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Abstract. This study proposes a modular system for clustering on-line motion 
trajectories obtained while users navigate within a virtual environment. It 
presents a neural network simulation that gives a set of five clusters which help 
to differentiate users on the basis of efficient and inefficient navigational 
strategies. The accuracy of classification carried out with a self-organizing map 
algorithm was tested and improved to above 85% by using learning vector 
quantization. The benefits of this approach and the possibility of extending the 
methodology to the study of navigation in Human Computer Interaction are 
discussed. 

1  Introduction 

This study is part of ongoing research whose purpose is to identify the procedural and 
strategic rules governing navigational behaviour within virtual worlds. The present 
paper investigates the motion trajectories of a set of subjects while they accomplish 
spatial tasks within a Virtual Environment (VE). Prior studies in the area of spatial 
cognition were concerned with testing hypotheses about the impact of various factors 
on spatial knowledge acquisition [3]. However, none of them tried to investigate 
holistically the motion trajectories themselves. By providing a rich set of primary 
data, trajectory analysis can support the extraction of valuable information regarding 
the rules users employ in accomplishing spatial tasks. Moreover, when this analysis is 
performed in the light of some performance criterion (e.g., time required to perform a 
search task) it could provide valuable insights into discriminating efficient and 
inefficient navigational strategies and clustering the users accordingly. 

Trajectory classification provides the benefits of reducing the huge amount of 
information stored in raw data and once a typology has been created it can be used to 
assess any new trajectory by associating it with an appropriate class. On-line 
trajectory classification would allow the identification of user’s in terms of good or 
poor performers of spatial tasks. This identification could represent an essential initial 
step in designing the VE.  Thus, the VE could be dynamically reconfigured in order to 
enable poor users to learn the efficient navigation procedures, while for good 
performers it can be redesigned in order to challenge users’ spatial skills.  
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Attempts to cluster trajectories have been carried out primarily in the area of visual 
surveillance, especially novelty detection, with the purpose of identifying suspicious 
behaviour of pedestrians within an outdoor open area [5], [14]. This goal is directly 
linked to the idea of automatic surveillance, which would allow the replacement of 
human operator. In their study, Owens and Hunter have shown that the self-
organizing feature map neural network could be successfully employed to perform 
trajectory analysis by both identifying the characteristics of normal trajectories and 
detecting novel trajectories [14].  

However, trajectory analysis performed on a spatial cognition task represents a 
novel approach. The objective of this study involves identifying the good and poor 
motion trajectory and their associated characteristics. What is good and poor is 
determined in the light of both users’ performance and findings of spatial cognition 
studies. 

Without underestimating the role of traditional clustering methods, we propose the 
use of Artificial Neural Networks (ANN) as an alternative tool for trajectory 
classification. Neural networks provide a very powerful toolbox for modelling 
complex non-linear processes in high dimensionalities [11]. ANNs have many 
advantages over the traditional representational models, particularly distributed 
representations, parallel processing, robustness to noise or degradation and biological 
plausibility [6]. We consider that at least part of these strengths can be harnessed to 
model user’s navigational behaviour. 

 

2 Cluster Analysis Performed by Artificial Neural Networks 

 
The main goal of cluster analysis is to reduce the amount of data, by subdividing a set 
of objects into (hierarchical arrangement of) homogeneous subgroups. A significant 
outcome is reduced complexity with a minimal loss of information which allows a 
better understanding of the analysed data [12]. 

An important aspect of any clustering method is the minimisation of classification 
errors. As Kaski pointed out, [7] one problem usually associated with clustering 
methods is the interpretation of clusters. Due to their ability to extract patterns and to 
visualise complex data in a two-dimensional form [7], Self-Organizing Feature Map 
(SOM) are used to perform the trajectory cluster analysis. Like many other clustering 
techniques, SOM reduces representations to the most relevant facts, with minimum 
loss of knowledge about their interrelationships [7].  

The SOM is a neural network algorithm with several advantages over other 
clustering techniques [7], [14]. The mapping from a high dimensional data space onto 
a two-dimensional output map is effectively used to visualise metric ordering 
relations of input data. Reducing the amount of data allows comprehensible cluster 
identification and interpretation, which is a difficult task in the case of traditional 
clustering methods [7].  As any other ANN, SOM has a considerable potential to 
generalise, meaning that once it is trained, SOM is able to classify new data within the 
set of clusters previously identified.  

Features like the approximation of the probability density function of input space, 
the identification of prototype best describing the data, the visualisation of the data 
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and the potential to generalise, highly recommend SOM as a basis for on-line 
automatic extraction of trajectory clusters. 

Furthermore the basic features of SOM and Learning Vector Quantization (LVQ) 
as unsupervised and supervised learning processes respectively are outlined. LVQ is a 
supervised learning algorithm related to SOM. The SOM and LVQ algorithms have 
been developed by Teuvo Kohonen and implemented by his team from Helsinki 
University of Technology, in the form of SOM_pak [9] and LVQ_pak [10]. These 
comprehensive software package are available online and were used in this study. 
SOM is based on an unsupervised learning process, allowing both the cluster 
identification within the input data and the mapping of an unknown – not previously 
seen – data vector with one of the clusters. This process is carried out without any 
prior knowledge regarding number and content of the clusters to be obtained [7]. 
When a set of already clustered input data is available, a supervised learning process 
can be employed to identify to which class an unknown data vector belongs.  

2.1 Self Organizing Maps  

A basic SOM consists of an input layer, an output map and a matrix of connections 
between each output unit and all the input units. The input is usually represented by a 
multidimensional vector with each unit coding the value from one dimension. Every 
node from the two-dimensional output layer is associated with a so-called reference 
vector (mi), consisting of a set of weights from each input node to the specified output 
node. In a simplistic way, each input vector is compared with all the reference vectors 
and the location of best match in some metric, usually the smallest of the Euclidean 
distances, is defined as the winner. Around the maximally responding unit, a 
topological neighbourhood is defined and the weights of all units included in this 
neighbourhood are adjusted, according to equation (1), where mi is the weight at time 
(t+1) and η is the learning rate. 

 

mi ( t + 1)  =  mi (t)  +  η [ x(t) –  mi (t)] .                 (1) 

 
The topological neighbourhood should be quite large at the beginning, to enable a 
global order of the map, while in the subsequent stages its values decreases as a 
function of time. Accordingly, the learning rate varies in time from an initial value 
close to unity, to small values over a long time interval. Training is performed during 
two phases: an ordering phase during which the reference vectors of the map units are 
ordered (neurons in different areas of the network learn to correspond to coarse 
clusters in the data), and a much longer fine-tuning phase during which the reference 
vectors in each unit converge to their correct values (neurons adjust to reflect fine 
distinctions). 
The learning process consists of a “winner-takes-all” strategy, where the nodes in the 
output map compete with each other to represent the input vectors. For this reason, 
the output layer is also called the competitive layer. Competitive learning is an 
adaptive process, through which the neurons from the output layer become slowly 
sensitive to the input data, learning to represent better different types of inputs. 
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As Kohonen pointed out, [8] a significant property of SOM is the tendency to 
preserve continuity in terms of mapping similar inputs to neighbouring map locations 
influenced by the weight vectors trying to describe the density function of the input 
vectors. As a result of these antagonistic tendencies, the distribution of reference vectors 
is rather smooth, given the search for an optimal orientation and form to match those of 
the input vector density. In addition, the greater the variance between the input vector 
features, the better their representation on the output map. It is expected that these 
features correspond to the most important dimensions of the inputs. 

2.2 Learning Vector Quantization 

LVQ consists of an input layer comprising multidimensional vectors described by 
their features and an output layer whose neurons correspond to the predefined classes. 
There is also a matrix of connections between each output unit and all the input units, 
consisting of weights vectors. Since each weight vector corresponds to a class, they 
are considered as labelled. The basic idea is that input vectors belonging to the same 
class will cluster in data space, in a form of a normal distribution around a prototype 
vector. Classifying an input vector consists of computing the Euclidean distance 
between the considered input vector and all the weight vectors, followed by assigning 
it to the class associated with a weight vector for which the Euclidean distance is 
minimum [10]. 

During training, an adaptive process occurs with respect to the closest weight 
vector, also called the winning neuron. When both the input vector and the weight 
vector belong to the same class, meaning that the input vector was correctly classified, 
the weight vector is modified in order to become a better approximation of the input 
vector. However, when the input vector is incorrectly classified, the weight vector is 
adjusted in a way which increases its distance of the input vector (since they belong to 
different classes).  

2.3 SOM versus LVQ 

While the SOM algorithm strives to approximate the weight vectors to the input ones, 
LVQ tries to lead to weights that effectively represent each class. The process of 
adjusting the weights, without respect to any topological neighbourhood differentiates 
LVQ from SOM. The performance of LVQ can be increased by initialising the 
codebook vectors with those values obtained by training the SOM [7]. Variants of 
SOM have been successfully applied to a large number of domains, ranging from 
monitoring and control of industrial tasks, to robot navigation, from data processing 
to machine vision, from image analysis to novelty detection [7]. However, their 
adoption within the frame of spatial cognition in VE constitutes a novel approach.  

3 Procedure 

Virtual Environments (VE) have become a rich and fertile arena for investigating 
spatial knowledge. Within the VE, the user set of actions is restricted, consisting 
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mainly of navigation and locomotion, object selection, manipulation, modification 
and query [4]. Through their powerful tractable characteristic [1], VEs enable 
accurate spatio-temporal recording of users’ trajectory within the virtual space. 
Attempts to understand spatial behaviour in both real and artificial worlds were 
primarily concerned with highlighting the symbolic representation of spatial 
knowledge. 

In this study we utilised ECHOES
1

 [13], [2] as an experimental test-bed. It is a 
virtual reality system which offers a small-scale world, dense, static and with a 
consistent structure. Adopting a physical world metaphor, the ECHOES environment 
comprises a virtual multi-story building, each one of the levels containing several 
rooms: conference room (Fig.1), library (Fig.2), lobby etc. Users can navigate from 
level to level using a virtual elevator. The rooms are furbished and associated with 
each room there is a cohesive set of functions provided for the user. These features 
enable ECHOES to offer an intuitive navigational model. 

A sample of 30 postgraduates was asked to perform two tasks within the VE. The 
first, an exploratory task, provided the primary data for the trajectory classification, 
while the second, a searching task, offered a basis for assessing the quality of 
exploration and the efficiency of the exploratory strategy. The time needed to search 
for a particular room acts as a performance indicator.  

A comprehensive set of data was recorded throughout the experiment. Each 
movement greater than half a virtual meter, and each turn greater than 30o, were 
recorded. This was achieved by the inclusion of a rich set of virtual sensors together 
with an odometer and rotational event listener [2].  

 
 
 

           
 

              Fig. 1. Virtual Conference Room                                 Fig. 2. Virtual Library 

4 Data Analysis and Results 

The use of SOM [9] and LVQ [10] for performing the trajectory cluster analysis 
requires several steps: data collection, construction and normalisation of data set, 
unsupervised training, visualisation of the resulting map, cluster identification, 
obtaining a set of trained labelled codebook vectors to be used in supervised training 

                                                           
1  ECHOES (European Project Number MM1006) is partially founded by the Information 

Technologies, Telematics Application and Leonardo da Vinci programmes in the framework 
of Educational Multimedia Task Force. 
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and measuring classification accuracy. When all these steps are performed in order to 
classify online trajectories, they should be automatic and seamlessly intertwine. For 
this we used the developed several modules serially connected as presented in Fig. 3. 

 
 
 
 
 

 

 

 

 

Fig.  3. The modular system for on-line trajectory classification 

Collecting Data 
The data collection module is based on the listener agent previously developed by 
Delahunty [2]. The Listener Agent gathers information about user behaviour within the 
virtual world. The data captured when the user interacts with the ECHOES virtual space 
contains details of navigation paths through the world and time spent in different rooms.  

Pre-processing Data 
Data pre-processing consisted of transforming the raw data into a suitable form to be 
fed into the SOM. In the raw data each trajectory is represented by a multivariate time 
series. However, we were interested in testing if a static representation of trajectory is 
sufficient to perform a classification. For this, the reduction of the raw data should be 
done by preserving their significant features. We choose to represent each trajectory 
by the degree of occupancy of a predefined set of spatial locations and an extra input 
node representing the degree of rotating in VE (29 nodes). For the SOM analysis, we 
overlaid the virtual space with a grid composed of 28 squares of 4×4 virtual meters. 
Each trajectory was converted to a succession of locations on the grid. The next step 
necessitated the mapping of each trajectory into a sequence of 28 neurons  (one for 
each location), according to equation (2), where NV is the input node value and LOC 
is location occupancy expressed as how many times the user revisited that location. 

NV = log10 (9 × LOC + 1) .            (2) 

The above transformation allows a clear differentiation between non-visited (NV = 0) 
and visited locations. In the later case the NV is within the range 1–2, 1 for only one 
visit and 2 for 11 visits, 11 being the maximum number of times for revisiting a 
location. Apart of the previous encoding which features the space covering, the 
trajectories were characterised by the amount and size of users’ rotations. We 
considered that trajectories characterise by rotation angles greater than 90o present an 
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interesting feature. If a trajectory has more than 10% of the rotation angles equal or 
greater than 90o, the 29th node of the input vector was set to 3, otherwise it was set on 0. 

SOM Training 
Once the data were pre-processed, we randomly divided them in two equal subsets, 
keeping one for training and the other one for the testing. Each set consisted of 63 
vectors, comprising encoded trajectories covered by the users on each level.  

A SOM of 16×12 neurons was used to perform a topology-preserving mapping. 
The first phase of training was carried out for 1000 epochs, a radius of 16 and with a 
learning rate of 0.8, while the second phase lasts 120000, with a learning rate of 0.01 
and a radius of 2. The random seed was 275 identified by using the vfind program. 
These parameters were retained, after we tried more than 50 trainings, with different 
architectures and learning rates, because they led to the smallest quantization error for 
the testing set (1.97), while for training set it was 0.35. Quantization error represents 
the norm of difference of an input vector from the closest reference vector [9]. 

Maps Visualisation 
The resulting organisation of the map, shown in Fig. 4 and 5 shows five clusters of 
users, where clustering is on the basis of their navigational pattern within the VE. 
Figure 4 is associated with the training set of trajectory while Figure 5 with the testing 
set. Numbers which were associated with the winner neurons within each cluster are 
replaced by the original corresponding trajectory.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Fig.  4. SOM Map obtained from the training set 

 
With respect to visualisation, the SOM provides an additional benefit: the clusters 
boundaries are represented by darker shades of grey, since they represent larger 
distances between adjacent neurons. 
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Fig.  5. SOM Map obtained from the testing set 

 

Cluster Identification 
Training the SOM led to five clusters. For their identification, within the area 
corresponding to each of them, we placed the associated cluster number e.g. cluster 
number 1 comprises the trajectories within area designated by number 1, located in 
the middle of the lower half of the map.  

Cluster 1 groups trajectories limited to the lower half e.g. two rooms of the spatial 
layout. These trajectories are generally circular. Some of these trajectories are smooth 
while other present sharper angles.  

Cluster 2 located on top left of the map comprises trajectories which present lots of 
turnings and usually crossover themselves. These trajectories are completely different 
than any other group, containing straight lines joined at sharp angles. They do not 
allow an efficient coverage of the space, are more likely to induce disorientation and 
accordingly the level of spatial knowledge which can be acquired through them is 
limited. As it can be seen, there are two sub-clusters that can be identified within this 
class, whose main distinction resides in the coverage of the space. For some of 
trajectories, the coverage is restricted to only one room of the space, while the rest of 
them cover larger space, but rarely going circular. Actually these trajectories are 
erratic and the user seems anxious to explore the space, e.g. he/she rather moves in 
the same area or covers larger space but in this case, it is likely that the returning to 
the starting point is achieved through approximate the same path.  

Cluster 3 located on the right part of the second half of the map, consists of very 
smooth circular trajectories, which have at least one direction towards the centre of 
the spatial layout. Cluster 4 comprises longer trajectories, which cover most of the 
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spatial layout. They present the “going around the edge” feature, more pronounced 
than other clusters, except cluster 2. Cluster 5 presents circular trajectories perform 
within the first half of the spatial layout.  

Each set of trajectories, with the exception of cluster 2, proves beneficial along the 
temporal dimension. Carefully selected and ordered, they enable users to acquire 
particular spatial knowledge, with a minimum investment of resources.  

Previous work in classifying trajectories, performed only on the basis of locations, 
led to a more detailed classification [15]. However, since the purpose of this analysis 
is to discriminate between users employing efficient strategies and those navigating 
through a set of inefficient strategies, we do have to take the rotation angle into 
account. This leads to a more detailed representation of cluster 2.  

Training LVQ 
Once the SOM was trained, the codebook vectors could be used for initialising the 
weights for LVQ algorithm. This did indeed lead to increased classification accuracy 
from 72% obtained using random initialisation to 87%. In other words, each trajectory 
from the testing set was correctly classified by the LVQ with 87% accuracy. Within 
each class, the classification accuracy is slightly different: cluster 1 – 86%, cluster 2 – 
100%, cluster 3 – 63%, cluster 4 – 87 % and cluster 5 – 100%. As it can be seen, the 
trajectories belonging to cluster 2, and which require special attention are correctly 
classified in each case. This is an important outcome, supporting the goal of our study 
aiming to discriminate users in terms of good and poor performers of the spatial tasks. 
This finding should be also emphasised in the light of the fact that more than 50% of 
trajectories composing cluster 2 are covered by the subjects with worst performance 
in the searching tasks (bottom 10% female and bottom 10% male). 

5 Conclusion 

The study shows that the ANN could be successfully employed in modelling spatial 
behaviour in VE, in terms of classifying users’ motion trajectories performed on-line. 
Based on this classification, each new user can be associated with one of the clusters, 
and accordingly identified as employing efficient or inefficient navigational strategies.  

The SOM and LVQ analysis led to the identification of five user trajectory clusters 
within the same VE. The accuracy of classification is above 85% which is a 
significant outcome given the relatively limited size of our training and testing sets. 
Within each cluster, trajectories share common features. Some of them were already 
identified while the others request further analysis. A future direction will be to 
extract the quantitative rules governing the clusters and to express them in a symbolic 
manner. The study findings could provide insights in understanding what do the 
efficient and inefficient strategies mean, by interpreting them through theoretical 
aspects of spatial cognition described by environmental psychology. Moreover, the 
study indicates that using neural networks as a tool in studying navigation can be 
beneficial for user modelling in the area of spatial knowledge acquisition. Permitting 
a comparative analysis between efficient and inefficient navigational strategies, this 
methodology could suggest how VEs might be better designed. Based on these 
results, further work will focus on assisting new users to improve their spatial abilities 
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in exploring a new virtual environment. After a period of navigation, SOM would be 
able to integrate the online trajectory within the appropriate cluster. If the user’s 
trajectory history matches, for example, cluster no. 2, the system will assist the user in 
his/her further exploration. Thereafter this guidance will improve user exploration. 
Alternatively real-time dynamic reconstruction of the VE could assist the user in their 
tasks.  

References 

1. Amant, R.S., Riedl, M.O.: A practical perception substrate for cognitive modelling in 
HCI. International Journal of Human Computer Studies 55(1) (2001) 15–39 

2. Delahunty, T.: ECHOES: A Cohabited Virtual Training Environment. Master Thesis, 
Department of Computer Science, University College Dublin (2001) 

3. Freksa, C., Habel, C., Wender, K.F. (eds.): Spatial Cognition, An Interdisciplinary 
Approach to Representing and Processing Spatial Knowledge. Lecture Notes in 
Computer Science, Vol. 1404. Springer-Verlag, Berlin (1998) 

4. Gabbard, J., Hix, D.: Taxonomy of Usability Characteristics in Virtual Environments, 
Final Report to the Office of Naval Research (1997) 

5. Grimson, W., Stauffer, C., Lee, L., Romano, R.: Using Adaptive Tracking to Classify 
and Monitor Activities in a Site, Proceedings IEEE Conf. on Computer Vision and 
Pattern Recognition (1998) 22–31 

6. Haykin, S.: Neural Networks: A Comprehensive Foundation. Prentice-Hall New Jersey 
(1994) 

7. Kaski, S.: Data exploration using self-organizing maps. Acta Polytechnica Scandinavica, 
Mathematics, Computing and Management in Engineering Series No. 82, Finnish 
Academy of Technology (1997)   

8. Kohonen, T.: Self-organizing maps. Springer Series in Information Sciences, Vol. 30, 
Springer-Verlag Berlin (2001) 

9. Kohonen, T., Hynninen, J., Kangas, J., Laaksonen, J.: SOM PAK: The Self-Organizing 
Map program package, Report A31, Helsinki University of Technology, Laboratory of 
Computer and Information Science (1996) 

10. Kohonen, T., Hynninen, J., Kangas, J., Laaksonen, J., Torkkola, K.: LVQ PAK: The 
Learning Vector Quantization Program Package. Version 3.1. Helsinki University of 
Technology, Laboratory of Computer and Information Science (1995) 

11. Lint, H. van, S.P. Hoogendoorn, H.J. van Zuylen: Freeway Travel Time Prediction with 
State-Space Neural Networks, Preprint 02-2797 of the 81st Annual Meeting of the 
Transportation Research Board, Washington D.C. (2002) 

12. Lorr, M.: Cluster analysis for social scientists. Jossey-Bass Publishers, San Francisco 
(1983)   

13. O'Hare, G.M.P., Sewell, K., Murphy, A.J., Delahunty, T.: ECHOES: An Immersive 
Training Experience. Proceedings of Adaptive Hypermedia and Adaptive Web-based 
Systems (2000) 179–188 

14. Owens, J., Hunter, A.: Application of the self-organizing map to trajectory classification. 
Proc. of the 3rd IEEE Workshop on Visual Surveillance (2000) 77–83 

15. Sas, C., O’Hare, G.M.P., Reilly, R.G.: A Connectionist Approach to Modelling 
Navigation: Trajectory Self Organization and Prediction. Proceedings of 7th ERCIM 
Workshop, User Interfaces for All. Carbonell, N. and Stephanidis, C. (eds.) (2002) 111-
116  


	1 Introduction
	2 Cluster Analysis Performed by Artificial Neural Networks
	2.1 Self Organizing Maps
	2.2 Learning Vector Quantization
	2.3 SOM versus LVQ

	3 Procedure
	4 Data Analysis and Results
	5 Conclusion

