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ABSTRACT 
 
We consider a double random phase encoding Encryption/Decryption system in which the image 
encryption/decryption process is performed numerically.  In this paper we look at the effect of quantisation in the 
decryption process due to the discrete values which a spatial light modulator can display.  We look at the 
characterisation of a transmissive spatial light modulator and we present results from simulations of the system. 
 
Keywords: Optical Encryption, Digital Holography, Optical Signal Processing 
 

1.  INTRODUCTION 
 
Recent technological advances, such as high quality spatial light modulators (SLMs), high resolution digital cameras 
and powerful desktop computers, coupled with the overwhelming advantage of high through-put and computational 
speed of optical processing systems, due to their inherent parallel nature, have stimulated increased interest in the field 
of information security by means of optical encryption.  Optical Encryption1,2 offers the possibility of high-speed 
parallel encryption of image data.  Such Encryption can involve the capture of full field information, amplitude and 
phase.  Since holograms are intrinsically three dimensional (3D), a hologram is an attractive way to represent 3D 
information.  Digital holographic techniques3,4,5,6 are employed to allow pre- and post- digital signal processing of the 
wave front.  When in digital form, these holograms can be easily stored, transmitted, processed and analysed.  Digital 
compression techniques have been used to enable efficient storage and transmission of encrypted holographic data 
over digital communication channels7,8. 
 
In the decryption process, it is usual for the complex-valued encrypted image to be physically displayed on one or 
more SLMs and then propagated through the decryption system.  To date, there have been numerous systems of this 
type proposed in the literature however there has been relatively little experimental evaluation of the practical 
performance of SLMs in Encryption/Decryption systems.   
 
Lohmann9 has shown that the Space-Bandwidth Product (SBP) of the signal propagating through an optical system 
can not exceed the SBP of the optical system.  Wigner Transform has been used to track the SBP of an optical signal 
propagating through an optical system10.  There are many factors that affect the SBP of the optical system.  These 
include: (1) the finite aperture of the elements like lenses, SLM, CCD cameras and other elements; (2) the pixel size 
and fill factor of discrete devices like SLMs and CCD cameras; (3) quantisation effects of discrete devices like SLMs 
and CCD cameras.  These errors can be classified as systematic noise in the optical system as opposed to random 
noise due to internal noise of SLMs, detector noise, laser light fluctuations etc. 
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There are advantages of performing encryption using coherent optical signal processors are due to their ability to 
process and relay information in two dimensions, and the inherent parallel nature of optics.  The majority of these 
systems involve a coherent field propagated through some bulk optical system consisting of thin lenses and sections of 
free space.  Such paraxial Quadratic Phase Systems (QPS) can be described mathematically using the Linear 
Canonical Transformation10.  These systems often incorporate a Spatial Light Modulator (SLM), such as liquid crystal 
displays, which may be used to modulate the input digital data onto a coherent wave-field as well as to modulate the 
amplitude and/or phase of the complex wave-field at any desired plane.  Therefore, in the 2D and 3D case, SLMs can 
be used to encode the inputs and can be used as part of an optical reconstruction technique and can also represent the 
key during encryption and decryption.  
 
Double random phase encoding, as proposed by Refregier and Javidi11 in 1995, is a unique method of optically 
encrypting a primary image to stationary white noise by use of two statistically independent random phase keys.  One 
in the input domain and one in the Fourier domain.  In this encryption system the random key located at the Fourier 
plane serves as the only key.  The method can be numerically simulated by means of matrices of discrete values and 
the Fast Fourier Transform (FFT).  Figure 1 show an optical implementation of a double random phase encoding 
system. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 1.  An optical implementation of double random phase encoding. R1 is the random phase mask in the input domain, R2 is 
the random phase mask in the Fourier domain and L are lenses. 

 
To decrypt the image you would simply reverse the setup and capture the intensity at the output.  When implementing 
the double random phase encoding algorithm numerically on a computer the complex values can easily be stored.  The 
representation of complex numbers in an optical implementation is a more complicated problem.  Spatial Light 
Modulators (SLMs) are employed to solve such problems.  SLMs can operate in amplitude mode or in phase mode 
and some of them have a coupled mode, however on most SLMs there is no independent control of the amplitude and 
phase and this presents an obstacle when trying to code complex numbers to SLMs.  Cohn12 and Duelli13 have devised 
a method of using pseudorandom encoding as a method of statistically approximating desired complex values with 
those values that are achievable with a given spatial light modulator.  The method was originally developed for phase-
only SLMs but has been extended to SLMs for which amplitude is a function of phase. 
 
This paper is organised as follows:  In Section 2 we discuss the characterisation of our SLM, which is a Holoeye16 
LC2002.  In Section 3 we discuss our application of the pseudorandom encoding algorithm.  In Section 4 we explain 
our decryption setup.  In Section 5 we present the results from our numerical simulations and in Section 6 we 
conclude.  References are listed in Section 7. 
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2.  SLM Characterisation 
 

In any physical optical system the polarisation of a light beam can be described by it’s corresponding Jones vector and 
any linear optical element can be described by it’s corresponding Jones matrix14.  Jones calculus was invented by 
American physicist R. Clark Jones in 1941 and is an extremely useful tool for representing optical systems in terms of 
the polarisation of light and the effect that linear optical element have on the polarisation state.  Beings as the Jones 
vectors are only applicable to polarised waves the most sensible way to represent the beam is in terms of the electric 
vector: 
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where xϕ  and yϕ  represent the phase.  The Jones vector of a beam is made up of two elements, an x-component and 
a y-component.  Therefore horizontal and vertical polarisation states are thus given by: 
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Suppose we have a linear polarised incident beam, represented by it’s Jones Vector, which passes through an optical 
element and emerges as a new vector.  The optical element has transformed the original vector into a new vector by a 
process that can be described mathematically using a 2×2 ABCD matrix.  A single cell transmissive SLM acts as a 
linear optical element if a constant gray level is displayed on it.  A SLM with many pixels acts in the same way as 
long as all the pixels are set to the same constant gray level and a 100% fill factor is assumed.  By calculating the 
SLMs corresponding Jones matrix for each gray level we can completely characterise the device.  We carried out two 
experiments to characterise the SLM, one to determine the amplitude and one to determine the phase.  The first 
experiment was to determine the amplitude characteristics of the SLM: 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 2.  Experimental setup for determining the amplitude modulation of our SLM for each gray level. 
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The Jones vector that corresponds to the incident beam can be written by: 
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where I is the intensity and the current polarisation of the light beam is 45˚.  The Jones Matrix corresponding to a 
polariser is: 
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for a polariser set at 0˚ or 90˚.  Therefore the Jones vector for the output beam, when the polariser and the analyser are 
set to 0˚, is given by: 
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By measuring the intensity of the output beam for the four combinations of the polariser and the analyser being set to 
either 0˚ or 90˚ we can fully determine the ABCD matrix corresponding to the SLM for amplitude modulation of the 
device for each gray level using the following formulae: 
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To measure the phase modulation of the SLM we make use of a digital holography setup and capture a digital 
hologram with a CCD camera.  The second experiment was to determine the phase characteristics of the SLM: 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 3.  Experimental setup for determining the phase modulation of our SLM for each gray level. 
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Therefore by measuring the relative phase shift of the recorded interference fringes for the four different combinations 
of the polariser and the analyser (i.e. each being set to either 0˚ or 90˚), we can fully determine the ABCD matrix 
corresponding to the SLM for phase modulation of the device for each gray level.  The Polariser/Analyser 
combinations of 0˚/0˚, 90˚/0˚, 90˚/90˚ and 0˚/90˚ correspond to φ 1, φ 2, φ 3 and φ 4 which then give us: 
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The SLM is now fully characterised.  The next problem is to map complex numbers on the computer to complex 
numbers that the SLM can represent. 
 
 

3.  Pseudorandom Encoding (PE) 
 
The SLM, which works in a coupled phase/amplitude mode, can only achieve certain complex numbers which can be 
determined by characterising the SLM.  Due to the fact that our encrypted image and decrypting phase mask, which 
we want to display on the SLM, are both complex images spread randomly from 0 to 2π and have normalised 
amplitude we need to map there complex values to complex values that the SLM can achieve.  To do this we employ a 
technique called PE12,13,15.  PE is a statistical method of approximating a required complex value using those complex 
values that are achievable on a SLM.  A very simple explanation of the pseudorandom encoding algorithm is as 
follows: 
 
Figure 4 represents a complex number in polar form, where the distance from the origin represents the amplitude or 
real component and the tilt or angle of the vector represents the phase or imaginary component.  Let ac be the complex 
value that we require and M1 and M2 be the modes achievable on a given SLM. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 4. Polar plots displaying required and achievable complex modes. 
 
A simple minimum distance algorithm would map the state ac to M2 every time.  In the PE algorithm a probability is 
given to each to the distance from ac to each of the SLM modes, in this simple example there are only two modes.  Let 
us say that a probability of 0.7 is associated for the distance between ac and M2 and a probability of 0.3 is associated 
with the distance between ac and M1.  Therefore each value at ac is mapped to one of the SLM modes with the given 
probabilities.  The PE design12 finds a value of the ensemble average of a random variable, a, such that <a> = ac.  Due 
to the fact that this is a statistical method the more values that we require which are at ac the more accurate the 
algorithm becomes. 
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In relation to our problem we select three modes.  Therefore determining the probability associated with each distance 
becomes more complicated albeit straightforward.  The three states form a triangle and any required complex values 
inside the triangle can be mapped to one of the SLM states.  Any values that fall outside the triangle will firstly get 
translated to the nearest point on the triangle so as to avoid a negative probability.  For Figure 4b there will be three 
probabilities: 
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therefore this implies that ac will be given by: 
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nMa  is a value, a, at a state, Mn. Extrapolating Eqn (2) for the real and imaginary parts gives us: 
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By using Eqns (9), (11) and (12) as simultaneous equations: 
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(13) 
and by simple matrix algebra we can work out the probabilities P1, P2 and P3.  Figure 5 shows the achievable modes of 
the SLM and the three selected modes which we map the complex value to. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 5.  Shows the modulation states of the SLM used for the present study, denoted by the small circles.  The states M1, M2 and 

M3 are used to encode the complex valued data.  The shaded region in dark shows the encoding range of SLM.  The inner 
circle shows the fully complex encoding range. 



Figure 6 shows the extension to four modes in which two triangular regions are established.   
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 6. Shows the modulation states of the SLM used for the present study.  The states M1, M2, M3and M4 are used to encode 
the complex valued data.  The two triangular shaded regions show the two encoding regions of the SLM. 

 
 

4.  The Decryption Set-up 
 
In the decryption process for double random phase encoding two Fourier transforms are required, however to simplify 
the optical implementation we have done the first Fourier transform numerically.  This first Fourier transform is an 
unambiguous step as no knowledge of the decrypting phase key is required.  By using two transmissive SLMs, imaged 
into one another by means of an imaging system, operating in a phase only mode we display the Fourier transform of 
the encrypted image on SLM1 and the decryption mask on SLM2.  The complex images are mapped to the SLMs by 
employing Cohn’s method of pseudorandom encoding.  The second Fourier transform is carried out by mean of free 
space and a Lens and the intensity of the wave front is then capture by a CCD camera, beings as we are concerned 
with images the intensity of the wave front is all we required to recover the image. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 7. Shows the experimental optical decryption set-up. 
 
A spatial filter is placed in between the two SLMs so as to cut out the higher order terms introduced by SLM1. 
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5.  Results 
 
We studied the effect of quantisation in the decryption process due to the discrete values which an SLM can display.  
The encrypted image and the random key are continuous complex valued.  When an encrypted image and random key 
is displayed on a discrete valued SLM that can display only a finite number of values, this results in error in the 
decryption process.  Therefore we use an algorithm12,13 that maps complex valued data to the modulation states which 
an SLM can produce.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 8.  (a) Original image; (b) Encrypted image; (c) encrypted image as represented on SLM with three quantised levels; (d) 
Random phase mask; (e) Random phase mask as represented on SLM with three quantised levels; (f) Decrypted image with 
three quantised levels; (g) encrypted image as represented on SLM with four quantised levels; (h) Random phase mask as 

represented on SLM with four quantised levels; (i) Decrypted image with four quantised levels. 
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6. Conclusions 
 

In this paper we looked at the effect of quantisation in the decryption process due to the discrete values which a spatial 
light modulator can display.  We characterised the modulation states of an SLM.  The fully complex valued encrypted 
image and phase mask is quantised to the modulation states of an SLM.  We have studies the effects of quantisation 
with three and four SLM states in the decryption process by quantifying the error in the decryption process.  We have 
presented results from computer simulation. 
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