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Abstract

This paper discussesthe relationship between transformational programming and theorem proving. It illustrates
the use of the theorem proving environment as a basis for a program construction tool DEBATE ! (Deduction Based
Transformational Environment) which is under construction in University College Dublin.

Using a theorem proving framework directly would require the user to be familiar with theorem proving details.
The tool user should only be concerned with transformational programming steps and not with theorem proving
activities. Therefore a layer of transformational tactics are discussed and presented. These tactics consist of the
application of theorem proving tactics. However, they ensure that the user’sonly interaction with DEBATE are design
decisions required within the transformational programming paradigm. The N Queens problem is used throughout
the paper to demonstrate how the I sabelle theorem prover is adapted by atransformation tactic layer so that it may be
used as a program construction tool.

1 Introduction

Transformational programming is a method for constructing programs from their specifications. A series of rewrite
steps are applied to a problem specification with the aim of constructing its operationa solution. Each rewrite rule
preserves the correctness of the program development with respect to the initia specification. It transforms the
specification into one which is more a gorithmic and hence closer to an operational solution.

This particular view of the software devel opment process was the main focus of the CIP project [ 1] and is presented
in detail in Partsch [2]. Other similiar work is discussed in Feather [3] and in ProSpecTra[4].
Advantages of this approach to program development include

o Correctness by construction
o Capture of programming knowledgein explicit reusable rules
¢ Provision of documentation of design decisions

Another magjor advantage of this method is that it lends itself to tool support. Thisis due to the forma nature of
the problem specifications and the rewrite rules. The devel opment of such tools has been the product of projects such
as CIP, ProSpecTra, KORSO [5] and KIDS ([6], [7], [8])-

In DEBATE we exploit the similarities between program construction and theorem proving to construct a tool for
program devel opment by the method of transformationa programming. This tool provides support for the concrete,
efficient implementation of specifications. A first attempt at building such atool in University College Dublin was a
Prolog based system [11]. Thissystem was not supported by atheorem prover. In DEBATE we use the theorem prover
| sabelle to support and to automate the process of transformational programming.

IWork wasin part supported by FORBAIRT grant SC/95/408
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In this paper we commence with a brief discussion on the method of transformational programming. The
correspondence between the stepsin this process and those in theorem proving are discussed. We consider problems
which arise as a result of using the theorem proving environment directly as a program construction environment.
Finally, we illustrate how these problems may be overcome through the devel opment of tactics for transformational
programming.

2 Transformational Programming and Theorem Proving

In transformational programming a program is constructed from its specification through the application of a series of
rewriterules. The goa of thisrewritingisthe production of an operational solution to the problem. Anindividua step
in thetransformation process consists of focusing on part of the specification, choosing an appropriate rewrite rule and
applying that rule.

In genera therewrite rules are of the form

IfCthenA —B

where
¢ A isthe syntactic template for the source to be transformed (abstract)
¢ Bisasyntactic template for the target to be obtained (concrete)
¢ Cisthe semantic template for the applicability conditionsof the rule

Such arule indicates that an instance of A can be transformed into an instance of B if the condition C istrue. The
applicability conditions consist of the semantic and syntactic constraints on the rule application. They ensure that the
specification obtained as a result of the rule application is consistent with the previous specification. Hence, the final
program obtained will be a correct implementation of the original specification. When aruleis applied another part of
the specification is focused on and the process isrepeated. This continues until an implementation of the problem has
been obtained.

In a program construction tool which supports transformational programming, a theorem prover may be used to
evaluate the applicability conditions. It may aso be used to automate the development process. To achieve thisthe
problem specification, the rewrite rules and methods of applying these rules must be available in the theorem proving
environment. The theorem prover Isabelle supplies resolution for application of the rules. Rewrite rules may be
formalised and proved using Isabelle tactics and the problem specification may be writtenin the language ML. ML is
the language used by Isabelle.

The specifications we are concerned with are al gebrai ¢ specification which consist of asignature and axioms. The
signature describes the operators, constants and types which are premitted within the specification and the axioms
define the behaviour of these operators. When a transformation begins an axiom from the problem specification is
chosen for devel opment and transformed by the application of the rewriterules. Within DEBATE therewriterulesare
applied as |sabelle inference rules. Thiswill be discussed further in section three but we first distinguish between two
types of rules which may be applied to specifications - synthesis rules and simple rewrite rules.

2.1 SynthesisRules

Synthesisrules capture problem solving techniques. They are applied throughout the devel opment processto transform
specificationsinto ones closer to an operational solution. An example of asynthesisruleisthe case introduction rule

If Conditions then
Problem — if Guard then Subproblem 1 else Subproblem 2

Using this synthesis ruletransforms the original problem into two subproblemsif the rules conditionsare true. As
there are additional assumptions supplied by the guard, it may be possibleto produce a sol ution to these subproblems
by simple rewriting. Otherwise, another synthesisruleis applied.

Characteristics of the synthesis rules are that
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o New subproblems are generated
e User interaction may be required.

An example of user interaction in the case introduction ruleis that the user must supply the guard. Thisinteraction
supplies a programming design decision in addition to the design decision of which ruleto apply.

2.2 SimpleRewrite Rules

Simple rewrite rules consist of simplification rules such as
If True then A else B < A.

Their application causes the specification to be rewritten without the introduction of new subproblems. They in-
clude simplification rules which are obtained from the specification axioms. These are mainly rules which define the
data structure on which our problemisbased. Thelogical basisfor these rules is substitution using equals.

The principleroles of simplerewriterulesare

o Modification of the specification to allow application of synthesisrules.
¢ Assisting the proof of applicability conditions

¢ Rewriting solutionsfor efficiency reasons

An example of the latter is the linear resursion to loop transformation rule in which no subgoal s are generated but the
solutionis expressed in a more efficient manner.

2.3 Transformational Programming and Theorem Proving - A Comparison.

Program construction by transformation may be considered as thetask of constructing a development tree. The root of
thetree represents the original problem specification while the subtrees represent the subproblemswhich are generated
by the application of synthesisrules. Leaf nodes correspond to subproblem solutions which when combined generate
an operational solutionto the overal problem. Simple rewrite rules may be applied to the nodes of the tree but result
in their reorganisation as opposed to subproblem generation.

Theorem proving uses the principle of backward proofs by resolution. Proofs start with the theorem to be proved
asthe goal. Thisgoa representstheinitia proof state. It is equivalent to the initial specification to be transformed in
the program constructiontree. A goal isproved by a series of resolution steps which apply inference rules to the proof
state. Thisisequivalent to the application of rewrite rules in program construction. Given a proof state with subgoas

Gy, ..., X, ... G,
and an inference rule of theform
B4, By, ...,B, =— A

where A and X are unifiable, then the inference rule is applicable to goa X. The proof state generated as a re-
sult of resolutionis

Gi,...,B, By, ... ,B,", ... G’
where G;’, B;’ are subgoals obtained by substitution according to the unification of A and X.
In theorem proving asubgoal is satisfied by simplification to true. Otherwise another resolution step is applied. In

transformational programming a specification is satisfied when all nodes representing subproblems are developed into
operationa solutions. These solutionsare then combined to give the solution to the overall problem.
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In summary, the correspondences between the program construction process and theorem proving activities are
presented below. These correspondences are as aresult of amore detailed discussionin [13].

| Transformational Programming | Theorem Prover |
Problem / Focus God
Matching Unification
Synthesis Rule application Resolution
Simple Rewrite Rule application Simplification
Subproblems and Conditions Subgoals
Proving Applicability Conditions Satisfy Subgoals
Focusing Choosing Subgoa
Instantiation Applying Unifier

From these similarities it seems plausible to use a theorem proving environment as the basis for a program
constructiontool. Using the Isabelle case studies have been undertaken to determine whether thisapproach isfeasible.
The problems studied include Warshalls algorithm [13] and the Prefix problem [14].

Isabelle ([15], [16], [17] and [18]) is a generic theorem prover which provides a framework for devel oping proof
systems. Itiswritteninthefunctional language ML and supportsproof of theoremsusing therules of natural deduction.
Isabelle provides alarge repository of tactics for resolution and simplification purposes.

The use of Isabelle tactics during program construction force the programmer to become familiar with theorem
proving tactics and Isabelle commands. This low level of interaction with a program construction tool is both
unnecessary and complicated. Isabelle has avast amount of rules and tactics which make it a powerful tool but also
make it difficult to use for program construction. This is because the user must determine which Isabelle tactics
and commands achieve the required goal as well as concentrating on the task of program construction. Many of the
activitiesrequired during program construction may be automated. We can simplify the concerns of the programmer by
concealing the theorem proving activities. Thisisachieved by building anew level of program construction tactics
on top of the existing Isabelle framework. These tactics take the interaction between the tool and the programmer to
alevel which is concerned with the tasks in program construction only. In the section which follows we discuss and
present some of these tactics.

3 Transformational Programming Tactics.

In this section we consider some tasks in program construction and present transformation tactics to achieve them.
Those presented are

o Setting up the Problem
e Design Steps

o Simplification

¢ Closing Developments

Extracts from the transformationa solution to the N Queens problem [2] are used as examples throughout the
discussion. Informally the N Queens problem can be stated as

Is it possible to place N Queens on a N*N chessboard in such a way that they do not attack each other ?

For two queens to not attack each other they must not be placed in the same row, the same column or the same
diagonal. Formally thisis specified as 2

queens(n) =3 s. ||s|| =n A nconf(s)
nconf (s) =Vi. Vk.i#k— sli] # s[k] A |k-i| # |s[K] - s[i]|

2The notation ||5| representsthe length of s and [k-i| representsthe absolute value of k-i
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The predicate queens(n) checks if there is a sequence of n positionswhich fulfil nconf(s). The predicate nconf(s)
determines a sequence of positions such that queens in these positions do not attack each other. This specification
will be used in the following sections to demonstrate tactics for setting up and commencing the construction of an
operationa solution to a problem withinthe tool environment.

3.1 Settingup aProblem

Theinitial step in tool based program construction isto set up the problem. Thisinvolves
o Formalising the problem and relevant data structures in some specification language and
¢ Selecting the problem to commence devel opment.

The specification tool ASPECT, constructed in University College Dublin ([9], [10]), assists the building of
algebraic specifications in the language SPL [19]. It will be integrated with our devel opment tool DEBATE so that
implementations of these specifications can be devel oped automatically. To use |sabelle the problem description must
betransformed into | sabelle specific constructs. Thisinvolvesformalising the problemsdata structuresin the language
ML and setting up the problem as the initia proof state. Formalising a problems data structures is done automatically
by atrandation from SPL specifications to their ML representations. The task of setting up the problem astheinitia
proof state will be achieved by a set up tactic which issupplied by DEBATE.

When setting up aproblem for devel opment the user’s only concern should be to supply the problem definitionand
its associated theory. The theory of a problem describes the context within which the proof is to be developed i.e its
specification and associated data structures.

A problemis specified as

I (xX)= O (x, f (x))

where | is the input predicate and O is the output predicate relating the input x to the output f(x). It is focused
on in Isabelle by writing

goal Problem.thy "l (x)= O (x, f (x))"

The problems associated theory is in the file Problem.thy which must be loaded before the goa is set up. This
bringsall the definitionsin that file into the | sabell e environment in which the devel opment is taking place.

Example:
In Isabellethe N Queens problemis formally specified as

NQueens.thy = Seq +

consts
gueens :: "nat = bool"
nconf :: "'a Seq = bool"
rules

queens "queens(n) =3 s. [|s|| =n A nconf(s)"
nconf "nconf(s) = ViV Kk.i# k — s[i] # s[k] A |k-i| # |s[K] - s[i]]"

end
Thisfileisloaded by typing

use_thy "NQueens"
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a the Isabelle interface. This specification is based on the sequence data structure Seq . The problem is fo-
cused on by setting the part of the specification we want to modify as the goal. The definition of the operator queens
isfocused onfor development as follows

goal NQueens.thy "True — queens(n) =" 3s. ||s|| =n A nconf(s)";

where NQueens.thy is afile contai ning the problems theory as above.

As the user should not be concerned with Isabelle actions but with transformational activities, a transformation
tactic iswritten to set up the problem as above. Thistactic takes the name of the theory used, the name of the function
to be devel oped and that functions definition as parameters.

An example of using thistactic isin setting up the NQueens problem where the user inputsthe command
Setup(NQueens, queens, "True — queens(n) =3 s . ||s|| =n A nconf(s)";

causing the file NQueens to be loaded and the definition of queens(n) to be the initia proof state. This proof
stateis asfollows

1. "True — queens(n) =" 3's. ||s|| =n A nconf(s)".

where subgoa 1 is the function definition to be transformed and True — informs us that there are no assump-
tions which must be true for the definition to be valid. Use of this tactic ensures that the user’s interaction with the
development tool is strictly in linewith the method of transformational programming.

3.2 Design Steps

A design step consistsof the application of aproblem solving techniqueto a specification. These problem solving tech-
niquesare captured by synthesisrules. We begin the discussion by explai ning how a synthesisrulewoul d be applied on
the Isabellelevel. We then consider modificationswhich can be made to devel op adesign tactic to concea the theorem
provinginterfacefrom theuser. Firstly therepresentation of the synthesisrulesas | sabelleinferencerulesisintroduced.

Representation of Synthesis Rules:

The principletactic in Isabelleisresolution. As developments are done using backward proofsby resolution, rules
are interpreted in the opposite direction to which they are written. The synthesisrule

if CthenA — B

is represented as an Isabelle inference rule in the format [| C,B || = A. This states that if the condition C eval-
uates to true the concrete representation B implies the abstract representation A. In program construction terms this
means that the specification represented by A may be replaced by the specification represented by B.

Within the theorem proving environment a transformation theory is set up representing these rewrite rules as
inference rules written in ML. They are proved using Isabelle tactics and are therefore available in Isabelle for use
as safe program congtruction rules. This transformation theory must be executed before the program construction
commences.

As discussed earlier characteristics of synthesisrules are that

o New subproblems are generated

e User interaction may be required.

Therefore, synthesisrules must be represented in aform where the sol utionsto the subproblems are not eiminated
by proving as they would in a theorem prover. Subproblem solutions must be maintained to give a program which

implementsthe initia specification. In addition, one of the subgoal s generated from the application of a synthesisrule
must be a proposition which expresses the overall solution as a composition of the subproblem solutions. Therefore,
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the general format of asynthesisruleis

If Cq, ..., Cp then I(X) = O (%, f (X)) —
1(X) = (11(x) = O1(x,51(X)), ... ,1n(X) = On(X, S5 (X))) A
f(x) = F[s1 (X), ... $,(X), X]

where | is the input predicate and O is the output predicate relating the input x to the output f(x). The transfor-
mation of

[(X)= O(x, f(x))
into

1(X)= (11(X) = O1(x,51(X)), .. ,1n(X) = On(X, S5 (X))) A
f(x) = F[s1(X), ... Sn(X), X]

may occur on the condition that C,, ...C,, are true. O;(X, s;(X)) : 0<i< N are the subproblems produced by
the rule application. The predicates 1;(x) : 0<i< N are the preconditions to determining the solutionto S;. The
function f(x) solvesthe problem and is expressed as acomposition of the subproblem solutionsS;. The template for a
synthesisruleiswrittenin Isabelle as an inference rule of the form

[[Cp ..., Co A
I (X)= (12(X) = O1(X,51(X)), ... ,1,(X) = O1(X, S, (X)) A
f(x) = F [s1(X),...S2(X),X] []
= (1(})= O (x, f (x))).

When this rule is applied in Isabelle the subgoals generated should correspond to the applicability conditions of
the rule, the subproblems generated and the subgoa representing the composition of the subproblem solutions. The
generation of these subgoalswill be demonstrated in the next section. An instance of this generalised synthesisruleis
the case introduction rule which has the following format.

[[3b. (b(x)Vnotb (x)A
I(xX) = (b(X)=t(x) A not b(x)= e(x)) A
f(x) = if b(x) then O(x, t(x)) else O(x, e(x))) |]
= 1 (X)= O (x, T (x)).

The applicability conditionb(x) v not b(x) istrivialy true. The subproblems generated are the definitions of t(x),
e(x) and f(x) . The function t(x) represents the solution where b(x) istrue. The function e(x) represents the solution
where b(x) is not true and f(x) represents the combination of all subproblem solutionsto achieve the overall solution.
Note that the application of thisrule will require the instantiation of the guard b. This must be explicitly chosen by
the user asit isa design decision determining the conditions under which a case distinction will be made. Thisisthe
reason 3 b. is present inthe above rule and thiswill be discussed in the section which follows.

Another example of a synthesis rule is the embedding rule which permits generalisation of a problem. If the
original problem isnot easily solved then it may be easier to introduce a new function to solve amore genera version
of the problem. The original problem is solved by instantiating the new functions parameters so that its definitionis
equivalent to the original specifications. An example iswhen a constant is replaced by a variable. This extends the
problem to the range of permitted values for the variable. The original problem is solved by solving the new func-
tionwiththeinstantiationof thevariabletotheoriginal constantsvalue. Thereforetheformat of theembedding ruleis

[| Applicability Conditions A
Generalised function definition A
Original function call = Generalised function call instantiated to original specification |]
—— Original function definition
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The application of thisruleto the N Queens problem will be seen in the next section.
Application of a SynthesisRule:

A program is constructed from a specification by the application of synthesisrules. On an Isabellelevel asynthesis
ruleisapplied using the resolution tactic br. Thistactic takes the synthesisrule name as aparameter and appliesittoa
named subgoal. The effect of resolution isthat the problemis resolved to a conjunction of subproblemsand program
fragments which correspond to the instantiated version of the left hand side of the applied rule.

This conjuction of terms may require user interaction to instantiate variables whose val ues are unknown. A typica
example of whereauser may haveto instantiateiswhereadesign decision has been madetointroduceacase distinction.
User instantiationshave no counterpart in theorem proving. The user must instantiate explicitly where instantiationis
not done automatically. The proof stateis then examined and presented to the user as a series of subgoals which may
be focused on for further development. In Isabelle these steps must be carried out separately. On the programming
level atransformation step should result in a program development state which is ready for another transformation
step. Therefore the above actions are combined into one programming command.

Thedetailed | sabelle stepsin the application of synthesisrulesare now presented. Thesearefollowed by apackaged
programming tactic which achieves the combined effect of the | sabelle steps in one programming command.

The proof state generated by the set up tactic for the N queens problem may be transformed into the proof state

1. True — queens(n) =" 3 s . ||cc(s,eseq)|| =n A nconf(cc(s,eseq))

as s is the same as the concatenation of the sequence s and the empty sequence eseg. This problem may be
generalised by the technique of embedding as discussed in the previous section. The result of an embedding is a proof
state of the following form

1. ||t|] < n A nconft — qu (n,t) = (3s. ||cc (s, 1)|| = n A nconf (cc (s, 1))
2. True — queens n = qu (n,eseq)
3. qu (n,eseq) — (3s. [|cc (s, eseq)|| = n A nconf (cc (s, eseq)))

where subgoa one isthe new generalised problem specification. Subgoal two isthe origina specification defined
in terms of the generaised specification with the specialisation parameter passed to it. This subgoal solves the
specification if the definition of qu is in an operationa form. Subgoa three is the applicability condition of the
embedding rule which must be true for the embedding to be valid. This applicability condition states that the new
definition instantiated to the specia case impliesthe original problem definition. Subgoal one is the only god which
remains for devel opment.

To apply this technique the embedding rule must be formalised within Isabelle. The application of the rule
requires user interaction to supply the new function name qu , the modificationsto generate the new function definition
(subgoa one) and the parameters which specialise the genera problem to the origina one. The generaised function
can be obtained from the original specification by substitution of variables for constants. The original specificationis
solved by obtaining an operational solution for the generalised specification and then instantiating the variables to the
original constants values.

These interactions, replacement of constants by variables and generation of a proof state as above require the user
to be familiar with Isabelle tactics and their application. As the user is concerned with program construction rather
than theorem proving a design tactic must be introduced to conceal the Isabelle actions. The individua steps are
packaged so that the user is only concerned with the concepts related to transformational programming. Hence when
the user appliesan embedding ruleall intermediate states are hidden and the proof state generated isas above. Theonly
interaction the user must have in the application of thisrule isto supply the generalised functions name and indicate
what constantsto replace by variables. All other activities can be automated. The Isabelle details and the crestion of
adesign tactic are discussed in more detail in the application of the next transformation rule in the devel opment- the
case introduction rule.

Thecase introduction ruleis applied to subgoal oneof the proof state generated asaresult of the above embedding

1. ||t|| < n A nconft — qu (n,t) = 3s. ||cc (s, t)|| = n A nconf (cc (s, 1))

2. True — queens n = qu (n,eseq)
3. qu (n,eseq) — (3s. [|cc (s, eseq)|| = n A nconf (cc (s, eseq)))
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using
br case_intro 1;

where case_intro is the name of the Isabelle case introduction rule. Subgoa one matches with the left hand side
of theruleand isreplaced by the instantiated right hand side of therule. This causes subgoal one - the definition of qu
(n,t) berewritten as

1. 3b. (b Vv notb) A
(b = Jta. (nconf(t) A ||t]] < n) —tatn=3s. |cc(t,s)|| =n A nconf(cc(t,s)) A
(notb = J e. (nconf(t) A |It|]| < n)—etn=3s. [|cc(t,s)|| =n A nconf(cc(t,s)) A
Jtae. f=ifbthentaelse e

Note that thisgod isin theform

3 Guard. Conditions A

Guard = Subgoall A

Not Guard = Subgoal2 A

f = if Guard then Solutionl else Solution2

This resolution step generates an intermediate state in the development process. The case introduction rule has
been applied but the goa isnot in a state where the user can easily focus on part of it to continue the devel opment.

Thevariablesb , ta and e are uninstantiated. The guard b must be instantiated by the programmer as the choice
of guard is a design decision in program construction. It determines the conditions under which the case distinction
iscarried out. One possibility for the instantiation of the guard in this exampleis||t ||= n . To instantiate b we must
replace it with||t [|= n in subgoal 1 above. Thisisachieved in Isabelle by instantiating the rule ex|

PX—=—3x. PX

The Isabelletactic res_inst_tac is used to instantiate the bound variable x in the above rule. Thisleadsto
P(t]=n) = 3Ix. Px

which may be resolved with subgoal one to achieve the proof state

L (JlY]=nV (1 #n) A
[It]] = n = (Fta. nconf(t) A ||t|]| < n)—tatn=(3s. (||cc(t,s)|| =n A nconf(cc(t,s))) A
[It]| # n= (3 e. (nconf(t) A ||| <n)—etn=(3s. (]cc(ts)]| =n A nconf(cc(t,s)))) A

Jtae. f = (if [|t||= n then ta else €))

A~ AN AN~

Thistwo steps may be combined by the |sabelle tactic
by (res_inst_tac [("x", "||t/|=n")] exI 1);

The functions ta and e represent the solutions to the subproblems generated by application of the synthesis rule.
These are devel oped by the application of transformation rules using the additiona information supplied by the guard.
To develop these functionsit must be possibleto focusin on each definition. Therefore, it should be possible to split
the proof state generated by the application of a synthesis rule into different subgoals. This generates a proof state
whichisready for further development.

The rule conjl isarulein Isabelle which states that

[[P;QI=PAQ.
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When thisrule is resolved with a conjunction of terms it splits of one conjunct and numbers it as a separate sub-
goal. This enables focusing on parts of the term for further devel opment.

The application of the case introduction rule, the user instantiation of the guard and the subgoa organisation is
done by thefollowing list of 1sabelle commands.

br case_intro 1; ( Introduce case distinction )

by (res.inst_tac [("x", "||t||=n")] ex] 1); ( Instantiate guard of if statement )
br conjl 1;

br conjl 2;

br conjl 3; ( Split into subgoals corresponding to conjuncts )

The output from Isabelle as aresult of the above resolution stepsis

=n VIt #n
=n — (I ta. (nconf(t) A |It|] < n)—tat=3s. ||cc(t,s)|| =n A nconf(cc(t,s))
#n — (J e. (nconf(t) A ||| < n)— et=3s. ||cc(t,s)|| =n A nconf(cc(t,s))

Il

Il

It ,

dtae. f=(if |t||= n then ta else e)

1.
2.
3.
4,

Itisnow possibleto apply synthesisrules, ssimple rewriterules and | sabelle tactics to theindividual subgoas. The
case introduction rule generates the applicability condition

Guard Vv Not Guard

which is trividly true. This subgoa can be discharged by the application of the Isabelle tactic fast_tac which
appliesthe applicablerules from a set of rulesgiven to it as aparameter i.e. by (fast_tac HOL _cs 1) appliesthe rules
from the classification set HOL _cs to subgoa 1 simplifyingit to true. When agoal is simplified to trueit disappears
from the proof state.

In the development as presented, the user is concerned with the Isabelle layer of activities. It is clear from the
example that one cannot demand such detailed knowledge of the theorem proving paradigm from a programmer.
Instead, a design tactic must be introduced to hide the | sabelle actions from the programmer. The individua steps are
packaged so that the user isonly concerned with the transformation step e.g. the application of the case introduction
rule.

In our example the only information required from the user is the term representing the guard and the subproblem
which theruleis applied to. All other actions can be done automatically. Therefore the case introduction rule may
be packaged in a design tactic as follows

fun CASE(g,n) = (

br case_intro n;

by (res_inst_tac [("x",9)] exI n);
br conjl n;

br conjl (n + 1);

br conjl (n + 2);

by (fast.tac HOL cs 1)

);

Thistactic isinvoked to apply the case introduction rule as detailed above, by writing
CASE (||t|| = n, 1);

where ||t|| = n is the user supplied instantiation of the guard and 1 is the number of the subgoal to which we
want to apply therule.

A design tactic likethis must be written for al the synthesisrules. The design tactics have a synthesisrule as their
logical core which are embedded in basic Isabelle tactics. These Isabelle tactics modify the intermediate states into
an acceptable program devel opment state for presentation to the programmer. Now the programmers only concern is
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the decisions of which rulesto apply, which subgoal to apply it to and what instantiation to give parameters associated
with arules application.

As previously stated the construction of DEBATE is continuation of a project in which a Prolog based tool for
program construction was developed. This Prolog based tool assisted the user in choosing which rules to apply to a
problem specification by presenting the applicable rulesto the user in menu format. A dial ogue approach was used to
indicate which ruleto apply and to instantiate unknown variablesin that rule. However, this presentation of applicable
ruleswastoo general and often resulted in numerous rules being suggested. This approach can aso betakenin Isabelle
using thefindl tactic which listsall the applicablerulesfor a particular subgoal. It is more desirable, however, to have
a precise suggestion as to which rule to apply. This can be achieved by studying the problem specification and the
type of solution which is required by the user. A more advanced tool would supply a knowledge based approach in
which tactical knowledgeis encoded. Thiswould greatly assist the automation of the process of program construction
by transformation. However, thisisadifficult problem and is outside the scope of the current paper.

3.3 Simplification

Simplification is carried out in program construction by using the simple rewrite rules discussed earlier. These rules
permit therewriting of specificationswithout theintroduction of subproblems. 1sabelleprovidesasuite of simplification
tactics which permit both conditional and unconditional rewriting. Usually in theorem proving we aim to simplify all
subgoals to true so that the origina goal is achieved. In program construction we do not wish this to happen as the
goasremaining at the end of the devel opment represent the solution to the origina problem. Therefore the user must
be careful when they use the simplifier so that the subgoa which would have lead to asolution is not discarded.

A base simplification set is established for use during the program construction. Applying the simplifier attempts
the application of the rulesfrom thisset to the goa being developed. Rules may be added to and removed from this set
during a construction. The order in which simplification rules are applied isimportant asit determines the form of the
final solution. The order of application can be controlled by the order in which rules are added to the simplification set.
| sabelle provides many of the simplification rules required during program construction. Other simplificationrulesare
obtai ned from the problem specification and from ruleswhich the user proves themselves. Tactics have been set up to
allow application of al therulesin the simplification set aswell as rules added from the specification axiomsand rules
the user has proved themsel ves.

3.4 Closing Developments

In certain circumstances the solution to a subproblem may be obvious. Rather than working forward with the
development through the application of transformation rules to a specification, it is often easier to verify that a
proposed solutioniscorrect. A solutionmay be suggested and its correctnessisproved with respect to the specifications
developed so far. Note that this process is a backwards proof rather than the forward developments we have been
dealing with so far. If the suggested solutionis proved correct it is accepted as that subproblems solution.

Suppose the problem presented is of theform

I ()= O (x, f (X)).
The development branch can be closed by proving that the proposed solution is adequate. Proposing a solution
means that the user suggests aterm of the form f(x) = T(x) where T(x) is an explicit description of the solution under
the condition I(x). This hypothesis must be checked by proving the lemma

I ()= O (X, T (X)).
When thisis proven correct anew definition of fisavailablei.e.

1(x) = (f(x) = T(x)).
Consequently, this may be accepted as a valid law solution to the original specification. Closing all development

branches result in the generation of a series of operationa solutions. These solutions may be combined into a func-
tional program by unfoldingand simplification. These programsmay beoptimized by use of efficiency transformations.
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In order to close a development in Isabelle we must suspend the main program construction and commence the
proof of the lemma stating that the proposed sol ution satisfies the devel opment. Thisisachieved in Isabelle by stating

val saved = save_proof();

The lemma is checked and asserted into the theory if it is proved correct. Otherwise the development is contin-
ued. When the development is closed the main proof is restarted from where it was suspended. Thisis achieved by
writing

restore_proof(saved); choplev(n);

which restores the main development to level n. Now the additional knowledge proved inthe lemmais available.
Asthe user should not be concerned with | sabelle detail sa transformation tactic is used to maintain a programming
view on the development. Thetactic iscalled the Closetactic and iswritten as

fun Close (I(x) = O(x, f(x)), T(x),n) =(

val saved = save_proof();

if Prove(I(X) = O(x, T(x))) then Assert (f(x) = T(X))
restore_proof(saved);

choplev(n);

where 1(xX) = O(x, f(x)) is the problem, T(x) is the proposed solution and n is the place where the main devel-
opment must resume. The function Prove above causes its parameter to be set up as a subgoa for the proof to be
carried out. The function Assert adds the lemmato thetheory if it is proved correct.

The effect of this is the systematic extension of the original specification by propositions. These propositions
express the origina implicit functionsin an operational manner. Since every branch of the development is closed in
thisway theresult isan operational solution to the overall problem. Branches are closed as above where solutionsare
proposed and verified or may be closed automatically by the devel opments been pushed sufficiently far.

4 Conclusion

In this paper the similarities between transformational programming and theorem proving have been discussed and
hence a basis for the use of the theorem prover Isabelle in the construction of the transformation tool DEBATE has
been established.

Our god is a program construction tool DEBATE which will be used in conjunction with the specification tool
ASPECT. The interaction with DEBATE should be in line with the transformational programming paradigm. Direct
interaction with the theorem proving environment is not feasible as that is the interaction within a theorem proving
paradigm.

Therefore, we presented aspects of transformation tactics which concerns the programmer with the application of
programming techniques. The programming tactics correspond to compound transformationa steps. The parameters
which must be passed to these tactics represent explicit design decisions which the programmer must make. We have
explored the use of Isabelle as atransformationa programming tool through doing some case studies. The knowledge
obtained from this practical experience is being used to generate the transformational tactics required. These tactics
are currently being implemented in University College Dublin to achieve the goal s outlined above.
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