
A Tool Chain for Reverse Engineering C++ Applications

Nicholas A. Krafta, Brian A. Malloya and James F. Powerb

aDepartment of Computer Science, Clemson University,
Clemson, SC 29634, USA

bDepartment of Computer Science, National University of Ireland, Maynooth,
Maynooth, Ireland

In this paper, we describe our tool chain that exploits the gcc C++ compiler, to enable
experimentation and study of real C++ applications. Our tool accepts any C++ application
that can be parsed by the gcc C++ front-end, including large language processing tools and
gaming software. Our tool consists of a chain of applications that enables the user to access
the tool at any point in the chain. The easiest point of access is at the end of the chain
where an Application Programmers Interface (API) provides easy access to information
about the names, classes, namespaces, functions or statements in the C++ application
under study.

1. Introduction

To improve the software development process, researchers must design and implement
new techniques and verify that their work is an improvement over previously developed
techniques. This verification requires that researchers conduct either controlled experi-
ments or case studies that include the implementation of at least one previously developed
technique as a basis of comparison with their own technique. Moreover, the experiments
or studies must be conducted on a test suite of programs that include applications of all
sizes and a variety of application domains. An important feature of the experimentation
is that the newly developed result must be reproducible [12].

However, there are problems associated with the performance of these experiments or
studies. First, it can be difficult or impossible to reproduce the results of previous research
due to the difficulty of interpreting the previously developed algorithm or technique, with
the concomitant lack of confidence in the generated results [10,25,35]. Second, experi-
ments and case studies depend on numerous software-related artifacts, including software
systems, such as parsers, and test cases that vary in size, application domain and complex-
ity [12]. We address the first problem in previous research by describing an infrastructure
to support interoperability in reverse engineering of C++ applications [24,25]. In this
previous work, we describe a hierarchy of canonical schemas that capture minimal func-
tionality for middle-level graph structures. The purpose of the hierarchy is to facilitate an
unbiased comparison of experimental results for different tools that implement the same
or a similar schema.

1



2 N. Kraft, B. Malloy and J. Power

In this paper, we focus on the second problem by describing our tool chain that exploits
the gcc C++ compiler, to enable experimentation and study of real C++ applications. Our
tool accepts any C++ application that can be parsed by the gcc C++ front-end, including
large language processing tools and gaming software [20]. Our tool consists of a chain
of applications that enables the user to access the tool at any point in the chain. The
preferred point of access is at the end of the chain where an Application Programmers
Interface (API) provides easy access to information about the names, classes, namespaces,
functions, function calls or statements in the C++ application under study. There are
other points of access along the chain where early access points enable lower level access to
the information about the program, but this low level access imposes a greater cognitive
burden on the user of the tool due to the knowledge required about the details of the
implementation of gcc.

In the next section we review the terminology and technologies that we use in the
design and implementation of our tool chain. In Section 3 we present details about the
tool chain and in Section 4 we present some results in using the tool to compute metrics
for evaluation of object-oriented applications. In Section 5 we compare our tool to similar
systems and in Section 6 we draw conclusions and describe our ongoing work.

2. Background

In this section we review terminology and the major technologies that we use in the
design and implementation of the g4re tool chain. In Section 2.1 we review GENERIC, the
ASG schema of gcc that has recently been utilized by several research tools for program
analysis and reverse engineering [2,5,14,20,32,33]. In Section 2.2 we review GXL, the
XML-based exchange format used by reverse engineering tools.

2.1. GENERIC - The gcc ASG Schema
The Abstract Semantic Graph (ASG) is a common program representation used by

compiler front ends and other grammarware tools. A UML class diagram is used to
describe the nodes and edges in an ASG; such a class diagram is referred to as a schema
for the ASG. The C++ compiler from the GNU Compiler Collection, gcc, uses an ASG to
facilitate recognition, analysis, and optimization of a program. Since version 3.0, gcc has
begun to include an ASG schema known as GENERIC [34].

The gcc ASG schema, GENERIC, consists of over 200 node types whose documentation
consists of source code comments. Example node types include: record type, call expr,
and field decl. The GENERIC instance for each translation unit in a C++ program is
available as a text file via the command line option -fdump-translation-unit-all. The
format of the text files, known as tu files, is illustrated in Figure 1.

The information in a tu file, illustrated in Figure 1, can be extracted by a parser and
used for program analysis, comprehension, testing, and transformation. A node in a tu

file is represented by:

• a unique identifier consisting of ’@’ concatenated with a unique integer,

• a node type from the GENERIC ASG schema,

• edge tuples consisting of the edge name and a unique identifier for the destination
node,



A Tool Chain for Reverse Engineering C++ Applications 3

@8 field_decl name: @15 type: @16 scpe: @5
srcp: test.cpp:5 chan: @17
public size: @18 algn: 32
bpos: @19 addr: 4065e000

Figure 1. Example: This figure illustrates the representation of nodes in a tu file.

• field tuples consisting of the field name and the field value,

• single word attributes.

For example, in Figure 1, node ’@8’ has type field decl, an edge name with destination
’@15’, a field srcp with value test.cpp:5, and a single word attribute public.

2.2. GXL - Graph eXchange Language
An important aspect in the design of a reverse engineering tool is the selection of an

exchange format that facilitates representation and sharing of the information. Currently,
GXL (Graph eXchange Language) is the standard exchange format used by reverse en-
gineering tools [17]. GXL is an XML sublanguage defined by an XML DTD (Document
Type Definition) and conceptualized as a typed, attributed, directed graph. GXL is used
to describe both instance data and its schema; schemas in GXL are represented by UML
class diagrams [17].

3. Description of the Tool

In the sections that follow, we describe the design and implementation of g4re. In
Section 3.1 we describe the TUxformer subsystem, which performs construction, transfor-
mation, and serialization of instances of the GENERIC ASG schema, as well as validation
of the resulting GXL instance graphs. The TUxformer subsystem is illustrated in Figure
2. In Section 3.2 we describe the CppInfo API subsystem, which is responsible for trans-
forming GXL instances of the GENERIC ASG schema into instances of the CppInfo API
schema, as well as linking the API instances. The CppInfo API subsystem is illustrated
in Figure 3.

3.1. The TUxformer subsystem
Figure 2 provides an overview of the TUxformer subsystem, partitioned into three

phases: (1) ASG Generation, (2) ASG Construction, Transformation and Serialization,
and (3) ASG Validation. A dashed vertical line separates each partition in Figure 2.
The leftmost partition of the figure illustrates the first phase, ASG Generation, where
we use the C++ source code representation of the application under study as input to
the gcc compiler. Using the -fdump-translation-unit-all option, we obtain a text file
containing the ASG for each translation unit (tu).

The center partition of Figure 2 illustrates the second stage, where we provide the tu

files, shown as rectangles in the upper left of the center partition, as input to TUxformer.
TUxformer, shown as a solid rectangle on the right side of the center partition, is written
in Python, a language ideal for the kind of text-processing we require [41]. TUxformer



4 N. Kraft, B. Malloy and J. Power

Figure 2. System Architecture Part I. This figure illustrates the phases in the TUxformer subsystem of
g4re. This subsystem creates and validates a GXL instance graph for each translation unit in a C++
program. User inputs are shown as tabbed, dashed rectangles; external programs, e.g. gcc, are ellipses;
generated files, e.g. the GXL instance graphs, are lined rectangles; and our inputs and programs, e.g.
the stub STL and TUxformer, are tabbed, solid rectangles and non-tabbed rectangles, respectively. I/O
is shown as solid edges with solid arrows and conformance is shown as dashed edges with open arrows.

consists of three modules: TUparse, TUprune and TUgxl. These three modules perform
the following actions, respectively: parsing the tu file and re-creating the ASG, reduction
of the ASG size through transformation, and generation of a GXL representation of the
reduced ASG.

The rightmost partition of Figure 2 illustrates the third and final phase of the TUxformer
subsystem. In this phase, we use two tools, our GxlSW and the publically available GXL
Validator [1], to validate the GXL instance graphs that the TUxformer program produces
as output. Input to our GxlSW, represented by the three tabbed rectangles in the upper
left of the rightmost partition, is GENERIC domain information. GxlSW produces a GXL
schema that we use, along with the GXL instance graphs and the GXL metaschema [16],
as input to the GXL Validator.

3.1.1. ASG Construction: TUparse
The TUparse module of the TUxformer subsystem provides functionality to parse an

input tu file and re-create the corresponding ASG. The TUparse module also performs the
first stage of our size reduction optimization, pruning the ASG. In this first stage, removing
extraneous fields, we remove, from each node, fields that contain internal information used
by the gcc compiler. To explicate our actions and to enable other researchers to reproduce
our results, we describe the details of extraneous field removal in Algorithm 1.



A Tool Chain for Reverse Engineering C++ Applications 5

Algorithm 1 Remove Extraneous Fields

1: procedure REMOVE-FIELDS(n)
2: FA ← {’addr’,’algn’,’lngt’,’prec’,’size’}
3: FE ← {’max ’,’min ’}
4: foreach field f ∈ F[n] do
5: if f ∈ FA ∪ FE then
6: F[n] ← F[n] - {f}
7: end if
8: end for
9: end procedure

Algorithm 1 captures the important actions in removing extraneous fields from an
ASG re-created from a tu file. In line 1 of Algorithm 1 we begin REMOVE-FIELDS, a
procedure that takes one input, n, a node under construction by TUparse. In lines 2 and
3 we create two sets to describe the kinds of extraneous fields encountered in re-creating
an ASG: FA and FE. The set FA contains attribute fields and the set FE contains edge
fields; collectively, these are the kinds of fields that we delete from the nodes of an ASG.
In line 4 of Algorithm 1 we consider each field f of node n. In line 5 of Algorithm 1 we
consider if the kind of f is in either of the two sets, FA or FE, and if so we remove the field
f from the node n. In removing these fields, we may be removing the only reference to
another node in the ASG. In the next section we describe the actions of TUprune, which
prunes extraneous nodes and edges from the remaining reachable nodes of the ASG.

3.1.2. ASG Transformation: TUprune
The TUprune module of the TUxformer subsystem provides functionality to transform

the ASG re-created by TUparse and constitutes the second stage of our second size re-
duction optimization. In this second stage, we remove nodes that are no longer in the
reachable graph.

3.1.3. ASG Serialization: TUgxl
The TUgxl module provides methods to perform ASG serialization, i.e. to convert the

in-memory ASG to a GXL instance graph stored on disk. TUgxl takes as input the pruned
ASG that is output by TUprune and produces a GXL instance graph that complies to the
GXL schema graph described in Section 3.1.4.

3.1.4. GXL Validation
One advantage in using an XML technology such as GXL is the outstanding tool support

provided by the community. This level of support is due in part to the ease with which
an XML processor can be implemented. In this section we describe GxlSW, a system
to automatically generate a valid GXL schema graph given a plain-text, simplified UML
class diagram and domain type definitions.

We have written a collection of Perl modules, GxlSW, to automate the construction of
a GXL schema graph for a schema, such as GENERIC, given only minimal input. To create
our first GxlSW input we reverse engineered a plain-text UML class diagram for GENERIC
by collecting data from the tu files generated by gcc. To regenerate as much of the gcc



6 N. Kraft, B. Malloy and J. Power

GENERIC schema as possible, we require a large and varied test suite; thus, we use the
C/C++ test suite included with gcc and an extensive C++ test suite [30] extracted from
the ISO C++ standard [19]. The second input, domain type information, consists of two
small (approximately 10 line) files that provide mappings from the domain types to GXL
primitive types.

We perform, using GxlSW, a direct translation from the simplified UML class diagram
to a GXL schema. Using this technique, we gain two distinct advantages over other
systems using GENERIC. First, the cognitive burden on a reverse engineer who chooses to
use the GXL generated by our g4re tool set is reduced, because said user needs only to
understand the GENERIC ASG schema and not an adaptation of the schema. Second, the
implementation of our tool does not require a set of mappings from the GENERIC ASG
schema to an adapted schema; therefore, the implementation is more flexible with respect
to changes to GENERIC.

The GXL Validator [1] validates a GXL graph against the GXL DTD, the specified GXL
schema graph and additional constraints that cannot be expressed by the GXL DTD [16].
We use the GXL Validator to demonstrate the compliance of both the TUgxl generated
GXL instance graphs to the GENERIC GXL schema and the GENERIC GXL schema to the
GXL metaschema [16]. Generating valid GXL is important because valid GXL files are
more likely to be accepted by available XML tools than non-compliant files.

3.2. The CppInfo API subsystem
Figure 3 provides an overview of the CppInfo API subsystem. Input to the subsystem

is a set of GXL instance graphs generated by the TUxformer subsystem. The user passes
the graphs to the constructor of class ApiInterface, which instantiates the API using the
g4xformer package. The g4xformer package contains the following modules:

• a SAX2 parser for creating an in-memory representation of a translation unit en-
coded as a GENERIC conformant GXL instance graph,

• a transformation module for creating a CppInfo API instance from the parsed rep-
resentation of a translation unit,

• a linking module that combines API instances for all translation units in a program
into a unified representation of the whole program.

In Section 3.2.1 we describe the CppInfo API, and in Section 3.2.2 we describe the
algorithm for linking API instances.

3.2.1. The CppInfo API
The CppInfo API, Application Programmers Interface, provides access to information

in the unified representation of a complete C++ program. The CppInfo API schema
models the implementation of the CppInfo API. The schema currently consists of 42 node
classes that represent declarations, scopes, types, control structures, and expressions.
The addition of node classes to represent remaining expressions, such as mathematical
and memory management operators, remains as future work.

The CppInfo API provides a clear and flexible interface for access to the language
elements in a C++ program. The first point of access provided by the CppInfo API is in
the form of a pointer to the global namespace. An API user may access the pointer in
order to traverse the underlying graph structure of the CppInfo API, or alternatively, may



A Tool Chain for Reverse Engineering C++ Applications 7

Figure 3. System Architecture Part II. This figure illustrates the structure of the CppInfo
API subsystem. This subsystem transforms instances of the GENERIC ASG schema into
instances of the CppInfo API schema; classes in the ApiPass hierarchy perform the trans-
formations. This subsystem also links the API representations for each translation unit
in a program; class ApiKeeper performs the linking.

use the second point of access, the list interface. An API user may access several lists
containing all instances of particular CppInfo classes present in the API. Currently, the
API provides these lists for Namespace, Class, Enumeration, Enumerator, Function, Variable,
Typedef, and FunctionCall. Two lists are provided for each supported language element,
a filtered list and an unfiltered list. The filtered lists are configured by the API user and
provide the ability to exclude language elements based on the source file in which they
are defined.

3.2.2. Linking API instances
Typical C++ programs are spread among tens, hundreds, or even thousands of files,

both header and source. A C++ translation unit consists of a source file and all of the
header files it includes, either directly or transitively. A C++ compiler, such as gcc,
performs parsing, analysis, and code generation at the translation unit level; the system
linker, ld on Unix systems, performs linking on the generated object code. The system
linker must check for multiple definitions and inconsistencies, e.g. incompatible function
declaration and definition, between translation units.

A reverse engineering tool for C++ must also perform parsing and analysis at the trans-



8 N. Kraft, B. Malloy and J. Power

Figure 4. Partial Schema for the CppInfo API. This figure illustrates some of the main
node classes in the CppInfo API, which is used to represent a translation unit as well as
the result of linking two translation units.

lation unit level, but rather than generating code, a reverse engineering tool generates an
ASG (or another program representation). Since reverse engineers are principally inter-
ested in analyzing whole programs, not individual translation units, a reverse engineering
tool for C++ must provide some facility for linking the representations of the individual
translation units. A reverse engineering linker may generally assume that the program
being analyzed is both compilable and linkable at the object code level; therefore, linking
at the ASG (or other program representation) level does not require error checking.

Unique names, such as a mangled names or fully-qualified names, enable a module,
such as a stand-alone linker or an API builder, to link individual translation units into
a unified representation of the whole program. In g4re, linking is performed pairwise by
the API builder on the internal representations of API instances. When instantiating the
API, a user provides all translation units from a C++ program, each in the form of a GXL
encoded ASG 1 conformant to the GENERIC schema. The API builder serially transforms
each ASG to an internal API representation instance, consisting of dictionaries mapping
unique names to their CppInfo API schema node class instances, and performs pairwise
linking of the API instances each time a pair becomes available. Therefore, linking in g4re
is performed n− 1 times, where n is the number of translation units.

Figure 4 illustrates part of the CppInfo API schema. Of central interest here is the
TranslationUnit, which contains a set of identifier definitions and declarations, along with a
set of relationships between these and the other language elements it contains. Intuitively,
we achieve linking of schema elements by performing a traversal of the most recently
constructed API instance, adding or appending elements in the existing API instance if
they are not found or are incomplete. For example, the element Function is incomplete if
one of its instances does not contain a body, while the elements Namespace and Class are

1g4re is capable of reading gzipped GXL files in addition to plain-text GXL files.



A Tool Chain for Reverse Engineering C++ Applications 9

Figure 5. System overview. This figure illustrates the important components in our
metrics computation system that we constructed to compute metrics for C++ applications.
The metrics computation system consists of the g4re tool chain, including the CppInfo
API, and a Metrics Tool that interacts with the API to extract information about a C++

program.

incomplete if they contain incomplete Function or Class elements.

4. Sample Tool Usage

In this section we review our metrics computation system that we use to evaluate the
exploitation of object technology in game application software [20]. Our purpose is to
illustrate one possible usage of the g4re tool chain, and we chose this example because it
illustrates analysis of C++ applications at the level of the namespace, class, method and
statement. All of the experiments were executed on a workstation with an AMD Athlon64
3000+ processor, 1024 MB of PC3200 DDR RAM, and a 7200 RPM SATA hard drive,
running the Slackware 10.1 operating system. The programs were compiled using gcc
version 3.3.4.

In Section 4.1 we describe details of the metric computation system and its use of the
g4re tool chain [24,25]. In Section 4.2 we describe the testsuite of applications including
some popular game applications written in the Simple Directmedia Layer (SDL), and
some language processing applications. In Section 4.3 we describe some results about the
ability of game software to exploit the object-oriented methodology.

4.1. Overview of the Metrics Computation System
Figure 5 illustrates our metrics computation system, which consists of the g4re tool

chain, including the CppInfo API, and a Metrics Tool that interacts with the API to
extract information about a C++ program. Output of our system is a set of statistics for
each computed metric.

Input to our system is the source code for a C++ program, shown in the far left
of the top row of the figure, which is used as input to the gcc compiler. Using the
-fdump-translation-unit-all option, we obtain a plain text representation of the ASG
for each C++ translation unit in the program. We use these plain text ASG representa-
tions, known as tu files, as input to our TUxformer subsystem, shown in the middle of the
top row of the figure. For each tu file, the TUxformer subsystem creates an in-memory
representation of the encoded ASG, prunes the ASG, and serializes the ASG to GXL.



10 N. Kraft, B. Malloy and J. Power

SDL Game Applications Language Processing Applications

A
SC

A
vP

Fr
ee

sp
ac

e2

Sc
or

ch
ed

3D

D
ox

yg
en

g4
re

Ji
ke

s

K
ey

st
on

e

Version 1.16.1.0 cvs cvs 38.1 1.3.9.1 1.0.4 1.22 0.2.3
Source Files 436 509 652 1069 260 128 75 123
Translation Units 199 222 220 513 122 60 38 52
C++ Translation Units 194 95 220 492 90 60 38 52
LOC (≈) 130 K 318 K 365 K 110 K 200 K 10 K 70 K 30 K

Table 1
Testsuite of SDL Game Application Software and Language Processing Tools.

We use the set of GXL files produced by TUxformer as input to the g4xformer subsystem,
shown in the far right of the top row of the figure. The g4xformer subsystem parses each
GXL file and creates an in-memory representation of the encoded ASG. The subsystem
then links the representations of each individual ASG to create a unified representation
of the entire C++ program. After linking is complete, the subsystem filters language
elements that are identified as defined in a filename contained in the filter lists, shown in
the far right of the top row of the figure.

The CppInfo API, shown in the far right of the bottom row of the figure, provides access
to information from the unified representation of a whole C++ program created by the
g4xformer subsystem. Our Metrics Tool, shown in the middle of the bottom row of the
figure, instantiates and queries the API to gain access to the information about classes
and functions needed to compute the metrics. Output of the Metrics Tool, shown in the
far left of the bottom row of the figure, is available in a variety of formats and consists
of a set of statistics for each computed metric. The complete results of our study can be
found in reference [20] and the metrics include information about the number of classes,
methods, depth of inheritance, breadth of inheritance and complexity of the methods in
the respective applications. In this paper, we only present results about the modularity
and complexity of the respective applications.

4.2. The Test suite of Game Applications and Language Processing Tools
Table 1 lists eight applications, or test cases, that form the test suite that we use in our

study, together with size statistics about each test case. The top row of the table lists
the names that we use to refer to each of the test cases. The game applications are listed
in the first four columns and the language processing applications are listed in the last
four columns. The four game applications are: Allied Strategic Command (ASC), Alien vs
Predator (AvP), Freespace 2 (Freespace2), and Scorched 3d (Scorched3D). The Application
Programmer’s Interface (API) used for the four games is the Simple Directmedia Layer
(SDL), described in Section 2. The four language processing applications, listed in the
last four columns of Table 1, are: Doxygen, g4re, Jikes, and Keystone. Doxygen is a
documentation system for C++, C, and Java [40] and g4re is part of the infrastructure
for reverse engineering that we use to construct our metrics tool [24,25]. Jikes is a Java
compiler system [18] and Keystone is a parser and front-end for ISO C++ [21,29].



A Tool Chain for Reverse Engineering C++ Applications 11

M
in

M
ax

M
ea

n

S
td

D
ev

M
ed

ia
n

M
o
d
e

ASC 0 561 12.9770 30.3646 4 0
AvP 0 107 7.2898 10.5944 3 3
Freespace2 0 123 6.6596 15.7072 3 3
Scorched3D 0 240 17.3717 19.0581 12 3

Doxygen 0 430 27.6762 57.4967 7 7
g4re 0 206 17.7564 30.2694 13 0
Jikes 0 2016 32.3968 119.1240 13 10
Keystone 0 557 24.3875 52.4735 15 14

Table 2
Weighted Methods per Class.

The rows of Table 1 list some statistics and coarse-grained size metrics for the test
cases: the first row lists the version number, Version; the second row lists the number of
source files, Source Files, for each test case; the third row lists the number of translation
units, Translation Units, which includes both C++ and C translation units; the fourth row
lists the number of C++ translation units (C++ Translation Units), which is only C++

code; and finally, the last row of the table lists the (approximate) thousands of lines of
code (KLOC) for each test case, not counting blank or comment lines. For example,
the largest game in our test suite is Freespace 2, a Version that we obtained from a cvs
repository (on July 22, 2005), consisting of 652 source files, 220 Translation Units and 220
C++ Translation Units. Since the number of Translation Units is the same as the number
of C++ Translation Units, the Freespace 2 test case contains no C code. The Freespace 2
test case consists of 365 KLOC, as illustrated on the last row, third column of Table 1.

The results in Table 1 suggest that, for the test cases that we have chosen for our study,
the game applications are larger than the language processing applications. For example,
the average number for the game applications is 231 KLOC, whereas the average number
of KLOC for the language processing applications is 78 KLOC; thus, the average game
application in our test suite is three times as large as the average language processing
application.

4.3. Complexity in Game Application Software
Table 2 presents results for the Weighted Methods per Class (WMC) metric. The rows

in the table list the test cases. The columns list results for the WMC metric, where the
first three columns list the minimum, Min, the maximum, Max and the mean, Mean, values
for weighted methods. The final three columns in the tables list the standard deviation
from the mean, Std Dev, the median, Median and the mode, Mode.

The results in Table 2 show that the methods in the language processing tools are more
complex than the methods in the game application software. For example, the average
maximum value of the language processing tools is 802.25, whereas the maximum value of
the game applications is only 257.75. Similarly, the average Mean value for the language



12 N. Kraft, B. Malloy and J. Power

processing tools is 25.55, whereas the avereage Mean value for the game applications is
only 11.07.

5. Comparison with Similar Tools

The construction of source-based reverse engineering tools for C++ requires a parser,
and possibly, a corresponding front-end. The difficulties in construction of a parser for the
C++ language are well documented, and are largely due to the complexity of the template
sublanguage [8,22,27,36–38,42]. Consequently, the availability of tools that require source-
based reverse engineering of C++ programs is inadequate.

5.1. Tools that provide C++ parsing capability
Some reverse engineering tools include their own C++ parser. These included parsers

extract information ranging from limited information, such as class hierarchies, to detailed
information, such as statements and expressions. Parsers that extract limited information,
known as fuzzy parsers [23], are well suited to tasks such as graphical browsing and
graph visualization, but are not sufficient for program analysis tasks. Parsers that extract
detailed information are ideal for program analysis tasks, but none of the parsers described
in this subsection are able to fully accept templates.

Ferenc, et al. present Columbus, a fully integrated reverse engineering framework sup-
porting fact extraction, linking, and analysis for C and C++ programs [13]. Columbus
provides output in a variety of formats, including CPPML, GXL, RSF, and XMI. Nev-
ertheless, Columbus is unable to fully accept templates, as noted in reference [14]. Also,
XOGASTAN fails to create GXL for certain GENERIC node types including try catch expr
and the using directive. However, the g4re tool chain accepts any program that can be
parsed by the gcc compiler, which has performed well in tests measuring conformance to
the ISO C++ standard including template programming and template metaprogramming
[30].

LaPierre, et al. present Datrix, an analyzer that extracts information from C, C++, or
Java programs [26]. Datrix extracts information for each translation unit in accordance
with the Datrix ASG Model [7], and output is expressed in either TA (Tuple-Attribute
Language) or VCG format. The Datrix project at Bell Canada ended in the year 2000,
and the Datrix analyzer is no longer available.

Source Navigator (TM) from Red Hat is an analysis and graphical browsing framework
for C, C++, Java, Tcl, FORTRAN, and COBOL [39]. The provided parser is a fuzzy
parser that extracts enough high level information to provide class hierarchies, impre-
cise call graphs, and include graphs. Source Navigator does not provide statement level
information and the plain text output is not conformant to a schema.

5.2. Tools that utilize the GCC parser
Some reverse engineering tools use the C++ parser included in the gcc GNU project

by using the tu files described in Section 2.1. gcc is an industrial strength compiler
that accepts virtually all of the constructs defined by the ISO C++ standard including
templates [19,30].

Antoniol, et al. present XOGASTAN, a tool chain similar to our g4re tool chain [6]. The
provided tools convert a gcc tu file to a GXL instance graph and construct an in-memory



A Tool Chain for Reverse Engineering C++ Applications 13

representation of the GXL instance graph. XOGASTAN does not provide a facility to
reduce the ASG, resulting in large GXL instance graphs with extraneous information that
is not useful to the user of the tool set. Additionally, the XOGASTAN analysis capabilities
for C++ are limited.

Gschwind, et al. present TUAnalyzer, a system complementary to g4re [14]. The
TUAnalyzer uses a gcc tu file to perform analysis of template instantiations of functions
and classes. The TUAnalyzer performs virtual method resolution by using the ’base’ and
’binf’ attributes, along with the output provided by the compiler switch -fdump-class-
hierarchy, to reconstruct the virtual method table. However, the scope of the tool is
restricted to analysis of templates and does not produce a representation of the gcc tu file
for exchange with other reverse engineering tools.

GCC.XML uses tu files to generate an XML representation for class, function, and
namespace declarations, but does not propagate information such as function and method
bodies [2]. As a result, many common program representations, such as the call graph or
the ORD, cannot be constructed using the output of GCC.XML.

Hennessy, et al. present gccXfront, a tool that harnesses the gcc parser to tag C and
C++ source code [15]. The tool annotates source code with syntactic tags in XML by
modifying the bison parser generator tool, as described by Malloy, et al. [31]. However,
this approach is no longer viable because the gcc C++ compiler has migrated to recursive
descent technology.

Dean, et al. present CPPX, a tool that uses gcc for parsing and semantic analysis
[11]. However, CPPX predates the incorporation of tu files into gcc and is built directly
into the gcc code base. CPPX constructs an ASG that is compliant to the Datrix ASG
Schema [7] and can be serialized to GXL, TA, or VCG format. The Datrix ASG Schema
is more general than the GENERIC schema to accommodate C++ and other languages;
this generality makes it difficult to accurately represent many C++ language constructs.
The last release of CPPX, based on version 3.0 of gcc, does not properly handle the C++

Standard Library.

6. Conclusions and Future Work

In this paper we have described our tool chain that exploits the gcc C++ compiler,
to enable experimentation and study of real C++ applications. Our tool accepts any
C++ application that can be parsed by the gcc C++ front-end, including commonly used
applications such as Scribus and LyX as well as large language processing tools and gaming
software [3,4,20]. Our tool consists of a chain of applications that enables the user to
access the tool at any point in the chain. The preferred point of access is at the end
of the chain where an Application Programmers Interface (API) provides easy access to
information about the names, classes, namespaces, functions, function calls or statements
in the C++ application under study. Our tool has been used to build class diagrams,
object relation diagrams (ORDs), a taxonomy of classes for maintenance, to facilitate
software visualization and to compute metrics to evaluate object-oriented applications
[9,25,20,28,32].



14 N. Kraft, B. Malloy and J. Power

REFERENCES

1. GXL Validator. http://www.uni-koblenz.de/FB4/Contrib/GUPRO/Site/Downloads/index html-
?project=gupro all, January 2003.

2. GCC-XML. http://www.gccxml.org, February 2005.
3. LyX. http://www.lyx.org/, October 2005.
4. Scribus. http://www.scribus.org.uk/, October 2005.
5. G. Antoniol, M. Di Penta, G. Masone, and U. Villano. XOGastan: XML-oriented GCC AST analysis

and transformation. In Proceedings of the Third International Workshop on Source Code Analysis
and Manipulation. IEEE, 2003.

6. G. Antoniol, M. Di Penta, G. Masone, and U. Villano. Compiler hacking for source code analysis.
Software Quality Journal, 12(4):383–406, December 2004.

7. Bell Canada Inc. DATRIX - Abstract Semantic Graph Reference Manual. Bell Canada Inc., Montreal,
Canada, 1.4 edition, May 2000.

8. F. Bodin, P. Beckman, D. Gannon, J. Gotwals, S. Narayana, S. Srinivas, and B. Winnicka. Sage++:
An object-oriented toolkit and class library for building Fortran and C++ restructuring tools. In
The second annual object-oriented numerics conference (OON-SKI), pages 122–136, Sunriver, Oregon,
USA, 1994.

9. P. J. Clarke, J. D. Djuradj Babich, and B. Malloy. A tool to automatically map implementation-
based testing techniques to classes. International Journal of Software Engineering and Knowledge
Engineering, 2005. to appear.

10. Manuvir Das. Unification-based pointer analysis with directional assignments. In Programming
Language Design and Implementation, pages 35–46, Vancouver, BC, Canada, May 2000.

11. T. R. Dean, A. J. Malton, and R. C. Holt. Union schemas as a basis for a c++ extractor. In Working
Conference on Reverse Engineering, October 2001. www.cppx.com.

12. H. Do, S. Elbaum, and G. Rothermel. Infrastructure support for controlled experimentation with
software testing and regression testing techniques. In Proceedings of the International Symposium on
Empirical Software Engineering, pages 60–70, August 2004.

13. R. Ferenc, A. Beszedes, M. Tarkiainen, and T. Gyimothy. Columbus - reverse engineering tool and
schema for c++. In Proceedings of the 18th International Conference on Software Maintenance, pages
172–181, Montreal, Canada, October 2002.

14. T. Gschwind, M. Pinzger, and H. Gall. TUAnalyzer - analyzing templates in C++ code. In Proceed-
ings of the Eleventh Working Conference on Reverse Engineering. IEEE, 2004.

15. M. Hennessy, B. A. Malloy, and J. F. Power. gccXfront: Exploiting gcc as a front end for pro-
gram comprehension tools via XML/XSLT. In Proceedings of International Workshop on Program
Comprehension, pages 298–299, Portland, Oregon, USA, May 2003. IEEE.

16. R. Holt, A. Schürr, S. E. Sim, and A. Winter. GXL - Graph eXchange Language.
http://www.gupro.de/GXL, January 2003.

17. R. C. Holt, A. Walter, and A. Schürr. GXL: Toward a standard exchange format. In Working
Conference on Reverse Engineering, pages 162–171, Queensland, Australia, November 2000.

18. IBM Jikes Project. Jikes version 1.22. Available at http://jikes.sourceforge.net.
19. ISO/IEC JTC 1. International Standard: Programming Languages - C++. Number 14882:1998(E)

in ASC X3. ANSI, first edition, September 1998.
20. A. C. Jamieson, N. A. Kraft, J. O. Hallstrom, and B. A. Malloy. A metric evaluation of game

application software. Future Play 2005: The International Academic Conference on the Future of
Game Design and Technology, October 2005.

21. Keystone Project. Keystone version 0.2.3. Available at http://keystone.sourceforge.net.
22. Gregory Knapen, Bruno Lague, Michel Dagenais, and Ettore Merlo. Parsing C++ despite missing

declarations. In 7th International Workshop on Program Comprehension, Pittsburgh, PA, USA, May
5-7 1999.

23. R. Koppler. A systematic approach to fuzzy parsing. Software – Practice and Experience, 27(6):637–
649, June 1997.

24. N. A. Kraft, B. A. Malloy, and J. F. Power. g4re: Harnessing gcc to reverse engineer C++ applica-
tions. In Seminar No. 05161: Transformation Techniques in Software Engineering, Schloss Dagstuhl,



A Tool Chain for Reverse Engineering C++ Applications 15

Germany, April 17-22 2005.
25. N. A. Kraft, B. A. Malloy, and J. F. Power. Toward an infrastructure to support interoperability

in reverse engineering. In Proceedings of the 12th Working Conference on Reverse Engineering,
WCRE’05, Pittsbrugh, PA, November 2005.

26. S. Lapierre, B. Lague, and C. Leduc. Datrix source code model and its interchange format: Lessons
learned and considerations for future work. ACM SIGSOFT Software Engineering Notes, 26(1):53–56,
January 2001.

27. John Lilley. PCCTS-based LL(1) C++ parser: Design and theory of operation. Version 1.5, February
1997.

28. B. A. Malloy, P. J. Clarke, and E. L. Lloyd. A parameterized cost model to order classes for integration
testing of C++ applications. In International Symposium on Software Reliability Engineering, pages
353–364, Denver, CO, USA, Nov 2003.

29. B. A. Malloy, T. H. Gibbs, and J. F. Power. Decorating tokens to facilitate recognition of ambiguous
language constructs. Software, Practice & Experience, 33(1):19–39, 2003.

30. B. A. Malloy, T. H. Gibbs, and J. F. Power. Progression toward conformance for C++ language
compilers. Dr. Dobbs Journal, pages 54–60, November 2003.

31. B. A. Malloy and J. F. Power. Program annotation in XML: A parser-based approach. In Proceedings
of the Ninth Working Conference on Reverse Engineering, pages 190–198, Richmond, Virginia, USA,
October 2002. IEEE.

32. Brian A. Malloy and James F. Power. Exploiting UML dynamic object modeling for the visualization
of C++ programs. In ACM Symposium on Software Visualization, May 2005.

33. Brian A. Malloy and James F. Power. Using a molecular metaphor to facilitate comprehension
of 3d object diagrams. In IEEE Symposium on Visual Languages and Human-Centric Computing,
September 2005.

34. J. Merrill. GENERIC and GIMPLE: A new tree representation for entire functions. In GCC Devel-
opers Summit, pages 171–180, Ottawa, Canada, 2003.

35. Gail C. Murphy, David Notkin, William G. Griswold, and Erica S. Lan. An empirical study of static
call graph extractors. ACM Transactions on Software Engineering and Methodology, 7(2):158–191,
April 1998.

36. J. F. Power and B. A. Malloy. Symbol table construction and name lookup in ISO C++. In 37th
International Conference on Technology of Object-Oriented Languages and Systems, (TOOLS Pacific
2000), pages 57–68, Sydney, Australia, November 2000.

37. S.P. Reiss and T. Davis. Experiences writing object-oriented compiler front ends. Technical report,
Brown University, January 1995.

38. J.A. Roskind. A YACC-able C++ 2.1 grammar, and the resulting ambiguities. Independent Consul-
tant, Indialantic FL, 1989.

39. Source–Navigator Team. The Source–Navigator IDE. http://sourcenav.sourceforge.net, June 2005.
40. D. van Heesch. Doxygen version 1.3.9.1. Available at http://stack.nl/ dimitri/doxygen.
41. Guido van Rossum. Python Library Reference. Python Software Foundation, 2001.
42. T. L. Veldhuizen. C++ templates are turing complete. Technical report, Indiana University, 2003.


