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Abstract

We show that the l2 → l1 induced matrix norm, namely the norm

induced by the l2 and l1 vector norms in the domain and range space,

respectively, can be calculated as the maximal element of a finite set

involving discrete additive combinations of the rows of the involved ma-

trix with weights of ±1; the number of elements this set contains is

exponential in the number of rows involved. A geometric interpretation

of the result allows us to extend the result to some other induced norms.

Finally, we generalize the findings to bounded linear operators on sepa-

rable Banach spaces that can be obtained as strong limits of sequences

of finite-dimensional linear operators.

Mathematics Subject Classification: 15A60, 47A30, 52A20
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1 Introduction

Induced matrix norms are routinely used in both pure and applied mathemat-
ics. In many applications only an estimate or bound on norm is necessary, and
extensive results have been obtained on the estimation or bounding of various

1The author is also affiliated with the School of Electrical, Electronic, and Mechanical

Engineering, University College Dublin.
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matrix norms [Higham(1992), Horn and Johnson(1985)], but few results exist
on the exact calculation of such norms. There is growing interest in exact ex-
pressions for induced norms involving the lp-norm for p ≤ 1, as they are arise
in sparse representations, coding, signal processing, and compressive sampling
[Chen et al.(1998)Chen, Donoho, and Saunders], [Donoho and Elad(2003)],
[Donoho(2006)], [Zibulevsky and Pearlmutter(2001)], [Olshausen and Field(2004)],
[Lewicki and Sejnowski(2000)], [Lewicki(2002)], [Smith and Lewicki(2006)],
[Candès and Tao(2006)].

We derive a simple expression for the l2 → l1 induced matrix norm, and
generalize it to infinite-dimensional matrices that play the role of bounded
linear transformations between separable Banach spaces. We also derive a
simple expression for the lp → lq induced matrix norm when 0 < p ≤ 1 ≤ q.

The usual lp norms2 over vectors, ‖x‖p ≡
(
∑n

i=1|xi|p
)1/p

for 0 < p < ∞
and ‖x‖∞ ≡ maxi∈{1,...,n}|xi|, can be used to induce a norm on mappings
between two normed spaces: the maximum ratio between the norm of a vec-
tor in the domain and the norm of the corresponding vector in the domain
[Horn and Johnson(1985), pp. 257–335]. We consider a matrix as a linear
mapping from one normed linear space to another, so the ‖·‖pq-norm of a ma-
trix A : R

m×n is defined to be the maximal ratio of the lq-norm of the image of a
vector in the range space over the lp-norm of that vector in the domain space.
Because ‖cx‖r = c‖x‖r for c > 0, we can constrain the pre- or post-image
vector to unit length without loss of generality.

‖A‖pq ≡ sup
x∈Rn−{0}

‖Ax‖q

‖x‖p
= sup

{x∈Rn:‖x‖p=1}

‖Ax‖q =
(

min
{x∈Rn:‖Ax‖q=1}

‖x‖p

)−1

(1)

The supremum here is a maximum, as the spaces considered are finite-dimensional
and the unit lp-sphere is bounded and closed. As shorthand, we define ‖A‖p ≡
‖A‖pp.

Closed-form solutions are known for some induced norms, in particular
cases involving the l1, l2, and l∞-norms [Higham(1992)]. We now list some
lp → lq induced matrix norms and their closed-form exact solutions. These are
listed in lexicographic order by p and q. Novel expressions, derived below, are
starred.

‖A‖pq = max
j=1,...,n

‖aj‖q (p ≤ 1 ≤ q) (2a*)

‖A‖1 = max
j=1,...,n

‖aj‖1 = ‖AT‖∞ (2b)

‖A‖12 = max
j=1,...,n

‖aj‖2 = ‖AT‖∞2 (2c)

2Although when p < 1 the triangle inequality does not hold, this does not affect us below.

For clarity we write “lp norm” instead of “lp seminorm” or “lp norm-or-possibly-seminorm”,

and similarly we write “induced norm” instead of “induced norm-or-possibly-seminorm.”
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‖A‖21 = max
s∈{−1,+1}m

∥

∥sT A
∥

∥

2
(2d*)

‖A‖2 = max
λ∈eig(AT A)

√

|λ| = ‖AT‖2 (2e)

‖A‖∞1 = max
s∈{−1,+1}m

‖As‖1 (2f)

‖A‖1∞ = max
(i,j)∈{1,...,m}×{1,...,n}

|aij| (2g)

‖A‖∞2 = max
i=1,...,m

‖ai‖2 = ‖AT‖12 (2h)

‖A‖∞ = max
i=1,...,m

‖ai‖1 = ‖AT‖1 (2i)

where eig X is the set of eigenvalues of the array X, the vector aj is the j-th
column of A, and the vector ai is the i-th row of A.

Out of these, (2b), (2e), and (2i) are well known and can be found in
most textbooks of matrix theory or numerical analysis; (2f) and (2g) appear in
[Rohn(2000)]; (2c) and (2h) appear in [Higham(1992)] (the former is a special
case of the more general novel expression (2a*)). We now proceed to prove the
novel cases, (2a*) in Section 5, and (2d*) in Section 2, using a combination of
algebraic and geometric arguments. Section 6 generalizes some of the results
to linear operators on Banach spaces.

2 ‖·‖21

We first show that the ‖A‖21 induced matrix norm can be computed by con-
sidering a maximum over a finite set of vectors.

Theorem 1. Let A : R
n×m, and let ai, i = 1, . . . , m be the row vectors of A;

then,

‖A‖21 = max
s∈{−1,+1}m

∥

∥sT A
∥

∥

2
= max

s∈{−1,+1}m

∥

∥

∥

∥

∥

n
∑

i=1

siai

∥

∥

∥

∥

∥

2

(2d*)

Proof. We need the maximum of ‖Ax‖1 subject to the constraint that ‖x‖2 =
1. Observe that the constraint is continuously differentiable, while the func-
tion to be maximized is continuous but only piecewise differentiable. Within
a differentiability region, we may use Lagrange multipliers to maximize; over
regions of non-differentiability, however, we need to find the maximum manu-
ally. Fortunately, we can prove that the global maximum has to lie within a
differentiability region (see Figure 1), so this last step is not necessary.

First we compute the local maxima within each differentiability region using
Lagrange multipliers. Consider the function

f(x, λ) ≡ ‖Ax‖1 + λ(‖x‖2 − 1) =
m

∑

i=1

∣

∣

∣

∣

∣

n
∑

j=1

aijxj

∣

∣

∣

∣

∣

+ λ

(( n
∑

i=1

x2
i

)1/2

− 1

)

.
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We need to find the partial derivatives of f with respect to xi and λ and set
them to zero, but the absolute values in the formula make this difficult. We
can circumvent this by setting si = sign(Ax)i.

f(x, λ) =

m
∑

i=1

si

n
∑

j=1

aijxj + λ

(( n
∑

i=1

x2
i

)1/2

− 1

)

This function is now clearly differentiable in the set

W = R
n −

m
⋃

i=1

{x ∈ R
n : aix = 0},

which is a collection of connected regions, separated by hyperplanes, within
each of which f is differentiable and the components of s are constant. It
follows that, in W ,

∂f

∂xk
=

m
∑

i=1

siaik + λ
xk

‖x‖2
=

m
∑

i=1

siaik + λxk = 0,

so x = − 1
λ
AT s, and therefore |λ| = ‖AT s‖2 and

f(x, λ) = −1

λ

m
∑

i=1

si

n
∑

k=1

aik

m
∑

j=1

sjajk = −1

λ

n
∑

k=1

( m
∑

i=1

siaik

)( n
∑

j=1

sjajk

)

=
λ2

λ
= λ.

Observe further that

m
∑

i=1

siai = sT A so

∥

∥

∥

∥

∥

m
∑

i=1

siai

∥

∥

∥

∥

∥

2

=
√

sT AAT s.

What about the values of f outside W ? Can perhaps the maximum be
found there? We argue that this is not possible. Let A : R

m×n be an array
for which the vector x yielding the maximum satisfies, without loss of gen-
erality, the l ≤ m conditions aix = 0, i = 1, . . . , l. Now form the vector

y =
x + ǫa1

√

1 + ǫ2|a1|2
, and assume that ǫ is small enough so that si = sign(aiy),

i = l + 1, . . . , m. Then,

m
∑

i=1

|aiy| =
1

√

1 + ǫ2|a1|2

[

m
∑

i=l+1

|aix| + |ǫ|
l

∑

i=1

|aia1| + ǫ

m
∑

i=l+1

siaia1

]

=
m

∑

i=l+1

|aix| + |ǫ|
l

∑

i=1

|aia1| + ǫ

m
∑

i=l+1

siaia1 + O(ǫ2)

=
m

∑

i=l+1

|aix| + C1|ǫ| + C2ǫ + O(ǫ2)
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Assuming a1 6= 0, we get C1 > 0, while regardless of the sign of C2 we can
choose the sign of ǫ appropriately so that C2ǫ ≥ 0. This makes C1|ǫ|+C2ǫ > 0,
and

m
∑

i=1

|aiy| >

m
∑

i=l+1

|aix|

contradicting the assumption that the maximum occurs at x.

The requirement that a1 6= 0 can be eased by the continuity of vector
norms, which allows us to approximate A by a sequence of arrays {Ak}k∈N

with non-zero rows. This completes the proof.

As a final observation, we note that the maxima occur in pairs: if s is a
maximizing vector then −s is as well.

3 Geometric intuition

Let us now develop a geometric intuition for the l2 → l1 induced norm of A.
We wish to find the smallest t > 0 such that

∃x : ‖x‖2 = t given that ‖Ax‖1 = 1.

A

l2-norm unit ball in R
n l1-norm unit ball in R

m

dilation by t

Figure 1: Geometric intuition of ‖·‖21 induced matrix norm. The number
t = ‖A‖21 is the smallest number for which ‖y‖1 = 1 where y = tAx and
‖x‖2 = 1. This means we can consider the image of the l2-norm unit ball in
R

n under A, namely {y : y = Ax, ‖x‖2 = 1}, and dilate it so it just makes
contact with the l1 unit ball, which is an m-dimensional octahedron.
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Imagine we begin with a very small t, and that we increase it gradually. Con-
sidered geometrically, this corresponds to expanding the sphere {x |‖x‖2 = t},
as well as its image under A, which is an m-dimensional ellipsoid, until this im-
age, which lies fully within the m-dimensional octahedron {y : ‖y‖1 = 1} with
vertices at yi = ±1, i = 1, . . . , m, eventually touches the hyper-octahedron.
The point of this first contact cannot be a vertex of the octahedron, because
the ellipsoid is smooth and convex, so it must lie in the interior of a facet.
Moreover, points of contact will occur in pairs on opposite and symmetric
sides with respect to the origin. These two observations correspond to the
results shown above that maximization solutions occur in pairs and that they
occur within W .

The same intuition with the shape of the balls in the domain and range
spaces switched yields (2c), as a vertex of the transformed octahedron from
the domain space will be the first point of contact.

4 Computational complexity of ‖·‖21

The calculation of ‖A‖21 when A : R
n×m, by (2d*), requires a combinatorial

search, i.e., the calculation of ‖AT s‖2 for each s ∈ {−1, +1}m. This requires
O(nm2m) operations.

A simple argument shows that a maximizing s will be in {−1, +1}m. Let
s′ = s− siei and ai be the ith row of A. Expanding, we obtain:

‖AT s‖2
2 = sT AAT s = (s′)T AAT s′ + s2

i ‖ai‖2
2 + 2si[(s

′)T AATei]

This expression makes it clear that, keeping all elements of s fixed except
si, ‖AT s‖2 is maximized when si becomes +1 or −1, according to whether
(s′)T AATei is positive or negative, respectively; if it is 0 it obviously makes no
difference. Repeating this argument for i = 1, . . . , m proves the claim.

5 ‖·‖pq for p ≤ 1 ≤ q

We can generalize (2c), the well known result for the l1 → l2 induced matrix
norm, to the lp → lq induced matrix norm where p ≤ 1 ≤ q.

Theorem 2.

‖A‖pq = max
j=1,...,n

‖aj‖q (p ≤ 1 ≤ q) (3)

Proof. We use a simple geometric argument in which the roles of the balls
in Figure 1 are reversed, along with considerations of convexity. We wish to
find the smallest t > 0 such that ∃x : ‖x‖p = t and ‖Ax‖q = 1. Imagine
once more we begin with a very small t, and that we increase it gradually.
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Considered geometrically, this corresponds to expanding the closed surface
P (t) = {x : ‖x‖p = t}, and therefore AP (t), the image of P (t) under A, until
this image, which lies fully within the closed surface Q = {y : ‖y‖q = 1},
touches Q.

If Q is convex, then the first point of contact between AP (t) and Q will be
on a point of AP (t) that is on the convex hull of AP (t). When p < 1, the points
of AP (t) on the convex hull of AP (t) are in the finite set {±taj : j = 1, . . . , n}.
When q ≥ 1, the set Q is the boundary of a convex set. Together, these imply
that we can find the minimal t separately for each {taj}, and take the smallest
of them. This establishes the result for p < 1. A limit argument based on the
continuity of the norm shows that this continues to hold when p = 1.

6 Induced norms on Banach spaces

How do our results need to be modified if we consider infinite-dimensional
spaces instead? Since we are considering normed vector spaces, let us focus
on Banach spaces, because they have the additional desirable feature of com-
pleteness. To avoid unnecessarily complicated cases, let us narrow our scope
even further and exclusively consider separable Banach spaces, namely Banach
spaces with a countable basis; after all, the most common ones are of this type.

Let then A : B1 → B2 be a bounded linear operator from a separable (pos-
sibly complex) Banach space B1 into another B2, both equipped with (possibly
different) lp norms. Since the elements of a separable Banach space can be rep-
resented as vectors of countably many coordinates, A can be considered to be
an array with countably many rows and columns (which we will also denote
by A). As ‖A‖ < ∞ by assumption, then ‖AT‖ = ‖A∗‖ = ‖A∗‖ = ‖A‖ < ∞.
Let now Am,n : R

n×m be the constraint of A on the first n basis vectors of B1

followed by the projection on the first m basis vectors of B2. We want to inves-
tigate conditions under which there exists a sequence Ak = Am(k),n(k), k ∈ N

∗

such that lim‖Ak − A‖ = 0.

Theorem 3. Let A : B1 → B2 be a bounded linear operator from a separable
Banach space B1 into another B2, equipped with the norms ‖·‖p1

and ‖·‖p2
,

respectively, where 1 ≤ p1, p2 < ∞, let ak, k ∈ N
∗ denote the rows of A, let

Am,n : R
n×m be the constraint of A on the first n basis vectors of B1 followed

by the projection on the first m basis vectors of B2, and let p′1 be such that
1

p′1
+

1

p1
= 1. If

∞
∑

k=1

‖ak‖p2

p′
1

< ∞ [Row Norm Summability (RNS)]
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then there exists a sequence Ak = Am(k),n(k), k ∈ N
∗, such that lim‖Ak −A‖ =

0.

Proof. The first step is to observe that the vector subspace of B1 consisting
of the union of the finite-dimensional subspaces of B1 consisting of the first n

basis vectors for all n ∈ N
∗ is dense in B1. Similarly, the image of this subspace

under A is dense in AB1 ⊂ B2.
The second step is to write down explicitly what ‖(A − Ak)x‖p2

is when
‖x‖p1

= 1:

‖(A − Ak)x‖p2

p2
=

m(k)
∑

l=1

∣

∣

∣

∣

∣

∣

∞
∑

i=n(k)+1

alixi

∣

∣

∣

∣

∣

∣

p2

+

∞
∑

l=m(k)+1

|ak · x|p2 .

However, by Hölder’s inequality,

|ak · x| ≤ ‖ak‖p′
1
‖x‖p1

= ‖ak‖p′
1

whence

‖(A − Ak)x‖p2

p2
≤

m(k)
∑

l=1

∣

∣

∣

∣

∣

∣

∞
∑

i=n(k)+1

|ali|p
′

1

∣

∣

∣

∣

∣

∣

p2

p′
1

+
∞

∑

l=m(k)+1

‖ak‖p2

p′
1

.

Let now

m(k) = min

{

m ∈ N :
∞

∑

l=m+1

‖ak‖p2

p′
1

<
1

2k

}

and, having chosen m(k), let

n(k) = min







n ∈ N : max
l=1,...,m(k)

∣

∣

∣

∣

∣

∞
∑

i=n+1

|ali|p
′

1

∣

∣

∣

∣

∣

<

(

1

2km(k)

)

p′
1

p2







.

It follows that

‖(A − Ak)x‖p2

p2
≤ 1

k
(4)

which implies that

sup
{x∈B1:‖x‖p1

=1}

‖(A − Ak)x‖p2

p2
= ‖A − Ak‖p2

p2
≤ 1

k
(5)

which finally results in

lim
k→∞

‖A − Ak‖p2
= 0. (6)

A “3-ǫ” argument, to include vectors with infinitely many nonzero coeffi-
cients over the chosen bases, finishes the proof.
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This theorem proves that the results proved in Theorems 1 and 2 remain
valid for arrays of infinite dimension satisfying the RNS condition. Specifically
in relation to Theorem 1, we make the following observation: Theorems 1 and
3 combined yield that

‖A‖21 = lim
k→∞

max
s∈{−1,+1}m(k)

√

sT AkA
T
k s = max

s∈{−1,+1}∞

√
sT AAT s

despite the fact that the maximizing vector s where si = ±1, i ∈ N, is no longer
a vector of finite norm. Therefore, the supremum involved in the computation
of ‖·‖21 in this case is a genuine supremum, not a maximum, in the sense that
there exists no vector x of finite norm, hence within the vector space, for which
‖A‖21 = xT AATx. Instead, if A is a continuous linear operator between the
spaces defined in the theorem, there exists a sequence of vectors xn, n ∈ N,
such that lim‖Axn‖1 = ‖A‖21 and ‖xn‖2 = 1.

7 Summary and conclusion

Using a combination of analytical and geometrical arguments, we have shown
that:

• The induced norm ‖A‖21 can be computed as the maximal value of a
quadratic form over a finite, albeit exponentially sized, set of vectors
(Theorem 1).

• The induced norm ‖A‖pq, p ≤ 1 ≤ q is the maximal lq norm of the
columns of A (Theorem 2).

• Analogous results hold for bounded linear operators on separable Banach
spaces that satisfy RNS (Theorem 3).
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