
7TH ECOOP WORKSHOP ON QUANTITATIVE APPROACHES IN OBJECT-ORIENTED SOFTWARE ENGINEERING 2003 1

Toward a definition of
run-time object-oriented metrics

- Position Paper -

Aine Mitchell, James F. Power

Abstract— This position paper outlines a programme of
research based on the quantification of run-time elements of
Java programs. In particular, we adapt two common object-
oriented metrics, coupling and cohesion, so that they can
be applied at run-time. We demonstrate some preliminary
results of our analysis on programs from the SPEC JVM98
benchmark suite.

Index Terms—Area V (Metrics Validation): Formal and
empirical validation of OO metrics, Standard data sets for
metrics validation.

I. I NTRODUCTION

Software metrics measure different aspects of soft-
ware complexity and therefore play an important
role in analysing and improving software quality
[1, 4]. Previous studies have indicated that they pro-
vide useful information on external quality aspects of
software such as its maintainability, reusability and
reliability, and provide a means of estimating the ef-
fort needed for testing.

Traditional metrics for measuring software such as
Lines of Code (LOC) have been found to be inad-
equate for the analysis of object-oriented software.
In recent years many researchers and practitioners
have proposed a number of code metrics for object-
oriented software, for example, the suite of metrics
proposed by Chidamber and Kemerer [6, 7]. These
code metrics quantify different aspects of the com-
plexity of the source code, based on a static analysis
of that code. However, the ability of suchstaticmet-
rics to accurately predict thedynamicbehaviour of
an application is as yet unproven.

Static metrics alone may be insufficient in evaluat-
ing the dynamic behaviour of an application at run-
time, as its behaviour will be influenced by the oper-
ational environment as well as the complexity of the

Department of Computer Science, National University of Ireland,
Maynooth, Co. Kildare, Ireland.

Please address correspondence to ainem@cs.may.ie

source code. Research by Yacoub et. al. [15] has in-
dicated that useful information may be obtained from
a measure of quantifying the dynamic complexity of
software in its operational environment. However
[15] only considered the use of such metrics in the
design stage of the software lifecycle. A thorough
literature survey showed that no previous study had
endeavored to develop metrics that could be applied
at run-time.

II. RELATED WORK

As object-oriented design techniques have become
increasingly important a large number of object-
oriented metrics for statically evaluating a design
have been proposed. Coupling and Cohesion metrics
are two such measures. They are said to evaluate the
external and internal complexity of a design respec-
tively. A large body of research has gone into inves-
tigating how these complexity measures characterise
the external quality attributes of a design, for exam-
ple its maintainability, reusability or error-proneness.

Our hypothesis is that it is possible to quantify the
external quality of a software product using a set of
dynamic metrics calculated at run-time that evaluate
the product’s complexity. These metrics by them-
selves can provide us with useful information, and
can also help to calibrate the information obtained
from a static analysis.

Briand et.al. [3] carried out an extensive survey
of the current available coupling literature in object–
oriented systems and concluded that all the current
metrics measured coupling statically, at the class
level. No measures of (dynamic) object level cou-
pling had been proposed. They suggested that the
reason for this is the obstacle of determining the de-
gree of coupling or cohesion between individual ob-
jects. They proposed that a way of evaluating these
would be to find some method of instrumenting the

2 7TH ECOOP WORKSHOP ON QUANTITATIVE APPROACHES IN OBJECT-ORIENTED SOFTWARE ENGINEERING 2003

source code to log all occurrences of object instanti-
ations, deletions, method invocations, and direct ref-
erence to attributes while the system is executing.

A study was conducted by Gupta and Rao [11]
comparing a program execution based approach of
measuring the levels of module cohesion present in
legacy software, with a static-based method. The re-
sults from this study showed that the static-based ap-
proach significantly overestimated the levels of cohe-
sion present in the software tested, therefore indicat-
ing that a dynamic measurement would prove useful.

Despite the extensive research in this area few
measures for quantifying coupling and cohesion at
run-time have been proposed. The quality of a soft-
ware product will be influenced by its operational
environment as well as the source code complexity,
therefore it was believed that measures that assess
run-time quality may aid in the analysis of software
quality. It is notable that such a study involves a
change in the orientation of the metrics: static cou-
pling and cohesion metrics deal with thearchitec-
tural aspects of a software system, whereas run-time
measures necessarily deal also with thebehavioural
aspects of the system.

For example, suppose a class is determined to
be cohesive using the standard static metrics. This
would imply that a static analysis of the programs
has determined that the methods in the class access
or change the full range data attributes. However,
it is conceivable that at run-time, a statically cohe-
sive class may not exhibit cohesive behaviour. That
is, the methods that detract from cohesive behaviour
might far outweigh those that contribute to cohesion
when weighted by the number of times that they are
invoked.

Similarly, the standard coupling metrics are typi-
cally defined as “coupling between objects (CBO)”,
yet they actually measure coupling betweenclasses.
A method that is judged by static metrics to con-
tribute to coupling between two classes may in fact
be rarely invoked, thus leading to a lower actual cou-
pling between objects at run-time.

As a further example, some classes have objects
that exhibit a state-based behaviour. That is, we can
distinguish various stages in the lifetime of their ob-
jects: perhaps an initialisation stage followed by a
period of activity, followed by a finalisation phase. It
seems reasonable that some objects may exhibit high
degrees of cohesion and low coupling during initial-
isation, but exhibit low cohesion and high coupling

during their active phase. Static metrics fail to iden-
tify or quantify this behaviour, whereas this informa-
tion should be available from run-time metrics.

An important issue that must be addressed in re-
lation to run-time metrics is dynamic binding. Static
metrics are somewhat constrained in their ability to
deal with inheritance issues [2, 9] since the run-time
types at field access and method invocation sites are
not known. However, run-time metricsmust deal
with such issues, and our initial work suggests that
this can lead to a divergence with statically predicted
results.

III. W ORK DONE TO DATE

We have conducted a preliminary studies on for-
mulating definitions of coupling and cohesion at run-
time. These run-time metrics were applied to as-
sess the quality of a number of Java programs from
the Java Grande Forum [5] and SPEC JVM98 [14]
benchmark suites. The results from this prelimi-
nary analysis are available in two technical reports
[12,13].

We initially obtained a run-time profile of Java ap-
plications by instrumenting the Kaffe Virtual Ma-
chine to log all occurrences of object creation,
method calls etc. More recently, we have switched to
using Sun’s JVM as the corresponding class libraries
are more conformant, and it now has a built in pro-
filer, all of which will make the analysis more easily
repeatable.

At present we are utilising the Java Virtual Ma-
chine Debug Interface (JVMDI), a programming in-
terface contained in the J2SDK from version 1.4.0
onward. JVMDI is one layer within the Java Plat-
form Debugger Architecture. The second layer is the
Java Debug Wire Protocol which defines the format
of information and requests transferred between the
process being debugged and the debugger front end,
which implements the Java Debug Interface. The
Java Debug Interface, which is the third layer, defines
information and requests at the user code level. The
JDI provides introspective access to a running virtual
machine’s state, the class, array, interface, and prim-
itive types, and instances of those types.

We are currently concentrating on programs writ-
ten in the Java programming language, but our tech-
niques should also apply to other object-oriented lan-
guages. Since all Java programs are executed on a
virtual machine, this provides an ideal platform for

MITCHELL & POWER: TOWARD A DEFINITION OF RUN-TIME OBJECT-ORIENTED METRICS 3

TABLE I

PROGRAM SIZE DATA FOR PROGRAMS IN THE THESPEC JVM98BENCHMARK SUITE. EACH PROGRAM WAS RUN AT THREE SIZES: 1,

10 AND 100.

SPEC JVM98
Application Number of Objects created Number of Method Calls

Size Size
s1 s10 s100 s1 s10 s100

201 compress 8,834 9,032 8,902 17,163,803 15,966,749 17,822,835
202 jess 85,264 189,698 1,846,358 635,440 6,077,035 23,333,274
205 raytrace 552,326 1,085,055 1,695,963 5,772,110 19,559,308 25,577,699
209 db 13,520 176,459 3,554,259 136,726 2,299,380 34,183,241
213 javac 64,081 382,060 1,553,455 443,790 3,319,026 14,050,905
222 mpegaudio 15,824 18,035 15,215 1,185,653 9,368,543 21,452,712
227 mtrt 551,114 1,567,812 1,955,785 5,758,391 23,772,645 25,856,949
228 jack 484,952 953,582 4,009,120 4,007,716 7,921,292 33,064,049

their profiling and dynamic analysis. One of the
problems with dynamic analysis that has been eluted
from previous studies is the large volume of data that
is generated. Thus the organisation and classification
of this data will need to be given careful considera-
tion.

Results obtained from this study indicated that
valuable information on software quality might be
obtainable from a run-time evaluation. It is known
that a one-to-one relationship does not exist between
static and dynamic metrics but our study indicated
that there might be some co-relation. Hence there is
a need for further empirical studies to validate these
metrics and explore the dependency of design quality
on each.

A. Relationship with Software Testing

The benchmark programs used to date may not be
typical of Java applications. Indeed, it is notable that
they vary widely both in the use of the Java class li-
braries [8, 10], and in their object creation profiles.
Our next step will involve the profiling and analysis
of more “real world” programs. In particular, it will
be desirable to study object-intensive programs, such
as GUI-based applications. Such programs how-
ever do not easily lend themselves to the batch-style
running schemes of the standard benchmark suites.
Thus, a strategy for choreographing and recording
program runs will have to be developed.

Indeed, some of the issues associated with profil-
ing benchmark suites can be seen in Table I. This ta-
ble shows the number of objects created and methods
called for the programs in the SPEC JVM98 bench-
mark suite. Each benchmark suite can be executed in

one of three standard sizess1, s10 or s100, with s1
being a simple calibration test. As can be seen in Ta-
ble I, the behaviour of the applications as the length
of the run increased is not always as expected.

Clearly, the first row of data indicates that
201 compresscreates most of its objects and calls

most of its methods during the initialisation phase
of the benchmark. Extra iterations of the bench-
mark’s inner loop, as represented by the increase in
size froms1 to s100, do not greatly affect either the
number of objects created or the number of meth-
ods called. In the sixth row of data in Table I, the
222 mpegaudioprogram shows similar object cre-

ation patterns, but the number of method calls does
increase for more iterations. Finally, most of the
other programs, for example202 jesson the second
row, display an increase in both object creation and
methods called, albeit at different rates.

Thus, along with the metrics, we hope to define a
methodology for quantifying real-world applications
with these metrics. We would hope to exploit some
of the existing work on software testing in this area.
We also hope to determine if a quantifiable correla-
tion exists between the information obtained from a
static and dynamic analysis of a program. Clearly, a
static analysis is relatively independent of program
behaviour, whereas any run-time analysis will be
fundamentally influenced by the testing strategy and
test inputs. This issue must be addressed in any as-
sessment of run-time metrics, and may have impli-
cations for the quantification of the effectiveness of
software testing strategies.

4 7TH ECOOP WORKSHOP ON QUANTITATIVE APPROACHES IN OBJECT-ORIENTED SOFTWARE ENGINEERING 2003

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

_201_compress _202_jess _205_raytrace _209_db _213_javac _222_mpegaudio _227_mtrt _228_jack

D
eg

re
e

of
 C

ou
pl

in
g

(a
s

a
%

)

SPEC JVM98 Programs

Static
Dynamic

Fig. 1. Degree of Static and Dynamic Coupling within a group of classes for the non-API classes of the programs from SPEC JVM98
benchmark suite.

IV. SOME PRELIMINARY RESULTS

In this section we present some preliminary results
from our analysis of the SPEC JVM98 suite. We
stress that this study is still at a preliminary stage,
and we present these results simply as an indication
of some of the issues involved in this analysis.

A. Coupling Metrics

The Coupling between Objects (CBO) measure
was originally defined as “a count of the number of
non-inheritance related couples with other classes”.
Two objects are deemed to be coupled if theyact
upon one another, in other words, if an object of
one class uses the methods or instance variables of
the other [6]. If a method declared in one class uses
a method or instance variable in another class, this
pair of classes are said to be coupled since all objects
instantiated from the same class are deemed to have
the same properties.

However Chidamber and Kemerer later revised
their definition of CBO. For a class C, CBO is a
measure of the number of other classes to which it
is coupled [7]. We can extend this directly to define
the Dynamic CBO for a classas being a count of
the number of couples with other classes at run-time.

For a whole program, we can define theDegree of
Dynamic Coupling within a given set of classes as
follows:

Sum of number of accesses to meth-
ods or instance variables outside
each class

Sum of total no. of accesses from
these classes

∗ 100

1

Differences between the static and dynamic values
for this metric result from the relative frequency with
which methods that contribute to coupling are called.
Figure 1 summarises the results for the programs in
the SPEC JVM98 suite. As can be seen from Figure
1, the static values may be either less than or greater
than the dynamic values, depending on the program
being run and, presumably, on the input data supplied
to it. One of the goals of our research is to provide a
detailed explanation for this behaviour.

B. Cohesion Metrics

Chidamber and Kemerer [7] defined a static co-
hesion metric for object-oriented applications known
as Lack of Cohesion in Methods (LCOM). Suppose
a class containsn methods,m1, . . . ,mn. Then Let
{Ii} be the set of instance variables referenced by
methodmi. We can define two sets:

P = {(Ii, Ij) | Ii ∩ Ij = ∅}
Q = {(Ii, Ij) | Ii ∩ Ij 6= ∅}

The (static) LCOM is then equaled to|P | − |Q|, if
|P | > |Q|, and0 otherwise.

Figures 2 and 3 give a pictorial representation of
the relationship between the static and dynamic co-
hesion data for the SPEC JVM98 benchmark pro-
gram 209 db. Here, each class is represented by
a graph whose nodes represent the methods of that
class. For any two methodsmi andmj, there is an
edge betweenmi andmj precisely when the intersec-
tion between the set of instance variables accessed by
these methods is non-empty. Comparing the results
for the static analysis of Figure 2 and the dynamic

MITCHELL & POWER: TOWARD A DEFINITION OF RUN-TIME OBJECT-ORIENTED METRICS 5

Class Database Class Entry

m1z

m2

z
m3

z��
�
�
�

T
T

T
T

T

Class Main

m1z m2z

Fig. 2. Diagramatic Representation of Static LCOM for Non-API Classes involved in execution of209 db program from the SPEC JVM98
benchmark suite.

Class Main

m1z

Class Database

m1z m2z

m5

z
m6

z

m3zm8z
m4zm7z!!!!!!!!!!!!

�
�
�
�
�
�
��

PPPP
T

T
T

T
T

T
(((((((((

�
�

�
�

�
�

�
�P

PPP

Class Entry

m1z

Fig. 3. Diagrammatic Representation of Dynamic LCOM for Non-API Classes in execution of the209 db program from the SPEC JVM98
benchmark suite.

analysis of Figure 3, it can be seen that the static re-
sults may considerably overestimate those produced
by the dynamic analysis.

In Table II we compare the static and dynamic
LCOM values for theDatabaseclass of the209 db
program. We define theSimple Dynamic LCOM
analogously to the static version, but only counting
instance variables that are actually accessed at run-
time. Thus, these values will always be less than their
static counterpart. As can be seen from the second
column of data in Table II this decrease is not uni-
form between measuresP andQ, and theDatabase
class demonstrates a lack of cohesion at run-time.

We can defineDynamic Call-Weighted LCOM

by weighting each instance variable by the number
of times it is accessed at run-time. The third column
of data in Table II presents the corresponding values
of P andQ for the weighted case. Here, the methods
contributing to the lack of cohesion are accessed less
than the cohesive ones, thus suggesting that the class
might be viewed as cohesive after all.

Clearly, the simple static calculation of LCOM as
|P | − |Q| masks a considerable amount of the detail
available at run-time.

V. CURRENT AND FUTURE WORK

We plan to proceed with our research in three main
stages:

6 7TH ECOOP WORKSHOP ON QUANTITATIVE APPROACHES IN OBJECT-ORIENTED SOFTWARE ENGINEERING 2003

TABLE II

STATIC AND DYNAMIC LCOM VALUES FOR THE 209 db

PROGRAM FROM THESPEC JVM98BENCHMARK SUITE.

Simple Call-Weighted
Static Dynamic Dynamic

|P | 120 20 95,394
|Q| 156 8 125,330

LCOM 0 12 0

• Stage I:Starting with the standard statically cal-
culated object-oriented metrics such as coupling
and cohesion, we are presently looking at the
options for defining run-time versions of these
metrics. We have already specified a number
of these, and hope to provide a broadly-based
definition and categorisation of the possibilities
here.

• Stage II: Our present work has mainly involved
benchmark suites such as SPEC and Grande.
We propose to widen this collection of programs
to include more common “real-world” Java ap-
plications. There are various technical problems
to be solved here in terms of running the pro-
grams in a documented, repeatable manner, and
in generating and processing the profiling infor-
mation.

• Stage III: Run-Time metrics can only be justi-
fied if they provide additional useful informa-
tion either about the programs themselves, or
about the test cases used for the program’s run.
A key aspect of our study will be the analysis
and comparison of the various possible defini-
tions of run-time metrics in order to determine
their possible utility.

The results presented in this paper are of a prelim-
inary nature, and do not provide a justifiable basis
for generalisation. However, we believe that they do
provide an indication that the evaluation of software
metrics at run-time can provide an interesting quan-
titative analysis of a program.

REFERENCES

[1] Basili, V.R., Briand, L.C. and Melo W.L., “A Validation of
Object-Oriented Design Metrics as Quality Indicators,”IEEE
Transactions on Software Engineering, Vol. 22, no. 10, pp. 751–
761, October 1996.

[2] Bieman, J.M. and Kang, B.K., “Cohesion and Reuse in an
Object-Oriented System,”Proc. ACM Symp. Software Reusabil-
ity (SSR’94), pp. 295–262, 1995.

[3] Briand, L.C., Daly, J.W. and Wust, J.K., “A Unified Framework
for Cohesion Measurement in Object-Oriented Systems,”Empir-
ical Software Eng.: An Int’l J., Vol. 3, no. 1 pp. 65–117, 1998.

[4] Briand, L.C., “Empirical Investigations of Quality Factors in
Object-Oriented Software,”Empirical Studies of Software Engi-
neering, Ottawa, Canada, March 4–5, 1999.

[5] Bull, J. M., Smith, L.A., Westhead, M.D., Henty, D.S. and Davey,
R.A., “Benchmarking Java Grande Applications”, inProceed-
ings of The Second International Conference on The Practical
Applications of Java, Manchester, U.K., April. 2000, pp. 63-73.

[6] Chidamber, S.R. and Kemerer, C.F., “Towards a Metrics Suite for
Object-Oriented Design,”Proc. Conference on Object-Oriented
Programming: Systems, Languages and Applications, (OOP-
SLA’91), SIGPLAN Notices, Vol. 26, no. 11, pp. 197–211, 1991.

[7] Chidamber, S.R. and Kemerer, C.F., “A Metrics Suite for Object-
Oriented Design,”IEEE Transactions on Software Engineering,
Vol. 20, no. 6, pp. 467–493, June 1994.

[8] Daly, C., Horgan, J., Power, J. and Waldron, J. “Platform In-
dependent Dynamic Java Virtual Machine Analysis: the Java
Grande Forum Benchmark Suite”,Joint ACM Java Grande - IS-
COPE 2001 Conference, Stanford University, USA, 2-4 June,
2001.

[9] Eder J., Kappel G. and Schrefl M. “Coupling and Cohesion in
Object–Oriented Systems”Technical Report, University of Kla-
genfurt, 1994.

[10] Gregg, D., Power, J.F. and Waldron, J. “Benchmarking the Java
Virtual Architecture - The SPEC JVM98 Benchmark Suite”,
Chapter 1 ofJava Microarchitectures, Ed. N. Vijaykrishnan and
M. Wolczko, Kluwer Academic, 2002.

[11] Gupta, N. and Rao, P. “Program Execution Based Module Co-
hesion Measurement,”16th International Conference on Auto-
mated on Software Engineering (ASE ’01), San Diego, USA,
November 2001.

[12] Mitchell, A. and Power, J.F., “Run-time Coupling Metrics for
the Analysis of Java Programs - preliminary results from the
SPEC and Grande suites” Technical Report NUIM-CS-TR2003-
07, Dept. of Computer Science, NUI Maynooth, Ireland, April
2003.

[13] Mitchell, A. and Power, J.F., “Run-time Cohesion Metrics for
the Analysis of Java Programs - preliminary results from the
SPEC and Grande suites” Technical Report NUIM-CS-TR2003-
08, Dept. of Computer Science, NUI Maynooth, Ireland, April
2003.

[14] Standard Performance Evaluation Corporation, SPEC
JVM98 Benchmarks, Available at the following WWW
site: http://www.spec.org/jvm98 .

[15] Yacoub, S.M., Ammar, H.H. and Robinson, T., “Dynamic Met-
rics for Object-Oriented Designs,”Software Metrics Symposium
, Boca Raton, Florida, USA, pp. 50–61, Nov 4–6, 1999.

