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SUMMARY

Software tools are fundamental to the comprehension, analysis, testing and debugging of application
systems. A necessary first step in the development of many tools is the construction of a parser front-
end that can recognize the implementation language of the system under development. In this paper, we
describe our use of token decoration to facilitate recognition of ambiguous language constructs. We apply
our approach to the C++ language since its grammar is replete with ambiguous derivations such as the
declaration/expression and template-declaration/expression ambiguity. We describe our implementation of
a parser front-end for C++, keystone, and we describe our results in decorating tokens for our test suite
including the examples from Clause Three of the C++ standard. We are currently exploiting the keystone
front-end to develop a taxonomy for implementation-based class testing and to reverse-engineer Unified
Modeling Language (UML) class diagrams. Copyright  2002 John Wiley & Sons, Ltd.

KEY WORDS: grammar; symbol table; parser; Unified Modeling Language; design pattern; the Facade and
Decorator design patterns

1. INTRODUCTION

Software tools are fundamental to the comprehension, analysis, testing and debugging of application
systems. Tools can automate repetitive tasks and, with large-scale systems, can enable computation that
would be prohibitively time consuming if performed manually. The Java language is well supported
with libraries and tools to support application development [1–3]. The lack of tool support for
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applications using the C++ language is especially noteworthy; in fact, there is presently no tool
available in the public domain that can fully accept applications written in ISO C++ [4].

One explanation for the lack of software tools for C++ is the difficulty in constructing a front-end
for the language, as described in [5–10]. This difficulty results, in part, from the complexity and scale
of the language. However, a more important problem is the ambiguity inherent in many C++ language
constructs [6,7,10,11]. Many C++ constructs cannot be recognized through syntactic considerations
alone. For example, the difficulty in distinguishing a declaration from an expression can only be
resolved by performing name lookup [6,12]. Given the obvious mapping of objects to the roles in
compiler front-end construction such as a parser or scanner, it is unfortunate that the carry-over of
object technology to parser development has been minimal. Moreover, we believe that the tools of
software engineering can greatly facilitate management of the scale and complexity of parser front-end
construction.

In this paper, we describe our use of token decoration to facilitate recognition of ambiguous
language constructs. We use the Unified Modeling Language (UML) [13,14], to describe our
object-oriented design that exploits design patterns including the Decorator and Facade pattern
[15]. A key framework in our system, the TokenDecorator, intercepts tokens and, in some cases,
mutates the token; we refer to our technique as token decoration after our use of the Decorator
pattern.

We apply our approach to the C++ language since its grammar is replete with ambiguous derivations
such as the declaration/expression and template-declaration/expression ambiguity. We describe our
implementation of a parser front-end for C++, keystone, and our results in decorating tokens for several
suites of programs including a suite garnered from Clause Three of the C++ standard [12]; we use the
Clause Three suite to compare name lookup in keystone to several other important compilers.

There are important advantages in our approach to token decoration. First, token decoration allows
us to disambiguate language constructs without modifying the grammar; thus, we can use the grammar
listed in Appendix A and described throughout the C++ standard with the modification of only one
token. Readers of the C++ standard can correlate references to the grammar in the standard with
the grammar in our parser and developers who are familiar with the standard will recognize the
grammar in our parser front-end. In contrast, the GNU C++ grammar from gcc version 2.96 bears
little resemblance to the C++ standard and the corresponding bison parser contains over 500 goto
statements. A second advantage of our approach is that token decoration is encapsulated in a class
framework, which facilitates maintenance of the parser. This modularity permits developers to exploit
a scanner or parser generator of their choice; in fact, we have used three different parser generators in
our development of keystone [8]. A third advantage of our approach is that the encapsulation afforded
by the token decorator facilitates the development of an application programmer interface (API)
based on the tokens that are intercepted or decorated. We use this low-level API to gather statistics
reported in Section 6. A fourth advantage is that our exploitation of object-technology includes a
facade into the parser that also permits us to easily construct an API for the parser front-end. We
have used this high-level API to reverse engineer class diagrams for C++ applications [16] and to
develop a taxonomy for implementation-based class testing [17]. Finally, our token buffer, incorporated
into the token decorator, obviates the need for an abstract syntax tree or attaching attributes to the
grammar.

In the next section we introduce terminology important to the problem that we address, and describe
some of the difficulty in parsing C++, including the template-declaration/expression ambiguity and

Copyright  2002 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2003; 33:19–39



DECORATING TOKENS TO DISAMBIGUATE LANGUAGE CONSTRUCTS 21

argument-dependent name lookup‡. In Section 3 we describe token decoration and in Section 4 we
present details of our implementation including our solutions to the declaration/expression ambiguity
and argument-dependent name lookup. In Section 6 we present our implementation results for a suite of
benchmark programs and in Section 7 we describe the work related to our problem. Section 8 concludes
the paper.

2. BACKGROUND

In Section 2.1, we define terms and introduce concepts related to the problem that we consider.
We describe some of the difficulties involved in the construction of a parser front-end for C++,
including the importance of a solution to the name lookup problem. In Section 2.2 we discuss
namespaces and the use of qualified names, and in Section 2.3 we describe argument-dependent name
lookup. In Section 2.4, we overview our design of a system to construct a symbol table and to perform
name lookup for C++. Our research on the design of keystone can be found in references [8,18,11]; in
this paper we focus on details for decorating and buffering tokens in the keystone implementation.

2.1. Terminology and statement of the problem

Software developers need tools to facilitate the design, analysis and testing of the system under
development. Many useful tools require a parser front-end to compute and store information about
the program, and to perform the analysis needed. A parser front-end performs lexical and syntactic
analysis, constructs a symbol table, performs semantic analysis and possibly generates an intermediate
representation of the program. A symbol table is a data structure that stores information about the types
and names used in the program.

Many programming language constructs have an inherently recursive structure that can be defined
by context-free grammars (CFGs) [19]. Most of the constructs of languages such as Pascal and Ada can
be specified by CFGs, and parser front-ends for these languages can base their recognition on syntactic
considerations alone. An exception to this easy-parse rule can be found in the language C, where a
declaration may not be easily distinguished from an expression. Consider the following code segment:

f (x); (1)

Intuitively, the above segment appears to be an expression involving an invocation of function f with
parameter x. However, if the context includes the declaration

typedef int f; (2)

then the code segment is actually a declaration of x as an integer variable with redundant parentheses.
This declaration/expression ambiguity not withstanding, parser front-ends for the C language have
not been difficult to construct. However, a parser front-end for the C++ language has proven elusive
and the difficulties involved have been described in [5–7,9–11]. Currently, there is no parser front-end

‡Argument-dependent name lookup is also referred to as Koenig lookup, named after Andrew Koenig, who established the
definition and is a longtime member of the C++ standards committee.

Copyright  2002 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2003; 33:19–39



22 B. A. MALLOY, T. H. GIBBS AND J. F. POWER

( 1) namespace A {
( 2) namespace B {
( 3) namespace C { int x; }
( 4) }
( 4) }
( 5) A::B::C::x = 0;

Figure 1. Three namespaces, with a declaration of x local to the inner namespace C. Line 5 contains
a line of code to access x through qualification.

in the public domain that can fully parse the language described in the ISO C++ standard [4]. Many
constructs in the C++ language cannot be recognized by syntactic consideration alone; these constructs
not only include the typedef declaration/expression ambiguity of C, but the ISO C++ grammar also
includes context-dependent keywords for namespace, class, enumeration and template declarations
[12, Appendix A].

To illustrate the declaration/expression ambiguity introduced by templates into C++, consider that
for a code segment beginning ‘a < b ...’, the name a must be looked up to determine whether the
< is the beginning of a template argument list or a less-than operator [12, Section 3.4.5/1]. Thus, the
disambiguation of many C++ constructs requires a solution to the name lookup problem. The name
lookup problem is defined as follows: given the use of a name in a program, find the corresponding
declaration of that name.

The GNU Free Software Foundation offers gcc, a public domain compiler for C++ and other
languages. However, it is difficult to de-couple the parser front-end of gcc from the compiler internals.
Even if de-coupling were achieved, low-level access to the internals of gcc is not easily accomplished.
Moreover, gcc does not, at present, fully parse the language described in the ISO C++ standard.

2.2. Namespaces and qualified names in C++

Namespaces act as a modularization construct in C++, allowing the programmer to partition the names
used in a program to prevent them from interfering with each other. Thus, given variable x declared in
namespace A, once outside namespace A we may refer to the variable using explicit qualification, as in
A::x.

Namespaces may be nested, in which case name occurrences inside the inner namespace may refer to
those already declared at the outer level without the need for qualification, with this process continuing
recursively, eventually reaching the global namespace where all namespaces are ultimately nested.
Figure 1 illustrates local variable x in namespace C, nested in namespace B, nested in namespace
A. We can access the variable x declared in namespace C with the qualification A::B::C::x, as
illustrated on line 5 of Figure 1. We revisit this example in Section 4.2, including implementation
details about qualified name lookup in keystone.

In addition to this textual relationship achieved through qualification or nesting, we may establish
a logical relationship between namespaces by importing one into another with a using directive.
The declarations in a namespace that are imported in this way are treated as though they were originally
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( 1) namespace NS {
( 2) class T { };
( 3) void f(T);
( 4) }
( 5) NS::T parm;
( 6) int main() {
( 7) f(parm);
( 8) }

Figure 2. Argument-dependent name lookup. Here the function name f is looked up in the context in which it
occurs, and also in the context of its parameter param.

declared in the importing namespace. In the next section, we investigate argument-dependent name
lookup, which depends on the relationship between namespaces.

2.3. Argument-dependent name lookup

Figure 2, taken from [12, Section 3.4.2], contains an instance of argument-dependent name lookup,
where the unqualified name f on line 7 of the figure must be looked up in the usual contexts as well as
the namespace that contains the argument’s type. Visual inspection of the function call at line 7, and
the namespace running from lines 1 to 4, shows that name lookup for f on line 7 should match the
declaration of f on line 3.

To provide argument-dependent name lookup for the C++ language, the name lookup facility in
the corresponding parser front-end must potentially return a set of declarations. The set of declarations
found in a search for a name, such as f in the above example, is the union of those found using ordinary
unqualified lookup and the set of declarations found in the namespaces and classes associated with the
argument types [12, Section 3.4.2].

We describe our solution to the problem of argument-dependent name lookup in Section 4.3.

2.4. Name lookup in keystone

Figure 3 summarizes the design of our system to construct a parser front-end for ISO C++. The
figure presents two subsystems, illustrated as tabbed folders and designated by the �subsystem�
stereotype. The ProgramProcessor subsystem is shown on the left-hand side and the Symbol Table
subsystem is shown on the right-hand side of Figure 3. The ProgramProcessor and Symbol Table
subsystems are elaborated in Section 4.

The ProgramProcessor subsystem includes a Scanner and Parser and is responsible for initiating
and directing symbol table construction and name lookup. This responsibility includes two phases:
(1) assembling the necessary information for creation of a NameOccurrence object; and (2) directing
the search for a corresponding NameDeclaration object in the Symbol Table subsystem.

The NameOccurrence object encapsulates local information relevant to the lookup, including the
String representation of the name, a Boolean to indicate name qualification (by class or namespace),
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name : String
kind : Kind
containedIn : Scope

uses in
search

class, enum, function,
label, namespace,
variable, typedef

returns

builds

looks for

<<use>>

<<use>>

<<subsystem>>

<<subsystem>>

name : String
hasQualifier : Boolean
specifiedAs: OccurSpecifier
ignoreUsings : Boolean

<<enumeration>>

convFunction, destructor,
destructorQualifier,
elabEnum, elabClass,
label, namespace,
pseudoDestructor,
qualifier, typename

OccurSpecifier

<<enumeration>>

Kind

NameDeclaration

Scanner

Parser

ProgramProcessor

Scope

Symbol Table

NameOccurrence

Figure 3. A summary of the system design of our parser front-end for ISO C++. The ProgramProcessor
subsystem is responsible for initiating and directing symbol table construction and name lookup by
marshaling information about the name in a NameOccurrence object and directing the search for a

corresponding NameDeclaration in the Symbol Table subsystem.

and an enumeration, OccurSpecifier, that captures lexical information about the context in which
the name occurred. The NameDeclaration object includes the String representation of the name, an
enumeration indicating the type of name and a pointer to the enclosing scope.

3. OVERVIEW OF TOKEN DECORATION

In this section we describe our approach to token decoration. In Section 3.1 we present an overview
of the approach and in Section 3.2 we describe the technique as implemented in keystone [8,11,18],
a parser and front-end for ISO C++ [12, Appendix A].

3.1. Token decorated parsing

Figure 4 illustrates the usual interaction between a Scanner, represented by the ellipse on the left, and
a Parser, illustrated by the ellipse on the right, during the early phase of compilation. In the figure,
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Scanner

getToken()

<token>

Parser

Figure 4. Classic parsing. The usual relationship between the Scanner and Parser. The Parser first requests
a token from the Scanner, and the Scanner then responds by sending a token to the Parser.

<token>

Parser Scanner

<possibly decorated
token>

getToken()getToken()

Token
Decorator

Figure 5. A summary of our approach to token-decorated parsing, with the Parser illustrated on
the left, the Scanner on the right and a Token Decorator interposed between the two. The Parser
requests a token from the TokenDecorator, which then requests a token from the Scanner. The
Scanner returns a token to the TokenDecorator, which then decorates certain tokens and passes

either a <token> or a <possibly decorated token> to the Parser.

the Parser requests a token from the Scanner by the call to getToken(), and the Scanner responds by
passing a token, <token>, to the Parser, which then continues the parse.

Figure 5 illustrates the interaction between a Scanner and Parser using token decoration, where a
TokenDecorator, represented by an ellipse, is interposed between the Parser and Scanner to represent
the subsystem that decorates tokens. During token decoration, the Parser requests a token from
the TokenDecorator rather than the Scanner; this request for a token is represented in the figure
by the call to function getToken() on the arrow from the Parser to the TokenDecorator ellipse.
The TokenDecorator then passes the message through to the Scanner, which returns the token to the
TokenDecorator, where certain tokens are decorated before being passed to the Parser. As Figure 5
illustrates, the Scanner passes a <token> to the TokenDecorator, and the TokenDecorator passes a
<possibly decorated token> to the Parser.

In the next section, we demonstrate the technique as implemented in keystone, a parser and front-
end for ISO C++, including an explanation of our resolution of the declaration/expression and template
ambiguities presented in Section 2.

3.2. Token decoration in keystone

To facilitate recognition of ambiguous constructs in C++, we decorate the identifier token in the
grammar found in the C++ standard [12, Appendix A]. The original token, IDENTIFIER, may be
decorated as:

1. ID typedef name;
2. ID original namespace name;
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1 type name
2 : class name
3 | enum name
4 | typedef name
5 ;
6 typedef name
7 : ID typedef name
8 ;

Figure 6. The grammar productions for a typedef declaration with the IDENTIFIER
token decorated as ID typedef name on line 7.

1 function definition
2 : decl specifier seq opt declarator
3 ctor initializer opt function body
4 ;
5 declarator
6 : direct declarator
7 ;
8 direct declarator
9 : declarator id

10 | direct declarator LEFTPAREN
11 parameter declaration clause
12 RIGHTPAREN cv qualifier seq opt
13 exception specification opt
14 ;
15 declarator id
16 : id expression
17 ;
18 id expression
19 : unqualified id
20 | qualified id
21 ;
22 unqualified id
23 : IDENTIFIER
24 ;

Figure 7. The grammar productions for the declaration of a function where the
IDENTIFIER token, listed on line 23, is not decorated.
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3. ID namespace alias;
4. ID enum name;
5. ID class name; or
6. ID template name.

We now apply token decoration to disambiguate the declaration/expression example discussed in
Section 2. Recall that the statement in Equation (1) might be, among other things, (1) a declaration of
x of type int or (2) a function call. To disambiguate the statement, we first perform name lookup on f,
which is returned from the scanner as an IDENTIFIER token. If lookup determines that f is a typedef,
then the IDENTIFIER token is decorated to be an ID typedef name token.

To see how a decorated token can facilitate disambiguation of the parse of Equation (1), consider the
productions in Figure 6, taken from the C++ standard [12, Appendix A], with IDENTIFIER replaced by
ID typedef name. Assume that f is a typedef. When the bottom-up Parser requests a token from the
TokenDecorator, a decorated token, ID typedef name, is returned. The ID typedef name is reduced,
on line 7 of Figure 6, to a typedef name on line 6; the typedef name on line 4 is then reduced to a
type name, and the statement in Equation (1) is correctly parsed as a declaration.

To illustrate recognition of Equation (1) as an expression, assume that f is a function call. In this case
the TokenDecorator returns the normal IDENTIFIER token, which is reduced, on line 23 of Figure 7,
to an unqualified id. The unqualified id is reduced to an id expression on line 18, to a declarator id on
line 15, to a direct declarator on line 8, to a declarator on line 5 and finally is used in the production
for a function on line 2 of Figure 7.

4. NAME LOOKUP IN keystone

In this section, we provide details about our implementation of name lookup, the sine qua non of
token-decorated parsing. The TokenDecorator uses symbol table information to determine if the
IDENTIFIER token should be decorated and which of the decorated tokens to return to the parser.
The technique of decorating tokens can be applied in any approach to parsing where the scanner and
parser work in tandem, as described in Section 3, and can be applied to top-down or bottom-up parsing
[19,20]. Our implementation of name lookup is in keystone, and our focus on name lookup is on its use
in token decoration.

4.1. Implementation details

After receiving a request for a token from the Parser, the TokenDecorator sends a request to the
Scanner. If the token is an IDENTIFIER, the TokenDecorator requests name information from the
symbol table to determine if the token should be decorated. Figure 8 illustrates the important keystone
classes involved in token decoration. In the figure, the parser, Parser, is represented by the rectangle
on the left and the scanner is represented by the rectangle on the right marked Scanner; keystone
uses btyacc and flex, for back-track parsing and scanning respectively, and keystone is implemented in
C++. To perform token decoration, keystone must buffer some tokens; the buffer is represented by the
rectangle labeled TokenBuffer in Figure 8 and is discussed further in Section 4.2.
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ActionFacade

TokenBuffer

TokenDecorator

getNextToken()
doLookup()

getNextToken()

lookupUnqualifiedName()
lookupQualifiedName()

Parser

Scanner

Figure 8. The important classes in the ProgramProcessor subsystem, discussed in Section 2.
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Figure 9. A state chart that summarizes the actions of the keystone front-end in token-decorated parsing.

To perform name lookup on an IDENTIFIER, the TokenDecorator consults the ActionFacade,
represented by the rectangle on the lower right of Figure 8. The classes illustrated in Figure 8 represent
the ProgramProcessor subsystem, discussed in Section 2 and illustrated in Figure 3; the ActionFacade
uses the Facade design pattern to abstract symbol table details away from the ProgramProcessor [15].
Details about symbol table representation and name lookup, as abstracted by the ActionFacade, can
be found in [8] and [18].

Figure 9 is a state diagram that simulates the actions of keystone in token-decorated parsing, with
the Parser depicted in the ellipse on the left and the Scanner depicted in the ellipse on the lower
right of the figure. The Parser sends the message getNextToken() to the TokenDecorator, which
passes the message through to the TokenBuffer. The TokenBuffer requests a token from the Scanner,
which passes <token> back to the TokenBuffer, which passes <token> back to the TokenDecorator.
Finally, the TokenDecorator constructs a NameOccurrence, occur, and asks the ActionFacade to
perform name lookup, doLookup(occur), on the name occurrence. The ActionFacade returns either a
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( 1) int TokenDecorator::getNextToken() {
( 2) int currentToken = buf.getNextToken();
( 3) if ( currentToken == IDENTIFIER ) {
( 4) NameOccurrence * occur = buf.getNameOccurrence();
( 5) NameDeclaration * decl = doLookup(occur);
( 6) if ( decl == NULL ) {
( 7) decl = new NameDeclaration(occur, Kind::Variable,
( 8) facade.getCurrentScope());
( 9) }
(10) delete occur;
(11) yylval.decl = decl;
(12) currentToken = getContextSensitiveIdent(decl);
(13) }
(14) return currentToken;
(15) }
(16) NameDeclaration* TokenDecorator::doLookup(
(17) NameOccurrence* id) const {
(18) NameDeclaration * decl = NULL;
(19) if ( id→hasQualifier() ) decl = facade.lookupQualifiedName(id);
(20) else decl = facade.lookupUnqualifiedName(id);
(21) return decl;
(22) }
(23) int TokenDecorator::getContextSensitiveIdent(
(24) NameDeclaration * decl) const {
(25) switch (decl→getKind()) {
(26) case (Kind::Typedef) : return ID Typedef name;
(27) case (Kind::Class) : return ID Class name;
(28) . . .

(29) default : return IDENTIFIER;
(30) }
(31) }

Figure 10. Algorithm getNextToken An outline of the C++ code for getNextToken(), which choreographs the steps
in decorating tokens. We also include auxiliary functions doLookup() and getContextSensitiveIdent().

NameDeclaration, shown as <decl> in Figure 9, or NULL to indicate that the name occurrence was
not found in the symbol table.

The actions of the TokenDecorator are further detailed in Figure 10, which contains three
C++ functions in the TokenDecorator class of keystone: getNextToken(), doLookup() and
getContextSensitiveIdent().

The steps in token decoration are choreographed by getNextToken(), listed on lines 1 through 15
of Figure 10. On line 2, a token is requested from the token buffer and placed in the temporary
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currentToken. On line 3 currentToken is tested and if it is an identifier it may be decorated during
lines 4 through 13. On line 4 of Figure 10 a name occurrence is requested and used in name lookup,
initiated on line 5 of the figure.

Name lookup is continued on line 16 in function doLookup, where qualified name lookup is initiated
on line 19 and unqualified name lookup is initiated on line 20. In this section we are investigating
name lookup for unqualified identifiers such as f in Equation (1); we consider qualified name lookup
in the next section. doLookup returns NULL if an identifier is not found in the symbol table and a
new NameDeclaration is constructed on line 7 with the type of this identifier marked as a variable,
Kind::Variable. On line 12 the function getContextSensitiveIdent is called to possibly decorate the
token.

If the identifier is newly created on line 7 of getNextToken(), then on line 29 of
getContextSensitiveIdent the default case of the switch will be chosen and an undecorated token,
IDENTIFIER, will be returned to getNextToken(). However, if the switch matches Kind::Class,
Kind::Enum, Kind::Namespace, Kind::Typedef or Kind::Template, then a decorated token is returned
to getNextToken(). Either the decorated or non-decorated token is returned to the parser on line 14 of
Figure 10.

4.2. Token buffering in qualified name lookup: the left context

Each name in the program is represented in the keystone symbol table by an instance of
NameDeclaration, which stores information about the name such as its current scope, its enclosing
scope and its qualifier, if it is a qualified name§. To facilitate lookup of names in the program, keystone
constructs an instance of NameOccurrence that marshals information about the name; this information
is garnered from the current context of the name as captured in the token buffer, TokenBuffer in
Figure 8.

A snapshot of a token buffer is illustrated in Figure 11, where namespaces A, B and C are shown
with variable x local to namespace C. A qualified reference to x, A::B::C::x = 0; is shown below
the namespaces in the figure and below that, a snapshot of the token buffer containing five tokens.
We have found that five tokens is all that is required to capture the context of the current token under
consideration: the current token is in the middle of the buffer, the two tokens to the left of the current
token capture the left context and the two tokens to the right of the current token capture the right
context.

We now discuss the lookup of qualified name x, local to namespace C in Figure 11. When a name
occurrence is requested on line 4 of Figure 10, fields in the occurrence are marked to indicate the
qualifier, in this case namespace C; the token buffer marks the name occurrence and it uses the context
to the left of currentToken to determine qualification. The context of currentToken is illustrated at the
bottom of Figure 11. Name lookup is initiated on line 5 of Figure 11 and continued in doLookup, using
the occur parameter to guide lookup. On line 19, the name occurrence is tested for qualification and, if
qualified, the lookup is passed on to the action facade, where a qualified name lookup will be initiated
in the symbol table. The search for x in the symbol table will be conducted in the context of namespace
C; a pointer to C is included as a data attribute of the name occurrence used in the lookup process.

§Please see Section 2.2 for information about qualified names in C++.
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x =

}

  }

namespace A {

C

  namespace B {

currentToken

0

A::B::C::x = 0;

::

    namespace C { int x; }

Figure 11. Our use of buffered tokens to facilitate name lookup in keystone. The variable currentToken points to
the current token; the two tokens to the left of currentToken represent the left context and the two tokens to the

right of currentToken represent the right context.

4.3. Argument-dependent name lookup

Argument-dependent name lookup was described in Section 2.3 and an example presented in Figure 2.
In the figure, name lookup of f on line 7 must include a search of the scopes for ordinary name lookup
of f and the set of declarations associated with the classes or namespaces of any function arguments of f
that are qualified by a class or namespace. We now describe our implementation of argument-dependent
name lookup in keystone.

To implement argument-dependent name lookup on a function name such as f, we perform name
lookup twice for a function that has arguments that are qualified by a class or namespace. The first
lookup is initiated by the token decorator in the usual way, and the second lookup is initiated by the
parser to incorporate argument-dependent name lookup.

The first time that the parser encounters f, lookup fails, the identifier is not decorated and f is
parsed correctly as a function call. Thus, token decoration works correctly even though name lookup
initially fails. However, to correctly install the name of an argument-dependent function in the symbol
table, name lookup must be performed a second time. The second name lookup occurs when the parser
reaches the end of the function argument list, and the parser initiates a second lookup through the
ActionFacade, passing the list of arguments for the function to the facade. The facade then initiates
a second lookup of the function name, using the argument list to determine if the declaration might
be found in an associated namespace. If the parameter is a qualified type, the associated namespace is
searched and included in the set of possible declarations for the function name.

5. DIFFICULTIES ENCOUNTERED IN TOKEN-DECORATED PARSING

One of the difficulties in token-decorated parsing is that the token decorator must be able to determine
if a token should be decorated. In the case that the token decorator cannot yet perform name lookup,
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( 1) class A {
( 2) A () { }
( 3) int f(const A & a) {}
( 4) };

Figure 12. Recognizing class type argument. A member function with a class type argument. Name
lookup on the argument may match the argument with the class constructor, mistakenly recognizing the

argument as a function type rather than a class type.

such as in argument-dependent name lookup, the token decorator must be designed so that it returns
the correct token or that the default token that is returned is correct. Thus, in our keystone front-end,
the token decorator must be able to perform name lookup for each identifier in the program. If name
lookup is unsuccessful or returns the wrong declaration to match an identifier, then the program may
not parse correctly.

In this section, we describe one of the difficulties encountered in our implementation of name lookup
in keystone. The first difficulty relates to the type of a function argument and the second relates to scope
issues for data initialization in constructors.

5.1. Recognizing class parameters

Consider Figure 12, containing a class declaration with a constructor, on line 2, and a member function
f on line 3. In parsing line 3, the identifier f is not found in the symbol table, f is not decorated and
an IDENTIFIER token is correctly returned from the TokenDecorator to the parser, as explained in
Section 3.2.

A potential problem occurs when the TokenDecorator receives the IDENTIFIER token A from the
token buffer and then performs name lookup on A. The most recent declaration of A in the symbol table
may match the constructor on line 2 in Figure 12; in this case the IDENTIFIER is not decorated and
the parser does not recognize the argument type, A, for function f on line 3 as a class type argument.
Thus, the parser may incorrectly parse the program.

To correct this problem, class constructors are stored in the keystone symbol table in the form <class-
name>::<class-name>. This solution is consistent with the C++ standard [12, Section 12.1.1]. For the
example in Figure 12, the constructor is stored in the symbol table with the name A :: A. Thus, when
the class type argument is encountered on line 3 by the token decorator, name lookup correctly returns
A as a class type, since the most recent declaration of A is the class declaration on line 1. Using this
solution, the parser will choose the correct derivation for the function prototype.

5.2. Constructor member initialization

In this section we discuss a second situation where name lookup may cause a problem for token
decoration. Figure 13 illustrates a class A using member initialization for data attributes i and j.
The prototype for the constructor is completely parsed when the parser encounters the initialization of
i and j. If the tokens i, j or k needed to be decorated, it would be difficult for name lookup to find the
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( 1) class A {
( 2) A ( int k ) : i(k), j(k) { }
( 3) int i, j;
( 4) };

Figure 13. Scope of the initializer. In this example, the use of k as an initializer should be matched with
the parameter k, even though it appears to be occurring in the scope of the class A itself.

variable k because, since the prototype has been completely parsed, name lookup will be performed
in the scope of the class A. Thus, name lookup will not find the variable k and will have difficulty
decorating it.

6. RESULTS

In this section we describe the results of our study of token decoration in keystone, our parser front-end
for the ISO C++ language. In Section 6.1 we describe the test suite for the study and in Section 6.2 we
measure the number of tokens decorated in the test suite. In Section 6.3 we use keystone and six other
compilers to parse test cases from Clause Three of the ISO standard.

The experiments in this section were executed on systems running version 7.1 of Red Hat Linux
and Solaris SunOS version 5.8. To provide some insight into the efficiency of keystone, we were able
to parse the ep matrix application, the test case with the most tokens, in 11.74 s on a Dell Precision
530 workstation, with a Xeon 1.7 GHz processor and 512 MB of RDRAM, running the Red Hat Linux
7.1 operating system. Our implementation language was C++ compiled with GNU gcc version 2.96.
The keystone front-end is implemented with 3135 lines of C++ code and the btyacc grammar has 527
grammar rules, 124 terminals and 218 non-terminals.

6.1. The test suite

Table I summarizes our suite of seven test cases, listed in the rows of the table as encrypt, Clause 3,
php2cpp, fft, graphdraw, ep matrix and vkey. The test cases in the suite were chosen because of their
range and variety of application and they are listed in sorted order by number of lines of code, not
including comments or blank lines.

Test case encrypt is an encryption program that uses the Vignere algorithm [21] and Clause 3 is
a sequence of examples taken from Clause 3 of the ISO C++ standard [12]. The Clause 3 test case
includes intricate examples of name lookup, including argument-dependent name lookup, described in
previous sections; we discuss and use the Clause 3 test case in the next section to compare keystone
with six other compilers [22]. The php2cpp test case [23] converts the PHP Web publishing language to
C++ and fft performs fast Fourier transform [24]. graphdraw [25] is a drawing application that uses IV
Tools [26], a suite of free X Windows drawing editors for PostScript, TeX and Web graphics production.
The ep matrix test case is an extended precision matrix application that uses NTL, a high-performance
portable C++ number theory library providing data structures and algorithms for manipulating signed
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Table I. A summary of the information about the number of lines,
the number of classes, the number of classes with functions and

the number of namespaces in each of the seven test cases.

Classes
Test case Lines Classes w/ fns Namespaces

encrypt 946 1 1 0
Clause 3 952 40 34 63
php2cpp 1920 6 6 0
fft 2238 51 36 0
graphdraw 4354 199 76 0
ep matrix 4944 78 51 0
vkey 8556 279 44 0

arbitrary length integers, and for vectors, matrices and polynomials over integers and finite fields [27].
vkey [28, p. 760] is a GUI application that uses the V GUI library [29], a multi-platform C++ graphical
interface framework to facilitate construction of GUI applications.

The columns of Table I list details about the number of lines of code, not including comments or
blank lines, the number of classes, the number of classes with functions and the number of namespaces
for each of the test cases. All of the test cases are complete programs, except Clause 3, and three use
large libraries: ep matrix, vkey and graphdraw use the NTL, V GUI and IV Tools libraries, respectively.

The third and fourth columns in Table I compare the number of classes with the number of classes
that have functions. We make this distinction to distinguish between classes used as old ‘C-style’
structs, and proper classes. Since the ep matrix, vkey and graphdraw test cases use libraries, including
a larger number of system library files than the other test cases, many of the classes are actually structs
that contain only data and no functions. The data in the sixth row, fourth column in the table show
that the vkey test case, for example, has 279 classes. However, only 44 of the 279 classes in vkey have
functions and most of the remaining 235 classes are structs containing data and no functions.

Finally, only the Clause 3 test case contains namespaces, as shown in the second row, last column of
the table. The recent inclusion of namespaces into the standard, with their concommitant recent use in
textbooks and by programmers, is reflected here in the test suite. The Clause 3 test case is a sequence
of examples taken directly from the ISO standard where the semantics of name lookup for namespaces
is specified.

6.2. Number of tokens decorated

Figure 14 provides some results about the number of tokens that are decorated by keystone. The rows
of the table list the test cases and the columns list the data acquired by monitoring the token buffer and
token decorator subsystems, including the number of tokens, Tokens, the number of identifiers in the
test cases, Id’s, the number of decorated identifiers, Id’s decorated, the average number of decorated
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Id’s Avg tokens
Test case Tokens Id’s decorated decorated (%) Specifiers Qualifiers

encrypt 7593 1638 445 5.8 151 33
Clause 3 2563 629 171 6.6 270 59
php2cpp 10 942 2517 306 2.7 62 0
fft 14 297 3604 818 5.7 226 37
graphdraw 23 821 6188 2463 10.3 641 123
ep matrix 51 927 17 300 5260 10.1 706 65
vkey 29 914 8541 3477 11.6 953 0

Figure 14. The table shows the number of tokens, identifiers and decorated tokens in each of the test
suites. These figures are presented in summary form in the graph. Also shown in the table are the

numbers of specifiers and qualifiers, which directly impact the name lookup problem.

tokens, Avg tokens decorated, the total number of specifiers used in the name occurrences during name
lookup, Specifiers, and the number of qualified identifiers, Qualifiers, found in each of the test cases.

The fifth column in the table of Figure 14 details the average number of tokens decorated and the
graph in the figure summarizes these results, with a bar representing information for each test case.
Each bar is tri-colored: the top portion of each bar is the percentage of decorated identifiers, the middle
portion of each bar is the percentage of non-decorated identifiers and the bottom portion of each bar is
the percentage of non-identifier tokens for each of the test cases. We listed the kinds of tokens that are
decorated in Section 3.2, and the top portion of each bar represents the values in column 5 of the table
and reflects the percentage of tokens in the test case that are decorated by keystone. The graph illustrates
that php2cpp required the lowest percentage of tokens to be decorated, while vkey required the highest
percentage of tokens to be decorated, reflecting their respective usage of tokens such as typedefs, enums
and constructors. Our study is ongoing; however, token decoration as implemented in keystone enables
disambiguation of grammar derivations without requiring many tokens to be decorated.

6.3. Conformance study

One of the goals of our work is to use the grammar from the ISO standard to build a parser front-
end for C++ that conforms to the standard. We exploit token decoration to obviate modification or
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Table II. Conformance study. Here we compare keystone against six other compilers for
conformance with the ISO standard. For this test, we used 56 positive test cases from Clause

Three of the ISO C++ standard, and we report above on the number of failures.

gcc gcc gcc MIPSpro Borland VC++
keystone 3.0.4 2.96 2.95.2 7.3.1.2m 5.5.1 6.0

failed 3/56 6/56 6/56 6/56 7/56 6/56 13/56

transformation of the grammar. In Table II we summarize the results of our comparison of keystone
with six other compilers, including the GNU collection of gcc 3.0.4, gcc 2.96 and gcc 2.95.2, MIPSpro
7.3.1.2m, Borland 5.5.1 and Microsoft VC++ 6.0.

In order to apply the same standard to all of the compilers under consideration, we use the same
test cases and the same testing framework for all executions, even though some of the compilers are
platform dependent and there is no common platform for all compilers. We found that the Python
language provided the functionality that we needed with its scripting facility, its platform independence
and its object orientation to facilitate code reuse [30]. Moreover, unlike any other language, Python
includes a testing framework as a module of the language. This testing framework is PyUnit, patterned
after the JUnit framework developed by Gamma and Beck [31], and included as a Python module,
unittest [32], in Python versions 2.1 and later [30]. The interested reader may find a more thorough
presentation of C++ compiler conformance in [22].

We have extended the PyUnit framework to facilitate measurement of ISO conformance and we
use the extended framework in all test case executions. To avoid bias for or against any compiler, our
test case selection is based on examples found directly in Clause Three of the ISO C++ standard [12],
which contains 88 code samples that we translated into 56 positive test cases and 32 negative test cases.
The outcomes for the examples are specified in the standard and the results of using the 56 positive test
cases to test keystone and the other six compilers are illustrated in Table II.

For the results in Table II, we compiled the 56 test cases but did not link or execute them, since we
are only interested in the parsing phase of compilation. The rows of the table indicate that keystone
failed to parse three of the test cases, the GNU collection each failed to parse six, MIPSpro 7.3.1.2m
failed to parse seven, Borland 5.5.1 failed to parse six and Microsoft VC++ 6.0 failed to parse 13 of
the test cases. The results reported in Table II do not include certain semantic checks nor negative test
cases; nevertheless, the results indicate that our exploitation of token decoration to obviate modification
of the grammar can facilitate conformance to a standard.

7. RELATED WORK

The C++ programming language was developed directly from C and, as mentioned earlier, inherits
some of its context sensitivity from this language. However, it is notable that the standard reference
for C [33] presents a grammar that requires only a distinction between identifier and typedef-name
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in order to be acceptable to the yacc parser generator (with only the trivial dangling-else ambiguity).
The extra complexity of the scoping structure of early versions of C++ were noted in [34], which
proposed ‘flexible symbol table structures’ as a solution.

One of the earliest and most-cited grammars for C++ is that of Jim Roskind [10]. However, this
grammar is based on an early version of the language as described in [35] and does not include
exceptions, namespaces or templates. This grammar, containing 42 conflicts when processed by
Berkeley yacc (v 1.8) also requires a distinction between identifier and typedef-name. Roskind describes
this as a ‘feedback loop’ between the parser and scanner, and refers to the necessitated changes to the
scanner as a ‘lex hack’, noting that the flow of information between the parser and the scanner must
be swift in order to ensure correctness. Interestingly, he blames the syntactic difficulties for the non-
compliance of many then-current compilers with the specification from [35].

The object-oriented front-end for C++ described in [9] uses an elaborate system of token decoration,
distinguishing ordinary identifiers, type names, enum names, template names and constructors.
Context-sensitive token mutation takes place for four other non-identifier tokens, along with the
insertion of nine special purpose tokens to aid disambiguation. In addition, while the overall parser
is yacc-based, a small-recursive descent parser is used to properly identify declarations. However,
this grammar has no support for namespaces and the more recent template features such as explicit
specialization and instantiation.

The sage++ system [5] provides a unified framework for parsing C, Fortran and C++, and extensive
documentation on the abstract syntax trees that can be generated, but as with the other parsers it has
difficulty with namespaces and some template features. More recent work includes an LL(1) parser [7];
however, despite modifying the PCCTS parser-generator specifically for this project, the work seems
incomplete. One interesting feature is the use of arbitrary LL(k) lookahead in order to disambiguate
declarations.

An interesting analysis of the ambiguities for modern C++ is given in [6], where a system is
presented that attempts to parse C++ programs even when corresponding header files are missing.
Despite relatively high success rates, their parser is necessarily based on heuristics, and thus cannot, in
general, deliver an accurate parse. Another approach, described in [36] is to deterministically parse a
superset of C++, and then apply filters in subsequent passes to rule out spurious cases.

The other main approach to parsing C++ is the use of GLR parsers, originally described in [37], and
developed in [38–40]. In this approach, ambiguities are not deterministic but instead all possible paths
are recorded; thus the end product of a parse is a graph, rather than a tree. Subsequent filters can then be
applied to eliminate remaining ambiguities. This approach is advocated for languages such as C++ in
[41], and for software renovation in [42]. However, there does not yet appear to be a publicly-available
implementation of an ISO C++ parser using this technique.

The Edison Design Group (EDG) [43] provides a C++ front-end that processes ISO C++ and
generates a representation of the program in the C language. The EDG front-end is highly reliable
and has been used in a number of complex applications. EDG is written using 315 000 lines of
commented C-code and is a heavyweight, sophisticated commercial product. Our goal in the design
and implementation of keystone is to provide a freely-available minimal C++ parser that can be used
as a kernel for more complex applications. We believe that the simplifications arising from token
decoration, along with the object-oriented design of our system, facilitate this goal. Our future work
includes a comparison of EDG with keystone to measure conformance to the ISO standard.
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8. CONCLUDING REMARKS

We have described the use of token decoration to facilitate the parse of ambiguous constructs such
as the declaration/expression and template/less-than ambiguity. Also, we have shown that token
declaration coupled with token buffering can facilitate name lookup for qualified names and argument-
dependent lookup in C++. We have implemented token decoration and token buffering in keystone, a
parser front-end for ISO C++, and we have shown that, in practice, few tokens are decorated. Finally,
we have compared keystone to other parsers and shown that our approach of using the grammar from
the C++ standard, together with token decoration to obviate modification of the grammar, can produce
a parser front-end that passes more test cases extracted from Clause Three of the standard than the
other parsers that we tested.

We are currently exploiting keystone in several on-going projects. We have constructed an
application programmer interface, Clouseau, that facilitates easy inspection and extraction of
information in the keystone symbol table [16]. We have used keystone and Clouseau to reverse engineer
UML class diagrams [16] and to construct a taxonomy of classes to identify the best implementation-
based approach to testing [17]. We have also used the taxonomy of classes to measure the changes in
software across different releases [44].

Keystone is freely available under the GNU license. The source may be obtained either
from SourceForge at http://sourceforge.net/projects/keystone-ccs or from the author’s Web page at
http://www.cs.clemson.edu/˜malloy/projects/keystone/keystone.html.
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