of logloss contributions from a model ensemble; five

gradient boosted tree models trained on the blog data from Section 6.5.

Figure 7.7: Conditional scatterplot matrix of logloss contributions from a model

ensemble trained on the blog data. The same scatterplot matrix as in Figure 7.6 but

showing only observations near (in predictor space) one of the worst fit observations

(the red cross).
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Figure 7.8: Parallel coordinates plot of logloss contributions from a model ensemble;

five gradient boosted tree models trained on the blog data from Section 6.5.

Figure 7.9: Conditional parallel coordinates plot of logloss contributions from a

model ensemble trained on the blog data. The same parallel coordinates plot as in

Figure 7.8 but showing only observations near (in predictor space) one of the worst

fit observations (in red). This observation scores worst on model xgb.5, because it

was in the validation set for that model.
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Chapter 8

Software for interactive graphics

8.1 Introduction

This chapter discusses some of the software options available for creating interactive

statistical graphics, and discusses the choice of R for the implementation of the

graphics presented in this work.

Chapter goal

The goal of this chapter is to describe the software implementation of interactive

graphics in R, which form part of the work of this thesis. The interactive graphics

in this chapter use the same techniques as the interactive graphics in condvis, but

are taken out of the context of conditional visualisation for the sake of clarity. Some

persisting problems with the interactive graphics implementations are mentioned.

Alternative implementations are discussed, and reasons are given for not following

them up.

Chapter outline

Section 8.2 outlines the reasons for choosing R as a development platform. Sec-

tion 8.3 gives an outline of the production of an interactive graphic in R, with Sec-

tion 8.3.6 describing some persisting problems when producing interactive graphics

in R. Section 8.4 discusses some alternative software for interactive graphics; pack-

ages which extend the basic graphical and interactive capabilities of R, including the

use of Shiny, Java, and OpenGL. Section 8.5 concludes the chapter.

8.2 R statistical software environment

The R (R Core Team, 2015) statistical software environment has been used to de-

velop, test and produce all statistical graphics in this work. The choice of R is

primarily based on the fact that it has many open source packages for data analysis,
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and so it seems sensible to create visualisations within the same software that anal-

yses are likely to be performed. The Comprehensive R Archive Network (CRAN)

repository alone hosts 8393 packages (as of May 13th, 2016) implementing a broad

range of computational tasks. R has a base graphics system, which is programmable,

and outputs to either the computer screen or a file. Basic plots in R are not interac-

tive. Clicking on a graphics device typically has no effect. In Windows, right-clicking

a graphics device gives options to copy, save or print the contents of the device.

Work by Duncan Murdoch saw the introduction of getGraphicsEvent and re-

lated functions to the grDevices package in R version 2.1.0, released in April 2005.

These functions provide a simple way to listen for user input (by mouse or keyboard)

to a graphics device. In the decade since, there seem to have been very few published

uses of these functions; some examples are the Association Navigator (Buja et al.,

2010), an interactive graphical tool for exploring large correlation tables, and the

sudoku package (Brahm et al., 2014) which provides a sudoku puzzle solver and gen-

erator. The getGraphicsEvent suite of functions was chosen to provide interactivity

for the graphics in this thesis as it minimised the external software dependencies,

allowing development efforts to focus on the graphics themselves.

The condvis package uses getGraphicsEvent and related functions for inter-

active graphics, and this can be seen in all of the interactive examples in this

thesis. Software alternatives for interactive graphics which were explored but not

used for development are discussed in Section 8.4. The current version of condvis

implements a Shiny version of the interactive conditional expectation plot. See

markajoc.github.io/condvis/example-fev.html for the Shiny version of the condi-

tional expectation plot of the FEV data in Section 1.2.

8.3 Basic interactive graphics in R

The basic process of producing and using an interactive graphic in R with

getGraphicsEvent can be summarised in six steps.

1. Open a graphics device enabled for interactivity.

2. Call a plotting function.

3. Define event handling functions: onMouseDown, onMouseUp, onMouseMove,

onKeybd. These functions handle the user input, and subsequently carry out

any necessary plotting functions.

4. Set event handling functions for device: setGraphicsEventHandlers.

5. Call listening function getGraphicsEvent.

6. Provide user input with mouse or keyboard.

A template for producing interactive graphics in R is provided in Code Snippet 8.1.
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x11() #1

plot.new() #2

mouseclick <- function (buttons, x, y) {...} #3

mouserelease <- function (buttons, x, y) {...}

mousemove <- function (buttons, x, y) {...}

keybdclick <- function (key) {...}

setGraphicsEventHandlers( #4

onMouseDown = mouseclick,

onMouseUp = mouserelease,

onMouseMove = mousemove,

onKeybd = keybdclick)

getGraphicsEvent() #5

Code Snippet 8.1: Template for producing interactive graphics in R. The numbers

correspond to the list in Section 8.3. Note that this is not viable code, rather an

abstract template that could be filled in to produce an interactive graphic.

8.3.1 Examples

This section presents three examples of the type of interactive graphics found in the

condvis package. It is advisable to close other graphics devices before proceeding

with each example.

Example: Interactive histogram

For an introductory demonstration of interactive graphics using getGraphicsEvent(),

we first consider an interactive histogram; a histogram whose bars we can highlight

by clicking with the mouse. The first thing we do is open a graphics device enabled

for interactivity and plot a histogram, saving the output to a variable (Code Snip-

pet 8.2). We can also open a suitable device using the internal opendev function

from condvis. Next, we define an event handling function to define what happens

if (identical(version$os, "linux-gnu"))

x11(type = "Xlib") else x11()

o <- hist(mtcars$mpg)

Code Snippet 8.2: Open a graphics device and draw histogram. For Figure 8.1.

when a mouse button is clicked. This function does three things:

1. If a previous click has been recorded, the previously highlighted bar is erased

with a white bar.
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2. The nearest bar to the mouse click is located.

3. The newly selected bar is highlighted.

mouseclick <- function (object){

index <- NULL

function (buttons, x, y){

if (!is.null(index)){

rect(xleft = object$breaks[index], xright = object$breaks[index + 1],

ybottom = 0, ytop = object$counts[index], col = "white")

}

index <<- which.min(abs(grconvertX(x, "ndc", "user") - object$mids))

rect(xleft = object$breaks[index], xright = object$breaks[index + 1],

ybottom = 0, ytop = object$counts[index], col = "gray")

}

}

Code Snippet 8.3: Define an event handler for mouse clicks. For Figure 8.1.

Finally, we set the event handlers on the device and start listening for events. The

result is an interactive histogram as in Figure 8.1.

setGraphicsEventHandlers(onMouseDown = mouseclick(o))

getGraphicsEvent()

Code Snippet 8.4: Set the event handler, and listen for events. For Figure 8.1.

Example: Linked histogram and scatterplot

This example shows the capability to link graphics together, where interaction with

one graphic can propagate changes to the other(s) in a master/slave style. We

produce an interactive histogram as in the previous example, but now we use the

histogram to highlight cases in a separate scatterplot. We produce the two plots as

in Code Snippet 8.5. We can then use the code in Code Snippet 8.7 to set the

event handler and start listening for events. This results in an interactive histogram

that controls the highlighting of cases in another scatterplot (Figure 8.2). We can

stop the interactive session by closing the graphics device or pressing the ‘Esc’ key

at the console.
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Figure 8.1: Interactive histogram. From Code Snippets 8.2, 8.3, and 8.4.

## Open a graphics device for the slave plot

if (identical(version$os, "linux-gnu"))

x11(type = "Xlib") else x11()

dev1 <- dev.cur()

plot(mtcars$qsec, mtcars$wt)

## Open a suitable device for interactivity. This will be the master plot, we

## interact with it and changes propagate to the slave plot

if (identical(version$os, "linux-gnu"))

x11(type = "Xlib") else x11()

dev2 <- dev.cur()

o <- hist(mtcars$mpg)

Code Snippet 8.5: Open a device and draw the slave plot. Open a second device

and draw the interactive master plot. For Figure 8.2.

109



mouseclick <- function (object){

index <- NULL

function (buttons, x, y){

dev.set(dev2)

if (!is.null(index)){

rect(xleft = object$breaks[index], xright = object$breaks[index + 1L],

ybottom = 0, ytop = object$counts[index], col = "white")

}

index <<- which.min(abs(grconvertX(x, "ndc", "user") - object$mids))

rect(xleft = object$breaks[index], xright = object$breaks[index + 1L],

ybottom = 0, ytop = object$counts[index], col = "blue")

dev.set(dev1)

colour <- c("white", "blue")[(findInterval(mtcars$mpg, o$breaks[index:(

index + 1L)]) == 1L) + 1L]

points(mtcars$qsec, mtcars$wt, pch = 21, bg = colour)

}

}

Code Snippet 8.6: Define event handler to take mouse clicks on the histogram,

highlight the relevant bar of the histogram, and then highlight the selected data on

the scatterplot. For Figure 8.2.

setGraphicsEventHandlers(onMouseDown = mouseclick(o))

getGraphicsEvent()

Code Snippet 8.7: Set the event handler, and listen for events. For Figure 8.2.
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Figure 8.2: Interactive histogram (a) that controls the highlighting in scatterplot

(b). From Code Snippets 8.5, 8.6 and 8.7.
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Example: Two-way linked graphics

This example shows two-way linked graphics, where changes in one interactive

graphic can be propagated to arbitrarily many other graphics, which themselves

can be interactive graphics with the same capability.

We produce two scatterplots in separate graphics devices, and propagate clicks

from one to the other and vice versa. We start by defining a plot function, which

returns an object to retain information for updating the plot. We then define an

update method which accepts plotting coordinates and draws a point (see Code Snip-

pet 8.8).

We then define the event handling functions in Code Snippet 8.9. The mouse

click handler sets the appropriate device coordinate system, records the pointer

coordinates, and updates both graphics devices. Note that we have actually defined

a function that returns a mouse click event handling function. This time, we add

a keyboard event handling function to terminate the interactive session by pressing

the ‘q’ key.

Finally, in Code Snippet 8.10, we open two graphics devices and set graphics

handlers on each device. We start the interactive session as per usual with a call

to getGraphicsEvent. On some platforms, the first click on an inactive device may

only switch focus to that device without drawing a point.

## Function to create plot and return object storing

## device number, ‘usr‘ and ‘mar‘.

myplot <- function (pch){

plot(0, 0, col = NULL, pch = pch)

structure(list(device = dev.cur(), usr = par()$usr,

mar = par()$mar, pch = pch), class = "myplot")

}

## Update method for plot object: switches to the

## correct device, sets ‘usr‘ and ‘mar‘, then plots

## a point given by ‘x‘ and ‘y‘

update.myplot <- function (object, x, y, col){

dev.set(object$device)

par(usr = object$usr)

par(mar = object$mar)

points(x, y, pch = object$pch, col = col)

}

Code Snippet 8.8: Function to create a scatterplot, returning an object with infor-

mation relevant to updating the plot. Also, the update method for the plot object.

For Figure 8.3.
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## Function to create an event handler function to react to mouse clicks, which

## takes the xy coordinates of the mouse click, interprets them to the correct

## user coordinates, and draws a point to both devices via ‘update‘.

mouseclick <- function (object, col){

function (buttons, x, y){

dev.set(object$device)

par(usr = object$usr)

par(mar = object$mar)

xnew <- grconvertX(x, "ndc", "user")

ynew <- grconvertY(y, "ndc", "user")

update(o1, x = xnew, y = ynew, col = col)

update(o2, x = xnew, y = ynew, col = col)

}

}

## Function to create an event handler function to react to keystrokes; just

## providing a way to end the interactive session by pressing ‘q’.

keystroke <- function (){

function (key){

if (identical(key, "q")){

cat("\nInteractive session ended.\n")

return(invisible(1))

}

}

}

Code Snippet 8.9: Event handling functions for mouse clicks and keyboard strokes.

For Figure 8.3.
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## Open a graphics device enabled for interactivity. Create plot, save

## resulting object and set up the event listener.

if (identical(version$os, "linux-gnu"))

x11(type = "Xlib") else x11()

o1 <- myplot(1)

title(main = "points clicked here are blue")

setGraphicsEventHandlers(onMouseDown = mouseclick(o1, "blue"), onKeybd =

keystroke())

## Open a second suitable graphics device. Create another plot, save resulting

## object, and set up another event listener.

if (identical(version$os, "linux-gnu"))

x11(type = "Xlib") else x11()

o2 <- myplot(2)

title(main = "points clicked here are red")

setGraphicsEventHandlers(onMouseDown = mouseclick(o2, "red"), onKeybd =

keystroke())

## Listen for mouse clicks.

getGraphicsEvent()

## Click around the plot area on EITHER device, the point is plotted on each

## device at the same coordinates with colour to show where the click

## originated.

Code Snippet 8.10: Create two plots, setting up an event handler for each device.

Listen for events. For Figure 8.3.
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Figure 8.3: Points clicked in scatterplot (a) are also drawn in (b) and vice versa.

From Code Snippets 8.8, 8.9, and 8.10.

8.3.2 Event handling functions

The getGraphicsEvent function takes four types of event handling functions as

input. Each one is a function written by the user, taking specific named inputs:

• onMouseDown takes three inputs: buttons, x and y.

• onMouseUp takes three inputs: buttons, x and y.

• onMouseMove takes three inputs: buttons, x and y.

• onKeybd takes one input: key.

On X11 devices, mouse motion and button events are only captured correctly on

relatively recent versions of R (see PR 16700). On the Mac OS, there are some

keystrokes which are given different names, such as the return key.

The interactive session is terminated if one of the event handlers returns a non-

NULL value, which can happen unintentionally. As a consequence, it is useful to

end each function definition with something like points(NULL), to ensure that the

interactive session does not terminate prematurely.

8.3.3 Coordinate systems

There are two important coordinate systems for interactive graphics in R.

• "user" – user coordinates

• "ndc" – normalized device coordinates

The functions grconvertX() and grconvertY() are available from grDevices to

convert between these different coordinate systems. These function calls depend on

the current par settings, which is important when updating plots.
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8.3.4 Updating plots

Graphics code in R is optimised for drawing high quality vector graphics, and so is

not particularly fast in drawing to the screen, and does not provide ways to efficiently

update parts of an existing graphic. Updating and redrawing are integral parts of

any interactive graphics system. We are faced with two options when updating a

graphic in R:

• We can update the plot using a full redraw. This is the simplest option in

maintaining coordinate systems and keeping a clean display, but it can be

rather slow. Or,

• we can do a partial erase and redraw. This is more difficult, but can produce

visibly smoother results. This involves figuring out what parts of the graphic

need to be erased, blanking them with plotting commands, and then redrawing

the new elements.

In condvis, we opt for the latter option whenever possible, as it produces the smoothest

appearance when updating graphics. In a few cases, the full redraw option is used

because the required information for selective updating is buried in the internal code

of another package.

Neither of these options particularly overcomes the problem that R sends vector

drawing commands to the graphics device, all of which are refreshed if the device is

resized. This has many benefits, such as resizing axes or maintaining aspect ratios

of text, but it makes for a lot of drawing if a device is resized in the middle of an

interactive session. See Section 8.3.6 for further discussion on this topic.

8.3.5 Linked graphics

Separate graphics devices

When this work started, closing an inactive graphics device while listening for events

on another device with getGraphicsEvent caused R to crash. This bug has since

been fixed (PR 16438). For this reason, the linked interactive graphics for condvis

were first developed to be all located on one graphics device. Another difficulty in

working with separate devices is the way in which graphics devices are identified

in R. Devices are numbered as they are opened, and the number decreases by 1

if a previously opened device is closed. This makes it difficult to consistently and

robustly identify the correct device with which we want to link.

Splitting one graphics device

We can split an R graphics device using par()$mfrow or layout(), but then we plot

to these sub-panels in order, and cannot access them arbitrarily. The split.screen

function allows more flexible splitting, and subsequent selection of specific screens.
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However, when switching between screens defined by split.screen, the most impor-

tant "user" coordinate system is not guaranteed to be preserved. Indeed, the doc-

umentation specifically states “The behavior associated with returning to a screen

to add to an existing plot is unpredictable and may result in problems that are not

readily visible.” This is dealt with in condvis by saving the current par("usr") and

par("mar") values in each plot object.

8.3.6 Persistent problems

This section discusses some problems with the software implementation of condi-

tional visualisation found in the condvis package. The problems discussed here are

those with no apparent solution currently available, and so the problems either cur-

rently persist or have a sub-optimal workaround.

Resizing graphics device

R draws vector graphics to the graphics device, and remembers everything it has

drawn to the device. As a result, when a window is resized, everything is redrawn. If

we have been interacting with a device for a long time, the redraw can involve a very

large number of drawing operations. It would be preferable to have control of what

is redrawn upon resizing operations, and allow the device to forget certain graphics

objects which are no longer needed. In many cases, it would actually be preferable

to have a fixed image as a background, and only plot the interactive elements on

top of that background; a layered approach. It is possible to partially achieve this

using a PNG output as the background, but it is not very practical, especially on

resizing the window.

Flickering display

The X11 device interface in R does not support dev.hold and dev.flush; functions

which allow plotting commands to be buffered and then applied to the device in

quick succession. As a result, time between erasing and drawing new objects can be

large enough so as to be perceptible and often irritating. A reasonable solution is

to place the erasing code as close as possible to the code for redrawing. However,

if the code for redrawing is causing the delay, there is not much that can be done

without dev.flush.

Concurrent interactive sessions

The current implementation of getGraphicsEvent does not allow for a second call

to the function until the previous interactive session has been terminated. As such,

once we create an interactive graphic with getGraphicsEvent, it is difficult to add

further related graphics to the interactive session, and it is impossible to create
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new interactive graphics from within an interactive session. Consequently, the in-

teractive sessions in condvis are standalone, and cannot easily be combined or run

concurrently.

8.4 Alternative software

Web browsers and Shiny

Shiny is a web application framework for R, developed by RStudio. The shiny

package (Chang et al., 2015) allows R users who are not necessarily experienced in

web programming to produce interactive web applications to present their analyses,

which have been carried out in R. R code describing the application to be made can

be stored in two script files – one for loading the data and performing the analysis,

and one to control the display and user interface – then the shiny function may be

run in a standard R session, producing the HyperText Markup Language (HTML),

Cascading Style Sheets (CSS) and JavaScript (not to be confused with Java) code

required to form the web application, which may subsequently be viewed in a web

browser. The interactive application then has the ability to send information back

to the R session and run further calculations in R. It is now possible to run Shiny

code on a web server which runs R, and hence deploy the whole application on-

line, available to users without any R distribution installed. The main reason that

Shiny has not been used as the main development platform is that Shiny does not

give direct provision for a workflow involving plot interactions which alter the plots

themselves, or at least, did not do so when the main development of condvis took

place.

Another example of using web programming to produce interactive graphics is

the ggvis package (Chang and Wickham, 2015), building on concepts from ggplot2

(Wickham, 2009), ggplot2 being based on a grammar of graphics (Wilkinson et al.,

2006),

Java and Processing

Java is a programming language, which has become a global standard for developing

and delivering computer applications. Java is well suited to creating high quality

visualisations and graphical user interfaces, which can be used across a broad range of

operating systems and computer architectures. Processing (https://processing.org/)

is a development environment which allows users with little Java experience to create

both animated and interactive computer visualisations with relative ease in Java.

We can perform data analysis in R and visualise the analysis using a Java appli-

cation. An obvious problem arises when we want to interact with the graphic and

change the original analysis. This requires a two-way connection between R and

Java.
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The Rserve (Urbanek, 2013b) package allows R to run as a server, serving requests

from external programs such as Java applications. The rJava (Urbanek, 2013a)

package provides an Application Programming Interface (API) to Java programs

from R. The iplots (Urbanek and Wichtrey, 2013) package produces a small selection

of interactive graphics using the rJava package. KLIMT (Urbanek and Unwin, 2002)

is a Java program for interactively visualising tree models. CASSAT (Unwin et al.,

2003) is a Java program for producing interactive parallel coordinates plots.

The main reason Java has not been used in this project is that it does not allow

us to easily take advantage of the vast number of plots already coded in the many

R packages available.

OpenGL

The rgl (Adler and Murdoch, 2016) package uses OpenGL (2015) to create interactive

3-D graphics from R, such as rotatable surfaces. The main drawback (as with Java)

is that rgl cannot simply make R graphics interactive, it is creating new graphics

with the OpenGL engine.

Tcl/Tk

Tcl/Tk (https://tcl.tk/) is a combination of a scripting language and a graphical

user interface toolkit, which can be used to make interactive graphics using the

tcltk package, distributed with R as standard. Examples of packages which use this

platform are loon (Waddell and Oldford, 2015) for interactive, linked histograms,

scatterplots, star glyphs and parallel coordinates plots, and RnavGraph (Waddell and

Oldford, 2014) for exploring high-dimensional data using graphs as the navigational

infrastructure.

8.5 Chapter summary

This chapter described the type of interactive graphics used to implement the condi-

tional visualisation techniques described in Chapters 3 4, and 5. The graphics were

developed in R to allow for easy integration with existing code for model fitting and

data visualisation. Certain sacrifices are made, but the result is a set of interactive

graphical tools that almost exclusively use base R functions. The only non-standard

dependency is the XQuartz device for the Mac OS.
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Chapter 9

Conclusion and outlook

9.1 Summary

This thesis presents a new approach to conditional visualisation with a focus on

statistical models, alongside a software implementation in R in the condvis package.

The idea is to visualise one low-dimensional section at a time and display nearby

observed data on the section according to a distance measure. By incorporating

observed data into the visualisation, it becomes possible to decide whether the ob-

served data support the fitted model, or if the section represents an extrapolation

in data space. This approach is implemented in two ways; by manually choosing

sections with the aid of data summary graphics, or by preselecting the sections to

visualise and then moving through them one by one.

The methods have been demonstrated in applications involving additive spline

models, support vector machines, Bayesian regression, random forests, gradient

boosted trees, neural networks, and ensembles of models.

The manual interactive approach works quite well for models with less than ten

predictors, and is especially useful for querying a fitted model at arbitrary points

in the predictor space. The current section can be changed quickly and easily, so

predictor interactions can be explored in an intuitive way.

For models with many more predictors, it becomes very difficult to choose suit-

able sections to visualise by hand, and so it makes sense to automatically choose

sections according to some criteria. Examples of such sections would be observations

which are fit poorly by the model, or centres from a clustering analysis of the data.

9.2 Further work

The research presented in this thesis represents early steps in the direction of tak-

ing a hands-on approach to understanding complicated statistical models in high-

dimensional data space. In keeping with this, there are many shortcomings of the

approach, potential improvements left to explore, and newly opened avenues of re-

search to go down. This section gives some recommendations for future work which
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could be worth investigating.

9.2.1 Dissimilarity function

The similarity weight used to make plots conditional as in Section 3.4 is based on a

dissimilarity function. The dissimilarity function used in this thesis is rather simple,

and for good reason; it is intended to give a model-agnostic way to choose data points

which can sensibly be compared with each other, or compared with a particular slice

through a fitted model.

An improvement could be made in the treatment of categorical predictors. This

could be as simple as using a different scaling constant for each predictor, giving

different weights to mismatches on different predictors. A more flexible coefficient

of dissimilarity could also be used (Gower, 1971).

The dissimilarity measure used for continuous predictors in this thesis takes no

account of covariance between predictors. It might be desirable in some situations

to use Mahalanobis distance to construct a dissimilarity measure.

There may be situations where it would be sensible to take account of the re-

sponse in formulating a dissimilarity measure. By fitting a model, we could use the

gradient of the fitted model as a guide to alter our distance measures to count obser-

vations as closer together along directions of small gradient, and count observations

as further apart along directions of large fitted model gradient. For another exam-

ple, we could fit a tree model to the data. We could then assign zero dissimilarity

to observations in the same partition, a moderate dissimilarity to observations in

adjoining partitions, and larger values elsewhere. Or, we could use any other dis-

similarity measure on the observations, treating observations as though they reside

at the centroid of their respective partitioned regions from the tree model.

Whatever the future holds for dissimilarity measures in conditional visualisation,

it will certainly become necessary at some point to write some fast code implementing

a fixed radius near neighbours search algorithm (see, for example, Bentley (1975)).

While the brute force approach of calculating all distances works well for data that

fit comfortably in RAM, for millions or billions of observations, some little tricks

would become useful. For example, the distance can be calculated on a subset of

columns, discarding any observations exceeding the chosen fixed radius. This process

can be continued in a cascading fashion, reducing the number of observations under

consideration at each iteration, until all columns have been checked. The basic setup

of the fixed radius near neighbours search lends itself to distributed and parallel

computing, which bodes well for addressing the inevitable need to scale the method

to much larger data sets.

9.2.2 Cognostics

When continuous conditioning variables are involved, there are infinitely many sec-

tions which can be visualised. Cognostics (Tukey and Tukey, 1982) refers to the
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process of using a computer to screen large numbers of computer graphics, with the

goal of selecting a subset of graphics which are of interest for human examination,

according to some criteria. This method could be applied to the problem of visual-

ising a useful subset of the infinitely many sections available (see Anand and Talbot

(2016) for a related discussion on the choice of shingles for trellis graphics).

In some sense, we can see this as the inverse of the approach using interactive

conditional expectation plots as in Chapter 4. There, we choose a section and then

investigate it for interesting properties. With cognostics, we hope to find the parts

of the predictor space where sections will demonstrate some specific property of the

data or fitted model. This would be closely related to the conditional tour, discussed

in Chapter 5.

9.2.3 Model comparison

Several models can be visualised on a two-dimensional section without difficulty

(see Sections 7.3 and 6.5). This can be achieved by plotting a curve for each model,

giving each curve a different colour or line style. As such, visual model compari-

son is possible on two-dimensional sections. Model comparison is far more difficult

for three-dimensional sections. The section visualisation is itself a two-dimensional

projection of three-dimensional space, and so the regression surface of one model

could easily obscure that of another model, hindering any kind of visual compari-

son. One simple approach to the problem would be to produce a different section

visualisation for each model, and arrange them in a grid as with trellis graphics.

Another approach would be to visualise the differences between models, but this

would only allow comparison of two models. Section 7 considers a broader view of

model comparison, looking at ensembles of models.

9.2.4 Flexible conditioning

The whole approach to conditional visualisation presented in this thesis has been

quite strict in its definition by fixing predictor values. This implies sections which are

orthogonal to the axes in predictor space, which makes for straightforward interpre-

tation of the conditioning. Of course, we could be far more general in considering

conditioning as a restriction to any valid subregion of the predictor space. This

would then necessitate an integration of the fitted model over the subregion as in

Nason et al. (2004) and Friedman (2001), but might prove useful in cases involving

highly structured data.

9.2.5 Special data structures

Time series

The work in this thesis has made no special provisions for the treatment of time

variables. In some ways, time variables may be treated just like any other numeric
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predictors, but if a time variable was used in the distance function when seeking

observations near a section, unexpected results might be obtained. For example,

the data are scaled before calculating distances. It may not make much sense to

standardise a variable which gives the number of seconds since the epoch.

Using time as a conditioning predictor could very well be an interesting way to

approach the visualisation of model of a process which evolves through time. This

is getting closer to the goal of the visualisations from Gapminder (gapminder.org),

where time-series data is visualised interactively.

Nested predictors

No explicit consideration has been given to nested predictors or hierarchical mod-

els in this thesis. The main problem is that a nested predictor structure provides

the possibility of producing a much larger number of extrapolations or meaning-

less predictor vectors than a model without hierarchy of predictors. For example,

consider two predictors for country and city. The city predictor is nested within

the country predictor. It would seem to be meaningless to consider a combina-

tion of country = "Germany" and city = "Madrid", and we do not need distance

measures to figure this out!

One possible way to address this structure would be to provide a special kind of

condition selector graphic. To choose a section, the user would be required to start

by selecting factor levels of the predictors at the top of the nesting (e.g., country),

and then only factor levels which match the nesting structure are offered for selection

at lower and lower levels of the hierarchy (e.g., cities in that country, boroughs in

that city, and so on).

It might be interesting to try displaying observed data on such sections which

match the current section at various levels of the hierarchy, so that group effects and

individual effects might be given some kind of context.

9.2.6 Path for conditional tour

The conditional tour in Chapter 5 is presented as an automated alternative to inter-

actively choosing sections to visualise as in Chapter 4. This automated approach to

choosing sections alleviates certain problems such as high-dimensionality of predictor

spaces, but brings its own difficulties in trying to evaluate the ‘quality’ of a section

with one or two criteria, such as proximity to observed data. It would certainly be

worthwhile trying to take an interactive graphical approach to creating the path for

the conditional tour, allowing the user to tweak an otherwise automated process.

This could also make better use of the diagnostic plots described in Section 5.5,

which are currently only used for post hoc assessment of the path.
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9.2.7 Missing data

The visualisations presented in this thesis give no consideration to missing data,

and the implementations in condvis remove incomplete observations before produc-

ing any graphics. This is acceptable for exploring the basic concepts of conditional

visualisation but is not very practical in general. It would be desirable to allow

incomplete observations to be included in conditional visualisation techniques, be-

ginning with some of the many existing approaches (see discussion in Chapter 3 of

Cook and Swayne (2007)).

9.2.8 Generalised conditional visualisation

Chapter 7 introduced the idea that conditional visualisation, as presented in this

thesis, could be abstracted to applying the similarity weight concept to any visuali-

sation with individual observations as input. This is surely worth exploring further,

and will hopefully be reflected in further iterations of the condvis package, by sep-

arating the code for conditioning a plot (condition selectors, or conditional tour)

from the code for visualising a section in data space.

9.2.9 ‘Big data’

This thesis makes no specific mention of ‘big data’ (big, in the sense of being too big

to handle in RAM). Likewise, the software implementation in condvis has not been

designed for such large datasets. At the same time, we have shown most of the tech-

niques necessary for scaling the methodology in this thesis already. These consist of;

using subsets of important predictors to alleviate large p (see Section 6.5), making

condition selector plots robust to large n by using summary graphics, the fact that

a conditional plot is a drill-down graphic involving substantially less than n obser-

vations. The fixed-radius near neighbour search which forms a central part of the

process for calculating similarity weight is a good candidate for parallel computa-

tion. For these reasons, it seems there is good potential for scaling the methodology

for conditional visualisation presented in this thesis to much larger datasets.

9.3 Conclusion

This thesis presents a new approach to conditional visualisation for data and fitted

models. The new method involves visualising a single section at a time, display-

ing both fitted models on the section and observed data which are near the section

according to a distance measure. Sections may be chosen either by hand with inter-

active graphics, or programmatically according to an algorithm. The new method

allows the interpretation of a broad range of regression and classification models

from linear models to ‘black-box’ models. Finally, by enriching the visualisation

with observed data, the user can decide if the observed data support the fitted

model and related assumptions throughout the predictor space.

123



List of Acronyms

API Application Programming Interface

CART Classification and Regression Trees

CERES Combining Conditional Expectations and Residuals

CRAN Comprehensive R Archive Network

CSS Cascading Style Sheets

FEV Forced Expiratory Volume

HTML HyperText Markup Language

ICE Individual Conditional Expectation

MCMC Markov Chain Monte Carlo

PDP Partial Dependence Plot

RAM Random Access Memory

RGB Red, Green, Blue
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Appendix A

Simulating trading data

This appendix describes how the data set referred to in Section 6.7 is generated.

A.1 Trading strategy

We describe a simplistic strategy to trade a financial product (see Figure A.1 for an

outline). The instructions to open a trade come from a supply/demand indicator

described below. The decision to close a trade is governed entirely by profit/loss

limits. The strategy only holds one position at a time, and every trade is the same

size. When the strategy is holding no position, it has three options: buy, short, or

do nothing. When the strategy has an open position it can do one of two things:

close the position, or do nothing.

We define a supply/demand indicator as

BA = log

(
bid volume

ask volume

)
The raw input to the strategy is the history of BA up to the current time period

(taking time periods to be seconds). The parameters are

• window: the time window in seconds for the calculation of EMA(BA), the

exponential moving average of BA.

• BAlim: the critical values of EMA(BA) at which we will open a trade. We

just use one value, buying when EMA(BA) exceeds +BAlim and shorting when

EMA(BA) is lower than −BAlim, to keep this a one-dimensional input.

• PL: the take-profit and stop-loss targets (in percent). As with BAlim, we spec-

ify one number and make the limits symmetric to keep this a one-dimensional

input.

A.2 Simulation

We have a three-dimensional input space over which we might optimise this trading

strategy. We choose a grid of points in the input space and simulate the strategy’s
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Trading strategy

Given: EMA(BA), BAlim, and PL

1 if EMA(BA) > +BAlim

2 buy and hold until take-profit or stop-loss

3 else if EMA(BA) < −BAlim

4 short and close at take-profit or stop-loss

5 else do nothing

Figure A.1: Outline of trading decision process. EMA(BA) is the exponential mov-

ing average of the BA indicator. ±BAlim are the critical values that EMA(BA)

must cross to initiate a trade. ±PL are the take-profit and stop-loss in percent.

performance on a sample trading day using some simple assumptions. As output,

we calculate a Sharpe ratio for each simulated trading day.

Assumptions

We make the following assumptions in simulating the performance of the trading

strategy:

• that we can trade within the same second as the trading decision.

• that we can buy or short the product in small amounts (e.g. volumes around

2 - 5) at the interpolated traded prices at any second during the day. We

could be more conservative in this and assume less favourable traded prices.

We could also attach a random failure rate to trade execution to model the

uncertainty of orders being filled.

• that our take-profit and stop-loss orders are executed at the first interpolated

traded price outside these limits. For the price history we have here, this

assumption is reasonable, but in general it is not.

• a trading friction of 0.01% of traded value on every trade from opening to

closing (including shorts)

Glossary of financial terms

close to close a trade means to sell an asset that you have bought, or to buy back

an asset that you have sold short.

edge an apparent statistical advantage making trades more likely to be profitable.

friction losses associated with trading, such as transaction fees and taxes; given in

percent of traded value.
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open to open a trade means to buy an asset or sell it short.

Sharpe ratio The Sharpe (1994) ratio is the excess return divided by the standard

deviation of returns. In this case, we consider a zero benchmark, and so the

raw returns are used for excess returns.

short to short an asset is to borrow an asset, and sell it, with the intention of

buying it back at a later time in order to return it to the original owner.

stop-loss a threshold, usually specified in terms of percent of the initial traded

price, where we will close a trade in order to stop further losses. A stop-loss

of 1% means that if a product we buy decreases in price by 1% or more, we

will sell it to avoid losing any more money.

take-profit a threshold, usually specified in terms of percent of the initial traded

price, where we will close a trade in order to take profits. A take-profit of 1%

means that if a product we buy increases in price by 1% or more, we will sell

it.
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Appendix B

R scripts

This appendix provides R scripts for the examples presented in Chapter 6 and else-

where in the thesis. The scripts and resulting workspaces may be downloaded from

http://tinyurl.com/condvisthesis.

B.1 Simulated data: Interaction between predictors (Sec-

tion 4.6)

## Simulated data based on Goldstein et al. 2015.

## Mark O’Connell, August 2016.

set.seed(746182481)

X <- matrix(runif(2000 * 3, -1, 1), ncol = 3)

colnames(X) <- c("X1", "X2", "X3")

## Create indicators for the piecewise function.

gamma1 <- X[, 3] <= -0.5

gamma2 <- X[, 3] > -0.5 & X[, 3] <= 0

gamma3 <- X[, 3] > 0 & X[, 3] <= 0.5

gamma4 <- X[, 3] > 0.5

## Create the response and add Gaussian noise.

error <- rnorm(mean = 0, sd = 1, n = nrow(X))

Y <- 0.5 * X[, 1] + gamma1 * (-5 * X[, 2]) + gamma2 * (abs(5 * X[, 2])) +

gamma3 * (-abs(5 * X[, 2])) + gamma4 * ((5 * X[, 2])) + error

dat <- data.frame(cbind(Y, X))

## Marginal plot of Y versus X2.

plot(dat$X2, dat$Y, xlab = "X2", ylab = "Y", cex = 0.5)

## Fit a gradient boosted tree model.
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library(gbm)

model <- gbm(Y ~ ., data = dat, distribution = "gaussian", n.trees = 400,

interaction.depth = 3, shrinkage = 0.2)

## Produce some ICE plots.

library(ICEbox)

ICEobject <- ice(model, dat, predictor = "X2", predictfcn = function(object,

newdata, ...) predict(object, newdata, n.trees = object$n.trees, ...),

num_grid_pts = 50)

plot(ICEobject, frac_to_plot = 0.2, cex = 0.3)

plot(ICEobject, frac_to_plot = 0.2, cex = 0.3, centered = TRUE)

## Condition the ICE plot on X3 like trellis graphics.

o <- ice(model, dat, predictor = "X2", predictfcn = function(object,

newdata, ...) predict(object, newdata, n.trees = object$n.trees, ...),

num_grid_pts = 50, indices_to_build = gamma1)

plot(o, cex = 0.3, main = "X3 < -0.5", ylim = c(-6, 6))

o <- ice(model, dat, predictor = "X2", predictfcn = function(object,

newdata, ...) predict(object, newdata, n.trees = object$n.trees, ...),

num_grid_pts = 50, indices_to_build = gamma2)

plot(o, cex = 0.3, main = "-0.5 < X3 <= 0", ylim = c(-6, 6))

o <- ice(model, dat, predictor = "X2", predictfcn = function(object,

newdata, ...) predict(object, newdata, n.trees = object$n.trees, ...),

num_grid_pts = 50, indices_to_build = gamma3)

plot(o, cex = 0.3, main = "0 < X3 <= 0.5", ylim = c(-6, 6))

o <- ice(model, dat, predictor = "X2", predictfcn = function(object,

newdata, ...) predict(object, newdata, n.trees = object$n.trees, ...),

num_grid_pts = 50, indices_to_build = gamma4)

plot(o, cex = 0.3, main = "0.5 < X3", ylim = c(-6, 6))

save.image("simulated/interaction-workspace.rda")

B.2 Simulated data: Correlated predictors (Section 5.7)

## Simulated data with correlated predictors.

## Mark O’Connell, August 2016.

set.seed(746182481)

library(mvtnorm)

n <- 500

x1 <- runif(n)

x23 <- rmvnorm(n, sigma = matrix(c(1, 0.6, 0.6, 1), ncol = 2))
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x2 <- x23[, 1]

x3 <- x23[, 2]

y <- sin(10 * x1) + x2 + x3

d <- data.frame(y, x1, x2, x3)

## Scatterplot matrix

pairs(d)

## Trellis plot

coplot(y ~ x1 | x2 + x3)

library(e1071)

model <- svm(y ~ ., data = d)

set.seed(746182481)

path <- makepath(x = d[, c("x2", "x3")], ncentroids = 15)

plot(d$x2, d$x3, asp = 1, col = "gray", xlab = "x2", ylab = "x3")

points(path$centers, pch = 16)

points(path$path, type = "l")

points(path$path[14, , drop = FALSE], pch = "+", cex = 4, col = "red")

text(path$centers[c(1, nrow(path$centers)), , drop = FALSE], labels = c("start",

"end"), pos = 2)

save.image("simulated/correlated-workspace.rda")

B.3 Power plant example (Section 6.2)

## Power plant data

## Mark O’Connell, August 2016

set.seed(746182481)

library(condvis)

data(powerplant)

## Scale the response, mainly for the neural network.

powerplant$PE <- condvis:::scale2unit(powerplant$PE)

## Fit an additive spline model.

library(mgcv)

model.gam <- mgcv::gam(PE ~ s(AT) + s(V) + s(AP) + s(RH), data = powerplant)

## Fit a support vector machine with radial kernel.

library(e1071)

130



model.svm <- svm(PE ~ ., data = powerplant, epsilon = 0.4, gamma = 0.25)

## Fit a neural network.

library(nnet)

model.nnet <- nnet(PE ~ ., data = powerplant, size = 20, decay = 0.5, maxit =

300)

models <- list(gam = model.gam, svm = model.svm, nnet = model.nnet)

save.image(file = "powerplant-workspace.rda")

B.4 Wine example (Section 6.3)

## Wine data

## Mark O’Connell, July 2016

set.seed(746182481)

library(condvis)

data(wine)

## Include ‘caret‘ package for cross-validation.

library(caret)

## Train a support vector machine.

control.svm <- trainControl(method = "cv", number = 5)

tunegrid.svm <- expand.grid(sigma = c(0.01, 0.05, 0.1, 0.5), C = c(0.5, 1, 10,

100))

cv.svm <- train(Class ~ Alcohol + Malic + Ash + Magnesium + Phenols +

Flavanoids, data = wine, method = "svmRadial", trControl = control.svm,

tuneGrid = tunegrid.svm)

final.svm <- structure(list(model = cv.svm$finalModel), class = "ksvmpred")

## S4 objects have a rigid approach to methods, so make an S3 wrapper to pass

## to ‘ceplot‘.

predict.ksvmpred <- function(object, newdata, ...)

{

if (missing(newdata))

predict(object$model)

else predict(object$model, newdata = newdata[, colnames(object$model@xmatrix[[

1]])])

}

## Train a random forest.

control.rf <- trainControl(method = "cv", number = 5)

tunegrid.rf <- expand.grid(mtry = 2:6)
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cv.rf <- train(Class ~ Alcohol + Malic + Ash + Magnesium + Phenols +

Flavanoids, data = wine, method = "rf", trControl = control.rf, tuneGrid =

tunegrid.rf)

final.rf <- cv.rf$finalModel

## Train a gradient boosted model.

library(gbm)

cv.gbm <- gbm(Class ~ Alcohol + Malic + Ash + Magnesium + Phenols +

Flavanoids, data = wine, cv.folds = 5, train.fraction = 0.8, distribution =

"multinomial", verbose = TRUE, n.trees = 400, shrinkage = 0.02,

n.minobsinnode = 5, interaction.depth = 3)

final.gbm <- gbm(Class ~ Alcohol + Malic + Ash + Magnesium + Phenols +

Flavanoids, data = wine, cv.folds = 5, train.fraction = 0.8, distribution =

"multinomial", verbose = TRUE, n.trees = 1.2 * which.min(cv.gbm$cv.error),

shrinkage = 0.02, n.minobsinnode = 5, interaction.depth = 3)

save.image("wine-workspace.rda")

B.5 Credit card defaults example (Section 6.4)

## Analysis of credit card default data from Taiwan, from the UCI repository.

## Mark O’Connell, July 2016.

set.seed(746182481)

load("creditcard.rda")

## Rename the response and delete the ID variable.

colnames(creditcard)[ncol(creditcard)] <- "default"

creditcard$ID <- NULL

nr <- nrow(creditcard)

## Hold out 8,000 cases for testing, and train on the remainder.

testindex <- sample(1:nr, 8000)

test <- creditcard[testindex, ]

train <- creditcard[-testindex, ]

## Train a gradient boosted tree model. Set ‘shrinkage‘, ‘interaction.depth‘ and

## ‘n.minobsinnode‘ to reasonable values and cross-validate for best number of

## trees.

library(gbm)

model.cv <- gbm(formula = default ~ ., distribution = "adaboost", data = train,

n.trees = 800, interaction.depth = 4, n.minobsinnode = 10, shrinkage = 0.03,

bag.fraction = 0.7, train.fraction = 0.7, cv.folds = 5, verbose = TRUE)
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## Train a single model with ‘n.trees‘ chosen by minimum cross validation error.

model <- gbm(formula = default ~ ., distribution = "adaboost", data = train,

n.trees = which.min(model.cv$cv.error), interaction.depth = 4, n.minobsinnode

= 10, shrinkage = 0.03, bag.fraction = 0.7, verbose = TRUE)

## Calculate training logloss

p <- predict(model, n.trees = model$n.trees, type = "response")

p <- pmax(pmin(p, 1 - 10e-15), 10e-15)

y <- train[, "default"]

logloss.contrib.train <- y * log(p) + (1 - y) * log(1 - p)

logloss.train <- -mean(logloss.contrib.train)

## Calculate test logloss.

p <- predict(model, newdata = test, n.trees = model$n.trees, type = "response")

p <- pmax(pmin(p, 1 - 10e-15), 10e-15)

y <- test[, "default"]

logloss.contrib.test <- y * log(p) + (1 - y) * log(1 - p)

logloss.test <- -mean(logloss.contrib.test)

## Calculate the variable importance according to the gbm.

varimp <- rownames(summary(model, plot = FALSE))

save.image("creditcard-workspace.rda")

B.6 Blog comments example (Section 6.5)

## Code to examine blog comments data from UCI repository.

## Mark O’Connell, October 2016.

library("xgboost")

set.seed(746182481)

load("blogtrain.rda")

load("blogtest.rda")

## Remove predictors that have only one unique value.

removevars <- which(vapply(blogdata, function(x) length(unique(x)), integer(1L))

<= 1)

train <- blogdata[, -removevars]

## Create binary target, and remove ’comments’ column.

target <- as.integer(train$comments > 0)

train$comments <- NULL

train$target <- target
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## Train a classifier to predict probability of comments.

classifier.params <- list(

booster = "gbtree"

, objective = "binary:logistic"

, eta = 0.03

, gamma = 0.1

, max_depth = 6

, min_child_weight = 1

, colsample_bytree = 0.7

, eval_metric = "logloss")

## Formula to create model matrix.

f <- formula(paste0("~ 0+", paste(setdiff(colnames(train), c("comments",

"target")), collapse = "+")))

## Function to train an XGBoost model, stopping when further iterations increase

## the loss on the validation set.

trainXGB <- function(params, formula, data, trainindex, nrounds = 1500){

x.train <- xgb.DMatrix(model.matrix(formula, data = data[trainindex, ]),

label = target[trainindex])

x.validate <- xgb.DMatrix(model.matrix(formula, data = data[-trainindex, ]),

label = target[-trainindex])

suppressWarnings(

structure(list(model = xgb.train(nrounds = nrounds, params = params, data =

x.train, watchlist = list("validate" = x.validate, "train" = x.train),

print.every.n = 20, nthread = 4, early.stop.round = 200), formula =

formula), class = "xgbpred")

)

}

## Split the data into ‘nfolds‘, and train the same number of models, holding

## out one fold at a time as the validation set. The number of boosting

## iterations for each model is chosen by the performance on the validation set.

## This populates the ensemble of classifiers.

classifiers <- list()

nfolds <- 5

j <- 1

folds <- sample(rep(1:nfolds, length.out = nrow(train)))

for (i in 1:nfolds){

fitindex <- which(folds != i)

classifiers[[j]] <- trainXGB(classifier.params, f, train, fitindex)

cat("\nFinished training classifier", j, "\n")

j <- j + 1

}

names(classifiers) <- paste("xgb", 1:(j - 1), sep = "-")
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classifiers.ensemble <- structure(classifiers, class = "ensemble")

## Method to make predictions from an XGBoost model.

predict.xgbpred <- function(object, newdata, ...){

newdata <- if (missing(newdata))

train

else newdata

mm <- model.matrix(f, data = newdata)

newx <- xgb.DMatrix(mm)

predict(object$model, newx)

}

## Method to make predictions from an ensemble.

predict.ensemble <- function(object, newdata, ...){

newdata <- if (missing(newdata))

train

else newdata

preds <- lapply(object, predict, newdata = newdata)

out <- rowMeans(data.frame(preds))

out

}

## Calculate the logloss on the ’unseen’ test data.

logloss <- function(y, p){

- mean(y * log(p) + (1 - y) * log(1 - p))

}

test.logloss <- logloss(test$comments > 0, predict(classifiers.ensemble,

newdata = test))

## Extract variable importance from one of the classifiers in the ensemble.

varimp <- xgb.importance(feature_names = setdiff(colnames(train), "comments"),

model = classifiers[[1]]$model)

ensemble <- classifiers

ensemble[[length(ensemble) + 1]] <- classifiers.ensemble

names(ensemble)[length(ensemble)] <- "ensemble"

save.image("blog-workspace.rda")

B.7 Prostate data example (Section 6.6)

## Analysis of prostate data

## Mark O’Connell, August 2016.

## Include ‘ElemStatLearn‘ for data, and ‘rstan‘ to do MCMC
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library(ElemStatLearn)

library(rstan)

## Load data, scale and create design matrix

data(prostate)

trainindex <- which(prostate$train)

prostate$train <- NULL

prostate.scaled <- scale(prostate[, setdiff(colnames(prostate), c("train",

"lpsa"))])

lpsa <- scale(prostate$lpsa)

f <- ~ 0 + lcavol + lweight + age + lbph + svi + lcp + gleason + pgg45

x <- scale(model.matrix(f, data = prostate[trainindex, ]), center = attr(

prostate.scaled, "scaled:center"), scale = attr(prostate.scaled,

"scaled:scale"))

## Create list of data for stan

standata <- list(

N = nrow(x),

K = ncol(x),

y = lpsa[trainindex],

x = x,

lambda = 0.0001

)

## Model specification, taken from Stan manual 2.6.0

stanmodelcode <-

"

data {

int<lower=0> N;

int<lower=1> K;

vector[N] y;

matrix[N,K] x;

real<lower=0> lambda;

}

parameters {

vector[K] beta;

}

transformed parameters {

real<lower=0> squared_error;

squared_error <- dot_self(y - x * beta);

}

model {

increment_log_prob(- squared_error);

increment_log_prob(- lambda * dot_self(beta));
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}

generated quantities {

real<lower=0> sigma_squared;

sigma_squared <- squared_error / (N - 1);

}

"

## Compile the model and run sampling (slow)

stanfit <- stan(model_code = stanmodelcode, data = standata)

## Extract posterior samples of parameters

beta.postsample <- extract(stanfit)$beta

## Create an S3 object and an accompanying predict method

stanobj <- structure(beta.postsample, class = c("stanpred", "custompred"))

predict.stanpred <- function (object, newdata, interval = "none", ...){

newx <- scale(model.matrix(f, data = newdata), center = attr(prostate.scaled,

"scaled:center"), scale = attr(prostate.scaled, "scaled:scale"))

y <- newx %*% t(object)

if (identical(interval, "none")){

out <- apply(y, 1, median) + mean(prostate$lpsa)

} else if (identical(interval, "confidence")){

out <- data.frame(fit = apply(y, 1, median) + mean(prostate$lpsa), lwr =

apply(y, 1, quantile, 0.025) + mean(prostate$lpsa), upr = apply(y, 1,

quantile, 0.975) + mean(prostate$lpsa))

}

out

}

## Set shrinkage parameter to 15, and take samples

standata$lambda <- 15

stansample_lambda_2 <- sampling(stanfit@stanmodel, data = standata)

beta.postsample_2 <- extract(stansample_lambda_2)$beta

stanobj_2 <- structure(beta.postsample_2, class = c("stanpred", "custompred"))

## Set shrinkage parameter to 50, and take samples

standata$lambda <- 50

stansample_lambda_3 <- sampling(stanfit@stanmodel, data = standata)

beta.postsample_3 <- extract(stansample_lambda_3)$beta

stanobj_3 <- structure(beta.postsample_3, class = c("stanpred", "custompred"))

models <- list(lambda_0.5 = stanobj, lambda_15 = stanobj_2, lambda_50 =

stanobj_3)

save.image("prostate-workspace.rda")
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B.8 Trading strategy example (Section 6.7)

B.8.1 Simulate trading

## Code to create simulated trading data.

## Mark O’Connell, October 2016.

load("cleandata.rda")

## EMAcpp for exponential moving average, based on

## http://www.eckner.com/papers/ts\_alg.pdf

Rcpp::cppFunction("

NumericVector EMAcpp(NumericVector x, IntegerVector time, double tau){

int n = x.size();

NumericVector out(n);

out[0] = x[0];

for(int i = 1; i < n; ++i){

double w = exp(-(time[i] - time[i - 1]) / tau);

out[i] = out[i - 1] * w + x[i] * (1 - w);

}

return(out);

}

")

## tradecpp for simulating trades

Rcpp::cppFunction(’

NumericVector tradecpp(NumericVector price, int index, String action, double

takeprofit, double stoploss, double tradingcost){

index = index - 1;

int i = index;

double r = 999;

if (action == "buy"){

double profittarget = (1 + (takeprofit + tradingcost) / 100) * price[index];

double losstarget = (1 - (stoploss + tradingcost) / 100) * price[index];

while (i < price.size()){

if (price[i] > profittarget){

r = (price[i] / price[index] - 1) * 100 - tradingcost;

break;

}

if (price[i] < losstarget){

r = (price[i] / price[index] - 1) * 100 - tradingcost;

break;

}

i = i + 1;

}

}

if (action == "sell"){

double profittarget = (1 - (takeprofit + tradingcost) / 100) * price[index];

double losstarget = (1 + (stoploss + tradingcost) / 100) * price[index];

while (i < price.size()){

if (price[i] < profittarget){
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r = (price[index] / price[i] - 1) * 100 - tradingcost;

break;

}

if (price[i] > losstarget){

r = (price[index] / price[i] - 1) * 100 - tradingcost;

break;

}

i = i + 1;

}

}

NumericVector out(3);

out[0] = r;

out[1] = index + 1;

out[2] = i + 1;

return(out);

}

’)

a <- Sys.time()

## Create range of values for EMA window for moving average, in seconds

window <- c(5, 10, 30, seq(60, 600, 60), seq(720, 3600, 120))

## Create range of values for profit/loss limit, in percent

PL <- c(0.05, 0.1, 0.15)

## Create range of values for critical values of EMA(BA) to initiate trades

BAlim <- c(0.05, 0.1, 0.15, 0.2)

## Create empty arrays for what we want to store

totalreturn <- array(dim = c(length(window), length(PL), length(BAlim)))

meanreturn <- totalreturn

sdreturn <- totalreturn

totaltrades <- totalreturn

## Create bid-ask size indicator, as log of bid size over ask size

BA <-log(quotes.interp$bsize / quotes.interp$asize)

for(k in seq_along(window)){

## Calculate exponential moving average of BA

BAema <- EMAcpp(BA, as.integer(quotes.interp$time), window[k])

for(k2 in seq_along(BAlim)){

## convert BAema to sell-stay-buy recommendation according to BAlim
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recommend <- c("sell", "stay", "buy")[findInterval(BAema, c(-BAlim[k2],

BAlim[k2])) + 1]

for(k1 in seq_along(PL)){

mytrades <- data.frame()

i <- window[k]

j <- 1

## Advance time second by second, and place a trade if recommended

while (i < nrow(trades.interp)){

if (recommend[i] != "stay"){

## Place trade and evaluate outcome

temp <- tradecpp(trades.interp$price, i, action = recommend[i], PL[k1]

, PL[k1], 0.01)

## In the C++ code, 999 is assigned to trades that do not close

if (temp[1] == 999) temp[1] <- NA

mytrades <- rbind(mytrades, temp)

j <- j + 1

## Reset time counter to the second after the trade closed

i <- temp[3] + 1

} else i <- i + 1

}

mytrades <- as.data.frame(mytrades)

colnames(mytrades) <- c("return", "openindex", "closeindex")

## Assign everything we want to keep (there is some redundancy here)

totalreturn[k, k1, k2] <- sum(mytrades$return, na.rm = TRUE)

totaltrades[k, k1, k2] <- sum(!is.na(mytrades$return))

meanreturn[k, k1, k2] <- mean(mytrades$return, na.rm = TRUE)

sdreturn[k, k1, k2] <- sd(mytrades$return, na.rm = TRUE)

}

}

}

Sys.time() - a

## Calculate a rough Sharpe ratio

sharpe <- sqrt(totaltrades) * meanreturn / sdreturn

## Plot a trellis arrangement of totalreturn or sharpe

dev.new(height = 6, width = 8)

par(mfrow = c(length(PL), length(BAlim)))
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par(mar = c(2, 2, 2, 2))

for (i in seq_along(PL)){

for (j in seq_along(BAlim)){

plot(window, sharpe[, i, j], ylim = c(0, 3), type = "o", col = "blue",

main = paste("BAlim =", BAlim[j], ", PL =", PL[i]))

abline(h = 0, col = "lightgray")

}

}

save(window, PL, BAlim, totalreturn, totaltrades, meanreturn, sdreturn, sharpe,

file = "simout.rda")

B.8.2 Model the simulation

## Code to model simulated trading data.

## Mark O’Connell, October 2016.

load("simout.rda")

dat <- data.frame(

sharpe = as.vector(sharpe),

window = rep(window, length(PL) * length(BAlim)),

PL = rep(rep(PL, each = length(window)), length(BAlim)),

BAlim = rep(BAlim, each = length(window) * length(PL))

)

dat <- dat[dat$sharpe < 5, ]

library(kernlab)

## Fit a Gaussian process

gp <- gausspr(sharpe ~ ., data = dat, kpar = list(sigma = 3))

## Construct an S3 wrapper for the Gaussian process model object

gp_wrapper <- structure(list(model = gp), class = "gpwrap")

## Create a predict method for the S3 wrapper

predict.gpwrap <- function(object, newdata, ...){

if (missing(newdata))

predict(object$model)

else predict(object$model, newdata = newdata)

}

save.image("trading-workspace.rda")
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B.9 Ensemble visualisation (Chapter 7)

B.9.1 Blog data model ensemble logloss calculation

## Code to examine model ensemble trained on blog data.

## Mark O’Connell, October 2016.

load("blog-workspace.rda")

library("xgboost")

## Function to calculate contributions to logarithmic loss.

logloss <- function (y, p){

p <- pmax(pmin(p, 1 - 10e-15), 10e-15)

-(y * log(p) + (1 - y) * log(1 - p))

}

## Calculate the logloss contributions for each observation and each model.

E_blog <- data.frame(lapply(classifiers, function(x) {logloss(train$target,

predict(x, newdata = train))}))

save.image("ensemble-xgb-workspace.rda")

B.9.2 Power plant data model ensemble

## Code to examine models fit to power plant data.

## Mark O’Connell, October 2016.

load("powerplant-workspace.rda")

library(PairViz); library("mgcv"); library("e1071"); library("nnet")

## Calculate the residuals for each model in the ensemble.

E <- data.frame(lapply(models, function(x) powerplant$PE - predict(x, newdata =

powerplant)))

## On each panel, show where zero is.

panelfun <- function (x, y, ...){

abline(h = 0, v = 0, col = "gray")

points(x, y)

}

## Scatterplot matrix of residuals.

pairs(E, panel = panelfun, cex = 0.1)

## Parallel coordinates plot of residuals.

pcp(E, scale = FALSE)
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## Calculate similarity weights for observations relative to the first

## observation.

weights <- similarityweight(x = powerplant[1, -5], data =powerplant[, -5],

threshold = 0.4)

## Get the plotting colours and ordering from the similarity weight.

colour <- condvis:::weightcolor("black", weights)

order <- attr(colour, "order")

## On each panel, plot observations with the colour and ordering from the

## similarity weights, so we only see observations near the first observation

## in predictor space.

panelfun1 <- function(x, y, ...){

abline(h = 0, v = 0, col = "gray")

points(x[order], y[order], col = colour[order], ...)

points(x[1], y[1], col = "red", pch = "+", cex = 3)

}

## Conditional scatterplot matrix.

pairs(E, panel = panelfun1, cex = 0.4)

## Conditional parallel coordinates plot.

pcp(E, scale = FALSE, col = NA)

for (i in order){

points(1:ncol(E), E[i, ], type = "l", col = colour[i])

}

points(1:ncol(E), E[1, ], type = "l", col = "red", lwd = 2)

B.9.3 Blog data model ensemble plots

## Code to examine model ensemble trained on blog data.

## Mark O’Connell, October 2016.

library("PairViz")

load("ensemble-xgb-workspace.rda")

## Scatterplot matrix of logloss contributions for each observation.

pairs(E_blog, cex = 0.1, cex.axis = 1.2)

## Parallel coordinates plot of logloss contributions for each observation.

pcp(E_blog, scale = FALSE)

## Make an index of the worst fit observations, by worst mean logloss

## contribution across the models.
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worstindex <- order(rowMeans(E_blog), decreasing = TRUE)

## Get similarity weights for observations relative to the worst fit

## observation, considering only the dimensions of the 20 most important

## predictors.

weights <- similarityweight(x = train[worstindex[1], varimp$Feature[1:20]],

data = train[, varimp$Feature[1:20]], threshold = 0.4)

## Use the similarity weights to make plotting colours, and a plotting order.

colour <- condvis:::weightcolor("black", weights)

order <- attr(colour, "order")

## On each panel, plot the points in order with their colour determined from

## their similarity weight.

panelfun <- function(x, y, ...){

points(x[order], y[order], col = colour[order], ...)

points(x[worstindex[1L]], y[worstindex[1L]], col = "red", pch = "+", cex = 2)

}

## Conditional scatterplot matrix showing points near the worst fit observation.

pairs(E_blog, panel = panelfun, cex = 0.2)

## Conditional parallel coordinates plot showing points near the worst fit

## observation.

pcp(E_blog, scale = FALSE, col = NA)

for (i in order){

points(1:ncol(E_blog), E_blog[i, ], type = "l", col = colour[i])

}

points(1:ncol(E_blog), E_blog[worstindex[1], ], type = "l", col = "red", lwd =

2)
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Appendix C

Package documentation

This appendix contains the condvis documentation for

• ceplot,

• condtour

• similarityweight.
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Excerpt from condvis documentation
October 5, 2016

ceplot Interactive conditional expectation plot

Description

Creates an interactive conditional expectation plot, which consists of two main parts. One part is a
single plot depicting a section through a fitted model surface, or conditional expectation. The other
part shows small data summaries which give the current condition, which can be altered by clicking
with the mouse.

Usage

ceplot(data, model, response = NULL, sectionvars = NULL,
conditionvars = NULL, threshold = NULL, lambda = NULL,
distance = c("euclidean", "maxnorm"), type = c("default", "separate",
"shiny"), view3d = FALSE, Corder = "default", selectortype = "minimal",
conf = FALSE, probs = FALSE, col = "black", pch = NULL,
residuals = FALSE, xsplotpar = NULL, modelpar = NULL,
xcplotpar = NULL)

Arguments

data A dataframe containing the data to plot

model A model object, or list of model objects

response Character name of response in data

sectionvars Character name of variable(s) from data on which to take a section, can be of
length 1 or 2.

conditionvars Character names of conditioning variables from data. These are the predictors
which we can set to single values in order to produce a section. Can be a list of
vectors of length 1 or 2. Can be a character vector, which is then paired up using
arrangeC. If NULL, an attempt will be made to extract all variable names which
are not response or sectionvars from model, and these will be arranged using
arrangeC.

threshold This is a threshold distance. Points further than threshold away from the cur-
rent section will not be visible. Passed to similarityweight.

1
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2 ceplot

lambda A constant to multiply by number of factor mismatches in constructing a general
dissimilarity measure. If left NULL, behaves as though lambda is set greater
than threshold, and so only observations whose factor levels match the current
section are visible. Passed to similarityweight.

distance A character vector describing the type of distance measure to use, either "euclidean"
(default) or "maxnorm".

type This specifies the type of interactive plot. "default" places everything on one
device. "separate" places condition selectors on one device and the section
on another. (These two options require XQuartz on OS X). "shiny" produces a
Shiny application.

view3d Logical; if TRUE plots a three-dimensional regression surface if possible.

Corder Character name for method of ordering conditioning variables. See arrangeC.

selectortype Type of condition selector plots to use. Must be "minimal" if type is "default".
If type is "separate", can be "pcp" (see plotxc.pcp or "full" (see plotxc.full).

conf Logical; if TRUE plots confidence bounds (or equivalent) for models which pro-
vide this.

probs Logical; if TRUE, shows predicted class probabilities instead of just predicted
classes. Only available if S specifies two numeric predictors and the model’s
predict method provides this.

col Colour for observed data.

pch Plot symbols for observed data.

residuals Logical; if TRUE, plots a residual versus predictor plot instead of the usual scale
of raw response.

xsplotpar Plotting parameters for section visualisation as a list, passed to plotxs. Can
specify xlim, ylim.

modelpar Plotting parameters for models as a list, passed to plotxs. Not used.

xcplotpar Plotting parameters for condition selector plots as a list, passed to plotxc. Can
specify col for highlighting current section, cex, and trim (see plotxc).

See Also

condtour, similarityweight

Examples

## Not run:
## Example 1: Multivariate regression, xs one continuous predictor

mtcars$cyl <- as.factor(mtcars$cyl)

library(mgcv)
model1 <- list(

quadratic = lm(mpg ~ cyl + hp + wt + I(wt^2), data = mtcars),
additive = mgcv::gam(mpg ~ cyl + hp + s(wt), data = mtcars))

conditionvars1 <- list(c("cyl", "hp"))

ceplot(data = mtcars, model = model1, response = "mpg", sectionvars = "wt",
conditionvars = conditionvars1, threshold = 0.3, conf = T)
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ceplot 3

## Example 2: Binary classification, xs one categorical predictor

mtcars$cyl <- as.factor(mtcars$cyl)
mtcars$am <- as.factor(mtcars$am)

library(e1071)
model2 <- list(

svm = svm(am ~ mpg + wt + cyl, data = mtcars, family = "binomial"),
glm = glm(am ~ mpg + wt + cyl, data = mtcars, family = "binomial"))

ceplot(data = mtcars, model = model2, sectionvars = "wt", threshold = 1,
type = "shiny")

## Example 3: Multivariate regression, xs both continuous

mtcars$cyl <- as.factor(mtcars$cyl)
mtcars$gear <- as.factor(mtcars$gear)

library(e1071)
model3 <- list(svm(mpg ~ wt + qsec + cyl + hp + gear,

data = mtcars, family = "binomial"))

conditionvars3 <- list(c("cyl","gear"), "hp")

ceplot(data = mtcars, model = model3, sectionvars = c("wt", "qsec"),
threshold = 1, conditionvars = conditionvars3)

ceplot(data = mtcars, model = model3, sectionvars = c("wt", "qsec"),
threshold = 1, type = "separate", view3d = T)

## Example 4: Multi-class classification, xs both categorical

mtcars$cyl <- as.factor(mtcars$cyl)
mtcars$vs <- as.factor(mtcars$vs)
mtcars$am <- as.factor(mtcars$am)
mtcars$gear <- as.factor(mtcars$gear)
mtcars$carb <- as.factor(mtcars$carb)

library(e1071)
model4 <- list(svm(carb ~ ., data = mtcars, family = "binomial"))

ceplot(data = mtcars, model = model4, sectionvars = c("cyl", "gear"),
threshold = 3)

## Example 5: Multi-class classification, xs both continuous

data(wine)
wine$Class <- as.factor(wine$Class)
library(e1071)

model5 <- list(svm(Class ~ ., data = wine, probability = TRUE))

ceplot(data = wine, model = model5, sectionvars = c("Hue", "Flavanoids"),
threshold = 3, probs = TRUE)

ceplot(data = wine, model = model5, sectionvars = c("Hue", "Flavanoids"),
threshold = 3, type = "separate")
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4 condtour

ceplot(data = wine, model = model5, sectionvars = c("Hue", "Flavanoids"),
threshold = 3, type = "separate", selectortype = "pcp")

## Example 6: Multi-class classification, xs with one categorical predictor,
## and one continuous predictor.

mtcars$cyl <- as.factor(mtcars$cyl)
mtcars$carb <- as.factor(mtcars$carb)

library(e1071)
model6 <- list(svm(cyl ~ carb + wt + hp, data = mtcars, family = "binomial"))

ceplot(data = mtcars, model = model6, threshold = 1, sectionvars = c("carb",
"wt"), conditionvars = "hp")

## End(Not run)

condtour Conditional tour; a tour through sections in data space

Description

Whereas ceplot allows the user to interactively choose sections to visualise, condtour allows the
user to pre-select all sections to visualise, order them, and cycle through them one by one. ’]’ key
advances the tour, and ’[’ key goes back. Can adjust threshold for the current section visualisation
with ’,’ and ’.’ keys.

Usage

condtour(data, model, path, response = NULL, sectionvars = NULL,
conditionvars = NULL, threshold = NULL, lambda = NULL,
distance = c("euclidean", "maxnorm"), view3d = FALSE,
Corder = "default", conf = FALSE, col = "black", pch = NULL,
xsplotpar = NULL, modelpar = NULL, xcplotpar = NULL)

Arguments

data A dataframe.
model A fitted model object, or a list of such objects.
path A dataframe, describing the sections to take. Basically a dataframe with its

colnames being conditionvars.
response Character name of response variable in data.
sectionvars Character name(s) of variables in data on which to take sections.
conditionvars Character name(s) of variables in data on which to condition.
threshold Threshold distance. Observed data which are a distance greater than threshold

from the current section are not visible. Passed to similarityweight.
lambda A constant to multiply by number of factor mismatches in constructing a general

dissimilarity measure. If left NULL, behaves as though lambda is set greater
than threshold, and so only observations whose factor levels match the current
section are visible. Passed to similarityweight.
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distance The type of distance measure to use, either "euclidean" (default) or "maxnorm".

view3d Logical; if TRUE, plots a three-dimensional regression surface when possible.

Corder Character name for method of ordering conditioning variables. See arrangeC.

conf Logical; if TRUE, plots confidence bounds or equivalent when possible.

col Colour for observed data points.

pch Plot symbols for observed data points.

xsplotpar Plotting parameters for section visualisation as a list, passed to plotxs. Not
used.

modelpar Plotting parameters for models as a list, passed to plotxs. Not used.

xcplotpar Plotting parameters for condition selector plots as a list, passed to plotxc. Can
specify cex.axis, cex.lab , tck, col for highlighting current section, cex.

Value

Produces a set of interactive plots. One device displays the current section. A second device shows
the the current section in the space of the conditioning predictors given by conditionvars. A third
device shows some simple diagnostic plots; one to show approximately how much data are visible
on each section, and another to show what proportion of data are visited by the tour.

See Also

ceplot, similarityweight

Examples

## Not run:

data(powerplant)
library(e1071)
model <- svm(PE ~ ., data = powerplant)
path <- makepath(powerplant[-5], 25)
condtour(data = powerplant, model = model, path = path$path,

sectionvars = "AT")

data(wine)
wine$Class <- as.factor(wine$Class)
library(e1071)
model5 <- list(svm(Class ~ ., data = wine))
conditionvars1 <- setdiff(colnames(wine), c("Class", "Hue", "Flavanoids"))
path <- makepath(wine[, conditionvars1], 50)
condtour(data = wine, model = model5, path = path$path, sectionvars = c("Hue"

, "Flavanoids"), threshold = 3)

## End(Not run)
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6 similarityweight

similarityweight Calculate the similarity weight for a set of observations

Description

Calculate the similarity weight for a set of observations, based on their distance from some arbitary
points in data space. Observations which are very similar to the point under consideration are given
weight 1, while observations which are dissimilar to the point are given weight zero.

Usage

similarityweight(x, data, threshold = NULL, distance = NULL,
lambda = NULL)

Arguments

x A dataframe describing arbitrary points in the space of the data (i.e., with same
colnames as data).

data A dataframe representing observed data.

threshold Threshold distance outside which observations will be assigned similarity weight
zero. This is numeric and should be > 0. Defaults to 1.

distance The type of distance measure to be used, currently just two types of Minkowski
distance: "euclidean" (default), and "maxnorm".

lambda A constant to multiply by the number of categorical mismatches, before adding
to the Minkowski distance, to give a general dissimilarity measure. If left NULL,
behaves as though lambda is set larger than threshold, meaning that one factor
mismatch guarantees zero weight.

Details

Similarity weight is assigned to observations based on their distance from a given point. The dis-
tance is calculated as Minkowski distance between the numeric elements for the observations whose
categorical elements match, with the option to use a more general dissimilarity measure comprising
Minkowski distance and a mismatch count.

Value

A numeric vector or matrix, with values from 0 to 1. The similarity weights for the observations in
data arranged in rows for each row in x.

See Also

dist1

Examples

## Say we want to find observations similar to the first observation.
## The first observation is identical to itself, so it gets weight 1. The
## second observation is similar, so it gets some weight. The rest are more
## different, and so get zero weight.
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similarityweight 7

data(mtcars)
similarityweight(x = mtcars[1, ], data = mtcars)

## By increasing the threshold, we can find observations which are more
## approximately similar to the first row. Note that the second observation
## now has weight 1, so we lose some ability to discern how similar
## observations are by increasing the threshold.

similarityweight(x = mtcars[1, ], data = mtcars, threshold = 5)

## Can provide a number of points to 'x'. Here we see that the Mazda RX4 Wag
## is more similar to the Merc 280 than the Mazda RX4 is.

similarityweight(mtcars[1:2, ], mtcars, threshold = 3)
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