Available online at www.sciencedirect.com

sc|EncE(dmn5cr~ Electronic Notes in
Theoretical Computer
Science

ELS ER Electronic Notes in Theoretical Computer Science 133 (2005) 255-273
www.elsevier.com/locate/entcs

Specifying and Verifying Communications
Protocols using Mixed Intuitionistic Linear
Logic

David Sinclair!

School of Computing
Dublin City University
Glasnevin, Dublin 9, Ireland

James Power?

Department of Computer Science
National University of Ireland, Maynooth
Maynooth, Co. Kildare, Ireland

Abstract

In this paper we present a technique for specifying and verifying communications protocols and
demonstrate this approach by specifying and verifying two of the fundamental communications
protocols, namely TCP and IP, which form the basis of many distributed systems. The logical
formalism used is Mixed Intuitionistic Linear Logic in order to use both commutative and non-
commutative operators to model the concurrent and sequential processes in these protocols. Key
properties of both protocols are proved.

Keywords: complex systems, formal methods, mixed intuitionistic linear logic

1 Introduction

This paper presents an approach for specifying and verifyng communications
protocols. This approach will be used to specify and verify the Internet Pro-
tocol (IP)[7] and elements of the Transmission Control Protocol (TCP)[8].

! Email: David.Sinclair@computing.dcu.ie
2 Email: James.Power@may.ie

1571-0661 © 2005 Elsevier B.V. Open access under CC BY-NC-ND license.
doi:10.1016/j.entcs.2004.08.068

mailto:David.Sinclair@computing.dcu.ie
mailto:James.Power@may.ie
mailto:David.Sinclair@computing.dcu.ie
mailto:James.Power@may.ie
http://www.elsevier.com/locate/entcs
http://creativecommons.org/licenses/by-nc-nd/3.0/

256 D. Snclair, J. Power / Electronic Notes in Theoretical Computer Science 133 (2005) 255-273

The approach is based on mixed intuitionistic linear logic and describes how
this logic can be used to prove some key properties of both protocols. We
have previously presented a specification of IP in [10] using commutative lin-
ear logic. In this paper we extend this specification considerably to include
the specification and verification of TCP. TCP, like many comunications pro-
tocols and distributed systems includes both sequential and concurrent pro-
cesses. Specifying and verifying such systems with the commutative operators
of linear logic is difficult. Linear logic is particularly suited to the descrip-
tion of state-based systems since it keeps track of the resources used in each
deduction step. Mixed intuitionistic linear logic is a variant of linear logic
that contains both commutative and non-commutative operators, and as such
is useful where the order of the consumption of resources must be specified.
The non-commutative operators of mixed intuitionistic linear logic are ideally
suited to specifying systems with both sequential and concurrent processes.
The main contribution of this research is to demonstrate how mixed intuition-
istic linear logic can be used to specify and verify these types of distributed
systems.

In the following sections we briefly describe IP and TCP and mixed intu-
itionistic linear logic. We then present an outline of our specification of the
user interfaces for IP and TCP, demonstrating the role of the linear operators
in the axioms. We present a specification of the data transfer component of
the TCP protocol; and finally, we outline verification process undertaken to
prove key properties of IP and TCP.

1.1 TCP/IP

The Transmission Control Protocol (TCP) and the Internet Protocol (IP)
are two essential elements of the communications stack at the heart of many
network-based applications. Both of these protocols are typical of state-based
distributed systems. IP is responsible for transmitting data from one internet
node to another, but does not guarantee the delivery of data to the destination
node. TCP is a protocol that sits on top of IP and it has the responsibility of
establishing an end-to-end error free connection between peer TCP entities.

IP has no mechanisms to provide end-to-end data reliability, flow control,
sequencing, or other services commonly found in host-to-host communications
protocols. There are no acknowledgements, either end-to-end or hop-by-hop,
and the error detection provided by the IP checksum only covers the IP packet
header and not the data itself. In IP there is no flow control or retransmission.
IP packets can be lost, duplicated and delivered in any order.

TCP is layered on top of IP and it is its function to establish an error-
free end-to-end connection between peer TCP entities. Since IP provides no

D. Snclair, J. Power / Electronic Notes in Theoretical Computer Science 133 (2005) 255-273 257

guarantees in relation to data delivery, TCP provides all the necessary mech-
anisms, such as flow control, acknowledgements, and retransmission to ensure
that the data is delivered in sequence and without duplication or error. TCP
accomplishes this by segmenting the data and associating unique sequence
numbers with each segment.

1.2 Mixed Intuitionistic Linear Logic

Linear logic[4] belongs to the family of sub-structural logics, which modify or
eliminate the usual structural rules of Contraction, Exchange and Weakening.
In linear logic the Contraction rule, which allows hypotheses to be duplicated,
and the Weakening rule, which allows hypotheses to be discarded, are modified
so that they are no longer structural rules but are specialised through the use
of modalities. The effect of this is to make the logic “resource conscious”,
since each step in a deduction can be regarded in terms of its consumption or
production of logical hypotheses.

Further, non-commutative linear logic[l] removes another structural rule,
Exchange, which allows hypotheses to be reordered. The terms in the sequent
are ordered and are typically represented as a list of terms. In a commutative
linear logic the terms are not ordered and can be represented as a multiset or
as a list with the inclusion of a structural Exchange rule to allow reordering
of the terms in the sequent.

Mixed intuitionistic linear logic (MILL)[3] combines both commutative and
non-commutative logics in the one system. Blocks are used to capture both
ordered and non-ordered terms in the MILL sequents. The grammer of for-
mulas in MILL is defined as:

F:=F & F|F ® F|F&F|F @ F|F — F|F — F|F o F|!F]|
Vo F|3z.F|1|T|0|l

where [is a literal.

The grammar of a block is defined as:
G = FIOIG GG, G)

The rules that define a block are:

AB=BA A(BC)=(AB),C A()=A
A;(B;C) = (AB);C As() =A

258 D. Snclair, J. Power / Electronic Notes in Theoretical Computer Science 133 (2005) 255-273

Both the ', and ’;” operators are associative but only the ')’ operator is
commutative. A block with no ’;” operator is called a free block. Blocks are
Series-Parallel orders[11] and have associated syntactic trees. The notation
G| | represents a block with one leaf of the syntactic tree empty. G[D]
represents the block G[] with the empty leaf replaced by D.

The removal of the structural rules of Weakening, Contraction and Ex-
change means that the ordinary logical operators for conjunction, disjunction
and implication are replaced with commutative and non-commutative linear
versions. These include:

e Commutative multiplicative conjunction is written as A®B. When used
both hypotheses are consumed in any order and are no longer available.

» Non-commutative multiplicative conjunction is written as A®B and repre-
sents the consumption of B after A.

e Additive conjunction is written A&B. When used it represents a determin-
istic choice of the hypothesis to be consumed.

» Additive disjunction is written A@B. When used it represents an external
(non-deterministic) choice as to the hypothesis to be consumed.

e Linear implication is written A—oB and represents a process that consumes
A and produces B.

e Direct implication is written A—eB. If you have two non-commutative hy-
potheses A and A—eB, occurring in that order, then you can derive the
hypothesis B, consuming the hypotheses A and A—eB.

e Retro implication is written Ae—B. If you have two non-commutative hy-
potheses Ae—B and B, occurring in that order, then you can derive the
hypothesis A, consuming the hypotheses Ae—B and B.

These operators are defined by the rules in figure 1.

The basis of our specification consists of a series of axioms, presented using
the linear operators, which specify the valid transitions that can take place
in the system. For IP we use ordinary commutative linear logic, since IP
datagrams may be reordered in transmission. However, since order of receipt
is important for TCP, we make use of a combination of commutative and
non-commutative operators in its specification.

1.8 Verification Tools

The Isabelle theorem prover[6] was used to type-check and verify our speci-
fications of TCP and IP. The specifications developed in Linear Logic were

D. Snclair, J. Power / Electronic Notes in Theoretical Computer Science 133 (2005) 255-273 259

NASEC PEA AAFC
Ta s o P grald TTATFC ut
N, BIFC r-4 ArB ., HABIEC CEA AEB o
T[A®B]FC T AFA®B T[AGBJFC TAFAGB
rgre . _IBIFC . rra LEB g,
[[A&B]FC 7' T[A&B]FC ©? "~ TF A&B
LAEC TBIEC THA I'-B
rdesrc “ tTraeB®" rraep ®
THA A[B|FC ATFB

—o L

ATLA < B|FC rrA-op 20

PFA ABIFC - ATEB
Al;A—B|FC " TrA—eB °
LrA ABJEC - TiAFB
ABe-ATFC * " TrBe A%
HOEC R
T[]F C 1
TR 0L

NoTleftrule THT rjoj+C No 0 right rule

rol-c LAMEC TARC rpc
TIA[FC ™Y "TlA[FC €

AFC ™ ITHC Ip(Tis free)

L[Aft/z]| - C N
rveAlrc "F Trvec "0

(z ¢ FV(I))

T[A] F C

'+ C[t/a]
TEz. A FC

AL(z ¢ FVIIOLB)) 1=, &

Fig. 1. Rules for operators in Mixed Intuitionstic Linear Logic

260 D. Snclair, J. Power / Electronic Notes in Theoretical Computer Science 133 (2005) 255-273

originally based on an encoding of Linear Logic in the Coq proof assistant[2][9],
but later both this encoding, and an extension to deal with MILL were imple-
mented in Isabelle.

The Isabelle tool provides:

* a uniformity of notation;
* a verification of type-correctness; and

e a semi-automated system in which properties of the specifications can be
proved.

1.3.1 Implementing MILL in Isabelle

The MILL specifications were verified using the Isabelle theorem assistant
using the HOL library. In addition to the advantages enumerated above,
Isabelle/HOL:

¢ provides predefined types such as lists, sets and multisets;
 provides the ability to define new types; and
* supports inductive definitions in addition to the definition-by-cases style

found in functional languages.

MILL is implemented in two theory files. One file defines the Isabelle/HOL
theory for blocks and defines, using primitive recursion, the operations that
can be performed on blocks. The second file defines the Isabelle/HOL theory
for MILL. Valid MILL judgements are represented by the HOL proposition
Truelin. A valid MILL judgement consists of an antecedent which is a block
of linear terms and a consequence which is a single linear term. A wvalid
MILL sequent is modeled as a consequence relation between two valid MILL
judgements.

2 The Specification of TCP/IP

In this section we briefly outline the main axioms that describe both the IP
and TCP user interfaces. It should be noted that the full specification also
involves a description of the TCP protocol which links these interfaces, but
these axioms have been elided in this article.

2.1 The Internet Protocol User Interface

There are two main operations available to the user of the IP layer:

D. Snclair, J. Power / Electronic Notes in Theoretical Computer Science 133 (2005) 255-273 261

Send(x,y,ttl,m) Sends a message m from node x to node y with a
“time to live” value of ¢tl.

Rev(x,y,ttl,m) Receives a message m from node z to node y with a
“time to live” value of ¢tl.

We use three axioms to define the operation of the IP layer, describing the
sending of datagrams, their possible loss or duplication during transmission,
and their receipt. To improve readability in all subsequent axioms, all the
parameters are assumed to be universally quantified unless specifically stated
in the axiom.

First, sending a message adds a single datagram to the system.

(1) Send(z,y,ttl,m) — Datagram(z,y, lower(ttl),m)

Here lower is a function that reduces its operand to some non-negative
integer in the range [0,ttl).
Second, when in transmission a datagram can be duplicated or lost.

@) Datagram(z,y, ttl,m) — (Datagram(x,y, lower(ttl), m)
®Datagram(z,y, lower(ttl),m)) & 1

1 is the unit for multiplicative conjunction, and is commonly used to rep-
resent the consumption of resources with no corresponding product.

Finally, if a datagram addressed to node y exists and node y is listening for
it, the node y will receive the message m or some corrupted version corrupt(m)
of that message.

Datagram(z,y, ttl,m) @ Listen(y) —o Listen(y)
®(Rev(z, y, lower(ttl), m)
®Rcv(z, y, lower(ttl),
corrupt(m)))

Of course many issues relevant to IP have been omitted here (most notably
routing and fragmentation), but this specification provides a sufficient base for
the verification of the relevant properties of TCP.

262 D. Snclair, J. Power / Electronic Notes in Theoretical Computer Science 133 (2005) 255-273

2.2 TCP User Operations

We will define the user interface to the TCP layer as consisting of the following
operations:

New(s,d) Create a socket for use in making a connection between
a source internet address s and a destination address d.

Accept(s,d) Accept an attempt from some internet address s to make
a connection to the internet address d.

Wrrite(s,d,m) Write the data m on the connection from internet ad-
dress s to internet address d.

Read(s,d, 1) Attempt to read [octets from a connection from internet
address s to internet address d. If there are less than [
octets in the connection, Read will read all the octets in
the connection.

Close(s,d) Terminate the connection between internet addresses s
and d.

2.8 Specification of the TCP Layer Interface

In order to describe the TCP user interface we define a predicate to describe
the current status of a connection. Stream(s,d, mw, mr,b) represents one side
of the connection from address s to address d. The data written by s is split
into mw, the data not yet read by d, and mr, the data that has been read by
d. The variable b is a boolean flag which is false once an end of stream (EOS)
character is written to the stream. A full TCP session will thus consists of a
pair of these streams, one each for s and d.

A connection is set-up between internet addresses s and d if both of the
hosts of internet addresses s and d actively specify the connection or if one
host actively specifies the connection and the other host passively accepts
connections from a specified internet address.

@ (New(s,d) ® New(d, s)) @ (Accept(s,d) ® New(d, s)) —o

Stream(s, d, nil, nil, true) @ Stream(d, s, nil, nil, true)

Axiom (5) specifies the effect of writing some data at s, which is then
appended to the data previously written (we use “::” to represent list concate-

D. Snclair, J. Power / Electronic Notes in Theoretical Computer Science 133 (2005) 255-273 263

nation).

5) Stream(s,d, m1,m2,true) @ Write(s,d, m)—e

Stream(s,d, m1 :: m, m2, true)

Axiom (6) specifies the operation of reading some data at d, which transfers
exactly [octets from m1 to m2. The function drop(n,l) returns a list with n
elements removed from the beginning of list [. The function take(n,) returns
a list of the first n elements from list [.

VI < length(m]l).
(6) Stream(s,d, m1, m2,b) ® Read(s,d,l)—e
Stream(s,d, drop(l,m1l), m2 :: take(l,m1),b)

Finally, axiom (7) specifies the normal closing sequence, where it is only
necessary to change the flag on the relevant stream from true to false. Note
that the premises in equations (5) and (6) will ensure that this stream can
still be read from, but not written to.

) Close(s,d) ® Stream(s,d, m1, m2, true)—e

Stream(s,d, m1,m2, false)

We define a valid TCP connection as one consisting of two streams, where
the data read at one address is exactly the data written by the other. Speci-
fying this within the system is straightforward: a valid session is any block of
Linear Propositions (including, of course, the commands defined above) that
gives rise to a consistent, completed pair of streams.

Definition 2.1 ValidSession

Vs, d:mode; read by x, read_by_y:(list data);

session: (linear block)

session FStream(s, d, nil, read_by_y, false)@Stream(d, s, nil, read_by_x, false).

3 TCP Data Transfer Protocol

In this section a simple, naive specification of the data transfer protocol in
TCP is presented. Since the aim is to show that this protocol specification
on top of the IP layer interface specification has the properties of a TCP
connection, namely the data delivered and the data in transit forms a se-

264 D. Snclair, J. Power / Electronic Notes in Theoretical Computer Science 133 (2005) 255-273

quence, many of the extensions required for a practical TCP system will be
ignored. In particular, it will be assumed that acknowledgments are not lost
and that segment fragmentation due to internetworking will not occur. These
are not serious limitations since zero window probes can be used to overcome
lost acknowledgments and IPv6 allows a connection to determine the smallest
Maximum Transfer Unit between a source and destination. It is assumed that
the checksums of all IP datagrams and TCP segments are initially checked
and that datagrams and segments that fail this test are discarded.

The TCP user interface of the previous section represented each direction
of the data transfer using a single predicate. At the protocol level we represent
this state using two predicates, one each for the sender and receiver. The task
of the TCP protocol specification then is to ensure that these predicates, while
maintained separately, are kept in a consistent state by each of the protocol
axioms. Keeping track of the sequence numbers of the data sent and received
will be central to this task.

The two predicates representing a stream of data from s to d are:

SS(Sa d7 Snats Suna; W f 5 tha Twin)

This is the state at s of data transfer to d. Here, s,,, is the oldest
unacknowledged sequence number, s,,.; is the next sequence number
to be sent. The write buffer wy,s holds data written by s but not
yet sent, while the retransmission queue, rtg, holds data that has
been sent,but not yet acknowledged. The current size of the receiver
window is Tyin.-

RS(CL S, Tnaty Twins rbuf)

This is the state at d on a stream receiving data from s. The
sequence number r,,,; is the start sequence number of the next data
to be received. The available space left in the receiver’s buffer is
Twin- Once received, the data will be stored in 7y, ¢, where the size
of the receive window.

In addition we make use of two predicates HaveWritten and HaveRead to
record all the data written by the sender and read by the receiver respectively.
These are necessary in order to state the basic consistency property of the TCP
protocol - that all the data written by the sender is eventually read, in the
same order, by the receiver.

The axioms defining the TCP data transfer protocol are as follows.

A user Write operation has the effect of appending the data to the sender’s
write buffer, as described in axiom (8). A sequence of data leaves the write
buffer through axiom (9) which sends this data through the IP layer via the

D. Snclair, J. Power / Electronic Notes in Theoretical Computer Science 133 (2005) 255-273 265

I PSend predicate. The size of the data to be sent can be determined from
the current value of the receiver’s window, along with the maximum trans-
missible unit (MTU). This value is then used in preparing the IP message and
in recalculating the sequence numbers in the sender’s state. As the data is
sent to the IP layer it is also lodged in the retransmission queue, pending an
acknowledgement.

(SS(s,d, Snat, Sunas Wouf, G, Twin) © HaveWritten(s, d, hw))
(8) | eoWrite(s,d, m)—e
SS(s,d, Spats Suna, Weuf =2 M, TG, Topin) @ HaveWritten(s, d, hw :: m)

length(m) < rym =

SS(s,d, Spaty Sunas M 2 Why rq, Twin) —

IPSend(s,d, mkMsg(snzt, m))®

SS(s,d, Spet + length(m), Suna, We, Ttq 2 M, Twin — length(m))

(length(m) < Twin) A (8n + length(m) > rop) A (Sn < Tpat) =
RS(d, s, Tnats Twins Tour) © IPRecv(s, d, mkMsg(s,, m))—e

(10) IPSend(d, s, mkAck(s, + length(m), 7ym — length(m)))®
RS(d, s, s, + length(m), ryin — length(m),

Thuf d?"Op((Tn:ct - 8n)7 m))

Suna S Tack S Snat =

(11) SS(Sa d7 Snats Suna) wbufa th7 Twin) O] [PR€CU<d7 S, TnkACk(Tack; Tium))_.

SS(S: d7 Snats Tack, Wouf, update(racka TtQ)a T{uzn)

Sp + length(m) < Tnat =
(12) RS(d, s, Tnats Twin, Tous) © IPRecv(s, d, mkMsg(s,, m))—e
RS(d, S, rnzt; Twin» Tbuf)

266 D. Snclair, J. Power / Electronic Notes in Theoretical Computer Science 133 (2005) 255-273

(13) IPRecv(s,d, corrupt(m)) —e 1

(RS(d, 8, Tnat, Twin, M = 7p) @ HaveRead(s, d, hr))®
(14) Read(s,d,length(m))—e
RS(d, s, Tngts Twin + length(m), ry) @ HaveRead(s,d, hr :: m)

The axiom (11) is triggered by the receipt of an acknowledgement from
the receiver, contained in an [P Recv message from the IP layer. Assuming
that this is acknowledging a message still in the retransmission queue (i.e. a
message with sequence number in between S, and s,.;), we then use the
function update to filter all acknowledged messages out of the queue.

Axioms (10), (12) and (13) are each triggered by the receipt of an I P Recv
signal from the IP layer. Corrupted messages are automatically rejected, but
if the message is not corrupt, then its acceptance depends firstly on there
being enough room in the read buffer (msgSize < rynq) and secondly on not
having received the message already, based on comparing its sequence number
with 7,4

Finally, axiom (14) handles the Read request from the user layer by sup-
plying data from the read buffer. The predicate HaveRead is also updated at
this point.

4 Verification of MILL Specifications

4.1 Verification of IP

The IP specification guarantees very little about a message sent from one node
to another, since messages may be corrupted, duplicated or even lost. However
little the IP specification guarantees, it does imply that a message that arrives
at a node must have been created at some node. If a node receives a message
with a correct header - as validated by the checksum - then some node must
have sent a message with the same header (the actual message itself may be
corrupted, of course). In fact, if the initial datagram is not lost, a message
sent from node A to node B may result in one or more multiple messages, with
correct header, being received by node B. These messages will not appear out
of mid-air.

Here we use (®"Rcv(z,y,ttl,m)) as a shorthand for the receipt of n pos-
sibly corrupted version of message m, which we can define inductively over
multiplicative conjunction as follows:

D. Snclair, J. Power / Electronic Notes in Theoretical Computer Science 133 (2005) 255-273 267

(R°Rev(z, y, ttl,m)) =1
(@" M Rev(z, y, ttl, m)) = (Rev(z, y, ttl, m) © Rev(x, y, ttl, corrupt(m))) @
(®"Rev(z, y, ttl,m))

In order to prove that messages are not created from mid-air we need to
prove:

Theorem 4.1 NoMidAirMessages

VY, y:node; ttl:nat; m:message -

Send(z,y, ttl, m)®@Listen(y) —o ((®"Recv(z,y, ttl',m))@Listen(y))®Listen(y)
where ttl < ttl

Our specification of IP using MILL allows us to prove this property and
the axiomatisation of MILL in Isabelle/HOL allows us to verify that the proof
steps are correct.

In fact, to isolate the inductive step, we prove the following lemma which
asserts that a message in transit, represented by Datagram(z,y,ttl, m), may
generate arbitrary many receipts of that message:

Lemma 4.2 RecvDGClosure :
VY, y:node; ttl:nat; m:message -
Send(x,y, m) ® Listen(y) — (®"Datagram(z,y, m)) ® Listen(y)

The proof of NoMidAirMessages and RecvDGClosure proceeds by induc-
tion over n. This inductive property of the natural numbers, along with many
of the other usual properties, is part of the Isabelle/HOL system and, since
this exists at the meta-level for our linear logic encoding, can be used to struc-
ture our proof here. The general format of the inductive proofs are given in
figures 2 and 3. These figures show the general outline of the proofs that have
been verified by the theorem assistant, Isabelle. In these outlines the following
abbreviations have been used.

L = Listen(y)

D = Datagram(z,y, ttl,m)

S = Send(z,y, m)

R = Rcv(z,y, ttl,m) & Rev(z, y, ttl, corrupt(m))

4.2 Verification of TCP

In order to verify that the specification meets the basic requirements of TCP
data transfer, we must show that each of the rules from the TCP protocol
presented in the previous section maintains the integrity of the transmitted

268 D. Snclair, J. Power / Electronic Notes in Theoretical Computer Science 133 (2005) 255-273

FD—-D®D (®"D)F (®"D)
(®"D)® D+ Q®"D)® D® D

(®"D) + (®"D) ® D L+L
(@"D)® L+ (@"T'D)® L S®LF(®"D)® L
FS®RL—-oDQ®L S®LF(®@"MD)® L

S®LEF(®"D)® L
FS®L— (®"D)® L

Fig. 2. Outline Proof of the RecvDGClosure lemma

®@"D)®LEH(®"R)® L RHFR
("D),R® L+ ("R)@ R® L FD®L-—-oR®L
(®"D),D,L+ (®"R)® R® L
(@ T'D)QLF (@ VTR QL FD®L -R®L
(®"D)® L+ (®"R)® L

FS®L— (®@"D)®L (®"D)®LF (®"R)® L
S®LEF(®"R)® L
SQLEF((®"R)®L)DL
FS®L— (("R)®L)® L

Fig. 3. Outline Proof of the NoMidAirMessages theorem

data. That is, a TCP connection which closes successfully will have the prop-
erty that all data written by the sender is received, in the same order, by the
receiver.

The approach taken here is to formulate an invariant that is maintained
by each axiom and, in the final state where all data has been sent, this implies
the ordered transmission and receipt of this data. Each of the data structures
involved in the sender’s and receiver’s state is expressed as a subsequence of
the total data being transmitted, indexed by the sequence numbers.

Specifically, at any point during transmission, the state of the system
should be as in figure 4. Each piece of data written (as captured by the
HaveWritten predicate) should reside either in the write buffer, the retrans-
mission queue, the read buffer, or else be captured by the Have Read predicate.
The total data is not the exact concatenation of these sequences, since there is
potentially an overlap between the retransmission queue and the read buffer.
The retransmission queue contains data that has been transmitted by the
sender and acknowledged by the receiver, but the acknowledgement has not
yet been received by the sender.

To this end, we define each of the data structures in terms of the data
captured by HaveWritten. The invariant itself is expressed in classical logic,
operating here as a meta-logic for the embedded MILL deduction. The func-

D. Snclair, J. Power / Electronic Notes in Theoretical Computer Science 133 (2005) 255-273 269

‘<f - - WriteBuffer ---=><------- RTQ ------= >
| \
I ‘ ‘
s nxt s una
I
I
I
| 1
'<---- Overlap -~ >
| |
! .
I
|
r_lnxt
| \ | |
\ \ . \ \
<---rwnd ----><------ Daain ... ><---- HaveRead ---=>
Read Buffer

Fig. 4. The state of the TCP data structures during transmission.

tion sublist returns a subsection of a list specified by indices, datacat concate-
nates the data from the messages in the retransmission queue into a single
list of data, and drop is a function removing an initial segment from a list, as
specified by the index. From this, it is a relatively straightforward matter to
demonstrate that whenever this invariant holds we must have:

(hr 2 Ty 2 drop(datacat(Tpg — Suna, T1q)) 2 Weyp) = hw
where
hr = sublist(hw, 0, length(hr))
Tour = sublist(hw, length(hr), 1)
datacat(rtq) = sublist(hw, Syna, Snzt)
Wy p = sublist(hw, sy, length(hw))
length(hr) < Tpa
Suna < Tnat
Tnat < Snat < length(hw)
which is equivalent to:

(sublist(hw, 0, length(hr)) :: sublist(hw,length(hr),)
sublist(hw, rppe, Spet) = Sublist(hw, Spu, length(hw)) = hw
=

(15) 0 < length(hr) < rpu < spat < length(hw)

Specifically, when all the data has been sent, and the read buffer, the
retransmission queue and the write buffer are empty, this equality collapses
into a simple statement that hr = hw i.e. the data received is exactly the
same as the data that was sent.

The linear implication and direct implication operators of MILL represent
the consumption of a linear resource and the production of another linear re-
source. Therefore in statements such as A — B and A —e B, A can represent
the state before the implication and B represents the state after the impli-

270 D. Snclair, J. Power / Electronic Notes in Theoretical Computer Science 133 (2005) 255-273

(0 < length(hr) < rpu < Spa < length(hw)
= 0 <length(hr) < rpm < Spmt < length(hw :: m))
= length(hw) < length(hw :: m)
= length(hw) < length(hw) + length(m)
= 0 < length(m)
Fig. 5. Proof of invariant for axiom (8)

cation. The axioms used to define the data transfer protocol (axioms (8) to
(14)) have the form of a linear or direct implication where the left-hand side of
the implication is a state with one or more events or processes occurring con-
currently or sequentially. The right-hand side of these implications is a state
with possible concurrent events or processes. Therefore a statement such as:

(S(a,b,c)® A) © B —» S(d, e, f)

can be interpreted as saying that if A is true while the state variables of
state S have the values a, b and ¢ respectively and then B occurs, then the
events A and B are consumed and the state variables of state S now have the
values d, e, and f respectively.

Therefore for axioms (8) to (14) we need to show that if the invariant
(equation (15)) holds before the applications of each axiom then it must hold
after the application of each axiom. The proofs that axioms (11), (12) and
(13) preserve the invariant is trivial since these axioms do not modify the
elements of the invariant (namely Ar, 7,4, Spt and hw). For example axiom
(11) only modifies rtq and $,,,. Figures 5, 6, 7 and 8 give the proofs that
axioms (8), (9), (10) and (14) maintain the invariant. The proof that axiom
(10) maintains the invariant requires the assumption by the receiver that the
sender will only send data that has been placed in the write buffer. The
sequence number of the last octet received must be less than the next octet
the sender will transmit, i.e. (s,+length(m) < sp;). Since the sender follows
axiom (9) then this assumption is valid.

5 Conclusions

In this article we have presented a specification of two key protocols used
in networked systems, namely the Internet Protocol (IP) and the Transmis-
sion Control Protocol (TCP). In particular we have focussed on the data
transfer component of the TCP protocol. Key properties of both protocols

D. Snclair, J. Power / Electronic Notes in Theoretical Computer Science 133 (2005) 255-273

(0 < length(hr) < rpe < Spar < length(hw)
= 0 < length(hr) < rpg < Spat + length(m) < length(hw))
= Spat + length(m) < length(hw)
= length(m) < length(hw) — Sy
= length(m) < length(m :: wy)
= length(m) < length(m) + length(w,)
= 0 < length(w,)

Fig. 6. Proof of invariant for axiom (9)

(0 < length(hr) < rpu < Spar < length(hw)

= 0 <length(hr) < s, + length(m) < Sy < length(hw))
= length(hr) < s, + length(m) < Spu
= length(hr) < rpze < s, + length(m) < Sy

= s, + length(m) < S

Fig. 7. Proof of invariant for axiom (10)

(0 <length(hr) < rpe < Spar < length(hw)
= 0 <length(hr ::m) < rpu < Spa < length(hw))
= 0 < length(hr ::m) < rpu.
= 0 < length(hr) + length(m) < 7
= length(hr) + length(m) < rn.
= length(m) < rp. — length(hr)
= length(m) < length(m :: 1)
= length(m) < length(m) + length(ry)
= 0 < length(r)

Fig. 8. Proof of invariant for axiom (14)

271

272 D. Snclair, J. Power / Electronic Notes in Theoretical Computer Science 133 (2005) 255-273

have been proven. The formalism used to specify these protocols was Mixed
Intuitionistic Linear Logic (MILL). MILL combines both commutative and
non-commutative operators and it is a convenient logical formalism to model
events that can occur concurrently and/or in sequence. While IP can be spec-
ified and verified using linear logic[10], using linear logic to specify TCP is
problematical since TCP requires the ordering of certain events to be main-
tained. By using MILL, commutative and non-commutative operators can be
combined in the specification. The specification of TCP defines an existing
state and the events that operate concurrently or sequentially on this state
to generate a new state and new events. This has the effect of defining the
changes to the local state. In addition, by embedding our formalism of MILL
in the Isabelle/HOL theorem prover we use the premises of each axiom to
define the global state in which the axiom is valid.

We have outlined the verification of the “no mid-air messages” property of
the IP protocol and this proof was implemented in the Isabelle/HOL system
in order to check the proof. To verify that the data transfer section of the
TCP protocol maintained the integrity of the transmitted data, we formulated
an invariant that must be maintained by all the data structures involved in
the data transfer. We have shown that the invariant is maintained by each of
the axioms used to define the data transfer protocols. These proofs have also
been checked using the Isabelle/HOL systems as a theorem assistant.

The MILL formalism has proved successful for both the specification and
verification of this distributed system containing “stateless” (IP) and “state-
ful” (TCP) subsystems. Future work will extend these techniques and apply
them to other complex systems with concurrent and sequential processes.

Acknowledgement

The authors would like to thank the anonymous reviewrs for their helpful
comments and suggestions.

References

[1] Abrusci, V.M., Phase semantics and sequent calculus for pure non-commutative classical linear
propositional logic, Journal of Symbolic Logic, 56(4) (1991), 1403—-1451.

[2] Cornes, C et al., “The Coq Proof Assistant Reference Manual”, Rapport Technique 177, INRIA,
(1995).

[3] Damaille, A., “Yet Another Mixed Intuitionistic Linear Logic”, Technical Report, Ecole
Nationale Supérieure des Télécommunications, (1998).

[4] Girard, J-Y., Linear Logic, Theoretical Computer Science. 50 (1987), 1-102.

D. Snclair, J. Power / Electronic Notes in Theoretical Computer Science 133 (2005) 255-273 273

[5] Girard, J-Y., On the unity of logic, Annals of Pure and Applied Logic. 59 (1993), 201-217.
[6] Paulson, L.C., “Isabelle: A Generic Theorem Prover”, Springer Verlag LNCS 828, (1994).
[7] Postel, J. “RFC 791, Internet Protocol”, Defense Advanced Research Projects Agency, (1981).

[8] Postel, J. “RFC 79, Transmission Control Protocol”, Defense Advanced Research Projects
Agency, (1981).

[9] Power, J. and C. Webster, Working with Linear Logic in Cog, 12th International Conference
on Theorem Proving in Higher Order Logics, Work-in-progress Report, Nice, France, (1999).

[10] Sinclair, D., P. Gibson, D. Gray, G. Hamilton and J. Power, Specifying and Verifying IP
with Linear Logic, International Workshop on Distributed Systems Validation and Verification,
Taipei, Taiwan, (2000).

[11] Retoré, C. “Réseaux et Séquents Ordonnés”, Ph.D. thesis, University of Paris VII, (1993).

	Introduction
	TCP/IP
	Mixed Intuitionistic Linear Logic
	Verification Tools

	The Specification of TCP/IP
	The Internet Protocol User Interface
	TCP User Operations
	Specification of the TCP Layer Interface

	TCP Data Transfer Protocol
	Verification of MILL Specifications
	Verification of IP
	Verification of TCP

	Conclusions
	Acknowledgement
	References

