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ABSTRACT 

 

We examine the Amplitude-Encoding (AE) case of the Double Random Phase Encoding (DRPE) technique.  A cost 
function is the function we use to evaluate an attempted decryption with our original input image.  For systems with a 
relatively small key-space we can evaluate the output of every key to get an overall idea of the spread of these keys in 
key-space.  However for larger systems this is not practical.  Based on a normalised root mean squared cost function we 
wish to identify expressions for the mean and variance of the output (decrypted) intensity for a sample set of keys in a 
large system (256x256 pixels).  
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1.  INTRODUCTION 
 
Cryptography1-4 and information security has been recognised as important by governments and individuals throughout 
history.  With the major technological advance in computer technology, optical fibre technology, global satellite 
communications and the ‘world wide web’, information security had become of paramount importance.  The new 
digital information age has brought access to powerful desktop computers along side of which is a demand for high 
security.  This demand has lead to ever faster and more powerful encryption systems being continually developed.   
 
Optical encryption5-11 is one such form on information security and is particularly interesting as it offers the possibility 
of high-speed parallel encryption of two dimensional (2-D) image data. 
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One such method of optical encryption is known as the Double Random Phase Encryption 5 (DRPE) technique.  DRPE 
is a unique optical-image encryption technique, which involves the use of two random phase keys, one placed in the 
input domain and one placed in the Fourier domain.  If these two random phase-keys are generated using statistically 
independent white noises, then the encrypted image is also a stationary white noise.  Since it’s introduction in 1995, the 
DRPE has generated much interest and been the focus of many studies 10,12-16.  The physical implementation of such an 
optical system gives rise to many practical issues, however a thorough numerical analysis of DRPE is extremely 
important if it is to be utilised as an encryption system.   
 
The two primary modes of operation of the DRPE technique, which depend on the form of the data to be encrypted, are: 

(1) Amplitude-Encoding (AE), with a greyscale input image, and  
(2) Phase-Encoding (PE), in which through out this paper we assume that only the input field phase is 

modulated. 
While the optical system used to encrypt the data, in both cases is very similar, there are significant differences in the 
decryption, analysis and breaking of these encoding systems.  Figure 1 shows a flow chart graph of the DRPE technique 
for AE and PE.  In this paper we are primarily concerned with AE. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 1.  A block diagram of the similar encryption process for AE and PE and the different decryption processes which lead to an 

Normalised Root Mean Squared (NRMS) value for a decrypted image. 
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In the case when a PE input image (phase data) is used, both the Image and Fourier plane keys, a(x, y) and b(u, v), are 
required in the decryption process.  However we are only concerned with the AE case in this paper and therefore only 
the Fourier pane key is necessary for decryption.  It should be noted that the phase key will be the same size, number of 
pixels, as the input image in these simulations.  For relatively small systems, i.e. systems with an input image of 5x5 
pixels and under, we can easily evaluate the output decryption of every key to get an overall idea of the distribution of 
these keys in key-space.   
 
An encryption algorithm’s key-space is a set of possible keys that can be used to encode data using that algorithm.  For 
instance, a simple combination lock with three dials, each with ten digits, has a key-space of one thousand keys, i.e. 103.  
The number of possible combinations therefore grows exponentially with the number of dials (equivalently, the number 
of pixels in our study).  The size of the key-space determines the number of possible unique keys that can be used by 
the encryption algorithm.  The number of keys in the key-space is given by the number of quantisation levels, used in 
the key, raised to the power of the number of pixels in the key.  For example a system with 5x5 pixels and 2 
quantisation levels has 2^25 keys, or 33,554,432 keys in its key-space.  However for larger systems, i.e. 256x256 pixels 
with 256 quantisation levels having 256^65,536 keys in the key-space, checking every single key is currently not 
practical.  Like most encryption techniques DRPE relies heavily on the size of its key-space to provide security from 
brute-force attacks, i.e. the probability of randomly guessing a correct key being statistically insignificant. 
 
Should the attacker have access to a cipher/text pair, it has already been shown that in the case of AE, heuristic methods 
15 can be used to extract the DRPE Fourier key, b(u, v), with NMRS errors below 10%, within a reasonable amount of 
time, i.e. within less than an hour using a PC.  Other methods can be used if several cipher/text pairs are available when 
attacking the system, and such techniques have been found to be very effective 17,18.   
 
Using the normalised root mean squared cost function, discussed below in Section 3, we wish to identify expressions 
for the mean and variance of the output (decrypted) intensity for a sample set of keys in a large system (256x256 
pixels).  By relating the mean and variance of the sample set from the larger system to that of the smaller system we 
wish to make conclusions about the distribution of keys in the key-space of the DRPE technique. 
 
In our previous work19 we examined the algorithm’s key-space using histograms showing the number of keys which 
decrypt an encoded message to given quantitative error levels.  We carried out our analysis for small input image sizes, 
i.e. 5 × 5 pixels.  By mapping the decrypting error across the entire key-space we attempt to provide an analysis of the 
strength of the optical encryption algorithm.  An analysis of the key-space for large image sizes (large number of pixels) 
was computationally too intensive due to the large number of keys.  By defining analytical expressions for the mean and 
the variance for the NRMS cost function we hope to provide useful tools to permit the study and analysis of the key 
space for larger input images, i.e. 256 × 256.  These tools will allow us, in future work, to relate our previous work on 
small key space systems to those of large ones thus furthering our overall understanding of the DRPE technique. 
 
The paper is organised as follows: In Section 2 will introduce some statistical definitions regarding the mean, the 
variance and the noise.  In Section 3 we will look at our NRMS cost function in relation to the DRPE technique.  In 
Section 4 we derive analytic expressions for the mean and for the variance and in Section 5 we finally conclude. 
 
 
 

2.  STATISTICAL DEFINITIONS 
 
2.1 Mean and Variance 
Let us assume that we have a real valued continuous function, f(x), which we have sampled discretely K times, 0 < k < 
K+1.  Denoting this sampled function as f(k) then if it is real, f(k) = f*(k).  For a real valued random variable, the mean 
can be defined as the expectation of that random variable and represents the central location of the data set.  The 
population mean or expected value of the data set f is therefore given by: 
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The variance of the data set f is a good measure of the statistical dispersion away from its mean and is calculated by 
averaging the squared distances of the possible values from the expected value, i.e. it is the square of the standard 
deviation, and is given by: 
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(2) 
The variance of f can also be written as: 

[ ] ( ) ( )22 fEfEfV −= . 
(3) 

2.2 Gaussian Noise 
Let us assume we have a set, g, of samples, g(k), whose statistical properties are well described by a normalised 
Gaussian Probability Distribution Function (PDF) with a mean E[g] = µ, and a variance V[g] = σ2.  Denoted by N(µ, σ) 
the probability distribution function is of the form 
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(4) 
where x represents a particular value taken by g(k) if K is very large and the PDF indicates the probability (frequency) 
of such a value occurring. 
 
Such Gaussian noise distributions have several properties, one of which is referred to as the The Gaussian Moment 
Theorem.  If we define the nth moment of the Gaussian random variable x about the value z as: 
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then we note that 0,1][ MxE == µ  and µσ ,2

2][ MxV == .   
Eqn (5) has two important ramifications for our case: 

(1) Firstly we note that the mean of the data values squared is equal to the sum of the square of their 
mean and their variance: 
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(2) Secondly, and of particular significance to our analysis, when the noise is complex valued it is 

referred to as circular Gaussian noise.  In this case we define a complex noise function, n, and a 
sampled version, ( ) ( ) ( )kjnknkn ir += .  Both nr and ni are assumed to be two uncorrelated white 
noises with zero means and identical standard variations, where ‘r’ denotes the real part and ‘i’ 
denotes the imaginary part.   

(3)  
We can summarise the statistical properties of the noise as follows: 
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The positive real valued intensity (magnitude squared) of the noise is defined as 

222** ir nnnnnnn +=== , 
(9) 

therefore 
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[ ] [ ] [ ] [ ] [ ] 22
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(10) 
Furthermore20: 

[ ]222*** 2)][(2][ nEnnEnnnnE == . 
(11) 

 
 

3.  Normalised Root Mean Squared (NRMS) error 
 
We wish to quantitatively compare an image (data array) and a perturbed or noisy version of that image.  In our case 
these data sets correspond to intensities (images) captured by a CCD camera or simulated intensities generated by a 
computer programme.  More specifically the data sets, which, under ideal noise error free conditions should be identical 
and which we wish to compare, correspond to the intensities (images) input to the encryption system, and the resulting 
decrypted image at the output of the decryption system.  We denote the original image by I and the decrypted image by 
Id.   
 
During the encoding/decoding process an image is encrypted and must then be decrypted upon receipt.  During these 
processes errors are accumulated.  Furthermore attempts to break or crack the encryption system will involve searching 
a key space for the exact solution key.  The effects on the outputs of perturbations away from the exact encryption keys, 
is analogous to the effects of noise and also provides insights into the robustness of the encryption system to attack.   
 
One metric that allows us to make such a comparison is the NRMS 
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At the core of this metric is the difference term 
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(13) 
This difference term will be used to form the basis of our analysis of the effects of noise on the performance of the 
DRPE technique in the AE case, see Figure 1. 
 
From Figure 1 we can get the following expression for the decrypted complex data: 

{ }{ } { }{ } { }decryptionFourierencryptionFourierimage RRRf _
1

_
1111 −−−−− ℑ⊗

⎭
⎬
⎫

⎩
⎨
⎧ ℑℑℑ⊗

⎭
⎬
⎫

⎩
⎨
⎧

⎭
⎬
⎫

⎩
⎨
⎧ ×ℑℑℑℑ= , 

(14) 
with simplifies to: 

[ ] { } { }[ ]encryptionFourierdecryptionFourierimaged RRRfA __ ℑ⊕ℑ⊗×= , 

(15) 
where ⊗  and ⊕  denote convolution and correlation operations respectively. 
 
We now make a conjecture regarding the form of the output-decrypted field.  We propose that 

( ) ( ) ( )knkfkAd +≅ λ , 
(16) 

where λ is a constant, f(k) is the sampled input signal and n represents circular white Gaussian noise with zero mean as 
discussed in Section 2. 
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For the AE case we define the input intensity to be 22
ffI == , and from Eqn (16) the corresponding output 

decrypted image intensity is given by: 
[ ] 222 2 nnffI rd ++= λλ . 

(17) 
 
We now return to our definition of the intensity difference error metric, d, given in Eqn (13).  Substituting in from Eqn 
(17), and rewriting, we get that: 
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Expanding Eqn (18) and expressing in terms of a continuous function gives that: 

( ) ( ) ( ) 4222222232422 4412141 nnfnnfnfnffd rrr +++−+−+−= λλλλλλ . 

(19) 
 
3.2  The Expected Value of the NRMS 
We recall from Eqn (1) the expected value of a function and introduce the notation following: 
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Therefore the expected value of d can be written as: 
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Which can also be expressed in terms of sampled data sets as: 
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If we can assume that K is large and we are thus dealing with a large number of samples (pixels), then we can assume 
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and  
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(24) 
Furthermore as discussed above, since the noise is assumed to be a circular random Gaussian variable using the 
Gaussian Moment Theorem we can write that  
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Then substituting back into Eqn (22) using Eqns (23), (24), (25), (26) and (20) and simplifying we get that 
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(27) 
We have now derived the expected value of the intensity difference error metric in terms of the statistical properties of 
the perturbation in the decrypted field and the constant parameter λ.   
 
In our analysis the encryption/decryption process is performed numerically.  The FFT algorithm is used and each pixel 
is represented by a single complex value in the computer.  Thus we neglect all physical modelling issues, e.g. SLM fill 
factor, polarisation and diffraction effects.  Such simplifications are tolerated only because it is the nature of the DRPE 
algorithm, which is our primary consideration here and not the non-ideality introduced by the physical limitations of the 
use of SLMs in physically implemented optical systems. 
 
When dealing with numerical simulations of the DRPE technique, implemented using lossless linear Fourier transforms 
and lossless phase masks, requires that power (total intensity) be conserved between the encryption input and 
decryption output.  This implies that: 
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Therefore in order that power be conserved 
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3.3  The Variance of the Intensity Difference Error Metric 
We now wish to find the variance of d, V[d].  We recall Eqn (3), [ ] ( ) ( )22 fEfEfV −= .  So in order to obtain the 
variance we must calculate the expected value of d2, i.e. E[d2], which is algebraically not trivial.   
To simplify our calculations we substitute each of the six terms in ‘d’, Eqn (19), with a Greek letter as follows: 

( ) 422 1 f−= λα , ( ) rnf 32 14 −= λλβ , ( ) 222 12 nf−= λχ , 2224 rnfλδ = , 24 nfnrλε = & 4n=φ . 

(32) 
therefore our calculation simplifies to: 
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Expanding Eqn (33) give us: 
[ ] [ ] [ ] [ ] [ ] [ ] [ ]αφαεαδαχαβα EEEEEEdE +++++=∑ 22 [ ] [ ] [ ] [ ] [ ] [ ]βφβεβδβχββα EEEEEE ++++++ 2  

[ ] [ ] [ ] [ ] [ ] [ ]χφχεχδχχβχα EEEEEE ++++++ 2 [ ] [ ] [ ] [ ] [ ] [ ]δφδεδδχδβδα EEEEEE ++++++ 2  
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(34) 

However we recall when we simplified Eqn (22) that previously, terms which included [ ]βE  or [ ]εE  averaged to zero.  
If we apply this to Eqn (34) it reduces to: 
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(35) 
We can use the following equation, derived using Eqn (5), to define the expected value of the noise terms: 
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This gives that: 
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Therefore using Eqn (31), our expression for the variance becomes: 
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Eqns (27) and (38) combined allow us to calculate the mean and variance for any greyscale input image having any 
pixel size. 
 
 

5. CONCLUSION 
We examined the Amplitude-Encoding (AE) case of the Double Random Phase Encoding (DRPE) technique.  The cost 
function primarily used in the literature to evaluate an attempted decryption with an original input image is the 
Normalised Root Mean Squared (NRMS) error.  For systems with a relatively small key-space we can evaluate the 
output of every key to get an overall idea of the spread of these keys in key-space.  However for larger systems this is 
not practical.  In this paper we have derived analytical expressions for the mean and the variance for the NRMS cost 
function.  These tools will allow us, in future works, to systematically study the key space for larger input images, i.e. 
256 × 256 pixels, which should agree in the limit to our previous work on the key space analysis of small, 5 × 5 pixels 
key DRPE systems.  By fully analysing the DRPE technique we hope to further advance our overall knowledge of this 
important optical encryption technique. 
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