7TH ECOOP WORKSHOP ON QUANTITATIVE APPROACHES IN OBJECT-ORIENTED SOFTWARE ENGINEERING 2003 1

Toward a definition of
run-time object-oriented metrics

- Position Paper -

Aine Mitchell, James F. Power

Abstract— This position paper outlines a programme of source code. Research by Yacoub et. al. [15] has in-
research based on the quantification of run-time elements of djcated that useful information may be obtained from
Java programs. In particular, we adapt two common object- a measure of quantifying the dynamic complexity of
oriented metrics, coupling and cohesion, so that they can
be applied at run-time. We demonstrate some preliminary SOftware in its operational environment. However
results of our analysis on programs from the SPEC JvM98 [15] only considered the use of such metrics in the
benchmark suite. design stage of the software lifecycle. A thorough

Index Terms—Area V (Metrics Validation): Formal and literature survey showed that no previous study had

empirical validation of OO metrics, Standard data sets for endeavored to develop metrics that could be applied
metrics validation. at run-time.

. INTRODUCTION Il. RELATED WORK

Software metrics measure different aspects of soft-As object-oriented design techniques have become
ware complexity and therefore play an importarficreasingly important a large number of object-
role in analysing and improving software qua”t}(l)l’iented metrics for statically evaluating a design
[1,4]. Previous studies have indicated that they prbave been proposed. Coupling and Cohesion metrics
vide useful information on external quality aspects @€ two such measures. They are said to evaluate the
software such as its maintainability, reusability angxternal and internal complexity of a design respec-
reliability, and provide a means of estimating the efively. A large body of research has gone into inves-
fort needed for testing. tigating how these complexity measures characterise

Traditional metrics for measuring software such 48e external quality attributes of a design, for exam-
Lines of Code (LOC) have been found to be inadple its maintainability, reusability or error-proneness.
equate for the analysis of object-oriented software.Our hypothesis is that it is possible to quantify the
In recent years many researchers and practitionéréernal quality of a software product using a set of
have proposed a number of code metrics for obje€tynamic metrics calculated at run-time that evaluate
oriented software, for example, the suite of metri¢g€ product’s complexity. These metrics by them-
proposed by Chidamber and Kemerer [6, 7]. The§elves can provide us with useful information, and
code metrics quantify different aspects of the corgan also help to calibrate the information obtained
plexity of the source code, based on a static analy§i@m a static analysis.
of that code. However, the ability of suskaticmet- ~ Briand et.al. [3] carried out an extensive survey
rics to accurately predict theynamicbehaviour of of the current available coupling literature in object—
an application is as yet unproven. oriented systems and concluded that all the current

Static metrics alone may be insufficient in evaluafoetrics measured coupling statically, at the class
ing the dynamic behaviour of an application at rudevel. No measures of (dynamic) object level cou-
time, as its behaviour will be influenced by the opeRling had been proposed. They suggested that the

ational environment as well as the complexity of thason for this is the obstacle of determining the de-
_ _ o ree of coupling or cohesion between individual ob-
Department of Computer Science, National University of Irelan

Maynooth, Co. Kildare, Ireland. ects. They p_roposed that a way qf evaluatln_g these
Please address correspondence to ainem@cs.may.ie would be to find some method of instrumenting the

2 7TH ECOOP WORKSHOP ON QUANTITATIVE APPROACHES IN OBJECT-ORIENTED SOFTWARE ENGINEERING 2003

source code to log all occurrences of object instantiuring their active phase. Static metrics fail to iden-
ations, deletions, method invocations, and direct reiffy or quantify this behaviour, whereas this informa-
erence to attributes while the system is executing. tion should be available from run-time metrics.

A study was conducted by Gupta and Rao [11] An important issue that must be addressed in re-
comparing a program execution based approachlation to run-time metrics is dynamic binding. Static
measuring the levels of module cohesion presentnretrics are somewhat constrained in their ability to
legacy software, with a static-based method. The meal with inheritance issues [2, 9] since the run-time
sults from this study showed that the static-based appes at field access and method invocation sites are
proach significantly overestimated the levels of cohaet known. However, run-time metrianustdeal
sion present in the software tested, therefore indicatith such issues, and our initial work suggests that
ing that a dynamic measurement would prove usefthis can lead to a divergence with statically predicted

Despite the extensive research in this area feesults.
measures for quantifying coupling and cohesion at
run-time have been proposed. The quality of a soft-
ware product will be influenced by its operational
environment as well as the source code complexity,We have conducted a preliminary studies on for-
therefore it was believed that measures that assgggating definitions of coupling and cohesion at run-
run-time quality may aid in the analysis of softwarme. These run-time metrics were applied to as-
quality. It is notable that such a study involves sess the quality of a number of Java programs from
change in the orientation of the metrics: static cothe Java Grande Forum [5] and SPEC JVM98 [14]
pling and cohesion metrics deal with tlagchitec- benchmark suites. The results from this prelimi-
tural aspects of a software system, whereas run-timary analysis are available in two technical reports
measures necessarily deal also with bledavioural [12,13].
aspects of the system. We initially obtained a run-time profile of Java ap-

For example, suppose a class is determined ptlications by instrumenting the Kaffe Virtual Ma-
be cohesive using the standard static metrics. Tieisine to log all occurrences of object creation,
would imply that a static analysis of the programsethod calls etc. More recently, we have switched to
has determined that the methods in the class accesig Sun’s JVM as the corresponding class libraries
or change the full range data attributes. Howevexte more conformant, and it now has a built in pro-
it is conceivable that at run-time, a statically cohdiler, all of which will make the analysis more easily
sive class may not exhibit cohesive behaviour. Thapeatable.
is, the methods that detract from cohesive behaviourAt present we are utilising the Java Virtual Ma-
might far outweigh those that contribute to cohesiarhine Debug Interface (JVMDI), a programming in-
when weighted by the number of times that they aterface contained in the J2SDK from version 1.4.0
invoked. onward. JVMDI is one layer within the Java Plat-

Similarly, the standard coupling metrics are typiform Debugger Architecture. The second layer is the
cally defined as “coupling between objects (CBO)Java Debug Wire Protocol which defines the format
yet they actually measure coupling betwetasses of information and requests transferred between the
A method that is judged by static metrics to corprocess being debugged and the debugger front end,
tribute to coupling between two classes may in faethich implements the Java Debug Interface. The
be rarely invoked, thus leading to a lower actual codava Debug Interface, which is the third layer, defines
pling between objects at run-time. information and requests at the user code level. The

As a further example, some classes have objedf3l provides introspective access to a running virtual
that exhibit a state-based behaviour. That is, we carachine’s state, the class, array, interface, and prim-
distinguish various stages in the lifetime of their oltive types, and instances of those types.
jects: perhaps an initialisation stage followed by a We are currently concentrating on programs writ-
period of activity, followed by a finalisation phase. Iten in the Java programming language, but our tech-
seems reasonable that some objects may exhibit highues should also apply to other object-oriented lan-
degrees of cohesion and low coupling during initiauages. Since all Java programs are executed on a
isation, but exhibit low cohesion and high couplingirtual machine, this provides an ideal platform for

[11. W ORK DONE TO DATE

MITCHELL & POWER: TOWARD A DEFINITION OF RUN-TIME OBJECT-ORIENTED METRICS

TABLE |
PROGRAM SIZE DATA FOR PROGRAMS IN THE THESPEC JVM98ENCHMARK SUITE. EACH PROGRAM WAS RUN AT THREE SIZES1,
10AND 100.
] SPEC JVM98
Application Number of Objects created Number of Method Calls
Size Size
sl s10 s100 sl s10 s100
_201_compress 8,834 9,032 8,902 | 17,163,803| 15,966,749 17,822,835
202_jess 85,264 | 189,698 | 1,846,358| 635,440 | 6,077,035 | 23,333,274
205_raytrace 552,326| 1,085,055| 1,695,963| 5,772,110 | 19,559,308 25,577,699
~209_db 13,520 | 176,459 | 3,554,259 136,726 | 2,299,380 | 34,183,241
213_javac 64,081 | 382,060 | 1,553,455| 443,790 | 3,319,026 | 14,050,905
_222_mpegaudio | 15,824 | 18,035 15,215 | 1,185,653 | 9,368,543 | 21,452,712
227 _mitrt 551,114| 1,567,812| 1,955,785| 5,758,391 | 23,772,645 25,856,949
228 _jack 484,952| 953,582 | 4,009,120 4,007,716 | 7,921,292 | 33,064,049

their profiling and dynamic analysis. One of thene of three standard sizes, s10 or s100, with s1
problems with dynamic analysis that has been elutbding a simple calibration test. As can be seen in Ta-
from previous studies is the large volume of data thiake |, the behaviour of the applications as the length
is generated. Thus the organisation and classificatmithe run increased is not always as expected.

of this data will need to be given careful considera-

tion. _ . oo Clearly, the first row of data indicates that
Results obtained from this study indicated thabgq compressreates most of its objects and calls
valuable information on software quality might bey,st of jts methods during the initialisation phase
obtainable from a run-time evaluation. It is KNOWR¢ the penchmark. Extra iterations of the bench-
that a one-to-one relationship does not exist betweg s inner loop, as represented by the increase in
static and dynamic metrics but our study indicategd; ¢ froms1 to 5100, do not greatly affect either the
that there might be some co-relation. Hence therejsmper of objects created or the number of meth-
a need for further empirical studies to validate theggis called. In the sixth row of data in Table I, the

metrics and explore the dependency of design qualj%Zmpegaudioprogram shows similar object cre-

on each. ation patterns, but the number of method calls does
increase for more iterations. Finally, most of the
other programs, for exampl202 jesson the second
oW, display an increase in both object creation and
methods called, albeit at different rates.

A. Relationship with Software Testing

The benchmark programs used to date may not
typical of Java applications. Indeed, it is notable th
they vary widely both in the use of the Java class li-
braries [8, 10], and in their object creation profiles. Thus, along with the metrics, we hope to define a
Our next step will involve the profiling and analysisnethodology for quantifying real-world applications
of more “real world” programs. In particular, it will with these metrics. We would hope to exploit some
be desirable to study object-intensive programs, sughthe existing work on software testing in this area.
as GUI-based applications. Such programs hoWe also hope to determine if a quantifiable correla-
ever do not easily lend themselves to the batch-stylen exists between the information obtained from a
running schemes of the standard benchmark suitsstic and dynamic analysis of a program. Clearly, a
Thus, a strategy for choreographing and recordistatic analysis is relatively independent of program
program runs will have to be developed. behaviour, whereas any run-time analysis will be

Indeed, some of the issues associated with profitndamentally influenced by the testing strategy and
ing benchmark suites can be seen in Table I. This tast inputs. This issue must be addressed in any as-
ble shows the number of objects created and meth@#gssment of run-time metrics, and may have impli-
called for the programs in the SPEC JVM98 bencleations for the quantification of the effectiveness of
mark suite. Each benchmark suite can be executedaoftware testing strategies.

4 7TH ECOOP WORKSHOP ON QUANTITATIVE APPROACHES IN OBJECT-ORIENTED SOFTWARE ENGINEERING 2003

100

Static'

_201_compress _202_jess _205_raytrace _209_db _213 javac _222_mpegaudio _227_mtrt _228 jack
SPEC JVMB98 Programs

Fig. 1. Degree of Static and Dynamic Coupling within a group of classes for the non-API classes of the programs from SPEC JVM98
benchmark suite.

90

80

70 F

60

50 F

40 -

30

Degree of Coupling (as a %)

20

10

IV. SOME PRELIMINARY RESULTS Differences between the static and dynamic values

In this section we present some preliminary resuff@r this metric result from the relative frequency with

from our analysis of the SPEC JVM98 suite. wwhich methods that contribute to coupling are called.

stress that this study is still at a preliminary stagE!9uré 1 summarises the results for the programs in

and we present these results simply as an indicatib¥y SPEC JVM98 suite. As can be seen from Figure
of some of the issues involved in this analysis. 1, the static values may be either less than or greater

than the dynamic values, depending on the program
_ _ being run and, presumably, on the input data supplied
A. Coupling Metrics to it. One of the goals of our research is to provide a
The Coupling between Objects (CBO) measuftetailed explanation for this behaviour.
was originally defined as “a count of the number of
non-inheritance related couples with other classeg’. Cohesion Metrics

Two objects are deemed to be coupled if tay Chidamber and Kemerer [7] defined a static co-

upon one anotherin other words, If an object of he§ion metric for object-oriented applications known

one class uses the methods or instance variablesag Lack of Cohesion in Methods (LCOM). Suppose
the other [6]. If a method declared in one class USES.|ass containg methods m m THen Let
W61y e e vy n:

aari?%tfhggszgsnztzr;ﬁ dvt?)rgffom Iaerélostihn?:recéﬁsc?t’)'; .} be the set of instance variables referenced by
P) up J éthodmi. We can define two sets:
instantiated from the same class are deemed to have
the same properties. P = {(I,L,)| NI =0}
.) 1y 17g 7 i
However Chidamber and Kemerer later revised Q = {(I,)|LnI#0}
their definition of CBO. For a class C, CBO is a
measure of the number of other classes to which itThe (static) LCOM is then equaled (| — |Q)|, if
is coupled [7]. We can extend this directly to defingP| > |@|, and0 otherwise.
the Dynamic CBO for a classas being a count of Figures 2 and 3 give a pictorial representation of
the number of couples with other classes at run-tintbe relationship between the static and dynamic co-
For a whole program, we can define fbegree of hesion data for the SPEC JVM98 benchmark pro-
Dynamic Coupling within a given set of classes agram -209.db. Here, each class is represented by
follows: a graph whose nodes represent the methods of that
S . ber of t " class. For any two methods, andm;, there is an
um orf numper or accesses to metn- . .
ods or instance variables outside e;dge betweem; andm; _preuselywh_enthemtersec-
each class 100 tion between the set of instance variables accessed by
Sum of total no. of accesses from 1 these meth_ods is non-empty. Comparing the resu_lts
these classes for the static analysis of Figure 2 and the dynamic

MITCHELL & POWER: TOWARD A DEFINITION OF RUN-TIME OBJECT-ORIENTED METRICS 5

Class Database Class Entry Class Main
m8 m9 ml0 mll ml2 ml3 ml
m7 @ -
ml m2
mléd . .

m5 @ m3 m2

m4

m3

m2

‘;
m24 m23 m22 m21 m20

ml @

Fig. 2. Diagramatic Representation of Static LCOM for Non-API Classes involved in executi@@®tib program from the SPEC JVM98
benchmark suite.

Class Database Class Entry Class Main
ml m2
m8 m3
® ml ml
® o
m7 m4
o
o
mo6 m5

Fig. 3. Diagrammatic Representation of Dynamic LCOM for Non-API Classes in execution ¢t@Belb program from the SPEC JVM98
benchmark suite.

analysis of Figure 3, it can be seen that the static i weighting each instance variable by the number

sults may considerably overestimate those producafdimes it is accessed at run-time. The third column

by the dynamic analysis. of data in Table Il presents the corresponding values
In Table Il we compare the static and dynamigf 2’ @nd@ for the weighted case. Here, the methods

LCOM values for theDatabaseclass of the 209 dp contributing to the lack of cohesion are accessed less

program. We define th&imple Dynamic LCOM than the cohesive ones, thus suggesting that the class

analogously to the static version, but only countin@ight be viewed as cohesive after all.

instance variables that are actually accessed at run&learly, the simple static calculation of LCOM as

time. Thus, these values will always be less than thefr| — |@| masks a considerable amount of the detail

static counterpart. As can be seen from the secodghilable at run-time.

column of data in Table Il this decrease is not uni-

form between measurd? and(, and theDatabase V. CURRENT AND FUTURE WORK

We can definedDynamic Call-Weighted LCOM stages:

7TH ECOOP WORKSHOP ON QUANTITATIVE APPROACHES IN OBJECT-ORIENTED SOFTWARE ENGINEERING 2003

TABLE Il
STATIC AND DYNAMIC LCOM VALUES FOR THE_209.db
PROGRAM FROM THESPEC JVM98ENCHMARK SUITE.

[4]

(5]

Simple | Call-Weighted
Static | Dynamic Dynamic
|P| 120 20 95,394 6]
Q| 156 8 125,330
LCOM 0 12 0

[7]

« Stage I: Starting with the standard statically cal-

culated object-oriented metrics such as couplinl
and cohesion, we are presently looking at the
options for defining run-time versions of these
metrics. We have already specified a numbe[
of these, and hope to provide a broadly-base
definition and categorisation of the possibilities
here. [
Stage II: Our present work has mainly involved
benchmark suites such as SPEC and Gran e
We propose to widen this collection of programs
to include more common “real-world” Java ap-
plications. There are various technical problems,
to be solved here in terms of running the pro-

]

Briand, L.C., “Empirical Investigations of Quality Factors in
Object-Oriented SoftwareEmpirical Studies of Software Engi-
neering Ottawa, Canada, March 4-5, 1999.

Bull, J. M., Smith, L.A., Westhead, M.D., Henty, D.S. and Davey,
R.A., “Benchmarking Java Grande Applications”, Rroceed-
ings of The Second International Conference on The Practical
Applications of JavaManchester, U.K., April. 2000, pp. 63-73.
Chidamber, S.R. and Kemerer, C.F., “Towards a Metrics Suite for
Object-Oriented DesignProc. Conference on Object-Oriented
Programming: Systems, Languages and Applicatiq@OP-
SLA91), SIGPLAN Notices, Vol. 26, no. 11, pp. 197-211, 1991.
Chidamber, S.R. and Kemerer, C.F., “A Metrics Suite for Object-
Oriented Design,IEEE Transactions on Software Engineering
Vol. 20, no. 6, pp. 467-493, June 1994.

Daly, C., Horgan, J., Power, J. and Waldron, J. “Platform In-
dependent Dynamic Java Virtual Machine Analysis: the Java
Grande Forum Benchmark Suitelpint ACM Java Grande - IS-
COPE 2001 ConferengeStanford University, USA, 2-4 June,
2001.

Eder J., Kappel G. and Schrefl M. “Coupling and Cohesion in
Object—Oriented SystemJechnical ReportUniversity of Kla-
genfurt, 1994.

0] Gregg, D., Power, J.F. and Waldron, J. “Benchmarking the Java

Virtual Architecture - The SPEC JVM98 Benchmark Suite”,
Chapter 1 oflava Microarchitecturesd. N. Vijaykrishnan and
M. Wolczko, Kluwer Academic, 2002.

] Gupta, N. and Rao, P. “Program Execution Based Module Co-

hesion Measurement!6th International Conference on Auto-
mated on Software Engineering (ASE '0Ban Diego, USA,
November 2001.

Mitchell, A. and Power, J.F., “Run-time Coupling Metrics for
the Analysis of Java Programs - preliminary results from the

grams in a documented repeatable manner. and SPEC and Grande suites” Technical Report NUIM-CS-TR2003-

in generating and processing the profiling infor-
mation. (13]
Stage lll: Run-Time metrics can only be justi-
fied if they provide additional useful informa-
tion either about the programs themselves, A
about the test cases used for the program’s run.
A key aspect of our study will be the analysis
and comparison of the various possible definf:
tions of run-time metrics in order to determine
their possible utility.

The results presented in this paper are of a prelim-
inary nature, and do not provide a justifiable basis
for generalisation. However, we believe that they do
provide an indication that the evaluation of software
metrics at run-time can provide an interesting quan-
titative analysis of a program.

(1]

(2]

(3]

REFERENCES

Basili, V.R., Briand, L.C. and Melo W.L., “A Validation of
Object-Oriented Design Metrics as Quality IndicatortEEE
Transactions on Software Engineeringol. 22, no. 10, pp. 751—
761, October 1996.

Bieman, J.M. and Kang, B.K., “Cohesion and Reuse in an
Object-Oriented SystemProc. ACM Symp. Software Reusabil-
ity (SSR’'94) pp. 295-262, 1995.

Briand, L.C., Daly, J.W. and Wust, J.K., “A Unified Framework
for Cohesion Measurement in Object-Oriented SysteEspir-

ical Software Eng.: An Int'l J.Vol. 3, no. 1 pp. 65-117, 1998.

07, Dept. of Computer Science, NUI Maynooth, Ireland, April
2003.

Mitchell, A. and Power, J.F., “Run-time Cohesion Metrics for
the Analysis of Java Programs - preliminary results from the
SPEC and Grande suites” Technical Report NUIM-CS-TR2003-
08, Dept. of Computer Science, NUI Maynooth, Ireland, April
2003.

Standard Performance Evaluation Corporation, SPEC
JVM98 Benchmarks, Available at the following WWW
site: http://www.spec.org/jvm98 .

5] Yacoub, S.M., Ammar, H.H. and Robinson, T., “Dynamic Met-

rics for Object-Oriented DesignsSoftware Metrics Symposium
, Boca Raton, Florida, USA, pp. 50-61, Nov 4-6, 1999.

