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Abstract

We refine the genericity concept of Ambos-Spies, by assigning a real number in [0, 1]
to every generic set, called its generic density. We construct sets of generic density
any E-computable real in [0,1], and show a relationship between generic density
and Lutz resource bounded dimension. We also introduce strong generic density,
and show that it is related to packing dimension. We show that all four notions
are different. We show that whereas dimension notions depend on the underlying
probability measure, generic density does not, which implies that every dimension
result proved by generic density arguments, simultaneously holds under any (biased
coin based) probability measure. We prove such a result: we improve the small span
theorem of Juedes and Lutz, to the packing dimension setting, for k-bounded-truth-
table reductions, under any (biased coin) probability measure.
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1 Introduction

Resource-bounded genericity [1] yields a randomness concept for the class E
which interacts nicely with resource-bounded measure [16]. Informally speak-
ing, generic sets are sets which cannot be predicted correctly infinitely often.
Genericity has been used for the investigation of structural properties of NP
(under appropriate assumptions) and E, see [2] for a survey; and yielded an
improved version of the small span theorem of [12], to a stronger reduction
notion [4], based on the relationship between measure and genericity.

Resource-bounded measure has recently been refined via effective dimension
which is an effectivization of Hausdorff dimension, yielding applications in
a variety of topics, including algorithmic information theory, computational
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complexity, prediction, and data compression [18,14,19,7,5,10]. Hausdorff di-
mension is a refinement of measure theory, where every measure zero class of
languages is assigned a dimension, which is a real number between 0 and 1.
Another widely used dimension concept in fractal geometry, known as packing
dimension (or strong dimension), was effectivized in [5]. A simple character-
ization of strong dimension via martingales has been given in [5], where the
martingales’ capital is required to grow unbounded and is not allowed to de-
crease too much after a certain number of rounds.

In this paper we connect genericity to resource-bounded dimension by intro-
ducing a quantified version of genericity, which is a refinement of genericity,
as resource-bounded dimension is a refinement of resource-bounded measure.
The idea is that every generic set is assigned a real number between 0 and 1,
called its generic density, and which corresponds to the density such a set can-
not be predicted with. We construct sets of generic density any E-computable
real s € [0,1]. Similarly to resource-bounded strong dimension [5], we also in-
troduce strong generic density. We show that strong generic density is related
to strong dimension [5], in the sense that sets with a certain amount of ran-
domness relatively to strong dimension, keep that amount of unpredictability
relatively to strong generic density.

Next we show that all these four concepts, i.e. dimension, strong dimension,
generic density and strong generic density, are indeed different.

All notions exposed so far are implicitly considered within the Cantor space
of all languages under the uniform probability measure. This corresponds to
the random experiment in which every membership bit of a language L is cho-
sen according to the toss of a fair coin. Probability measures other than the
uniform probability measure occur naturally in applications, and the corre-
sponding gale notion (resp. dimension notion) has been investigated in [19,5]
(resp. [9]). In section 6, we highlight a main difference between generic density
and resource-bounded dimension, that is whereas the latter notion is depen-
dent on the underlying probability measure, generic density is not; a similar
result for genericity vs resource-bounded measure was given in [13]. More pre-
cisely we show that if the coin in the above random experiment is biased, then
for two different biases the corresponding dimension notions differ, whereas
the generic density notion remains the same. This outlines a nice feature of
the generic density method over martingale based dimension: proofs obtained
by generic density arguments are in some sense more informative, because all
dimension results proved by generic density methods (i.e. showing some class
contains some s-generic set) simultaneously hold in a wide variety of probabil-
ity measure spaces. Such an example is given in the last section of this paper,
where a small span theorem under any biased coin based probability measure
is proved.



More precisely we prove a small span theorem in the strong dimension set-
ting, for k-bounded-truth-table reductions (k-tt-reductions are a special case
of Turing reductions, where only k non-adaptive queries are allowed) under
any biased coin based probability measure. The small span theorem [12] as-
serts that for every language L in E, either the set of languages reducible to
L, called the lower span, or the set of languages to which L reduces, called
the upper span, has E-measure zero. The question whether the small span
theorem still holds in the resource-bounded dimension setting — i.e. can E-
measure zero be replaced by E-dimension zero — was partially disproved in [3],
where E-languages with both lower and upper span of E-dimension one were
constructed. Nevertheless the small span theorem under polynomial many-one
reductions holds for scaled dimension [11] and partially holds in the dimen-
sion setting as shown in [11], i.e. either the lower span has E-dimension zero
or the upper span has E-measure zero. By adapting the proof of Ambos-Spies,
Nies and Terwijn [4] combined with generic frequency arguments, we prove a
small span theorem in the strong dimension setting for k-bounded truth table
reductions, under any (biased coin) probability measure, i.e. we show that
for any L in E, either the lower span (under k-tt-reductions) has E—B—strong
dimension zero (where 3 denotes the sequence of biases), or the upper span
has E—ﬁ—measure zero. k-bounded-truth-table reductions and n*-tt reductions
(v < 1) were considered in [4,6], but only in the resource-bounded measure
setting.

A preliminary version of this paper was published in [20].

2 Preliminaries

Let us fix some notations for strings and languages. A string is an element
of {0,1}" for some integer n. For a string x, its length is denoted by |z|.
S0, 1, So . . . denotes the standard enumeration of the strings in {0, 1}* in lex-
icographical order, where sy = A\ denotes the empty string. We sometimes
enumerate the strings of size n by s§, s, s%. ;. Note that |w| = 20UswiD, If
x,y are strings, we write x < y if |z| < |y| or |z| = |y| and x precedes y
in alphabetical order. A sequence is an element of {0, 1}N. If w is a string
or a sequence and 1 < i < |w| then w[i] and w[s;] denotes the ith bit of w.
Similarly w[i...j] and wls;...s;| denote the ith through jth bits.

For two strings x, y, the concatenation of  and y is denoted xy. If x is a string
and y is a string or a sequence extending x i.e. y = zu, where u is a string or
a sequence, we write z C y. We write x C y if x C y and = # y.

A language is a set of strings. A class is a set of languages. The cardinal of a
language L is denoted |L|. Let n be any integer. We identify language L with



its characteristic function y, where y is the sequence such that y.[i] = 1
iff s; € L. Thus a language can be seen as a sequence in {0, 1}Y. We denote
by C the Cantor space of all infinite binary sequences. L 1 s, denotes the
initial segment of L up to s,,—1 given by L[so- - $,,—1], whereas L | s,, denotes
Liso -+ sn).

We consider bounded truth-table reductions, here is a definition. Let k €
N,. We say language A is k-truth-table reducible to language B, denoted
A <P, B if there exists a family of polynomial computable functions f :
{0,1}*x{0,1}* — {0,1} (the evaluator) and g¢; : {0,1}* — {0,1}* (1 <4 < k,
the queries), such that for every string z: A(z) = f(x, B(g1(x)), - , B(gx(z))).
Such a reduction is denoted f(g1,- -+, gx). A is bounded truth-table reducible
to B if it is k-truth-table reducible to B for some k.

For a reducibility notion r, the lower span (resp. upper span) of a language
A, denoted A=" (resp. AS") is the set of languages B such that B <, A (resp.
A<, B).

2.1 Lutz Resource-bounded Measure

Lutz measure on E [16] is obtained by imposing appropriate resource-bounds
on a game theoretical characterization of classical Lebesgue measure, via mar-
tingales. A martingale is a function d : {0,1}* — R, such that, for every
w € {0,1}*, d(w) = (d(w0) + d(wl))/2. This definition can be motivated
by the following betting game in which a gambler puts bets on the succes-
sive membership bits of a hidden language A. The game proceeds in infinitely
many rounds where at the end of round n, it is revealed to the gambler whether
S, € A or not. The game starts with capital 1. Then, in round n, depending on
the first n—1 outcomes w = x4[0...n—1], the gambler bets a certain fraction
€wd(w) of his current capital d(w), that the nth word s, € A, and bets the
remaining capital (1 —e¢,)d(w) on the complementary event s,, ¢ A. The game
is fair, i.e. the amount put on the correct event is doubled, the one put on the
wrong guess is lost. The value of d(w), where w = x4[0. .. n| equals the capital
of the gambler after round n on language A. The player wins on a language
A if he manages to make his capital arbitrarily large during the game, i.e.
limsup,,_,., d(xa[0...n]) = co and we say that martingale d succeeds on A.
The success set S*°[d] of a martingale d is the class of all languages on which
d succeeds.

Lutz’s idea to define a measure notion on the class E is to consider only
martingales computable in a certain time bound, i.e. martingales d such that
d(w) can be computed in time 2%/l for some ¢ > 0. Such a martingale is called



E-computable!. E-computable martingales are the main tool for defining a
measure notion on E, as the following definition shows.

Definition 1 ([16]) A class C' has E-measure zero (also denoted p-measure
zero) if there is an E-computable martingale d that succeeds on every language

of C.

This property is monotone in the following sense: If class D is contained in
class C, and C has E-measure zero, then D has E-measure zero.

Definition 2 ([16]) A class C' has E-measure one if its complement E — C
has E-measure zero.

It was shown in [16] that E does not have E-measure zero, which is known
as the measure conservation property. Since finite unions of measure zero sets
have measure zero it’s impossible for a class to have both measure zero and
one.

It was proved in [16] that enumerable infinite unions of measure zero sets have
measure zero, more precisely.

Theorem 3 (Lutz) Suppose {d;};>1 is a set of martingales, each succeeding
on class Cy; where d(i,w) := d;(w) is computable in time 251l 4-i¢ for a some
constant ¢ > 0. Then U;>1C; has E-measure zero.

The following result shows that approximable martingales can be replaced by
exactly computable ones.

Lemma 4 Ezact Computation Lemma [16]

Let d : {0,1}* — Ry be a martingale such that there exists a family of ap-
prozimations {dy}r where dy(w) is computable in time 23l - ke for some
¢ >0, and such that |dy,(w) — d(w)| < 27%. Then there exists an E-computable
martingale d' : {0,1}* — Q4 such that S®[d] = S*°[d].

For a survey on resource-bounded measure see [17].

2.2  Resource-bounded Dimension

Lutz’s idea for defining a dimension notion via martingales, is to levy taxes on
the martingales’ wins, so that only martingales whose capital grows quickly
are considered. This motivates the following definition.

! Equivalently, when the time bound is computed with respect to the input size
|w|, the corresponding martingales are called p-computable.



Definition 5 For a real number s > 0, a martingale is said to be s-successful
. . d(A[Sm_l) o . .

on a language A, if limsup,, .. =5a—5m~ = 00. A martingale is s-successful

on a class if it is s-successful on every language of the class.

Remark 6 Similarly d is said strongly s-successful on A, if limsup in Defi-
nition 5 is replaced by lim inf.

The dimension of a class is defined as the largest tax rate which can be levied
on the martingales’ benefits, without preventing them from winning.

Definition 7 Let C' be any complezity class. The E-dimension of C' (resp.
E-strong-dimension ) is the infimum over all s € [0, 1], such that there exists
an E-computable martingale which s-succeeds (resp. strongly s-succeeds) on C.

It was shown in [18] that the E-dimension notion satisfies all three basic mea-
sure properties, namely that E has E-dimension one, every language in E has
E-dimension zero, and finally enumerable infinite unions of sets of E-dimension
s have E-dimension s. More precisely,

Definition 8 Let X, X, X1, X5,--- be complexity classes. X is a E-union
of the E dimensioned sets Xo, X1, Xo, -+ if X = Ug>o Xk, and for each s >
supyey dime (Xy), there is a function d : Nx {0, 1}* — [0, 0o) with the following
properties: d is E-computable, for each k € N, the function di(w) := d(k,w)
1s @ martingale, and for each k € N, dy, s-succeeds on Xy.

The following Lemma states that the E-dimension of a E-union of sets is the
supremum of the E-dimension of all sets.

Lemma 9 [18]

Let X, Xg, X1, Xo, -+, be a E-union of the E-dimensioned sets Xy, X1, Xo,---.
Then dimg(X) = supey dimg(Xy).

3 Generic Density

Genericity is defined via strategies, here is a definition.

Definition 10 A function h : {0,1}* — {0,1}* U {L} is a partial one-bit
extension strategy, if for every string T € {0,1}* either h(7) is not defined,
denoted h(t) =L, or h extends T by one bit i.e. h(T) = 7b with b € {0, 1} (the
bit b is denoted exth(T)).

For simplicity we use the word strategy for partial one-bit extension strategy.
We denote h(7) | whenever h(7) is defined, i.e. h(7) #L. We say language A



meets strategy h if h(7) C x4 for some string 7 € {0, 1}*.

Several notions of genericity have been studied, based on different notions
of extension strategies. Lutz and Fenner studied total strategies that extend
the input by more than one bit [15,8], whereas the strategies (partial one-bit
extension) we consider were introduced by Ambos-Spies [1]. We are interested
in a genericity notion on the class E. This motivates the following definition.

Definition 11 Let ¢ > 0. A strategy h : {0,1}* — {0,1}* U {L} is 2°"-
computable if there is a Turing machine which on input o computes h(o), in
time 2%

A strategy is E-computable if it is 2°"-computable for some ¢ > 0.

As mentioned earlier, we want to quantify the genericity notion of Ambos-
Spies [1]. This motivates the following definition.

Definition 12 Strategy h is s-dense along some language A, with s € [0, 1],
of
limsup [{z € {s¢,S1, -+ ,sn} : (AT 2) |} — sn = co.

n—oo

Remember that strategies are supposed to predict characteristic sequences of
languages, so the higher the density of a strategy is, the more prediction it
tries to make. s-strongly-dense is defined similarly with lim sup replaced by
lim inf.

Let us introduce our notion of generic density.

Definition 13 A language G is said (s,2°")-generic if it meets every 2°"-
computable strategy which is (1 — s)-dense along G.

Informally s-generic sets cannot be predicted correctly by strategies, and the
bigger s is, the bigger the set of defeated strategy is. For s close to 1 all
strategies halting on at least a small portion of the strings are to be met, s
close to 0 is the other extreme, where only strategies halting on a huge fraction
of all strings are to be met. For the genericity notion of Ambos-Spies [1], all
strategies halting on at least infinitely many strings are to be met. s-strongly-
generic is defined similarly with s-dense replaced by s-strongly-dense.

Definition 14 Let ¢ > 0. The 2°"-generic density of a language A, denoted
genfreqyen (A), is the supremum over all s € [0,1] such that A is (s,27)-
generic.

Intuitively the bigger the generic density of a sequence is, the more unpre-
dictability it contains.



Similarly the E-generic density of A, denoted genfreqg(A), is the sup over all
s € [0, 1] for which A is (s,2")-generic for some ¢ > 0. Strong generic density
genFreqyen (A) and genFreqg(A) are defined by replacing generic with strongly
generic in Definition 14.

The following result shows that s-generic sequences do exist for any com-
putable s, but contrary to random sequences, they can be sparse.

Theorem 15 For every E-computable real s € [0,1] and every ¢ > 1, there
exists a sparse set G € E such that genfreqye. (G) = s.

PROOF. Let ¢ > 1 and s € [0,1] be an E-computable real, and denote by
«,, the E-approximations of s, i.e.

ls — | <

where «,, is computable in time polynomial in n. Let {h;}; be an enumeration
of all strategies computable in time 2°", obtained by enumerating all corre-
sponding alarm clocked Turing machines. Consider the following language G,
whose characteristic sequence for strings of size n is divided into two con-
secutive zones R, followed by Q,; where R,, contains |«,2"| bits. @, only
contains 0’s, it’s the easy zone of the language. R,, is defined to prevent the
first n strategies from making correct predictions on its bits. Thus let z be a
string of size n whose membership bit is in zone R,,, and suppose G is already
defined on previous strings. Find the least index 7 < n such that h; has not
been met on some previous string y < x, and such that h;(G 1 z) |. If such a
7 exists let

G(x) = exth;j(G 1 x)
and call h; met on string z, otherwise let G(z) = 0.
Computing G(z) requires at most 2" ! recursive steps, each requiring at most
n computation of h; on strings of size at most n; since h; is computable in
time 2°", G € DTIME(2(¢+2)n),
Let us show that
genfreqye. (G) = s.

Let € > 0. We start by showing that G is not (s + €,2")-generic. Consider
the following 2°*-computable strategy h where exth(L 1 x) = 1 whenever z
is a string whose membership bit is in @), and A is not defined on all other



strings. h is (1 — s — €)-dense along G since,

hmsup |{‘T € {30781a U 753"—1} : h<G1 JZ) l}| - (1 - (S + 6))|{80a317 e asg"—1}|

>limsup Y (1 — ;)2 —(1—(s+¢€) > 2
n—oo i 7=0

=limsup ) (s —a; +€)2' =00

Since h is not met by G, this proves the first part. Let us show that G is
(s — €,2")-generic. Let h be any 2¢"-computable strategy and suppose for a
contradiction that h is (1 — s + €)-dense along G' and G does not meet h. It
is clear that there can be only a constant number of x such that h(G 1 x) [;
otherwise suppose there are infinitely many such z. Then after a finite number
of steps of G’s construction, there will be a string y such that h; = h (with
J <ly|), all hy with k& < j will either have been met or will not halt on G 1 y,
and h;(G 1 y) |, thus

G(y) = exth(G 1 y)

which is a contradiction. So suppose there are K strings x within all R,, zones
such that h(G 1 z) |, we have

limsup [{z € {so, 51,831} 1 MG 1 2) L} = (1= (s = €))[{s0, 51,7, s30 1 }|

< K+1imsupzn:[(1 — ;)2 +1] - (1—(s—¢)) Zn:Qj

n—oo ]:0

< K +limsup ) [(s—a; —€)2 + 1] = —

n—oo ]:0

i.e. his not (1—s+e€)-dense along G, which is a contradiction. Thus genfreqye. (G) =
s.

Since R, contains at most n bits equal to 1, G is sparse. O

Theorem 16 For every EXP-computable real s € [0,1], there exists a sparse
set G € EXP, such that genfreqg(G) = s.

PROOF. The proof is similar to Theorem 15, except that {h;}; is replaced
by an enumeration of all strategies computable in time 2", O

Remark 17 Similar arguments show that Theorem 15 also holds by replacing
genfreq with genFreq.



4 Generic Density vs Resource-bounded Dimension

As mentioned earlier, the strong generic density of a sequence is related to
its strong dimension [5], more precisely every s-strongly random set is also s-
strongly-generic, i.e. every set with a certain amount of randomness relatively
to strong dimension, also contains a certain amount of unpredictability in
regard to strong generic density.

Whereas s-generic sets are the typical sets for generic density, the following
standard notion characterizes the typical sets for strong dimension.

Definition 18 Let s € [0,1]. A language R is (s,2") strongly random if no
martingale computable in 2" steps is strongly s-successful on R.

A set R is (s, E)-strongly random if it is (s,2°")-strongly random for every
c> 0.

s-strongly random sets are typical because they determine the E-strong di-
mension of a class that contains them, as the following standard result shows.

Lemma 19 Let s € [0,1], ¢ > 0 and let C be a class of languages such that C
does not contain any (s,2°")-strongly random languages. Then Dimg(C) < s.

PROOF. Let s,¢,C be as above, and let {d;}; be an enumeration of all
martingales computable in time 2", obtained by enumerating all alarm clocked
Turing machines {M;}; running in time 2°* + * (where b is some constant),
and for w € {0,1}*, b € {0,1} letting

M;(w)  otherwise.

Thus d;(w) is computable in time 225wl 3% Let

d(w) = 327 d;(w).

i>1

The sum is convergent because d;(\) = 1 and d;(w) < 2! for every i. d is a
martingale because all the d;’s are. Since

d(w) > 27'd;(w)

10



we have: d; s-strongly succeeds on L implies d s-strongly succeeds on L. Let

k+|w|

di(w) = z_j 277 d; (w).

di(w) is computable in time 2+l 4 b+ and d, is a 2~*-approximation
of d because

d(w) — dp(w)] < Y 27d;(w) <2 ST 27 <ok
j=k+|w|+1 j=k+|w|+1

By the exact computation Lemma 4 there exists a martingale d’ computable
in time 2% for some d > 0, such that

1

d'(w) > 5

d(w)

thus d; s-strongly succeeds on L implies d’ s-strongly succeeds on L, for every
i > 1. Suppose d does not s-strongly succeed on C, i.e. there exists L € C
such that d’ does not s-strongly succeed on L. Thus for any ¢ > 1, d; does not
s-strongly succeed on L, i.e. L is (s,2")-strongly random which contradicts
the assumption on C. O

Corollary 20 Lemma 19 still holds if we replace strongly random with ran-
dom and Dim with dim.

The following result shows that every s-strongly random set is s-strongly-
generic, i.e. quantified randomness implies quantified unpredictability. We
prove a more general result in Section 6.

Theorem 21 Let ¢ > 0. Let R be (s,2(2")-strongly random, then R is
(s,2°")-strongly-generic.

PROOF. Follows from Corollary 27.

Corollary 22 Let ¢ > 0. Let R be (s,2(*2")-random, then R is (s,2)-
generic.

PROOF. Similar to Theorem 21.

The converse of Theorem 21 is not true as the following section shows.

11



5 Comparing the Density Notions

As the following result shows, quantified unpredictability and quantified ran-
domness are different notions.

Theorem 23 There exists a language S such that Dimg(S) < genfreqg(S)
and

Dimg(S) < genFreqg(5)
\Y v (2)
dimg(S) < genfreqg(S)

And for any sequence S, Equation 2 holds with less or equal inequalities.

PROOF. Equation 2 with less or equal inequalities holds by definition. For
strict inequalities, consider the following language S whose characteristic se-
quence for strings of size n starts with %2” bits 1 followed by a zone of length
é?" containing at most n generic bits as in Theorem 15 (obtained by trying
to meet all among the n first E-computable strategies which are dense along
S outside the “% zone”) and all other bits equal to 1. The last zone of length
éQ” contains only random bits i.e. such that the capital of martingale d stays
bounded, where

dw) = 3277, (w)

Jj=1

is the sum of all E-computable martingales, thus preventing any E-computable
martingale from winning money on those bits; more precisely, let x be a string
whose membership bit is in the last zone, and let

S(z) = 1iff d((S 1 2)1) < d((S ] 2)0).

Let € > 0. It is easy to see that the strategy h which outputs 0 only in the %
zone is (% — €)-strongly-dense along any language and is not met by S. h is
(£ — €)-dense because after the 2 zone of strings of size n, h halted on 2 of

all strings of size less than n plus on %2” strings of size n, among a total of
2"+ %2” strings. Thus A is (g — €)-dense. The generic and random bits outside
the % zone ensure that every E-computable strategy halting infinitely often in

this zone would be eventually met, thus

1

genFreqg(S) = 2

and .
genfreqg(S) = o

12



Consider martingale d that bets a fraction a (with 0 < a < 1) of its current
capital that the membership bit of the first % strings of size n is 1. Whenever
d’s bet is correct i.e. outside the n generic bits, d’s capital is multiplied by a
factor 1 + a, respectively by a factor 1 — a on the n generic bits. Thus for the
strong dimension, after having bet on all strings of size at most n, d’s capital

is greater than

7 on+1_p,2 2

(1+a)i"' = (1~ a)"
thus d (% + €)-succeeds on S in the liminf by an appropriate choice of a. For
the limsup, after having bet on the %2” first strings of size n, d’s capital is
greater than
Ton
(1 + a)gz +17n2(1 . a)n2

thus d (% + €)-succeeds on S in the limsup by an appropriate choice of a. The
random bits in the last zone ensure that no E-computable martingale can win
more than a bounded amount of money on those bits, thus

Dimg(S) = 513 and dimg(S) = T

As the previous result shows , there exists a set whose strong dimension is
smaller than its generic density. The following result shows that the converse
also holds, i.e. these two notions are incomparable.

Theorem 24 There exists a languages S such that

Dimg(S) =1 and genfreqg(S) = 0.

PROOF. Consider the following language S whose characteristic sequence
is a succession of blocs ByB1Bs -+ where block B; has size f(i), defined as
follows. First f(0) = 1. Zone Bs; contains only random bits, such that the
capital of d stays bounded on those bits, where

d(w) =3 _277d;(w)

j>1

is the sum of all E-computable martingales, thus preventing any E-computable
martingale from winning money on those bits. For the size of By;, let f(2i) be
large enough such that the capital of any E-computable martingale betting on
strings up to By; with tax rate 1/i gets smaller than 1; since such a martingale
can at most double its capital after each string, let f(2¢) be the smallest integer

I such that
29(2i—1)
27 (9(2i=1)+1)

13



where

Block Bs;y1 contains only 1’s; and has size f(2i + 1), which is defined as the
smallest integer ensuring that the strategy h that outputs 0 in every By q is
(1 — 1)-dense along S; i.e. the smallest integer I such that

i—1

i+ +1—(1- 1,)(g(2z') + 1) > 1.

=0 !

By construction of S no E-computable martingale can (1 — 3)-win on S in the
liminf (for every i), thus Dimg(.S) = 1. On the other hand, the E- computable
strategy h is (1 — %)-dense along S for every ¢, and is not met by S; thus
genfreqg(S) = 0. O

Theorem 23 and 24 yield the following corollary.

Corollary 25 Dimg and genfreqg are incomparable.

6 Generic Density under Different Probability Measures

In this section we highlight a main feature of generic density over resource-
bounded dimension, that is whereas the latter notion depends on the underly-
ing probability measure, generic density does not. As we shall see, this implies
that dimension results obtained by generic density methods, are somehow
more informative, because they hold in a wide variety of probability measure
spaces. Let us give some preliminary definitions from [5]. A probability mea-
sure on the Cantor space is a function v : {0,1}* — [0, 1] such that v(\) =1
and for all strings w, v(w) = v(w0) + v(wl). Informally, v(w) is the prob-
ability that w C L, where the sequence L is chosen according to v. A bias
sequence is a sequence E = (0o, B1, - . .) of real numbers 3; € [0, 1]. Intuitively,
0; is the probability that the ¢th toss of a biased coin yields 1. For a bias
sequence [, define the g—probability measure on C by ,ug (w) = HLZ'O_I Bi(w),
where §;(w) = f; if w; = 1 and 1 — 3; otherwise. ug represents the probability
that some language L satisfies w T L, where the ith bit of L is determined
by a coin toss with bias 3;. For simplicity ;” is sometimes denoted 5 The
usual probability measure is called the uniform probability measure, denoted
p(w) = 27 and corresponds to the toss of a fair coin.
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Resource-bounded dimension on spaces with probability measure v is defined
via v-s-gales, here is a definition.

Definition 26 [5/ Let v be a probability measure on C, let s € [0, 1] and t(n) >
200 pe g time bound. A t(n)-computable v-s-gale is a function d : {0,1}* —
[0,00) such that for all strings w, d(w)v®*(w) = d(w0)r*(w0) + d(wl)v*(wl)
and d(w) is computable in t(|s|) steps.

Intuitively the s in Definition 26 represents the tax levied on the martin-
gale’s wins, whereas the factors v adjust the wins according to the probability
measure v: if some bit appears with higher probability, then the payoff while
betting on this bit ought to be smaller. An E-computable v-s-gale is a t(n)-
computable v-s-gale for some t(n) = 20,

Similarly to the usual notion, the E-r-dimension of a language L, denoted
dim{ (L), is the infimum over all s such that there is an E-computable v-s-gale
d such that limsup,, .. d(L 1 m) = oco. It is easy to check that Lemma 19
also holds in spaces with any biased coin based probability measure.

For s € [0, 1], denote by DIM{(> s) (resp. GENfreqg(> s)) the set of languages
with E-v-dimension (resp. E-generic density) at least s. Denote by PDIM the
strong dimension analogue and GENFreq the strong-genericity analogue.

The following result requires the weighted binary entropy function H : (0,1)* —
[0,00) where H(z,y) = xlog % +(1—2x)log ﬁ which is continuous on (0, 1)2.

It is clear by the work of [19,5,9] that resource-bounded dimension depends on
the underlying probability measure, i.e. for two bias sequences @, 3 converging

to different values, DIMZ(> s) # DIMZ(> s), i.e. sequences with high dimen-
sion in a space with underlying probability & can have smaller dimension in a
space with underlying probability j3.

The following result shows that this is not the case for generic density. More
precisely we show that for a sequence of biases 5 converging to some number
3, the sequences with [-dimension slog(1/3)/H (s, 3) have generic density
s. The factor log(1/5)/H(s,3) that appears when going from dimension to
generic density is because the payoffs are not equal whether the bit that is bet
on is zero or one, i.e. if for example 3 < 1/2 then the probability of the bit
0 is bigger, therefore the payoff on such bits is smaller. So if the bits of the
non-generic i.e. easily predicted sequence, are always predicted to be 0, the
dimension has to drop, which explains this factor. Note that when § = 1/2,
the factor is equal to 1, i.e. disappears.

The following result highlights an advantage of the generic density method over
the martingales based one, for dimension results that are proved by showing
that a class contains an s-generic set. Such results simultaneously hold in a
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large range of biased-coin based probability measure spaces. Such an example
is given in Section 7. Note that of course such an approach is not always
possible for dimension results, see for example [5].

Theorem 27 Let ﬁ = (Bo, B, . ..) be an E-computable bias sequence, convery-

ing to 3 € (0,3]. Let s € [0,1], then GENfreqg(> s) 2 DIMB(> sk}f((l/ﬁﬁ)))

PROOF. Let ,03,s be as above. Let ¢ > 0. Let L € DIME(Z SIOg(%f)).
z lo, g

Let F : [0,1] x (0,3] — [0,00), where F(z,y) = Ty L 18 continuous on
0,1] x (0,3], (H(z,y) # 0 on [0,1] x (0,1]). Let t = F(s,3) + ¢, wlog t is
E-computable. By continuity of F', let § > 0 such that t > F(s, 5 ) whenever
|s —§'| < 20 and |5 — | < 25. Suppose L ¢ GENfreqg(> s), i.e. L is not
(s + 0)-generic, and let h be an E-strategy, (1 — s — J)-dense along L, not met

by L.

Let us construct an E-computable ﬁ t-gale that succeeds on L contradlctlng

the assumption on L. Denote v = uﬁ the probability measure induced by ﬂ

For w € {0,1}* and b € {0, 1}, let v(wb|w) = 2= and

d(w)v(wblw)™t  if exth(w)
d(wb) =<0 if exth(w)
d(w)v(wb|w)=t if h(w) =L.

b,
b

(3)

It is easy to check that d is an E-computable g—t—gale. Since the sequence 5
converges to 3, let I be such that |5; — 3| < d, whenever i > I. Let us compute
a lower bound for d’s wins. Suppose whenever h(w) is defined, b = 1 —exth(w)
is the bit for which payoffs are smallest, i.e. the capital of d is increased by
a factor (1 — Bujr1) ™" (if B < 1/2) (vesp. (Bujs1) ™" (Gf B > 1/2));
and decreased by a factor (Bjy+1)' " (if Buwr1 < 1/2) (vesp. (1 — Bluj+1) " (if
Blwl+1 = 1/2)). In both cases, the increase factor is greater than (1—(8—9))~"
and the decrease factor is greater than (3 — §)'~* (because the resp. case can
only happen when 3 = 1/2). Since h is (1 — s — §)-dense along L

I%n:{0<j<n:exth(L1s;)=1}>(1—(s+9))(n+1). (4)
Let n € N be such that Equation 4 holds, and s,, > I. Whenever y > I, we
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have |8y — B| < 0, thus for © = s, we have

d(Lz)>c H (B—o) H (1-(B=9)"

y<z, y>I, exth(Lly)=L y<z, y>I, exth(Lly)#L

(8 — &)1 eHINERI[(1 — (5 — §)) A +ILID)I=

(8 =0 ((B—8) (1 — (8 —8)) )
Cl[(ﬁ . 6)s+62tH(s+5,ﬁ—6)]|(L[ac)|

>c
>c

for some constants ¢ = ¢(I) > 0,¢ = ¢(I) > 0. By definition of ¢, (8 —
§)sHIgtH(s+9.6-9) 1 thus d grows unbounded on L. O

Corollary 28 The same holds by replacing GENfreqg (> s) with GENFreqg (>

¢l log(1 . ] log(1
s) and DIME(> 520230 with PDIMg(> s'50/0)).

7 Small Span Theorem in Dimension

In this section we prove a small span theorem for bounded-truth-table reduc-
tion, in the strong dimension setting, in spaces with any biased coin based
probability measure. The proof is adapted from [4] combined with results of
the previous sections. This is an example where the generic density method is
more informative than the martingale based approach, because we simultane-
ously prove the result for any biased coin based probability measure.

To clarify the proofs, we assume that all bounded truth-table reductions are in
the following normal form, where all queries are ordered in decreasing order,
and redundant ones are replaced by .

Definition 29 A p-k-tt reduction f(g1,...,9x) is normal if for every x €
{0,1}* there exists k' < k such that gi(x) > giy1(x) for 1 < ¢ < K, and
gi(x) =X for alli > k.

It is easy to check that any p-k-tt reduction f(g1,...,gx) can be transformed
into an equivalent normal reduction.

Definition 30 The collision set of a p-k-tt reduction f(gi,...,qr) denoted
Coll(f) is the set of strings x, for which there exists y < x such that g;(x) =

gi(y) (fori=1,...,k) and f, = f,, where f, = f(x,-,...,").

A p-k-tt reduction f(g1,...,gx) is consistent with some language A, if for
all strings z,y s.t. ¢g;(z) = ¢;(y) (for ¢ = 1,...,k) and f, = f,, we have
A(z) = Aly).

Definition 31 Let ¢ > 0 be some constant, and let f(g1,--- ,gx) be a p-k-tt
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reduction. The c-rank of f(g1,--- ,gx) is the largest integer 1 < r < k such
that 3%°x : MT_C < |g-(z)|. The c-rank is zero if no such integer exists.

The following Lemma states that the composition of two tt-reducibilities, is a
tt-reducibility.

Lemma 32 [Folklore] Let k > 1 and A, B,C' be languages such that A >} _,,
B>} _,C. Then A>%, . C.

The following is the main result of this section.

Theorem 33 (Small span theorem) Let g = (Bo, B, .. .) be an E-computable
bias sequence, converging to 3 € (0, %] Let A in E be any language, and k € N.

Then either Dimé(AZZ—tt NE)=0 or ug(Agi—tt) = 0.

PROOF. Let € > 0, £ > 1, and let A € DTIME(2*"), for some a > 0.
Suppose AZk-1 N E contains no (€,2%")-strongly-generic set, then it contains
log%

H(e,3)’

2“/”)—strongly ﬁ—random set by Corollary 27, for some a’ > 0. An
— og L
extension of Lemma 19 implies Dim{ (A2« NE) < e~ Since ¢ is arbitrary

H(e,B8)"
we are done.

no (e

Otherwise suppose AZk-uNE contains an (€,2%")-strongly-generic set G, where
G € DTIME(2%). Let us show that the upper span of A does not contain any
(1, 224(k*n+e))_goneric set. Let B € ASk—« be any language. Let f(g1,-- -, gu2)
be a normal p-k*-tt reduction of G to B of minimal c-rank (such a reduction
exists by Lemma 32), where ¢ = ¢(¢, k) is some constant to be determined
later. Let us show that B is not (1,224 *7+9))_generic. Suppose

voon : [{Coll(f) N {s0,. .., sn_1}| > (1 — %)n. (5)

Consider the following strategy h, where for any language L, exth(L | y) =
1 — L(x) whenever y € Coll(f), and = < y is the first string witnessing this
fact. h is (1 — €)-strongly-dense along any language by Equation 5, and A is
computable in 22" steps. Since

eXth<G 1 y) =1- G(ZL‘) =1- f(ZL', B(gl(x»v SR B(ng(I)))
=1—f(y,B(91(y)), .-, Blg2(y))) = 1 — G(y)

whenever h(G 1 y) is defined, h is not met by G, which contradicts the (e, 227)-
strong-genericity assumption on . Thus the negation of Equation 5 holds,
which can be reformulated as:

%0 : [{Coll(f) N {S0, - -, Sn1}| > %n (6)
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Let us show that

2 <o)l @

Let F},, denote the set of tuples (j, zy,. .., x2) where j is a k*-variable Boolean

J*°z

2
function, and |z;] < m for 1 < i < k2. Because there are 22 such Boolean

functions, and 2™ —1 strings of size less than m, |F},,| < 22" 9km Tf 1 is a string
such that |gi(x)| < m then (f,,¢1(x),...,g2(x)) € F,, and if z,y € Coll(f)
then

(fl‘;gl(x)7 s agk‘z(l‘)) 7& (fyvgl(y)7 s 7gk2(y))'

Let N be such that Equation 6 holds, and let n = |log N|. Let m = m(n) =
|25, where b(e, k?) is some constant ensuring that |F,| < $N. Let €
Coll(f)N{so, ..., Sn_1}, be the largest string such that (f,, g1(x), ..., grz(x)) &
F,,, such a string exists by Equation 6 moreover it has size greater than
log(§NV). Since (fz,g1(2),...,gr2(x)) € Fnn, we have [gi(z)] > m = [”k—_zbj >
@—;C for some constant ¢ = ¢(e, k). Since Equation 6 holds for infinitely many
N, this proves Equation 7, i.e f has c-rank > 0.

Let us show that

| —cC
12 < ) ana

f$(07 B(QQ(x))7 AR B(ng (ZE))) 7é fac(la B(g2(x))7 e ’B<gk2 (J:)))

Otherwise suppose Equation 8 fails, i.e.

3% :

(8)

fm(oa B(92<I‘)), ) B(ng(x))) = fz(lv B(QQ(J})), R B(ng(x)))( )
9

Consider the following p-k*-tt reduction f'(g}, ..., g;2). Let x be a string such
that ng <

ILQ_C < |g1(x)|. Define

(g1(), .., gra () = (g2(2), ..., a2 (), \)

and

felar, - age) = fo (0,01, . a2 y)
for any such z, and let (¢i(z),...,d2(z)) = (g1(x), ..., gx2(2z)) and f. = f,
for all other z. For the infinitely many strings x satisfying ng < %;C <lq(z)],
we have

f:;(B(gi(*r))v S ,B(géz(l’))) = fx(07 B(QQ(x))v R B(ng(x)))
= fz(bv B(92($))7 s 7B<gk2($)>>

for every bit b € {0,1} hence

fo(B(gi(2)), ..., B(gia(2))) = fu(B(g1(2)), B(g2(2)), ..., Blgsz(2))) = G(z)
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i.e. G is p-k%-tt reducible to B via f’, where f’ is normal, and for all infinitely
many z such that ng < |$,‘€2_c < |g1(x)|, f’ is obtained from f by dropping the
largest query g;(z). Therefore the c-rank of f’is equal to c-rank(f) — 1, which
contradicts the minimality of the c-rank of f.

Let us show that Equation 8 implies that B is not (1,224*7+®)))_generic.
Consider the following strategy h, where for any language L, h(L | y) is
defined as follows. Let z be the first string with |z| < k%|y| + a, such that
g1(x) =y, and such that

fe(0, L(ga(2)), ..., L(gi2(x))) # fo(1, L(ga(2)), ..., L(gi2()))

=v0 =v1

whenever such a string = exists. Since g;(x) < y (for i = 2,...,k?), vy and
vy are computable in 22 steps. Let i € {0,1} such that G(x) = v;, and let
exth(L 1 y) =1 —1i. h is computable in 22d(F*nta) gtens. By Equation 8, h is
0-dense along B, and h is not met by B, i.e. B is not (1,22**+a)))_generic.

Thus B is not (1, 224**7+)))_3 random by Theorem 27. Hence ug(Agi—tt) =0,
as a corollary of the proof of Corollary 20. O

8 Conclusion

We have introduced a refined notion of genericity, in the same sense that
resource-bounded dimension is a refinement of resource-bounded measure. We
have exhibited a relationship between generic density and dimension, as well
as a main difference regarding the underlying probability measure of the Can-
tor space, with the consequence that generic density based proofs are in some
sense more informative than martingale based ones. We give an example of
such a proof by showing a small span theorem in any (biased coin) proba-
bility measure space, for stronger reductions as previously considered in the
dimension setting. We expect generic density to be useful for further resource-
bounded dimension investigations.

Acknowledgments. I thank J. Lutz for suggesting the possible measure prob-
ability independence of generic density, and for bringing [13] to my attention,
and the anonymous referees for their many helpful comments.
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