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Abstract

The complexity of natural scenes and the amount of in-
formation acquired by terrestrial laser scanners turn the
registration among scans into a complex problem. This
problem becomes even more challenging when two indi-
vidual scans captured at significantly changed viewpoints
(wide baseline). Since laser-scanning instruments nowa-
days are often equipped with an additional image sensor, it
stands to reason making use of the image content to improve
the registration process of 3D scanning data. In this paper,
we present a novel improvement to the existing feature tech-
niques to enable automatic alignment between two widely
separated 3D scans. The key idea consists of extracting
dominant planar structures from 3D point clouds and then
utilizing the recovered 3D geometry to improve the perfor-
mance of 2D image feature extraction and matching. The
resulting features are very discriminative and robust to per-
spective distortions and viewpoint changes due to exploit-
ing the underlying 3D structure. Using this novel viewpoint
invariant feature, the corresponding 3D points are automat-
ically linked in terms of wide baseline image matching. Ini-
tial experiments with real data demonstrate the potential of
the proposed method for the challenging wide baseline 3D
scanning data alignment tasks.

1. Introduction

Terrestrial laser scanners are frequently used for the col-
lection of highly detailed 3D urban modelling [3], [4]. In
most cases, several scanning data at different viewpoints are
needed to obtain full scene coverage, and therefore requires
registration of the individual scans into one global reference
frame. For the registration, the common practice involves
the manual deployment of artificial targets, which are eas-
ily distinguishable in the scene as tie objects. Since most
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modern laser scanners are accompanied with digital cam-
eras, the registration of terrestrial laser scans can be aided
by using the images that are simultaneously captured with
the scanning data. Given images directly linked to the 3D
point clouds, the focus of this paper is to automatically align
two individual laser scans obtained at very different view-
points in terms of the matching of their associated 2D image
appearances. Previously a number of successful techniques
[1], [23], [13], [5], [14] have been proposed for robust 2D
image matching - a comprehensive review was given in
[16]. However the performances of these techniques are
limited in that they only consider the 2D image texture and
ignore important cues related to the 3D geometry. These
methods cannot produce reliable matching results of fea-
tures extracted on wide baseline image pairs. In this paper,
we employ a method, which integrates recent advances in
2D feature extraction with the concept of 3D viewpoint nor-
malization, to improve the descriptive ability of local fea-
tures for robust matching over largely separated views [25].

Our goal is to build a framework to automatically align
two widely separated 3D scenes captured by laser scanner.
The framework includes two major steps: (1) to connect
the images captured by a hand-held camera to the 3D laser
data; (2) to establish robust matches between two groups of
widely separated images. For the first step, we obtain corre-
sponding feature point between the camera images and the
laser provided image, thus we can connect the image pix-
els to the 3D points (pixel-to-point correspondences). Since
the photos are captured from similar viewpoints of the laser
scanner, the standard SIFT matching is suitable for this task.
For the second step, we present a novel scheme to establish
robust feature correspondences between two widely sepa-
rated 3D scenes based on the concept of 3D viewpoint nor-
malization. A number of dominant planes in the 3D point
cloud are extracted to represent the spatial layout of the en-
vironment. The 2D image features can be normalized with
respect to these recovered planes to achieve viewpoints in-
variance. The individual patches on the original image, each
corresponding to an identified 3D planar region, are rec-
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tified to form the front-parallel views of building facades.
Viewpoint invariant features are then extracted on these rec-
tified views to provide a basis for further matching. Know-
ing how everything looks like from a front-parallel view, it
becomes easier to recognize the same surface from differ-
ent viewpoints. The resulting features are very robust to the
perspective distortions caused by large viewpoint changes,
thus they are very suitable for wide baseline image match-
ing. Also the viewpoint invariant features contain enough
information to completely define a point-to-point mapping
relation given a single correspondence. It leads to a much
more efficient RANSAC-based matching scheme. Com-
pared with some previous approaches on combining 2D fea-
ture with 3D geometry [24], [10], our method extracted a
number of dominant 3D planes to represent the 3D lay-
out of an urban setting. The resulting piece-wise planar
3D model offers more robustness to the errors occurred in
3D reconstruction. Moreover, feature extraction can be per-
formed with respect to the extracted planes in a single pass
to achieve better efficiency.

The remainder of the paper is organized as follows. Sec-
tion 2 reviews some existing solutions for 3D model align-
ment and robust feature matching. In Section 3, we present
the preprocessing step where the hand-held camera photos
are linked to the 3D Laser scans. In Section 4, we explain
the procedures of 3D viewpoint normalization and propose
an effective scheme to match the resulting viewpoint invari-
ant features. In Section 5, the performance of the proposed
method is comprehensively evaluated. Finally, the conclu-
sion is given in Section 6.

2. Related Work
Terrestrial laser scanning has been proven effective in

3D urban reconstruction of architectural details and build-
ing facades. However, one of the biggest problems encoun-
tered while processing the scans is 3D point cloud regis-
tration. Given two sets of 3D points captured at different
viewpoints, the task to obtain tie points and to estimate an
optimal transformation between them. Commercial soft-
ware typically requires users to manually deploy artificial
targets in the scene as corresponding points. Until present,
several matching algorithms have been proposed to avoid
the manual intervention. The most popular class of meth-
ods is the Iterative closest point (ICP) based techniques [2],
[28], [19]. They compute the alignment transformation by
iteratively minimizing the sum of distances between clos-
est points. However, the performances of ICP-based meth-
ods rely on a good estimation initialization and require good
spatial configuration of 3D points. Since laser-scanning in-
struments nowadays are often equipped with an additional
image sensor, many researchers proposed to enhance the
performances of 3D point cloud alignment by referring to
their associated 2D images. In [21], an effective method

is presented for automatic 3D model alignment via 2D im-
age matching. [12] present a general framework to align 3D
points from SfM with range data. Images are linked to the
3D model to produce common points between range data.
Ikeuchi [9] presents an automated 3D range to 3D range reg-
istration method that relies on the matching of reflectance
range image and camera image. In [8], a flexible approach
was presented for the automatic co-registration of terrestrial
laser scanners and digital cameras by matching the cam-
era images against the range image. These techniques work
well for frames with small observation changes (e.g con-
tinuous videos). To produce satisfactory registration results
of 3D points clouds captured at significantly changed view-
points, we need an effective image feature scheme which
is capable of establishing robust correspondences between
wide baseline image pairs.

A large number of papers have reported on robust 2D
image feature extraction and matching, cf. [16] for a de-
tailed review. The underlying principle for achieving in-
variance is to normalize the extracted regions of interest
so that the appearances of a region will produce the same
descriptors (in an ideal situation) under the changes of il-
lumination, scale, rotation, and viewpoint. Among them
the Scale-invariant feature transform (SIFT) [13] is the best
scale-invariant feature scheme and the Maximally Stable
Extremal Regions (MSER) [5] shows superior affine in-
variance. In [15], the authors conducted a comprehensive
evaluation of various feature descriptors and concluded that
the 128-element SIFT descriptor outperforms other descrip-
tor schemes. Robust 2D feature extraction techniques have
been successfully applied to various computer vision tasks
such as object recognition, 3D modelling, and pose estima-
tion. However, the existing schemes cannot produce satis-
factory feature matching over largely separated views be-
cause perspective effects will add severe distortions to the
resulting descriptors. Recently, many researchers have con-
sidered the use of 3D geometry as an additional cue to
improve 2D feature detection. A novel feature detection
scheme, Viewpoint Invariant Patches (VIP), based on 3D
normalized patches was proposed for 3D model matching
and querying [24]. In [22], the authors developed a physi-
cal scale space for detecting keypoints, which extends a 2D
image-based detection and description framework to 3D us-
ing an image back-projected onto a range scan. In [10], both
texture and depth information were exploited for computing
a normal view onto the surface. In this way they kept the
descriptiveness of similarity invariant features (e.g. SIFT)
while achieving extra invariance against perspective distor-
tions. However these methods directly make use of the pre-
liminary 3D point clouds from SfM. Viewpoint normaliza-
tion with respect to the local computed tangent planes are
prone to errors occurred in the process of 3D reconstruc-
tion. For predominantly planar scenes (urban environment),
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a piece-wise planar 3D model is more robust, compact, and
efficient for viewpoint normalization of cameras with wide
baselines.

3. Preprocessing
We plan to make use of the image contents simultane-

ously acquired with the 3D scanning data to enable au-
tonomous terrestrial laser registration. The captured image
is directly linked to the 3D point cloud if the camera is di-
rectly integrated to the laser scanner. However, fixing the
relative position between the 3D range and 2D image sen-
sors has two major limitations. First, the rigid setting sac-
rifices the flexibility of 2D image capture. The acquisition
of the images and range scans has to occur at the same time
and from the same viewpoint. This will cause constraints
on the deployment of the camera. A good position for 3D
range scanning might not be suitable for 2D image captur-
ing. Second, the images may need to be captured at differ-
ent times, particularly if there were poor lighting conditions
at the time that the range scans were acquired. To over-
come above drawbacks, we applied the technique described
in [12] to link a group of independently captured images to
the 3D range data.

First, a 3D laser scan is acquired and a sequence of 2D
images is independently gathered using a hand-held cam-
era from various positions that do not necessarily coincide
with the viewpoint of the range scanner. A point cloud can
be reconstructed from these multiple-view images by using
the structure-from-motion (SfM) algorithm [18]. Then, the
SIFT features are extracted on the camera images and the
image captured by the laser for correspondence matching.
A number of putative matches are found using local appear-
ance descriptors, and then the RANSAC algorithm is used
to eliminate false correspondences by imposing a plane-to-
plane mapping homography. Since the difference of view-
points between camera and laser is not significant, the stan-
dard SIFT technique is capable of producing robust image
matches as tie points between the 3D SfM point cloud and
the 3D laser scan. Finally, we compute the transformation
that aligns the 3D models gathered via range sensing and
computed via structure from motion, thus the complete set
of 2D images is automatically linked to the 3D point cloud.
More abundant appearance information will be associated
with the 3D ranging data after the preprocessing step. Fig.
1 shows a result of such preprocessing.

4. 3D viewpoint invariant features
In this step, we apply an effective method to extract a

number of dominant 3D planes in the 3D points, as de-
scribed in [26]. The RANSAC algorithm [6] is applied
for plane hypothesis generation and minimum description
length (MDL) principle [17] is used to evaluate several

(a) SfM point cloud mapping on laser scan.

(b) Corresponding five images.

Figure 1. SfM point cloud mapping on laser scan. The red colour
points refer to 3D SfM from images. The density of laser scan is
1/100 of original data by resampling.

competing hypothesis. The method can avoid detecting
wrong planes due to the complex geometry of the 3D data.
The detected 3D planes will be used to represent the spatial
layout of the environments. The 2D image features are nor-
malized with respect to these recovered planes to achieve
viewpoints invariance. Viewpoint invariant features are ex-
tracted on the rectified front-parallel views to provide a ba-
sis for further matching.

4.1. Dominate planes extraction

MDL is applied for plane extraction, similar to the ap-
proach of [17]. Given a set of points, we assume several
competing hypothesis, here namely, outliers (O), 1 plane
and outliers (1P+O), 2 planes and outliers (2P+O), 3 planes
and outliers (3P+O), 4 planes and outliers (4P+O), 5 planes
and outliers (5P+O), ect..

Let n0 points xi, yi, zi be given in a 3D coordinate and
the coordinates be given up to a resolution of ε and be within
range R. The description length for the n0 points, when
assuming outliers (O), therefore is

#bits(points | O) = n0 · (3lb(R/ε))

where lb(R/ε) bits are necessary to describe one coordi-
nate.

If we now assume n1 points to sit on a plane, n2 points
to sit on the second plane, and the other n̄ = n0 − n1 − n2
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points to be outliers, we need

#bits(points | 2P +O) = n0 + n̄ · 3lb(R/ε)
+6lb(R/ε) + n1 · 2lb(R/ε) + n2 · 2lb(R/ε)

+

[
n1+n2∑

i=1

{
1

2ln2
· (vi)T Σ−1(vi) +

1
2
lb(|Σ| /ε6) +

k

2
lb2π

}]

where the first term represents the n0 bits for specifying
whether a point is good or bad, the second term is the num-
ber of bits to describe the bad points, the third term is the
number of bits to describe the parameters of two planes,
which is the number of bits to describe the model complex-
ity, a variation of [20]. We assumed the n1 good points to
randomly sit on one plane which leads to the fourth term,
and the n2 good points to randomly sit on the other plane
which leads to the fifth term, and to have Gaussian distribu-
tion x ∼ N(µ,Σ) which leads to the sixth term.

#bits(points | 1P + O), #bits(points | 3P + O),
#bits(points | 4P + O), and #bits(points | 5P + O),
and so on, can be deducted in a similar way.

Incremental RANSAC is applied to extract planes in the
point cloud. The MDL principle, deducted above, for in-
terpreting a set of points in 3D space,is employed to decide
which hypothesis is the best one. This method of integrat-
ing RANSAC and MDL has been shown to avoid detecting
wrong planes [26]. One example demonstrating dominant
plane extraction is shown in Fig. 3.

4.2. Viewpoint invariant feature generation

In this step, we perform normalization with respect to
the extracted dominant 3D planes to achieve viewpoint in-
variance. Given a perspective image of a world plane, the
goal is to generate the front-parallel view of the plane. This
is equivalent to obtaining the image of a world plane where
the camera viewing direction is parallel to the plane normal.
It’s well known that the mapping between a 3D world plane
and its perspective image is defined as a 3 × 3 homogra-
phy. Since we know the 3D positions of the points on the
building facade and their corresponding image coordinates,
we can compute the homography relating the facade plane
to its image given at least four correspondences. The com-
puted homography H enables us to warp the original image
to a normalized front-parallel view where the perspective
distortion is removed. Fig. 2 shows some results of such
viewpoint normalization.

Within the normalized front-parallel views of the scene,
the viewpoint invariant features are computed in the same
manner as the SIFT scheme [13]. Given a number of ex-
tracted dominant 3D planes, features extraction can be ef-
ficiently performed in a single pass w.r.t. the planes. Po-
tential keypoints are identified by scanning local extreme in
a series of Difference-of-Gaussian (DoG) images. For each

Figure 2. Some examples of viewpoint normalization. Top: Origi-
nal images; Bottom: Normalized front views. Note the perspective
distortions are largely reduced in the warped front-parallel views
of the building walls (e.g. a rectangular window in the 3D world
will also appear rectangular in the normalized images)

detected keypoint, appropriate scale and orientation are as-
signed to it and a 128-element SIFT descriptor is created
based upon image gradients of its local neighbourhood. A
complete viewpoint invariant feature consists of the follow-
ing components: (1)X is its 3D position in the space; (2) x
is its 2D coordinates in the normalized front-parallel view;
(3) s is its corresponding spatial patch scale; (4) θ is the
dominant gradient orientation of the normalized patch; (5)
f is the 128-element descriptor; and (6) n is the normal of
the plane it belongs to.

4.3. Viewpoint invariant feature matching

In [13] a pair of SIFT features are considered matched if
the ratio between distances to the closest match and to the
second closest is below some predefined threshold. The ra-
tio check scheme is justified because the correct match for a
discriminative keypiont is often significantly better (closer
in the descriptor space) than the incorrect ones [13]. How-
ever, in urban environments where many repetitive struc-
tures (e.g. windows) exist, this criterion will falsely reject
many correct matches since a feature cannot find a unique
distinctive match. We applied the criterion described in [27]
to generate the putative correspondences. We consider two
features matched if the cosine of the angle between their as-
sociated descriptors f i and f j is above some threshold δ
as:

cos(f i,f j) =
f i · f j

‖f i‖2
∥∥f j

∥∥
2

> δ (1)

where ‖·‖2 represents the L2-norm of a vector. In case mul-
tiple matches pass the criteria, we keep the top 5 correspon-
dences for further RANSAC matching. This criterion es-
tablishes matches between features having similar descrip-
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Outlier ratio 40% 50% 60% 70% 80%
Ours (1 p) 4 5 6 9 14
H-matrix (4 p) 22 47 116 369 1871
F-matrix (7 p) 106 382 1827 13696 234041

Table 1. The theoretical number of samples (M ) required for
RANSAC to ensure 95% confidence (ρ) that one outlier free sam-
ple is obtained for estimation of geometrical constraint. The actual
required number is around an order of magnitude more.

tors and does not falsely reject potential correspondences
extracted on the images of repetitive structures which are
common in urban environments.

After obtaining a set of putative feature matches based on
the matching of local descriptors, we impose certain global
geometric constraints to identify the true correspondences.
The RANSAC technique [6] is applied for this task. The
number of samples M required to guarantee a confidence ρ
that at least one sample is outlier free is given in Table 1.
When the fraction of outliers is significant and the geomet-
ric model is complex, RANSAC needs a large number of
samples and becomes prohibitively expansive.

The geometrical model can be greatly simplified via the
use of these novel features, and thus, lead to a more efficient
matching method. For the conventional 2D feature tech-
niques, only the 2D image coordinates of extracted features
can be used to generate geometric constraints (F-Matrix or
H-Matrix). Therefore, a number of feature matches are
required to compute F-Matrix (7 correspondences) or H-
matrix (4 correspondences). In comparison, the viewpoint
invariant features contain enough information to completely
define a point-to-point mapping relation given a single fea-
ture correspondence. Consider a pair of matched features
(xm

1 , s
m
1 , θ

m
1 ) and (xn

2 , s
n
2 , θ

n
2 ) both extracted on the nor-

malized front-parallel views, a 2D similarity translation hy-
pothesis is generated as follows:x1 − xm

1

y1 − ym
1

1

 =

∆s 0 0
0 ∆s 0
0 0 1


cos ∆θ − sin ∆θ 0

sin ∆θ cos ∆θ 0
0 0 1

x2 − xm
2

y2 − ym
2

1

 (2)

where ∆s = sm
1 /s

n
2 is the scale ratio and ∆θ = θm

1 − θn
2

is the orientation difference. Using this simple geometric
model, a much smaller number of samples are needed to
guarantee the generation of the correct hypothesis (c.f. Ta-
ble 1 for comparison). Moreover, using the viewpoint in-
variant features the RANSAC can successfully return the
true correspondences from a putative feature set of high out-
lier percentage. This is particularly advantageous for im-
age matching in urban environments. The man-made build-
ings usually contain lots of respective structures (e.g. win-

dows, doors, bricks). Setting a strict matching criteria (ra-
tio check) will falsely reject the true correspondences. Us-
ing the viewpoint invariant features, we can set a relatively
loose criteria (Eq. 1) to establish a large number of puta-
tive matches (lots of outliers contained) and then apply the
one-point RANSAC algorithm to identify correct ones. This
can’t be achieved using the standard SIFT features.

5. Experimental Results

In this section, we conducted experiments to evaluate the
performance of the proposed viewpoint invariant features
and demonstrated their applications for automatic align-
ment of wide baseline terrestrial Laser scans, with focus in
the urban environments.

5.1. Data generation and preprocessing

We have taken two groups of laser scanning data using
Leica HDS6000. Each group contains two individual 3D
point clouds of a same building captured at largely sep-
arated viewpoints. The laser-equipped camera simultane-
ously captured an intensity image which provides pixel-
to-point correspondences to the 3D point cloud. For each
laser scan, we also took 5 images using a hand-held camera
at similar viewpoints. We applied the orientation software
AURELO [11] to achieve full automatic relative orientation
of these multi-view images. And we used the public domain
software PMVS (patch-based multi-view stereo) [7] for de-
riving a dense point cloud for each view of image pairs.
It provides a set of 3D points with normals at those posi-
tions where there is enough texture in the images. Then
we applied the standard SIFT matching scheme to establish
correspondences between the camera images and the laser
provided image. The pixel-to-pixel tie points allow us to
link the 3D point cloud from SfM to the laser scanning (cf.
an example shown in Fig. 1). Finally, a number of dominant
planes were extracted from each point cloud, while the rest
3D points were removed. Fig. 3 shows an example of the
captured laser scan and the extracted dominant 3D planes.

Figure 3. Left: A snap-shot image of 3D point cloud taken by laser
scanner. Right: The four dominant planes automatically extracted
from the point cloud.
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5.2. Performance evaluations

Given the extracted dominant planes, we perform nor-
malization w.r.t. these planes to achieve viewpoint invari-
ance. After viewpoint normalization, corresponding scene
elements will have more similar appearances. The result-
ing features will suffer less from the perspective distortions
and show better descriptiveness. We tested our method on
two wide baseline 3D point clouds, as shown in Fig. 4,
to demonstrate such improvements. It’s noted that both
3D point clouds covered a same dominant planar struc-
ture which can be easily related through a homography. A
number of SIFT and viewpoint invariant features were ex-
tracted on the original images and on the normalized front-
parallel views, respectively. Then we followed the method
described in [15] to define a set of ground truth matches.
The extracted features in the first image were projected onto
the second one using the homography relating the images
(we manually selected 4 well conditioned correspondences
to calculate the homography). A pair of features is con-
sidered matched if the overlap error of their corresponding
regions is minimal and less than a threshold [15]. We ad-
justed the threshold value to vary the number of resulting
feature correspondences.

Figure 4. Two 3D point clouds and their associated images cap-
tured at widely separated views.

Our goal is to demonstrate that the performances of 2D
image feature matching can be significantly improved by
taking into account the underlying 3D geometry. We quan-
titatively measured how well two actually matched features
relate with each other in terms of the Euclidean distance be-
tween their corresponding descriptors, their scale ratio, and
their orientation difference. Given a number of matched
features, we calculated the average Euclidean distance be-
tween their descriptors. The quantitative results are shown
in Fig. 5 Top. The procedure of viewpoint normalization
will compensate the effects of perspective distortion, thus
the resulting descriptors are more robust to the viewpoint
changes. For each pair of matched features, we also com-
puted the difference between their dominant orientations
and the ratio between their patch scales. The results are
shown in Fig. 5 Middle and Fig. 5 Bottom, respectively.
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Figure 5. Performance comparison between SIFT and Viewpoint
invariant features. Top: The average Euclidean distances between
the descriptors of matched features; Middle: The orientation dif-
ferences between matched features; Bottom: The scale ratios be-
tween matched feature. The matched feature extracted on the nor-
malized front-parallel views show better robustness to viewpoint
changes.

On the normalized front-parallel views, the viewing direc-
tion is normal to the extracted 3D plane. The matched fea-
tures extracted on such normalized views have similar dom-
inant orientations and consistent scale ratio. To qualitatively
demonstrate the improvements, a number of matched fea-
tures are shown on the original images (cf. Fig. 6 Top) and
on the normalized images (Fig. 6 Bottom). Their corre-
sponding scales and orientations are also annotated. On the
normalized front-parallel views, the matched features have
very similar orientations. Also their scale ratios show better
consistency.
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Figure 6. A number of matched features are shown. Top: on the
original images; Bottom: on the front parallel views. Their scales
and orientations are annotated. The feature matches on the view-
point normalized views have very similar orientations and consis-
tent scale ratios.

5.3. Wide baseline laser scan alignment

In this section, we apply the proposed framework to au-
tomatically align laser scans captured at widely separated
viewpoints. For the preprocessing step, we applied the
standard SIFT scheme [13] to match the 2D camera im-
ages to the laser-provided image, as described in Section
3. Since the viewpoint change between camera and laser is
not significant, the SIFT technique can produce robust im-
age matches as tie points between the camera images and
the 3D laser scan. Then, we applied the proposed viewpoint
invariant features for the difficult wide baseline matching
tasks. A set of putative matches were firstly established,
among them the inlier correspondences were selected by
imposing the geometrical constraint (Eq. 2). For compari-
son, we applied the scale-invariant feature scheme SIFT and
the affine-invariant feature scheme MSER for the same task.
The matching results are shown in Fig. 7 with the quanti-
tative comparisons provided in Tab. 2. It’s noted that the
viewpoint invariant features can handle the large viewpoint
changes (the view angles changed more than 90 degrees),
for which SIFT and MSER do not work well. Finally, we
computed the 3D transform matrix relating two individual
laser scans given a number of matched 3D points. The laser
alignment results are shown in Fig. 7.

6. Conclusions
Nowadays most laser-scanning equipments are accom-

panied with an additional image camera. In this paper we
have proposed an automatic framework for aligning two
widely separated 3D laser scans via the use of provided im-
age contents. To achieve this, we brought in the concept of
3D viewpoint normalization and extracted features on the
normalized front-parallel views w.r.t. 3D dominant planes

Scene SIFT MSER Ours
T N I T N I T N I

Scene a 19 28 901 7 16 690 79 80 901
Scene b 0 13 704 3 13 512 23 23 658

Table 2. The quantitative results of wide baseline 3D scene match-
ing. (I - the number of initial correspondences by matching de-
scriptors, N - the number of inliers correspondences returned by
the RANSAC technique, T - the number of correct ones.)

derived from the point cloud of a scene. The resulting view-
point invariant features enable us to link the correspond-
ing 3D points automatically in terms of wide baseline im-
age matching. We evaluated the proposed feature matching
scheme against the conventional 2D feature detectors, and
applied it to realistic wide baseline laser scanning data of
a variety of urban scenes. The experimental results demon-
strate the potential of viewpoint invariant features for robust
and automatic wide baseline laser scan registration.
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(a) Scene a: image matching pairs.

(b) Scene a: corresponding SfM.

(c) Two different views of laser scan and corresponding alignment result.

(d) Scene b: image matching pairs.

(e) Scene b: corresponding SfM.

(f) Two different views of laser scan and corresponding alignment result.

Figure 7. Two example results of wide baseline 3D scene match-
ing. Significant viewpoint changes can be observed on the associ-
ated image pairs.
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