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Abstract

We show that if RP does not have p-measure zero then ZPP = EXP. As corollaries we
obtain a zero-one law for RP in EXP, and that both probabilistic classes ZPP and RP have the
same measure in EXP. We also prove that if NP does not have p-measure zero then NP = AM.

1 Introduction

Lutz resource-bounded measure [11], is a general framework that endows the complexity class EXP
with a size notion (called p(-|EXP)-measure), allowing to quantify the size of various subclasses of
EXP such as BPP,NP, ..., where any class can be either small, large or in between, corresponding
to having p(-|[EXP)-measure 0,1 or being non-measurable. Intuitively, a subclass of EXP has
1(-|EXP)-measure zero, if there is an exponential time computable predictor (a martingale) that
can predict any language in the class without making too many mistakes.

Among many applications, it was used in derandomization, where van Melkebeek showed in [14]
that BPP has either u(-|EXP)-measure zero or one, thus ruling out the non-measurable case, and
yielding further evidence that if randomness is not intractable (i.e. BPP # EXP) then randomness
is somehow easy (i.e. BPP has p(-|[EXP)-measure zero). It was also shown in [14] that the zero-one
law holds for any subclass of BPP that is closed under polynomial-time truth-table reductions.
Since RP is closed under truth-table reductions if and only if it is closed under complement, it
was still left open whether RP also satisfies the zero-one law, since it is still not known whether
RP is closed under complement. We show that this is the case, by proving a more general result:
we show that if RP is not small in EXP then the smaller class ZPP is already intractable (i.e.
ZPP = EXP). As Corollaries we obtain a zero-one law for RP in EXP, and that both probabilistic
classes ZPP and RP have the same p(-|EXP)-measure.

Resource bounded-measure can also be used in the theory of derandomization to formulate
plausible hypothesis implying derandomization results. As an example, Lutz asked in [12] what
derandomization results could be derived from the plausible hypothesis NP does not have p-measure
zero (p-measure is the notion used to define measure in E), motivated by the intuition that NP
not being small might imply it has enough computational power to derandomize its probabilistic
version known as Arthur-Merlin games (AM). Arvind and Kébler proved in [2] that under this
hypothesis, partial derandomization of AM was possible. More precisely they proved that NP not
having p-measure zero implies AM C NP/logn, where NP/logn denotes non-uniform NP with
logarithmic size advice. Using different techniques, we obtain full derandomization of AM under
the same assumption, i.e. we show that NP does not have p-measure zero implies NP = AM.

As observed in [16] both our result also hold for the measure on the smaller (than EXP)
complexity class SUBEXP, corresponding to subexponential time computable martingales instead
of exponential ones, thus strengthening the statement “RP is small”, and weakening the hypothesis
“NP is small”.
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Both our proofs are inspired by the so-called “easy-witness” technique, that was first used in
[7] to show an “easy or hard” result for RP, and that was consequently adapted in [10] to prove a
similar result for NP. Further work along these lines can be found in [6, 3].

A draft of this paper was published in [4]; The proof given here is more direct, i.e. it does not
not require van Melkebeek’s zero-one law for BPP [14], but relies on results on the completeness
of various sets of random strings from [1]. For similar results in the Baire categories setting, see
[15].

2 Preliminaries

We use standard notation for traditional complexity classes; see for instance [17]. Let us fix
some notations for strings and languages. Let sg,si,... be the standard enumeration of the
strings in {0,1}* in lexicographical order, where sy = A denotes the empty string. For any
string x, x — 1 denotes the predecessor of x. Denote by s(()n), sgn), X ,sgﬁ),l all strings of size n
ordered lexicographically. A sequence is an element of {0,1}°°. If w is a string or a sequence and
0 <4 < |w| then w[i] and w[s;] denotes the ith bit of w. Similarly wi...j] and wls; ...s;] denote
the ith through jth bits. We identify language L with its characteristic function x,, where xp
is the sequence such that xp[i] = 1iff s; € L. L | s, stands for L[sg---s,]. Note that for any
string z, |L | x| = 20(I=1) " If w is a string and ws is a string or a sequence extending w1, we write
wy C wy. Denote by L(:k,)L =LnN {s(()"), e sgl_)l}. A language L is said polynomially dense if there
exists a polynomial p, such that |L—,| > 2" /p(n), where L_,, denotes the set of strings of size n
contained in L. We sometimes write E; for E and E; for EXP.

2.1 Resource-bounded measure

In this section we describe the fragment of Lutz’s measure theory for the class E and EXP that
we will need. For a more detailed presentation of this theory we refer the reader to the survey by
Lutz [13].

1(-|EXP)-measure is obtained by imposing appropriate resource-bounds on a game theoretical
characterization of the classical Lebesgue measure.

A martingale is a function d : {0,1}* — [0, co[ such that,

d(w0) 4 d(w1)

d(w) = B2

for every w € {0,1}*. d is a p-martingale (sometimes written p;) if d is computable in time
polynomial in |w| (or equivalently, 2°U=D on input w = L | z). d is a po-martingale if d is
computable in time \w|logo(1> vl (or equivalently, 2121°Y on input w = L | x).

This definition can be motivated by the following betting game in which a gambler puts bets
on the successive membership bits of a hidden language A. The game proceeds in infinitely
many rounds where at the end of round n, it is revealed to the gambler whether s, € A or
not. The game starts with capital 1. Then, in round n, depending on the first n — 1 outcomes
w = xa[0...n — 1], the gambler bets a certain fraction e,d(w) of his current capital d(w), that
the nth word s, € A, and bets the remaining capital (1 — €,)d(w) on the complementary event
sn & A. The game is fair, i.e. the amount put on the correct event is doubled, the one put
on the wrong guess is lost. The value of d(w), where w = x4[0...n] equals the capital of the
gambler after round n on language A. The player wins on a language A if he manages to make his
capital arbitrarily large during the game. We say that a martingale d succeeds on a language A, if
d(A) = limsup,, 4 ,,—, 4 d(w) = oo, where we identify language A with its characteristic sequence
x4. The success set S[d] of a martingale d is the class of all languages on which d succeeds.

For the rest of this section, let ¢ € {0,1}.

Definition 1 A class C' has p;-measure zero if there is a single p;-martingale d that succeeds on
every language A of C.



This property is monotone in the following sense: If class D is contained in a class C' of p;-
measure zero, then D also has p;-measure zero. It is easy to see that if a class C has p;-measure
zero, then it has py-measure zero (the converse is not always true).

Definition 2 A class C has p(-|E;)-measure zero (equivalently measure zero in E; or u(ClE;) =0)
if CNE; has p;-measure zero. A class C has u(-|E;)-measure one (equivalently measure one in E;
or u(C|E;) = 1) if its complement has u(-|E;)-measure zero.

Lutz showed in [11] that the classes E; do not have pu(-|E;)-measure zero, which he called the
measure conservation property.
Lutz also proved in [11] that uniform infinite unions of null classes are null.

Theorem 1 (Lutz) Suppose {d;};>1 is a set of p-martingales, each succeeding on class C;; where
d(j,w) := d;(w) is computable in time q(j,|w|) for a certain polynomial g. Then Uj>1C; has p-
measure zero.

It is known from [18] that for any closed under symmetric difference (or closed under finite
union and intersection) class C, u(C|E;) = 1 implies that E; C C.
2.2 Pseudorandom generator
We need the following definition of the relativized hardness of a pseudorandom generator.

Definition 3 Let A be any language. The hardness HA(Gy,.n) of a random generator Gy, ., :
{0,1}™ — {0,1}", is defined as the minimal s such that there exists an n-input circuit C' with
oracle gates to A, of size at most s, for which:

P C(Gp, =1| — P C — 11 >
e on, [CGm@) =1] = B [Cy) =1]|=

W | =

Klivans and van Melkebeek [8] noticed that Impagliazzo and Widgerson’s [5] pseudorandom
generator construction relativizes; i.e. for any language A, there is a deterministic polynomial time
procedure that converts the truth table of a Boolean function that is hard to compute for circuits
having oracle gates for A, into a pseudorandom generator that is pseudorandom for circuits with
A oracle gates. More precisely,

Theorem 2 (Klivans-van Melkebeek [8]) Let A be any language. There is a polynomial-time
computable function F : {0,1}* x {0,1}* — {0, 1}*, with the following properties. For everye > 0,
there exists a,b € N such that

F:{0,1}"" x {0,1}18™ — (0,1},

and if v is the truth table of an (alogn)-variables Boolean function of A-oracle circuit complexity
at least n°®, then the function G,(s) = F(r,s) is a generator, mapping {0,1}°1°8™ into {0,1}",
which has hardness H*(G,.) > n.

2.3 Resource-Bounded Kolmogorov Complexity

Let us give the basic notions on resource-bounded Kolmogorov complexity that we will need.

Definition 4 (Levin) [9] Let U be a universal Turing machine. Define Kt(x) to be min{|d|+logt :
U(d) =z in alt most t steps}.

It was shown in [1] (based on a result from [1] and an observation from Rahul Santhanam
mentioned in [1]), that the existence of a polynomially dense set in P that contains only strings
of high Kt-complexity implies ZPP = EXP.

Theorem 3 [1] Let 0 < § < 1, and suppose there is a set R € P of polynomial density (for almost
every length) such that r € R implies Kt(r) > |r|°. Then ZPP = EXP.



3 A zero-one law for RP in EXP

Theorem 4 Suppose RP does not have p-measure zero, then there exists a polynomially dense set
R€EP, and 0 < § < 1 such that for every r € R, Kt(r) > |r[°.

Proof. To prove Theorem 4, we need the following lemma.

Lemma 1 If RP does not have p-measure zero, then there exist a language L in RP, and a
probabilistic polynomial time Turing machine M deciding L, such that for all but finitely many
m €N

1. L(:"ﬁg 18 non-empty

2. For every x € L(:"ZQ, every probabilistic witness t such that M(xz,t) = 1 has large Kt com-
plexity, i.e. Kt(t) > |x|/2.
Proof. Consider the following martingale d that allocates capital 27" to bet on strings of length n
according to the following strategy (i.e. d total initial capital is >, 27* = 1). For every string’s
size n, d only bets on the n strings s((J ™ to s . On input L | 5 ™ with i < n, d checks that there

is no element of L in the range s(()n) to 357)1, and if so d wagers 2¢/2" that sgn) ¢ L, else d stops

betting on n-sized strings. If s™ is the first element of L in the range (i.e L(s\™) = 1), d loses

|Zﬁf—\f1/2n

i.e. exactly the capital it allocated for strings of size n. On the other hand, each time there is no

x € L between sg and s d wins 2" /2™ = 1. Thus, if this happens infinitely often, d’s wins

grow arbitrarily large, whence the set C; = {L| 3°n : L(:"n = ()} satisfies C; C S*°[d]. It is easy
to see that d can be computed in 2°(") steps.

nl’

Consider the following martingale d’ that only bets on the n first n-sized strings sén) to 821)1,

for every length n. Fix an enumeration of polytime probabilistic Turing machines so that M;
on any input z always halts within |2['°87 steps, and a deterministic universal Turing machine
U. On input L | Sgn) with 0 <7 < n — 1, d’ simulates the first logn probabilistic machines on
all probabilistic witnesses for inputs of length at most logn. Let M; be the first such machine
that agrees with L on all such inputs, making errors only when x € L, and then on less than
1/4 of its probabilistic witness, i.e. decides L correctly (RP-wise) on all inputs smaller than logn.
d’ simulates U on all programs p of size smaller than n/2, during 2"/ steps. For every string
t output during U’s simulation, it checks whether M, (sgn),t) = 1. If there is such a ¢ (denote

this by S(sz(-n)) = 1, i.e. the simulation yielded 1), d’ bets half its current capital that sgn) € L.
Otherwise, d’ does not bet. Thus, for all n and 0 < k < 2" — 1

3d(L s\ —1)/2 if0<k<n—1, S(s)=Ls™) =1
d(L1s\)y={d(L]s" m 1)/2 if0<k<n—1, (™) =1and L(s\™) =0
d' (L [s( n) -1) otherwise.

Claim 1 Let Cs be the set of languages L € RP such that for the first probabilistic poly-time
machine deciding L (denoted M;, ), there are infinitely many lengths m, such that there exists x €

L) and a probabilistic witness t with Kt(t) < |z|/2, such that M;,(x,t) = 1. Then Cy C S®[d].

Let L € Cy. After a finite amount of time d’ will always pick j = jo. Thereafter for each length
m such that there exists x € Lgﬁ% and a probabilistic witness ¢t with low Kt complexity, such
that M;,(z,t) =1, i.e. S(z) =1and L(z) =1, d'(L | ) = 3d'(L | « —1)/2, i.e. the capital
is multiplied by 3/2 (and d’ never errs from now on). Therefore if there are infinitely many such
lengths m, d’ grows unbounded, hence the claim is proved.



The running time of d is is less than 2°(™) | since on input L | sgn) there are logn machines to

simulate on all inputs of size logn, where each machine runs in time smaller than (logn)°gloen,
ie. takes time 2(°8™'*"*" {4 be simulated by trying all probabilistic witnesses and taking a
majority vote. Next d’ needs to simulate U on 2"/2 programs during 2"/ steps. Thus d’ can be
computed in time 20(").

Let C = C; UC(Cs. By Theorem 1, C has p-measure zero. Therefore if RP does not have
p-measure zero, RP € C, which proves Lemma 1.

The proof of Theorem 4 then follows. Let L and M be as in Lemma 1 (denote by N the bound
such that Lemma 1 holds for any length n > N), and suppose M runs in time n*. Consider the
set

R =U,>n{tv| t € {0, 1}”’k,v € {0,1}*, |tv| < (n+ 1)*, M(z,t) =1 for some z € LI}

Because L € RP, we have R € P and R_,,» is polynomially dense for every integer n > N. Let
m = n* + 1 be any integer with n* < m < (n + 1)¥; since |R—,,| = |R_,+| - 2!, R is polynomially
dense for every length m > N. Moreover if z € R, (with z = tv, |t| = n* and |[tv| < (n+ 1)*) then
M(z,t) = 1 for some z € L™ therefore Kt(t) > |z|/2 = n/2. Since Kt(tv) > Kt(t) — O(logn)
(because any program for tv yields a program for ¢ by producing tv and dropping v, with a extra
complexity of at most O(logn)), we have (for n large enough)

Kt(tv) > Kt(t) — O(logn) > n/2 — O(logn) > n}/2 = n3650 > |tv] 7@ .

Putting 6 := ﬁ ends the proof.
The following result states that the zero-one law holds for RP in EXP.

Theorem 5 RP has either p(-|EXP)-measure zero or one.

Proof. Suppose RP does not have p(-|EXP)-measure zero i.e., it does not have p-measure zero;
then by Theorem 4, P contains a polynomially dense set R of strings with high Kt complexity.
From Theorem 3 we have ZPP = EXP i.e., RP = EXP, thus u(RP|EXP) =1

Corollary 1 ZPP and RP have the same u(-|EXP)-measure.

4 Derandomization of AM if NP is not small

Let us show our second main result, stating that if NP does not have p-measure zero, then AM
can be fully derandomized.

Theorem 6 Suppose NP does not have p-measure zero. Then NP = AM.
Proof. In order to prove Theorem 6, we need the following lemma.

Lemma 2 If NP does not have p-measure zero, then there exist a language L in NP and a non-
deterministic polynomial time Turing machine M deciding L, such that for all but finitely many
m €N

1. L(:wf?z 18 non-empty
2. for every x € L(zwf,z, every nondeterministic witness t such that M(x,t) = 1, has large SAT-
oracle circuit complezity, i.e. Size®*T () > |z|'/2.

Proof. The proof is similar to Theorem 4. Suppose NP does not have p-measure zero; the first
property is easily verified by constructing the same martingale d as in the proof of Theorem 1.
For the second property consider the following martingale d’ that only bets on the n first n-sized

(1) 4o 5()

strings s, n_1, for every length n. Fix an enumeration of nondeterministic Turing machines

so that M; on any input z always halts within |z|'°87 steps. On input L | sgn) with 0 < ¢ < n,



d’ simulates the first log n nondeterministic machines on all nondeterministic witnesses for inputs
of length at most logn. Let M; be the first such machine that agrees with L NP-wise on all such
inputs, i.e. decides L correctly (NP-wise) on inputs smaller than logn. Next d' constructs all
circuits with oracle gates for SAT of size smaller than n'/2 on log jlogn inputs, and computes
the truth table ¢ for each. If M;(s{™,t) = 1 for any such ¢ (denote this by S(s™) = 1, i.e. the

simulation yielded 1), d’ bets half its current capital that sgn) € L. Otherwise, d’ does not bet.
Thus, for all n and 0 < k < 2™ —1

3d(L s —1)/2 ifo<k<n—1, Ss)=Ls™)=1
ALy =L d(Ls™—1)/2 if0<k<n—1, S(s!”)=1and L(s{")=0
d(L| s,(gn) -1) otherwise.

Claim 2 Let C5 be the set of languages L € NP such that for the first nondeterministic poly-time

machine deciding L (denoted M;, ), there are infinitely many lengths m, such that there exists

T € L(:n:,z and a nondeterministic witness t that when viewed as a function of log|t| inputs has

SAT-oracle circuit complexity less than |x|*/2. Then Cy C S®[d'].

After a finite amount of time d’ will always pick j = jo. Thereafter for each length m such that
there exists = € L(:wf,z and a nondeterministic witness ¢ with small circuit complexity, such that
M (z,t) =1, 1ie. S(z) =1and L(z) =1, d(L | «) = 3d'(L |  — 1)/2, i.e. the capital is
multiplied by 3/2 (and d’ never errs from now on). Therefore if there are infinitely many such
lengths m, d’ grows unbounded, hence the claim is proved.

The running time of d’ is less than 29" since on input L | SE") there are log n machines to
simulate on all inputs of size log n, where each machine runs in time smaller than (logn)°&1°8™ i.e.
9(logm)" =15 ¢ he simulated by trying all nondeterministic witnesses. Next d’ needs to

1/2 and construct their truth table. Since evaluating a SAT

takes time
construct 2" circuits of size at most n
gate of size at most n'/? takes time 2°("), d(L| sE")) can be computed in time 29",

Let C = C1; UCCs. By Theorem 1, C' has p-measure zero. Therefore if NP does not have
p-measure zero, NP & C, which proves Lemma 2.

The proof of Theorem 6 then follows, let L and M be as in Lemma 2, where M runs in time n?.
Let L' € AM be any language and N a probabilistic nondeterministic Turing machine deciding it,
and assume that on input of size n, N runs in time n°. For € = 1 let a and b be as in Theorem 2 and
pick m so that m'/2 > n¢, where e = ac. For every & among sém), e ,5572”_)1 nondeterministically
guess a witness ¢ for machine M on input z. Check whether M(z,t) = 1 — we know that there
is at least one such witness for at least one such x, and every such witness has circuit complexity
at least m'/2 = n® — if so use Theorem 2 to construct from ¢ a pseudorandom generator from
O(logn) bits to n¢ bits secure against circuits of size n® with oracle gates to SAT. Use the outputs
of this pseudorandom generator to simulate the nondeterministic Turing machine N for L’. This
has expected nondeterministic polynomial time, and never errs for sufficiently large inputs, so
L’ € NP.
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