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Abstract

We introduce the concepts of cooperative substitutes and complements, and use them to explain

when all firms in a research joint venture will choose equal levels of R&D. We show that the second-

order conditions for a symmetric optimum take a particularly simple form, ruling out both excessive

cooperative substitutability and excessive cooperative complementarity, and nesting conditions

already derived in the literature. Finally we apply our results to the comparison between cooperative

and non-cooperative R&D, and show in an important special case that asymmetric outcomes are only

optimal for a very limited range of parameter values.
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1. Introduction

In recent years an extensive theoretical literature has developed with important

implications for several policy debates, including the desirability of research joint
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ventures, R&D subsidies, and strategic trade and environmental policy. This literature

considers two-stage oligopoly games in which first-stage actions affect second-stage

profits, and has frequently focused on symmetric equilibria where identical agents

take identical actions. The case where firms are identical ex ante is a natural starting

point for exploring these issues, since there is often no obvious way of justifying

initial differences between firms. To many authors it has seemed equally natural to

focus on symmetric outcomes, in which firms are identical ex post.

More recently, however, doubts have been expressed concerning the appropriateness

of ex post symmetry in such models. Amir and Wooders (1998), following Henriques

(1990), show in a non-cooperative game with R&D followed by output competition

that symmetric equilibria may be unstable, and they interpret such instability as

implying that the outcome will be asymmetric. Van Long and Soubeyran (1999)

explore the conditions under which symmetric firms which engage in a research joint

venture will choose an asymmetric pattern of R&D. Most notably, Salant and Shaffer

(1999) draw on the insight of Bergstrom and Varian (1985) that a mean-preserving

increase in the variance of marginal costs raises industry profits in Cournot

competition. Building on this, they show that firms may have an incentive to deviate

from a symmetric outcome. Referring in particular to the literature on R&D

cooperation stemming from d’Aspremont and Jacquemin (1988), they assert that

bthis entire literature assumed (incorrectly) that it is joint-profit maximizing for the

cartel to treat identical members equally.Q (Salant and Shaffer (1999, p. 586).) They

also claim that there is a presumption that equilibria in such models will be

asymmetric.1

Notwithstanding these contributions, there does not appear to be a precise statement in

the literature of the conditions under which cooperative equilibria will be ex post

symmetric. The principal objective of this paper is to derive the exact restrictions which

imply that symmetry is optimal, and to compare them with conditions previously derived

by d’Aspremont and Jacquemin and Salant and Shaffer. In order to do this, we introduce

the concept of cooperative substitutes and complements as a convenient way of

summarising how changes in one choice variable affect the marginal contribution of

another to industry profits. This concept is potentially applicable to any context in which

profits are maximised by choice of more than one variable. In this paper we use it to

illuminate the conditions for a research joint venture to choose equal levels of R&D by all

member firms.

Section 2 defines cooperative substitutes and complements, derives the second-order

conditions for symmetric cooperative outcomes in a general model, and relates them to

those of d’Aspremont and Jacquemin and Salant and Shaffer. Section 3 applies our results

to the linear-quadratic model of d’Aspremont and Jacquemin, and considers their

implications for the desirability of allowing R&D cooperation.
1 Salant and Shaffer expand on their criticism of the literature on research joint ventures in their 1998 paper, and

their analysis has already been quoted with approval in at least two textbooks. See Martin (2002, p. 453) and Shy

(1996, p. 233).
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2. Symmetric cooperative optima in a general R&D model

Consider a two-stage game in which first-stage investment in R&D by n ex ante

identical firms lowers their second-stage marginal costs of production. Let x =(x1,. . .,
xn) denote the vector of R&D investments. In this section we consider the cooperative

case, where firms agree to coordinate their investment levels in order to maximise

industry profits.2 We denote total industry profit by a scalar function C(x)=
P

kp
k(x).3

After the levels of R&D are chosen cooperatively, firms compete in a standard non-

cooperative fashion, choosing either outputs or prices. The function C(x) takes into

account the effects of R&D levels on the profits that will be earned in the subsequent

stage.4

2.1. Cooperative substitutes and complements

It turns out that understanding the conditions for maximisation of industry profits is

greatly helped by introducing a new concept which we call cooperative substitutability

and complementarity. We define this as follows:

Definition. The levels of R&D of firms i and j are cooperative substitutes if and only if the

cross-derivative Cij is negative, otherwise they are cooperative complements.

This definition is reminiscent of but not the same as the standard definition of strategic

substitutes and complements due to Bulow et al. (1985). What is at issue here is the effect

of one firm’s R&D on the marginal contribution of another firm’s R&D to industry profits.

By contrast, the concept of strategic substitutes refers to the cross-effect of one firm’s

R&D on the marginal profits of another firm.5 Strategic substitutability and complemen-

tarity is the natural concept to use in a non-cooperative context, and we show below that

the concept of cooperative substitutability and complementarity plays a similar role in the

cooperative context.

Precise conditions for the criteria for cooperative and strategic substitutability to

coincide are given in Appendix A. The most important case where this happens is that of a

symmetric equilibrium with only two firms. Intuitively, this is because the criterion for

strategic substitutability, pij
iN0, is inherently bilateral, even in an n-firm industry, since it

involves the effect of one firm’s R&D on the marginal profitability of another’s. By

contrast, the criterion for cooperative substitutability, Cij N0, can be written as
P

kpij
k,
2 We follow much of the literature in using the terms bR&D cooperationQ and bresearch joint ventureQ
interchangeably, to describe a situation where firms first choose their R&D levels cooperatively and then compete

in the second stage, enjoying the same cost spillovers per unit of rival R&D as they would in the absence of

cooperation. Kamien et al. (1992) refer to this as an bR&D cartelQ, and use the term bRJV cartelQ for the case

where spillovers between cooperating firms are complete. The analysis of Section 2 applies to both cases.
3 Superscripts indicate the firm in question, and subscripts will subsequently be used to denote partial

derivatives. Thus Ci is the partial derivative of the industry profit function with respect to x
i, and Cij is the partial

derivative of Ci with respect to xj.
4 This general specification of second-stage competition follows Leahy and Neary (1997).
5 Following Bulow et al. (1985, p. 494), xi is a strategic substitute for xj if and only if p ij

i is negative.
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which is inherently multilateral. Only in a symmetric 2-firm case do these criteria

coincide.6

2.2. Case I: ex ante equal treatment

The simplest way to model a cooperative equilibrium between ex ante identical firms,

and the one considered by d’Aspremont and Jacquemin (1988), is to confine attention to

cases where all firms invest equally in R&D. This is the natural starting point for

examining cooperation on R&D when side-payments between firms cannot be made.

Since the firms remain independent entities, and engage in non-cooperative competition in

the post-R&D stage, it is stretching credulity to assume that any firm would enter a

cooperative agreement which gave it lower profits than an ex ante identical rival firm.

Hence, in the absence of side payments, we assume that all firms invest equally in R&D

or, following Salant and Shaffer (1999), that they are subject to bequal treatmentQ.
Given the assumption of ex ante equal treatment, there is in effect only a single choice

variable: the level of R&D common to all firms. In other words, we confine attention to

R&D vectors in which all elements are equal, and seek that one which maximises industry

profits. The effect of an arbitrary change in all the xi on industry profits is given by

dC ¼
Xn
i

Cidx
i ð1Þ

Since xi =x and dxi=dx for all i, the first-order condition for an interior optimum (i.e., one

with xi N0, 8 i) is given by:

dC
dx

¼
Xn
i

Ci ¼ nCi ¼ 0 ð2Þ

Clearly this is identical to setting Ci equal to zero. The second-order condition is then that

no equiproportionate increase in the R&D levels of all firms (including firm i) can raise

Ci. We state this formally as follows:

Proposition 1. When firms are treated equally ex ante, the sufficient second-order

condition for a symmetric optimum is:

Cii þ n� 1ð ÞC ij b0; 8i; j; i p j ð3Þ

This generalises the second-order condition first derived by d’Aspremont and Jacquemin

(1988, p. 1134, footnote 7) in the two-firm linear-quadratic case. Provided Eqs. (2) and (3)

hold, industry profits are maximised subject to the constraint that all firms have the same

level of R&D. Note that Eq. (3) gives the second-order condition in full. In particular, it is

not necessary that the second derivative of industry profits with respect to the R&D of a

single firm, Cii, be negative.
6 With only two firms, the criterion for cooperative substitutability becomes pij
i +pij

j b0. By Young’s Theorem,

pij
j =pji

j, and by symmetry pji
j =pij

i , so the criterion reduces to 2pij
i b0, which is equivalent to the criterion for

strategic substitutability. See Appendix A for further details.
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2.3. Case II: ex post equal treatment

Although all firms have identical profit functions (reflecting the facts that they have

identical technology and face identical demands), the research joint venture need not

treat all members equally. As emphasised by Salant and Shaffer (1998), this could arise

when side payments between firms are allowed, either via direct transfers or market-

swapping agreements.7 However, the fact that unequal treatment is possible does not

guarantee that it is optimal. In this section, we seek conditions under which an

unconstrained maximisation will exhibit the same level of R&D by all firms. We call this

situation equal treatment ex post.

As before, the first-order condition for maximisation of industry profits C(x) by choice

of x at a symmetric interior optimum is Ci=0 for all i. The crucial difference from the last

section comes in the second-order conditions, since now all elements of the R&D vector

can be changed independently. Let Cxx(x
o) be the square matrix of second-order partial

derivatives evaluated at a symmetric interior optimum, xo. The second-order sufficient

condition is that Cxx(x
o) is the matrix of a negative definite quadratic form. Therefore,

beginning with negative, the principal minors of the determinant jCxx(x
o)j must alternate

in sign. Let the mth principal minor be obtained by deleting the last n�m rows and

columns of jCxx(x
o)j. Then the special structure of the matrix allows us to write the

second-order condition in a compact form:8

Proposition 2. When firms are not treated equally ex ante, the sufficient second-order

condition for a symmetric optimum is:

� 1ð Þm Cii �Cij

� �m�1
Cii þ m� 1ð ÞCij

�
N0; 8mV n:

�
ð4Þ

This condition is not very transparent. However, its economic implications are much

clearer when it is restated as follows:

Proposition 3. When firms are not treated equally ex ante, necessary and sufficient

conditions for the second-order condition, Eq.(4), to hold at a symmetric optimum are

given by:

Cii þ n� 1ð ÞCij b 0; 8i; j; i p j ð5Þ

Cii �Cij b0 8i; j; i p j ð6Þ

Proof. To prove necessity, we need to show that Eq. (4) implies Eqs. (5) and (6). Consider

therefore Eq. (4) for different values of m. Setting m equal to one gives what we can call

the no-own-deviation condition, Cii b0. Setting m equal to two implies that C ii
2NC ij

2,

which means that the absolute value of Cii exceeds that of Cij. Combined with the no-

own-deviation condition, this implies condition (6). Finally, setting m equal to n (nz2),
7 The precise conditions under which such market-swapping agreements are sustainable have been investigated

by Bernheim and Whinston (1990).
8 See Dixit (1986), following Seade (1983).
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the first part of condition (4) becomes (�1)n(Cii�Cij)
n�1, which from Eq. (6) is negative

for all n. Hence, condition (4) as a whole implies condition (5).

Next, we need to prove sufficiency. Multiplying Eq. (6) by n�1 and adding to Eq.

(5) gives the no-own-deviation condition, Cii b0. This plus Eq. (5) implies that

Cii +(m�1)Cij is negative for all mVn. Combining this with Eq. (6) implies condition

(4). 5

Conditions (5) and (6) have a nice intuitive interpretation. For a symmetric choice of

R&D to maximise industry profits, it must not be possible for any one firm or any

combination of firms to deviate profitably. Proposition 3 shows that Eqs. (5) and (6) are

necessary and sufficient for the second-order conditions to hold, implying that any small

deviation from a symmetric optimum can be expressed as a linear combination of only two

primitive deviations.9

The first kind of primitive deviation is a uniform increase in the R&D of all firms. This

changes the first-order condition for optimal cooperative choice of R&D by a typical firm,

Ci=0, by an amount equal to Cii +(n�1)Cij. To ensure that this deviation is unprofitable

requires that condition (5) hold. We have already seen in Proposition 1 that this condition

is sufficient for a symmetric optimum when firms are treated equally ex ante, the case

considered by d’Aspremont and Jacquemin. A different interpretation can be given to this

condition by recalling our definition of cooperative substitutability and complementarity.

The condition in Eq. (5) implies that Cij cannot exceed �Cii / (n�1). Since Cii must be

negative at the optimum, this means that Cij cannot be too positive, or, in words, that the

optimum should not exhibit too much cooperative complementarity. Henceforward we call

Eq. (5) the Restricted Cooperative Complementarity or RCC Condition. Too much

cooperative complementarity would imply that a uniform increase in R&D by all firms (a

symmetric deviation from a symmetric equilibrium) would raise the marginal contribution

to industry profits of every firm, implying that the initial allocation did not maximise

industry profits.

The second kind of primitive deviation is a reallocation of R&D between any group of

firms, holding their total R&D constant. Suppose, without loss of generality, that the group

consists of the first m firms, where m can take any value between 2 and n. Using Dxi to

denote the change in the R&D of firm i, we therefore have:Xm
1

Dx j ¼ 0 and Dxh ¼ 0; mb hV n: ð7Þ

We can see immediately that this change does not affect the marginal contribution to

industry profits of the R&D of a typical firm h outside the group:

DCh ¼
Xm
j¼1

ChjDx
j ¼ Cij

Xm
j¼1

Dx j ¼ 0; mbhVn: ð8Þ

Here we use the fact that, for small deviations from a symmetric equilibrium, all the cross-

derivatives are equal: Chj=Cij, for all h, i and j. Next, consider the effect on the marginal
9 Note that the no-own-deviation condition, Cii b0, is not part of the conditions in Proposition 3, since it is

implied both by Eq. (4) and by Eqs. (5) and (6).
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contribution to industry profits of a firm in the group which increases its R&D. (Similar

arguments apply, mutatis mutandis, to a firm which reduces its R&D.) The first-order

condition for the R&D of firm i, Ci =0, changes by an amount equal to:

DCi ¼ CiiDx
i þ

Xm
j pi

CijDx
j

¼ CiiDx
i þCij

Xm
j pI

Dx j

¼ Cii �Cij

� �
Dxi ð9Þ

where the final step uses Eq. (7). To ensure that this deviation reduces firm i’s marginal

contribution to industry profits requires that the term in brackets be negative, i.e., that

condition (6) hold. This implies that Cij cannot be less than Cii. This means that Cij

cannot be too negative, or, in words, that the optimum should not exhibit too much

cooperative substitutability. Hence we refer to this as the Restricted Cooperative

Substitutability or RCS Condition. Too much cooperative substitutability would imply

that, following a reallocation of R&D between a group of firms (an asymmetric deviation

from a symmetric equilibrium), the fall in R&D by some of those firms would raise the

marginal contribution to industry profits of firms that increased their R&D sufficiently to

offset the negative own effect on marginal profitability Cii, implying that the initial

allocation did not maximise industry profits.

2.4. The Salant–Shaffer approach: no two-firm deviations allowed

We next want to explore how the second-order conditions derived in the last section

relate to the approach of Salant and Shaffer (1999). They do not explicitly discuss second-

order conditions for a symmetric optimum. Instead, they explore the conditions under

which a small deviation from a symmetric optimum by two firms, keeping their total R&D

fixed, leads to an increase in industry profits. In this section, we focus on Salant and

Shaffer’s central analytic contribution, a sufficient condition for optimal first-stage

behaviour to be asymmetric when asymmetries in marginal costs are costly to introduce,

given by Eq. (7) in their paper. We first derive the Salant–Shaffer condition and then relate

it to the second-order conditions for a symmetric optimum derived in the last section.10

Following Salant and Shaffer, we seek a condition for a reallocation of investment

between two firms, keeping the sum of marginal costs constant, to raise industry profits.

Consider what they call the biso-sum locusQ, x2=g(x1; x*), which gives combinations of x1
10 Because of our C(x) notation, which is not in Salant and Shaffer (1999), we are able to present their condition

in a more compact and general form than in their paper. Whereas they restrict attention to homogeneous-product

Cournot competition, our results also apply, as already noted, when goods are symmetrically differentiated and

when firms compete in either a Cournot or Bertrand manner.
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and x2 along which the sum of marginal costs is constant, when all n�2 other firms keep

their R&D levels at a symmetric level x*. When firm 1 invests x1, firm 2 invests x2=g(x1;

x*) and the other n�2 firms invest x*, industry profits can be written as:

C̃C x1; x4
� �

¼ C x1; g x1; x4
� �

; x4; . . . ; x4
� �

: ð10Þ

Differentiating Eq. (10) with respect to x1 and evaluating at the symmetric R&D vector x*

gives:

C̃C V x4; x4ð Þ ¼ C1 x44ð Þ þ gVC2 x44ð Þ ¼ 0; ð11Þ

The expression in Eq. (11) is zero since C1(x*)=C2(x*) (because x* is symmetric) and

gV(x*; x*)=�1 (as shown by Salant and Shaffer). This is a local minimum when:

C̃CW x4; x4ð Þ ¼ C11 x44Þþ gV½C12ðx44ÞþC21ðx44Þ	 þ ðgVÞ2C22ðx44Þ þ gWC2ðx44ÞN0:
�

ð12Þ

This expression can be simplified since C11(x*)=C22(x*) (because x* is symmetric)

and C12(x*)=C21(x*). As in Salant and Shaffer, denote by xP =(xC,. . ., xC) the

investment combination that maximises industry profit subject to the ex ante equal-

treatment constraint that all firms must invest equally. Then the Salant and Shaffer

condition can be written as:

C̃CW xC; xC
� �

¼ 2 C11 xPP
� �

�C12 xPP
� �� �

þ gWC2 xPP
� �

N0: ð13Þ

When this condition holds, a deviation from symmetry raises industry profits.

We now show that the Salant–Shaffer condition is incompatible with the second-order

condition:

Proposition 4. The Salant–Shaffer condition, Eq.(13), is the converse of the RCS

condition, Eq.(6), at a symmetric interior equilibrium.

Proof. The proof is immediate from inspection of Eq. (13). Since the choice of firms 1 and

2 was arbitrary, we can reexpress Eq. (13) in terms of any two firms i and j. At the

optimum, C2 is zero, and so Eq. (13) can hold if and only if Eq. (6) does not hold. 5

It is straightforward to extend this analysis to the maximisation of social surplus which

Salant and Shaffer also consider in section II.B of their paper. Here too the Salant–Shaffer

condition and the second-order condition for a welfare maximum cannot both hold at a

symmetric interior equilibrium.

While we have shown that Eqs. (13) and (4) are incompatible, it does not follow that a

violation of Eq. (13) implies that Eq. (4) holds. A violation of the Salant–Shaffer condition

is necessary but not sufficient for the second-order condition to hold, as our Proposition 3

shows. The Salant and Shaffer approach is to consider movements away from a symmetric

equilibrium on a path along which the investments of all but two firms are constant. But

there is no justification for restricting attention to such paths in an n-firm problem. What is

required instead is to consider all possible deviations from a candidate optimum, and this

is exactly what the standard second-order condition does.
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3. The d’Aspremont and Jacquemin case

In this section we show how the general results of the previous section specialise to the

linear-quadratic example first explored by d’Aspremont and Jacquemin. Focusing on an

explicit example allows us to relate the general results to underlying parameters in a more

transparent way. It also allows us to address the quantitative importance of the different

conditions. Our strategy is to derive the second-order conditions for a symmetric

cooperative equilibrium and then to show how they relate to the Salant–Shaffer condition

and to the stability condition for the non-cooperative equilibrium.

3.1. The model

As in d’Aspremont and Jacquemin, Salant and Shaffer (1998) and many other papers,

we consider a homogeneous-product duopoly where firms first engage in cost-reducing

R&D and then in Cournot competition. With n firms, the model is most easily solved by

working with variables for a typical firm and for the industry as a whole: we denote these

by xi and Xu
P

kx
k respectively for R&D, and by qi and Qu

P
kq

k for output. Otherwise

the model is standard. Costs of R&D are quadratic, equal to c(xi)2/2 for firm i. Production

costs are independent of output and fall linearly in own and rival R&D. This in turn

implies that they are decreasing in a weighted average of own and industry R&D:

ci ¼ c0 � h xi þ b
X
k p i

xk

 !

¼ c0 � h 1� bð Þxi þ bX
��

ð14Þ

where b is the spillover coefficient. Finally, demand is linear: p =a�bQ. We assume that

Aua�c0N0, 0VbV1 and c N0.
In the second stage, firms choose outputs independently to maximise operating profits

(p�ci)qi. This yields first-order conditions which equate marginal revenue to marginal

cost for each firm: p�bqi =ci. Summing over all firms we can solve for industry output as

a function of industry R&D:

Q ¼ 1

nþ 1ð Þb nAþ h 1þ n� 1ð Þbf gX½ 	 ð15Þ

This in turn allows us to solve for the output of firm i, which is always increasing in ownR&D

but increasing in rival R&D (i.e., industryR&D for given xi) only for high spillovers (b N1/2):

qi ¼ 1

nþ 1ð Þb Aþ h nþ 1ð Þ 1� bð Þxi þ h 2b � 1ð ÞX
� �

ð16Þ

In the first stage, the RJV chooses the levels of R&D to maximise industry profits:

C ¼
Xn
k¼1

kk ; where kk ¼ b qk
� �2 � 1

2
c xk
� �2 ð17Þ
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This yields the first-order conditions for R&D:

Ci ¼
2

nþ 1
h nþ 1ð Þ 1� bð Þqi þ 2b � 1ð ÞQ
� �

� cxi ¼ 0; i ¼ 1; n ð18Þ

These can then be solved for the equilibrium values of R&D.

3.2. Second-order conditions at a symmetric equilibrium

If the RJV is to maximise profits, the second-order conditions with respect to R&D

levels must hold at the optimum. Let us assume now that the equilibrium is symmetric. To

find the second-order conditions, specialise the general expressions from the last section to

the linear-quadratic case and then evaluate them using the derivatives of Eq. (18). The

detailed derivations are given in Appendix B. We show there that Cij is negative, and so

R&D levels are cooperative substitutes, if and only if the spillover parameter is less than a

half. As for the RCC condition (Eq. (5) specialised to the linear-quadratic case), it

becomes:11

Cii þ n� 1ð ÞCij b 0Z g b
1

2

nþ 1

1þ n� 1ð Þb

	2"
ð19Þ

Here, following Leahy and Neary (1996), we use g to denote h2/bc, which can be

interpreted as the relative effectiveness of R&D. Finally, the RCS condition, Eq. (6),

becomes:

Cii �Cij b 0Z g b
1

2 1� bð Þ2
ð20Þ

Note that this is independent of n.

Figs. 1 and 2 illustrate conditions (19) and (20) in {g,b} space, for the case of two firms

(n=2).12 Both conditions can be explained intuitively in terms of the trade-off between the

relative effectiveness of R&D and the degree of cooperative substitutability. An increase in

g makes it more likely that both parts of the second-order conditions will be violated. An

increase in b raises the degree to which R&D levels are cooperative complements. Hence,

starting from a point where the RCC condition just holds, an increase in g must be

compensated by a fall in b (i.e., a decrease in cooperative complementarity) to restore the

condition. Thus the locus corresponding to the RCC condition is downward sloping in Fig.

1. By contrast, starting from a point where the RCS condition just holds, an increase in g
must be offset by an increase in b, and so the locus is upward-sloping.

Given the configuration of the loci in Fig. 1, we can now consider the different regions

in Fig. 2. In Region A, above the locus corresponding to the RCC condition, an

equiproportionate increase in R&D levels raises profits without bound. Hence this region
11 Because of the special functional forms used, both parts of the second-order conditions depend on parameters

only. Hence if they hold at one point they must hold at all. By contrast, in the general model of Section 2, the local

results need not hold globally.
12 Salant and Shaffer (1998) present similar diagrams drawn in {1/g,b} space. Our perspective seems more

natural since the vertical axis is bounded at zero, the case where R&D is either prohibitively expensive or has no

effect on production costs, and so its equilibrium level is always zero.
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of parameter space is not economically meaningful. By contrast, regions B and C (the

difference between them to be considered in the next section) are consistent with a

symmetric optimum if the firms are treated equally ex ante. However, if they are not, then
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the symmetric equilibrium does not satisfy the second-order conditions, since profits can

be increased by reallocating R&D between the two firms. In that case, as Salant and

Shaffer have argued, the pattern of R&D levels which maximises profits for the RJV is

asymmetric. Finally, in Region D the optimum is symmetric irrespective of whether or not

firms are treated equally ex ante.

3.3. Comparison with the non-cooperative equilibria

The preceding discussion might suggest that asymmetric RJV’s are important for a

wide range of parameters. However, we have to recall that this issue is of theoretical and

policy interest in the first place only because of the potential role of RJV’s in leading to

improved outcomes relative to non-cooperative equilibria. For the comparison to be

meaningful, the non-cooperative equilibrium itself must be a meaningful one. In

particular, it should satisfy the standard stability conditions for a non-cooperative Nash

equilibrium.13

The stability conditions for this game have been derived in Leahy and Neary

(1997, Appendix), drawing on Dixit (1986), Hahn (1962) and Seade (1980). As shown

there, for b less than a half, stability of the non-cooperative game requires that the

following condition hold:

bb1=2 : pi
ii � pi

ij b0Z gb
nþ 1

2 1� bð Þ n� n� 1ð Þb½ 	 ð21Þ

Following our earlier discussion of the cooperative case, we can call this condition

bRestricted Strategic SubstitutabilityQ. Conversely, for b greater than a half, stability

requires a different condition which we can call bRestricted Strategic Com-

plementarityQ:14

bN1=2 : pi
ii þ n� 1ð Þpi

ijb0Z gb
nþ 1ð Þ2

2 1þ n� 1ð Þb½ 	 n� n� 1ð Þb½ 	 ð22Þ

These conditions are illustrated for n equal to two in Figs. 1 and 2.15 The small

region denoted by C in Fig. 2 shows the parameter combinations which violate the

RCS condition but satisfy the non-cooperative stability condition. Only in region C

can asymmetric cooperative equilibria be compared with symmetric non-cooperation.

For higher values of n, the conclusions from Fig. 2 are reinforced. As already noted, the

RCS condition, the boundary between regions C and D, is independent of n. By contrast,

as n rises the RCC condition becomes more demanding for b greater than a half. From Eq.

(19), an increase in n reduces the permissible level of cooperative complementarity,

leading the curve to pivot clockwise around the point where b equals a half. As a result

region A expands at the expense of region D. Finally, the curve representing the non-
13 An alternative interpretation, explored by Amir and Wooders (1998), is to assume that, when the symmetric

Nash equilibrium in R&D is unstable, the outcome will be an asymmetric equilibrium.
14 These conditions are both necessary and sufficient when n is even. When n is odd, condition (21) is only

sufficient for stability.
15 Henriques (1990) was the first to explore the stability of non-cooperative equilibria in this model. The case

corresponding to the parameter values considered by her is denoted by point H in Fig. 1.
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cooperative stability condition (21) falls as n rises, squeezing region C. In the limit, as n

becomes very large, Eq. (21) coincides with Eq. (20) so this region vanishes, and there are

no parameter combinations where a symmetric non-cooperative equilibrium can be

compared with an asymmetric RJV.
4. Conclusion

In this paper we have considered the choice of R&D levels in an industry where

firms cooperate to form a research joint venture. We introduce the concept of

cooperative substitutes and complements, and use it to throw light on the conditions

for a research joint venture to choose equal levels of R&D for all member firms. Our

principal result, Proposition 3, shows that the second-order condition for a symmetric

choice of R&D is equivalent to requiring that only two kinds of deviation from the

optimum are unprofitable. First is a uniform increase in the R&D of all firms. This

is the sole deviation which must be unprofitable if firms are required to be treated equa-

lly ex ante, perhaps because side payments are ruled out, the case considered by

d’Aspremont and Jacquemin (1988). For this deviation to be unprofitable requires a

restriction on the degree of cooperative complementarity. The second kind of deviation

which must be unprofitable is a reallocation of R&D between an arbitrary subset of

firms, holding constant their total level of R&D. For this deviation to be unprofitable

requires a restriction on the degree of cooperative substitutability, which we show is

the converse of the condition derived by Salant and Shaffer (1999) in the case of a two-

firm deviation.

In addition to considering the conditions for a profit-maximising cooperative

outcome to be symmetric, we compare these conditions with those (already in the

literature) for a non-cooperative equilibrium to be stable. In so far as these models are

relevant to policy, it is because they throw light on the issue of whether cooperative

research joint ventures should be allowed in preference to a non-cooperative

oligopolistic equilibrium. Hence it is also necessary to consider the circumstances in

which such an equilibrium makes sense, by checking its second-order and stability

conditions (see Henriques, 1990 and Amir and Wooders, 1998). We show that, for a

widely used example, the comparison between an asymmetric cooperative outcome

and a symmetric non-cooperative equilibrium is relevant for a very small range of

parameters.

How do our results relate to the critique of the literature on R&D cooperation presented

by Salant and Shaffer (1998, 1999)? Whereas they claim to find berror Q in much of the

literature on two-stage investment games (including our 1997 paper), we do not assert that

their specific statements are false.16 Rather, we show that they are true but incomplete. In
16 Our criticisms apply to Salant and Shaffer’s Sections II.B and III and not to their Section II.A, which discusses

games where asymmetries in marginal costs are costless (such as learning by doing or resource extraction with

depletion effects). Clearly a symmetric equilibrium is not profit-maximising in such models (since it violates the

second-order condition), and Salant and Shaffer do not present any examples from the literature which suggest

otherwise.
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particular, whereas they derive a sufficient condition for a two-firm deviation from the

optimum to be profitable, we show that all possible deviations from a candidate symmetric

optimum can be expressed as combinations of only two primitive deviations, one of which

is the Salant–Shaffer type.

Where we disagree with Salant and Shaffer is in the interpretation of their results,

as for example when they say of research joint ventures: bthere is a strong

presumption that nonidentical actions by identical agents in the first stage are

required to maximize social surplus and industry profit.Q (Salant and Shaffer, 1999,

p. 586, emphasis in original). But in models where asymmetries in marginal costs

are costly, there is no presumption that symmetric outcomes will fail to maximise

profits or social welfare. On the contrary, they will do so locally, provided the

objective function is sufficiently concave in the neighbourhood of the symmetric

optimum, which in these models usually means, provided the investment or R&D

cost function is sufficiently convex. How much convexity is required depends on the

second-order conditions, no more and no less. Of course, to determine whether any

point is a global optimum requires information about the objective function

everywhere, but the Salant–Shaffer condition which (like the second-order conditions

as a whole) is evaluated locally has nothing new to say on this. Hence, provided the

appropriate second-order conditions are satisfied, all the conclusions in the extensive

literature on research joint ventures are immune to the criticisms of Salant and

Shaffer.

In conclusion, the concept of cooperative substitutes which we have introduced is

likely to have other applications. Here we have considered only the case where

cooperation occurs in the first stage of a two-stage game. However, it is also relevant

in cases where cooperation is permanent, such as multi-plant or multi-product firms.

For example, economies of scope in production of two goods by a multi-product firm

tends to make them cooperative complements, although this effect may be offset if

they are also substitutes in demand. In addition, while we have considered only the

case where the cooperative includes all firms in the industry, it is also relevant to

cooperation between a subset of firms. In that case the concept of cooperative

substitutes is relevant to allocation within the cooperative, whereas the standard

concept of strategic substitutes is relevant to external competition.
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Appendix A. Cooperative versus strategic substitutes and complements

Unlike the definition of strategic substitutes and complements, the definition of

cooperative substitutes and complements is symmetric: if xi is a cooperative substitute
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for xj, then the converse is also true. To determine the relationship between the two

types of substitutability and complementarity, recall that industry profits equal the sum

of the profits of all n firms: C=
P

kp
k. Differentiating with respect to the R&D of firm i

gives:

Ci ¼
X
k

pk
i ð23Þ

In a symmetric equilibrium, this simplifies to:

Ci ¼ pi
i þ n� 1ð Þpi

j ð24Þ

(where we use the fact that pi
j =pj

i). The own second derivative of industry profits

therefore becomes:

Cii ¼
X
k

pk
ii ð25Þ

or with symmetry:

Cii ¼ pi
ii þ n� 1ð Þpi

jj ð26Þ

Finally, the cross derivative of industry profits, which is negative if and only if R&D

levels are cooperative substitutes, equals:

Cij ¼
X
k

pk
ij ð27Þ

or with symmetry:

Cij ¼ 2pi
ij þ n� 2ð Þph

ij ð28Þ

To derive Eq. (28) from Eq. (27), we use the facts that pij
i =pji

j from symmetry; that

pij
k =pij

h for all h and k not equal to i or j, from symmetry; and that pji
j =pij

j from Young’s

Theorem. Crucially, however, pij
i is not equal to pij

h when h, i and j are all different.

This is true even in the linear-quadratic case: see below.

Eq. (28) shows that the criteria for the two forms of substitutability do not coincide,

even when we consider only symmetric equilibria. They coincide in two special cases.

The first is where there are only two firms. In that case the final term in Eq. (28) vanishes

and the criterion for cooperative substitutes, Cij b0, has the same sign as that for

strategic substitutes, pij
i b0, irrespective of the functional forms and of the nature of

competition. The second is the linear-quadratic model of Section 3, where, for all n,

R&D levels are both cooperative and strategic substitutes if and only if b is less than

one half. To see this, consider first the criterion for strategic substitutability, obtained

by differentiating twice the expression in Eq. (17) for a single firm’s profits. This

gives:

pi
ij ¼

2

nþ 1ð Þ2
gc 2b � 1ð Þ n� n� 1ð Þb½ 	 ð29Þ
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This is clearly negative if and only if b is less than one half. Next, a similar direct

calculation leads to the effects of a change in one firm’s R&D on the responsiveness of a

second firm’s profits to a change in a third firm’s R&D:

ph
ij ¼

2

nþ 1ð Þ2
gc 2b � 1ð Þ2 ð30Þ

Surprisingly, this is always positive, strictly so except when b equals a half. (Note also that

it differs from Eq. (29).) Finally, substituting from Eqs. (29) and (30) into Eq. (28) gives

the expression for Cij derived by a different route in Eq. (32) below. Like Eq. (29), this is

negative if and only if b is less than one half, confirming that the criteria for strategic and

cooperative substitutability coincide in this case.
Appendix B. Second-order conditions in the linear-quadratic case

It turns out to be most convenient to derive the cross second derivative first. Inspecting

the first-order condition (18) and the expressions for industry and firm output (Eqs. (15)

and (16)), we can see that the cross derivative is simply the partial derivative of Ci with

respect to industry R&D X. Thus differentiating Eq. (18) gives:

Cij ¼
BCi

BX
¼ 2

nþ 1
h

�
nþ 1ð Þ 1� bð Þ Bq

i

BX
þ 2b � 1ð Þ dQ

dX

	
ð31Þ

Calculating Bqi/BX and dQ/dX from Eqs. (16) and (15), respectively, and substituting into

Eq. (31) gives the cooperative substitutability term:

Cij ¼
2

nþ 1ð Þ2
gc 2b � 1ð Þ nþ 2 1� bð Þ½ 	 ð32Þ

This is clearly negative, and so R&D levels are cooperative substitutes, if and only if b is

less than a half, as stated in the text.

Next the own second derivative, which must be negative for the no-own-deviation

condition to hold, can be written as follows:

Cii ¼
BCi

Bxi
þ BCi

BX
¼ 2h 1� bð Þ Bq

i

BX
� c þCij ð33Þ

Subtracting Eq. (31) from this and substituting for Bqi/BX gives the RCS condition:

Cii �Cij ¼ 2gc 1� bð Þ2 � c b 0 ð34Þ

Finally the RCC condition can be calculated in a similar way:

Cii þ n� 1ð ÞCij ¼ 2gc

"
1þ n� 1ð Þb

nþ 1

#2
� c b 0 ð35Þ



D. Leahy, J.P. Neary / Int. J. Ind. Organ. 23 (2005) 381–397 397
References

Amir, Rabah, Wooders, John, 1998. Cooperation vs. competition in R&D: the role of stability of equilibrium.

Journal of Economics 67, 63–73.

Bergstrom, Theodore C., Varian, Hal R., 1985. When are Nash equilibria independent of the distribution of

agents’ characteristics? Review of Economic Studies 52, 715–718.

Bernheim, Douglas B., Whinston, Michael D., 1990. Multimarket contact and collusive behavior. Rand Journal of

Economics 21, 1–26.

Bulow, Jeremy I., Geanakoplos, John D., Klemperer, Paul D., 1985. Multimarket oligopoly: strategic substitutes

and complements. Journal of Political Economy 93, 488–511.

d’Aspremont, Claude, Jacquemin, Alexis, 1988 (December). Cooperative and noncooperative R&D in duopoly

with spillovers. American Economic Review 78, 1133–1137.

Dixit, Avinash, 1986 (February). Comparative statics for oligopoly. International Economic Review 27, 107–122.

Hahn, Frank H., 1962. The stability of the Cournot oligopoly solution. Review of Economic Studies 34,

329–331.

Henriques, Irene, 1990. Cooperative and noncooperative R&D in duopoly with spillovers: comment. American

Economic Review 80, 638–640.

Kamien, Morton I., Muller, Eitan, Zang, Israel, 1992. Research joint ventures and R&D cartels. American

Economic Review 82, 1293–1306.

Leahy, Dermot, Neary, J. Peter, 1996. International R&D rivalry and industrial strategy without government

commitment. Review of International Economics 4, 322–338.

Leahy, Dermot, Neary, J. Peter, 1997. Public policy towards R&D in oligopolistic industries. American Economic

Review 87, 642–662.

Martin, Stephen, 2002. Advanced Industrial Economics, Second edition. Basil Blackwell, Oxford.

Salant, Stephen W., Shaffer, Greg, 1998. Optimal asymmetric strategies in research joint ventures. International

Journal of Industrial Organization 16, 195–208.

Salant, Stephen W., Shaffer, Greg, 1999. Unequal treatment of identical agents in Cournot equilibrium. American

Economic Review 89, 585–604.
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