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Abstract

The research discussed in this paper documents a com-
parative analysis of two nonlinear dimensionality reduc-
tion techniques for the classification of facial expressions
at varying degrees of intensity. These nonlinear dimension-
ality reduction techniques are Kernel Principal Component
Analysis (KPCA) and Locally Linear Embedding (LLE).
The approaches presented in this paper employ psycholog-
ical tools, computer vision techniques and machine learn-
ing algorithms. In this paper we concentrate on comparing
the performance of these two techniques when combined
with Support Vector Machines (SVMs) at the task of clas-
sifying facial expressions across the full expression inten-
sity range from near-neutral to extreme facial expression.
Receiver Operating Characteristic (ROC) curve analysis is
employed as a means of comprehensively comparing the re-
sults of these techniques.

1. Introduction

Facial expressions play a major role in how people com-
municate. Therefore a computer that could interpret and
react to facial expression would advance human-computer
interfaces, providing a basis for communication that could
be compared to human-human interaction. As the complex-
ity of computer applications increase in tandem with user
expectations, the development of emotionally intelligent in-
terfaces has become both necessary and possible.

This paper builds on preliminary results reported in [12]
and [21], where two nonlinear dimensionality reduction
techniques were examined in the context of facial expres-
sion classification. In those initial investigations we looked
at the performance of Kernel Principal Component Analysis
(KPCA) and Locally Linear Embedding (LLE) in isolation
on a small dataset, while in this paper we perform a com-
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prehensive comparative analysis of these techniques on a
more substantial dataset. While previously we concentrated
on the number of correct classifications, in this paper we
extend this work to examine the performance of our tech-
niques at classifying facial expressions at varying degrees
of intensity using Receiver Operating Characteristic (ROC)
analysis. By performing ROC analysis we not only look at
the number of correct classifications, but we also consider
the number of incorrect classifications when deciding which
technique performs best (see section 2.5 for more details on
ROC analysis).

Since the importance of facial expressions was first es-
tablished in 1872 [6], many studies have been carried out
attempting to interpret their meaning. In more recent years
a considerable amount of research has been performed in-
vestigating various methodologies for the classification of
facial expressions. Techniques range from template based
methods [18], to neural network based methods [8], or a
combination of the two [20, 11]. Perhaps the most substan-
tial work in this area has been done by Bartlett et al [1].
Bartlett et al. proposed a technique which combines Gabor
wavelets and SVMs to classify AUs with 93.3% accuracy
[1]. Again in [16], Littlewort and Bartlett propose a simi-
lar technique which classifies AUs with 97% accuracy. In
[17], Bartlett used SVMs again to successfully distinguish
between genuine and fake smiles.

One of the techniques which we appraise in this pa-
per, KPCA is a non-linear dimensionality reduction tech-
nique which is closely related to methods applied to SVMs
[28, 27]. The principal idea behind KPCA is to transform
the input data into a potentially infinite high dimensional
space. This is achieved by utilizing the kernel trick to per-
form feature space operations using dot-products between
data points in the feature space (for more information see
[10D.

KPCA and more prominently kernel methods have been
used extensively in recent years [2]. Several methods have
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been proposed for facial expression analysis [31, 30]. More
specifically KPCA has been applied successfully for the
purpose of de-noising of images of hand-written digits [19],
and as a pre-processing step in regression problems [26].
On a related note to this paper, KPCA has also been used to
analyse facial shape [30]. Here, we use KPCA to classify
lower facial expressions by looking at the change in shape
of the mouth as an expression forms.

In this paper we also discuss the effectiveness of LLE
in conjunction with SVMs to classify expressions. LLE
was introduced in 2000 as a non-linear dimensionality re-
duction technique that computes low dimensional neighbor-
hood preserving embeddings of high dimensional data by
unfolding the underlying manifold [24, 25].

The remainder of this paper is structured as follows: Sec-
tion 2 documents our approach, Section 3 details experi-
ments and results, and in Section 4 we conclude with some
final remarks. This paper extends previous work detailed in
[10,21] and [12].

2. Proposed Methodology

Measuring facial expressions at varying expression in-
tensity is a non trivial task as everyone’s face is unique and
interpersonal differences exist in how people perform fa-
cial expressions. Although numerous methodologies have
been proposed to solve this problem, the main focus of
our research is to measure facial expressions independent
of identity and with varying degrees of intensity in a con-
sistent and robust manner. In this section we discuss the
techniques which we use to accurately classify lower facial
expressions, namely; the facial action coding system, ker-
nel principal component analysis, locally linear embedding,
support vector machines and receiver operating characteris-
tic curve analysis.

2.1. Facial Action Coding System - FACS

In this paper we use the Facial Action Coding System
(FACS), which measures facial expressions according to the
movement of muscles in the face. The system is based on
an anatomical analysis of facial expressions [7]. The FACS
allows us to subdivide our data into subsets where the vari-
ation in each expression is precisely characterized. The
FACS provides an unambiguous, quantitative means of de-
scribing all movements of the face in terms of Action Units
(AUs). An AU is composed of one or more muscles in the
face that causes an atomic change in the faces appearance.
All expressions can be described using the AUs defined by
the FACS, providing a measurable set of criteria that define
whether or not a particular facial expression is present.

However AUs do not always occur with the same expres-
sion intensity and for this reason the FACS also includes in-

126

tensity ranges for the AUs. There are five intensities in total
ranging from intensity A, where a trace change in appear-
ance occurs, to intensity E, where an extreme or maximum
appearance change occurs. Figure 1 provides a visual rep-
resentation of the full FACS intensity range, which can be
thought of as the spectrum of intensity for each AU. Note
that this scale is divided non-uniformly - e.g. C takes up
more of the spectrum than A [7].

Figure 1. The scale of FACS intensity scores

2.2. Kernel Principal Component Analysis
- KPCA

Principal Component Analysis (PCA, also known as
the Karhunen-Loéve transform) is a technique used to lower
the dimensionality of a feature space [29, 13]. Kernel Prin-
cipal Component Analysis (KPCA) is similar to standard
PCA except the data is projected into a higher dimensional
feature space prior to performing eigenvector decomposi-
tion. We project the data into feature space through the use
of the kernel trick. This kernel trick permits the compu-
tation of dot products in high dimensional feature spaces,
using functions defined on pairs of input patterns.

More specifically, mapping from one space to a higher
dimensional space involves a mapping from x; — ¢(x;),
however, with an appropriate choice of kernel there exists
a mapping ¢ such that (¢(x;) - ¢(x;)) = K(x;,x;). This
means that the inner products of the feature space can be
calculated without computing ¢(x) directly. This allows us
to work in a potentially infinite high dimensional feature
space. The choice of kernel is still a matter of debate, how-
ever, in this paper we use a Gaussian kernel. The Gaussian
kernel is defined as

K(Xi7 Xj) — e—(xi—xj)T(xi—xj)/mfz.

ey

Where o determines the width of the kernel.
2.3. Local Linear Embedding - LLE

The LLE algorithm was introduced by Saul and Roweis
in 2000 as an unsupervised learning algorithm that com-
putes low dimensional, neighborhood preserving embed-
dings of high dimensional data [24, 25]. Many extensions
and adjustments to this core algorithm have been proposed,
ranging from Robust-LLE [3, 14] to supervised [23, 15]
and semi-supervised versions of LLE [22], however in this
paper we are using the original algorithm as defined in
[24, 25].



The LLE algorithm is based on simple geometric intu-
itions where the algorithm attempts to compute a low di-
mensional embedding with the property that nearby points
in the high dimensional space remain nearby and similarly
co-located with respect to one another in the low dimen-
sional space. The LLE algorithm takes a dataset of N real
valued vectors X;, each of dimensionality D, sampled from
some smooth underlying manifold as its input. Provided
there is sufficient data such that the manifold is well sam-
pled, we can expect each data point and its neighbours to lie
on or close to a locally linear patch of the manifold [25].

There are three main steps in the LLE algorithm. Firstly
the manifold is sampled and the K nearest neighbors per
data point are identified. Secondly each point X; is approx-
imated as a linear combination of its neighbors X, these
linear combinations are then used to construct the sparse
weight matrix W;;. Reconstruction errors are then mea-
sured by the cost function Equation 2, which adds up the
squared distances between all the data points and their re-
constructions.

ZW=Z|_X§—ZWH>T;I2
i j

In the final step of the LLE algorithm, each point X;
in the high dimensional space is mapped to a point Y; in
the low dimensional space which best preserves the struc-
ture and geometry of X,;’s neighborhood. This geometry
and structure is represented by the weight matrix W;;. The
mapping from X; to Y, is achieved by fixing the weights
W;; and selecting the bottom d non zero coordinates of
each output Y; to minimize Equation 3.

Y =Y Vi - > WY
i i

2)

3)

2.4. Support Vector Machines - SVMs

SVMs are used to classify an expression using the out-
puts from both the KPCA model and the LLE model as in-
puts. The SVM algorithm can be separated into two distinct
procedures, the kernel trick, which we have already dis-
cussed, and the base algorithm. Suppose we have a dataset
(@1,Y1)s e (Tm, Ym) € X x {£1} where X is some space
from which the x; have been sampled. We can construct a
dual Lagrangian of the form

W(a) = Zai -

which are subject to the constraints «; > 0V:i and
Z:’;’l a;y; = 0. The solution to Equation 4 is a set of o
values which defines a hyperplane that is positioned in an
optimal location between the two classes. Further details of
the construction of this equation can be found in [10].

1 m
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4,j=1
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2.5. Receiver Operating Characteristic

(ROC) Curves

Receiver Operating Characteristic (ROC) analysis is a
technique for visualizing, organizing and selecting classi-
fiers based on their performance, and was first used dur-
ing World War 2 as a means of assessing the capabilities of
radar systems in distinguishing random interferences from
actual targets [9]. Today, ROC analysis is becoming in-
creasingly important in the area of cost sensitive classifi-
cation, classification in the presence of unbalanced classes,
robust comparison of classifier performance under impre-
cise class distribution and misclassification costs.

Given a classifier and an instance, there are four possible
outcomes: True Positive occurs when a test correctly returns
a positive result; True Negative occurs when a test correctly
returns a negative results; False Positive occurs when a test
incorrectly returns a positive result; False Negative occurs
when a test incorrectly returns a negative result. These four
values can then be used to create a Confusion Matrix, which
can be seen in Table 1. The numbers along the major diag-
onal represent the correct outcomes, and the numbers off
this diagonal represents the errors - confusion between the
various classes [9]. The values in the confusion matrix are
used to compile various ratios such as the True Positive Rate
shown in Equation 5 and the False Positive Rate shown in
Equation 6.

Y
p | True Positives

N
False Negatives

n | False Positives | True Negatives

Table 1. Confusion Matrix

TP
TruePositiveRate = ——————— 5
T OSIUERAe = T tal Positives )

FP

FalsePositiveRate =1— ————— (6
arseliositruetiate Total Negatives ©)

ROC graphs are two dimensional graphs with the true
positive rate plotted on the y-axis, and the false positive
rate plotted on the x-axis. A ROC graph depicts relative
trade offs between the benefits and costs of a particular clas-
sifier. The most frequently used performance measure in
ROC analysis is the area under the ROC curve, more com-
monly referred to as the AUC. The AUC of a classifier is
equivalent to the probability that the classifier will rank a
randomly chosen positive instance higher than a randomly
chosen negative instance. The AUC ranges from O - 1, how-
ever as the random classifier has an AUC of 0.5, no realistic
classifier should have an AUC less than 0.5.



3. Experiments and Results

In our research to date we have used the Cohn-Kanade
AU-Coded Facial Expression Database [4]. This database
contains approximately 2000 image sequences from over
200 subjects. The subjects came from a cross-cultural
background and were aged approximately 18 to 30. This
database contains full AU coding and partial intensity cod-
ing of facial images and while it is not ideal in that it isn’t
completely intensity coded, it is the most comprehensive
database currently available.

In this paper we classify four lower facial expressions;
AU20+25, AU25+27, AU10+20+25, and AU12. The effect
that these have on the mouth is illustrated in Table 2. For a
detailed description of each expression refer to [7].

I II

Table 2. This rable illustrates the effect of portray-
ing four different expressions. The AUs portrayed
are: I=AU20+25; II=AU25+27; HI=AUI10+20+25;
1IV=AUI2

Our training dataset consisted of 73 images of one sub-
ject performing 4 sequences from neutral to extreme ex-
pression. Our test dataset consisted of 522 images of mul-
tiple subjects from multi-cultural backgrounds performing
the four lower facial expressions as shown in Table 2. In our
test dataset we sampled the sequences at each intensity rat-
ing including neutral, 6 in total, while in our training set we
labeled each frame in the sequence with an intensity score.
Prior to experimentation we manually placed 24 landmark
points placed at 24 specific locations, shown in Figure 2.
The optimal position of these landmark points is defined by
Cootes in [5].

Figure 2. An example of a shape of a neutral mouth.
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To analyze the variance of the points that describe the
shape of the mouth it is necessary that the mouth shapes in
the training and test sets are as closely aligned as possible.
Therefore, before applying the LLE and KPCA algorithms
we align our data by firstly, centering the data and then
performing Generalized Procrustes Alignment (GPA) [13].
GPA aligns two shapes with respect to position, rotation and
scale by minimizing the weighted sum of the squared dis-
tances between the corresponding landmark points. More
information on this technique can be found in [10].

Once GPA has been performed, we can either apply
KPCA and LLE directly or we can further reduce the
variance in the dataset by performing shape differencing,
whereby we subtract the neutral shape from each subse-
quent shape in the sequence. The reason being is that we are
interested in the difference between the two shapes and not
the actual shapes themselves. Once this preprocessing has
been completed we calculate our shape models by perform-
ing LLE and KPCA on the aligned training data, the outputs
of which are used to train the SVM classifiers. New unseen
data is projected into both shape spaces and the outputs are
used as inputs to the previously trained SVM classifiers.

3.1. Locally Linear Embedding Results

Figure 3 shows the LLE expression shape space created
as a result of applying LLE to our training set without us-
ing shape differencing and Figure 4 displays the LLE shape
space after performing the additional step of Shape Differ-
encing. It is clear from these diagrams that LLE has suc-
cessfully separated out the input dataset into the four lower
facial expressions which we wish to classify, however, as an
improved separation of the expressions has occurred due to
the using the additional shape differencing step, we use this
expression space as the basis for performing SVM classifi-
cation.
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Figure 3. LLE low dimensional expression space
when shape differencing is not used. From the leg-
end the expression are: I=AU20+25; [I=AU25+27;
HI=AU10+20+25; IV=AUI2
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Figure 4. LLE low dimensional expression space
when shape differencing is used. From the leg-
end the expression are: 1=AU20+25; 1I=AU25+27;
III=AU10+20+25; IV=AUI2

The aim of this experiment was to establish how our
LLE-SVM based technique performs at classifying expres-
sions at varying degrees of intensity, therefore for each of
our expressions we separated our testing and training data
into intensity five groupings: ABCDE; BCDE; CDE; DE; E,
all of which contain the neutral expression (for example the
first grouping contained the neutral along with intensities A,
B, C, D and E). As we had four expressions to classify we
need four one-against-all nonlinear SVM classifiers, the op-
timal SVM for each facial expression was selected based on
the results of the classifier-test cases defined by the intensity
groupings, an example of these groupings for expression 1
are shown in Table 3.

Expression 1 - test cases
= ABCDE ABCDE |BCDE|CDE [DE [E
E BCDE ABCDE |BCDE |CDE [DE [E
f _E’ CDE ABCDE |BCDE|CDE [DE [E
';-'..E DE ABCDE |BCDE |CDE [DE [E
w = |E ABCDE |BCDE|CDE |DE |E

Table 3. Expression I Intensity groupings, which are
used to evaluate the SVM. For each expression we
have 20 SVM training - testing pairs.

Once our classifiers were trained we tested them using
the various test groupings to determine at what level the
classifier broke down. For example we trained our classi-
fier using the neutral and extreme shapes and tested it on
data containing the entire intensity range to ascertain if the
intervening intensities were correctly classified as belong-
ing to the expression.

Using the outputs of our various SVMs we performed
ROC curve analysis, the optimal ROC curve for each of our
four expressions is shown in Table 4, and the correspond-
ing mean AUC for the expressions are displayed in Table
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6, extracts from the confusion matrics are shown in Table
5, with the complete classifier results in Table 10. We can
clearly see from these results that the overall average AUC
achieved by our LLE-SVM based technique is 0.81. As ex-
pected we achieved lower AUCs for the two similar facial
expressions I and I1I, while our other two expressions II and
IV performed significantly better with mean AUCs of 0.92
and 0.98 respectively. This drop in AUC for expressions I
and III can be explained by looking at the detailed classifier
results in Table 10, where we can see a higher number of
reported false positives.

Table 4. LLE-SVM Optimal ROC curves. The four
facial expressions are: top left AU20+25; top right
AU25+27; bottom left AUI0+20+25; bottom right
AUI2

Y N|Y N|Y N|Y N
p |52 93 | 69 1|25 31 | 62 0
n |48 329 | 71 381 | 65 401 | 43 417

Table 5. LLE: Extract from confusion matrices of
the four expressions. From left to right AU20+25,
AU25+27, AUI0+20+25 and AUI2. Correct out-
comes lie on the major diagonals and the numbers
off this diagonal represent the errors.

3.2. Kernel Principal Component Analysis
Results

Figure 5 shows the output space established as a result of
applying KPCA to the training dataset when shape differ-
encing is not used, and Figure 6 shows the results achieved
when the additional shape differencing step is performed.



AU | AUC +

[-v-all | 0.7250 0.0666

I-v-all | 0.9164 0.0712

MI-v-all | 0.6236 0.0516

IV-v-all | 0.9798 0.0202
AverageAUC | 0.8110

Table 6. Mean AUC for LLE-SVM based tech-
nique. In the table above I=AU20+25, [I=AU25+27,
HI=AU10+20+25 and IV=AU12.

While there is not a large variation in how KPCA separated
out these datasets, in order to compare the two techniques,
we used the latter expression space in our experimentation.
As with the previous experiment, the aim was to determine
how our KPCA-SVM technique performs at classifying the
four lower facial expressions at varying degrees of intensity
therefore we used the same intensity groupings as for the
LLE experiments as shown in Table 3.

Once our data was separated out into intensity groupings
we performed KPCA on the data, and used the resulting
shape spaces to train one-against-all SVMs. However, un-
like the previous LLE based experiment, as the kernel trick
has already been performed inside the KPCA algorithm, we
use linear SVMs to classify the facial expressions.
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Figure 5. KPCA low dimensional expression space
when shape differencing is not used.  Expres-
sion I=AU20+25; II=AU25+27; III=AUI10+20+25;
1IV=AUI2

Due to the fact that our KPCA based technique failed to
separate out expressions I and III in the lower dimensional
space, it is not surprising that the ROC curves for these ex-
pressions are concave. In order to to correctly interpret the
results of such a seemingly weak classifier we look at ex-
tracts from the confusion matrices in Table 8 and also the
mean AUC in Table 9. Here we can see that the AUC of
expression I and III is very low, and when we look at the
detiled results in Table 11 we also see that for these two
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Figure 6. KPCA low dimensional expression
space when shape differencing is used. Expres-
sions I=AU20+25; [I=AU25+27; II=AUI10+20+25;
IV=AUI2

expressions there are no true positive classifications.

4. Conclusion

The accurate classification of facial expressions is a
growing problem within several domains. The solution
described in this paper takes a multidisciplinary approach
drawing together psychological tools, statistical models and
machine learning techniques.

The two shape models were calculated using KPCA
and LLE to lower the dimensionality of the problem. We
trained one-against-all SVMs to classify the four expres-
sions (AU20+25, AU25+27, AU10+20+25 and AUI12) at
varying degrees of intensity. We found that overall the LLE-
SVM based technique consistently performed better than
the KPCA-SVM based technique. We can see from the LLE
ROC curves in Table 4 that even though there is a drop in
the AUCs for the two similar facial expressions when com-
pared with the AUCs of the other expressions, this is still a
satisfactory result as the differentiation of two such similar
expressions is a non trivial task.
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N-ALL |382|140| 46| 0]382| 94|0.804)382|112| 46) 0/382|66|0.850 84| 45| 0)382)30/0.921)/382)56) 38| 0|382| 18/0.950 28| 21| 0382 7|0.968
NBCDE |382|140| 43| 0|282] 97)0.804/|382|112[ 43| 0]382| 69|0.850 84| 42| 0]382)42|0.921|(382|56| 35| 0[382| 21/0.950 28| 19| 0[382]| 9(0.968
NCDE |282|140| 38| 0]|282]102)0.801||382|112[ 38| 0]382| 74|0.850 84| 37| 0]382) 47|0.921)(382|56| 32| 0[382| 24/0.950 28| 19| 0[382] 9[0.968
NDE 382(140| 43| 0]382) 97|0.801|(382|112| 43| 0/382| 69|0.850||382(84| 42| 0|382|42|0.921|]382|56| 35| 0[382| 21/0.950||382|28| 19| 0|382( 9)|0.968
NE 382(140] 15] 0]382|125]0.801)(382[112| 15] 0)382| 97|0.850]|382(84) 15) 0] 0)382| 43/0.850{|382|28| 8| 0[382| 20|0.968

382|69]0.821382| 56| 13
TEST » N-ALL NBCDE NCDE NDE NE

Explll_|[TRAIN YN [P _|TP|FP|TN FN |AUC |[N [P _|TP|FP|TN |[FNJAUC |IN [P |TP|FP|TN [FNJAUC [N |P |TP|FP|TN |FNJAUC ||N [P |TP[FP|TN |FNIAUC
N-ALL |432| 90| 0| 0]432| 90/0.169||432| 72| 0| 0]432|72|0.146||432|54| 0] 0/432|54|0.133||432|36| 0| 0]|432| 36/0.136(]432|18| 0| 0[432| 18]0.141
NBCDE |432| 90| 0] 0/432] 90/0.163[|432) 72| 0] 0]432)72]0.135|[432|54] 0] 0)432|54/0.120))432|36) 0| 0|432| 36/0.117(|432|18| 0| 0[432| 18/0.128
NCDE |432| 90| 0] 0/432] 90/0.161[|432) 72| 0] 0]432)72]0.131)[432|54] 0] 0)432|54/0.117])432|36) 0| 0|432| 36/0.116[|432|18| 0| 0[432| 18[0.126
NDE 432| 90| 0] 0]432) 90|0.164||432| 72| 0] 0)432|72|0.137||432[54] 0] 0]432|54|0.124|432|36]| 0| 0[432| 36|0.123||432/18] 0| 0|432[18|0.128
NE 432| 90| 0] 0]432| 90]0.158]|432| 72| 0] 0)432|72|0.128||432[54] 0] 0[432|54/0.113[[432|36] 0] 0[432] 36/0.110]|432{18| Of 0[432| 18[0.114|

TEST » N-ALL NBCDE NCDE NDE NE
ExpIV_|TRAIN YN [P _|TP|FP|TN |FN |AUC |[N [P |TP|FP|TN |FNJAUC |IN [P |TP|FP|TN [FNJAUC [N |P |TP|FP|TN |FN/AUC ||N |P |TP[FP|TN |FNIAUC
N-ALL |417]105] 17 417| 88]0.816)|417) 84[ 17 417|67]0.868|[417]63| 16 417/ 47]0.803[]417)42| 13 417]29)0.921)|417|42) 13 0|417] 28/0.921
NBCDE |417]105] 13 417| 92]0.816||417) 84[ 13 417|71|0.868|[417]63| 12 417|51|0.803[|417|42| 11 417] 31]0.820)|417|42| 11| 0[417]31(0.920
NCDE |417|105) 11 417| 94]0.816||417| 84| & 417|76)0.868|[417|63] & 417] 55/0.903||417]42| 7 417| 35)0.920|417(42| 7| 0[417[35[0.920
0]
0]

NDE 417[105| 8 417| 97]0.816||417) 84| 8 417|76|0.868|[417]63| 8 417|55]|0.803(]417|42] 7 417] 35|0.920)/417|32) 7 417) 25/0.920
INE 47105 5 417/100]0.816||417] 84 5 417/ 79]0.868|[417]63] 5 417/58]0.903|417)42] 4 417] 38|0.920)/417(42) 4 417) 38]0.920
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olo|o|o|o|
olo|o|o|o|D
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[ -ALL [ NBCDE CDE | NDE [ NE
N_|P_|TP[FP [TN[FNJAUC [N [P |TP|FP [TNFNJAUC [N [P |TP|FP [TN|FNJAUC [N [P [TP[FP [TN[FNJAUC [N [P |TP[FP [TN [FNJAUC

N
422|100| 52| 93)320|48|0.647|\422| 80| 51| 93]|329) 28(0.729|/422|60 45| 93|329) 15|0.787/422|40) 33| 93[329| 7)0.826|422)20| 15| 93|329| 5/0.803
422(100| 53]128|294 47]0.614|/422| 80| 52|128]|294) 28|0.697||422|60( 46|128|294| 14|0.751||422|40| 34/128(294| 6)|0.790|422|20| 16[128|294| 4/0.771
422(100| 53|123|299 47|0.616|/422| 80| 52|123|299) 28(0.701||422|60| 46|123(299| 14/0.755||422|40| 34/123(299| 6|0.795|422|20| 16/123|299| 4)0.775

422 2

422 9

422(100| 42|109)313| 58|0.613 80| 41/109]313) 30(0.692|/422|60| 37|109(313| 23|0.746|/422|40| 28/109|313 0.786|422|20) 14)109/313] 6/|0.773
422(100| 32| 99)323|68(0.610 80] 31| 99]323) 49(0.682||422|60 27| 99[323| 33|0.732422|40| 21| 998|323 0.772]|422(20| 10| 99|323] 10]0.755,
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[ -ALL [ NBCDE CDE I 1 NDE [ NE
N _|P_[TP[FP [TN]FNJAUC [[N [P [TP[FP J[TN]FN[AUC [[N [P [TP]FP [TN]FNJAUC [[N_[P [TP]FP [TN[FNJAUC [N _|P [TP]FP [TN|FN[AUC
382|140[ 69] 1[381|71]0.776|382[112 68 1|381[ 44[0.874([382[84| 60| 1]381]24[0.922][382[86[ 41] 1[381]15]0.937[[382]28[ 22| 1[381] 6]0.951
382|140| 58] 0|282]82(0.802|382[112| 58| 0|382| 54[0.804|[382|84| 55| 0|382]20(0.954][382[56| 44| 0[282] 12]0.978[[382(28[ 24| 0[382 4[0.880
382]140] 54 86/0.801[|382[112] 54| 0[382] 58[0.803][382|84] 52] 0[382]32]0.953][382[56[ 41] 0[362] 15]0.978[[382]28[ 23] 0[382] 5|0.980
382|140[ 67| 4|378| 73]0.799]|382[112 67| 4|378[ 45[0.901][382[84| 61| 4|378[23]0.950][382[56[ 48] 4[378| 8|0.974[[382]28[26] 4[378] 2|0.986
382[140[ 74| 4[378]66/0.801|382[112] 55] 0]3s2[57(0.804][382[84] 52] 0[382]32]0.954]382[56[ 42| 0[382] 14]0.978[[382]28[ 23] 0[382] 5]0.990
[ ] -ALL ] NBCDE CDE NDE NN NE
Exp Il N_|p_[TP[FP [TN[FNJAUC [N [P [TP[FP [TN[FN[AUC [N TP[FP [TN [FNJAUC [N [P [TP]FP [TN[FNJAUC [N [P [TP[FP [TN[FNJAUC
432[ 80] 25] 31]401]65]0.595([432] 72| 24] 31[401] 48[0.663[432(54] 22[ 31401]32[0.669][432(36] 17| 31]401] 19]0.720]432[18 31]401[ 10[0.687
432] 90] 27| 95]337| 63[0.546([332] 72| 26] 95[237] 46[0.601]|432[54] 23| 95[337[ 31[0.641][432[36] 17| 95[337| 19]0.671]432[18 337]10[0.653
59/256(167| 21/0.660|432| 72| 57|265[167] 15]0.617([432| 64| 25]104[328] 200.660]|432[36[ 19]104[328] 17]0.688[432] 18] 9[104[328] 9]0.674
10 17|415|800.546(/432| 72| 10| 17|415|62|0.560[432 9| 17|415[ 45[0.588(|432|36] 0| 17[415[27(0.627(432[18 17]415] 14 __..ﬂ%
78[354] 9[0.662

RER R
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28| 78|354]|62|0.530(|432| 72| 27| 78|354| 45|0.588)/432 25| 78|354]| 29|0.637]/432|36| 19| 78[354| 17/0.670|/432|18
-ALL NBCDE CDE [ NDE NE

[TRAIN ¥ TP[FP [TN[FN[AUC [N [P [TP[FP [TN]FNJaUC [[N [P |TP[FP [TN[FNJAUC [[N [P [TP]FP [TN[FNJAUC [N [P [TP[FP [TNFN[AUC
N-ALL [417]105) 62 417)43|0.989(|417| 84| 58] 0[417|26/0.990/417(63| 49 417]14/0.989|1417|42| 35| 0[417| 7]|0.990|417|21| 18| 0]417| 3/0.990

NBCDE (417|105 22 417)83/0.987(|417| 84|22 0[417|62(0.990//417|63| 21 417]42/0.990/417|42| 17| 0[417(25/0.992)417|21| 10| 0]417| 11/0.990

NCDE [417]105) 81 24/0.986[/417| 84| 69) 1[416|15/0.889)417|63) 53 416] 10/0.989|1417|42) 36) 1[416] 6|0.991)447)21| 18] 1]416| 3|0.989

NDE 417|105| 54 417)51|0.987(|417| 84| 51| 0[417|33/0.990||417(63| 45 417] 18|0.990|417|42 32| 0[417] 10 n.mu‘u_.A:q 21[17| 0]417| 4/0.9%0

Il INE 417(105] 13 417)92|0.928(|417| 84| 13| 0[417|71/0.935|417(63) 13 417]50/0.943|417(42| 10| 0[417[32]|0.948|417[21| 6] 0/417| 15/0.951
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Expression I=AU20+25;

II=AU10+4+20+25 and IV=AUI2.
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