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Abstract We examine what, if anything, we can learn about obesity rates using self-
reported BMI once we allow for possible measurement error. We use self-reported
obesity rates, along with estimates of misclassification rates, to derive upper and lower
bounds for the true population obesity rate. These bounds are then used as the basis for
obesity rankings. Our results show, that once measurement error is taken into account,
it is difficult to obtain meaningful rankings across European countries. However, our
analysis shows that it is still possible to rank US states by obesity status using only
minimal assumptions on thenature of the error process.As a result, cross-state variation
in self-reported BMI, when used in conjunction with our bounds, may still provide a
useful source of information for understanding the causes and consequences of obesity
in the USA.

Keywords Obesity · Self-reporting errors · Misclassification · Bounds

JEL Classifiaction C13 · C14 · I1

1 Introduction

Obesity is an important cause of morbidity, disability and premature death and
increases the risk of a wide range of chronic diseases (WHO 2009; Antonanzas and
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Rodriguez 2010). Devising effective policies to tackle the growing obesity problem is a
health priority for many countries. One popular strategy used in helping to devise such
strategies is to use cross-country or cross-state variation in obesity rates to identify
effective policies (Loureiro and Nayga 2005; O’Neill and O’Neill 2007; Costa-Fonte
et al. 2009, 2010; Nanney et al. 2010; Taber et al. 2011; Cawley et al. 2013). However,
due to data limitations, comparisons of this nature often rely on self-reported obesity
levels. There is a large body of evidence that suggests that individuals underreport
their weight and overstate their height, which leads to biased estimates of obesity
rates (Gorber et al. 2007).1 This in turn may limit the usefulness of these data when
informing policy makers.

A number of correction strategies have been proposed to deal with the problem of
measurement error in self-reported height and weight (Plankey et al. 1997; Giacchi
et al. 1998; Ezzati et al. 2006; Nyholm et al. 2007; Dauphinot et al. 2009; Stommel
and Schoenborn 2009; Shields et al. 2011). While such corrections tend to reduce
misclassification rates, they do not eliminate it (Visscher et al. 2006; Nyholm et al.
2007; Shields et al. 2011). Rather than trying to obtain corrected measures of obesity,
we examine what, if anything, one can learn about obesity using self-reported data
and imposing only minimal assumptions on the error process. In particular, we use
self-reported obesity rates, alongwith estimates of themisclassification rates, to derive
upper and lower bounds for the population obesity rate in ten European countries and
each of the US states. These bounds are sharp under the maintained assumptions, in
that they exhaust all the information available in the self-reported data. We show that
although the presence of measurement error makes it difficult to obtain meaningful
rankings across European countries, the estimated bounds are narrow enough to rank
US states by the level of obesity.

2 Methods

Obesity is typically measured using body mass index (BMI), where BMI = weight in
kg/height inm2. Individuals are classified as obese if their BMI exceeds 30. There have
been a number of recent papers examining the use of BMI as a measure of obesity. For
instance, Burkhauser and Cawley (2008) and O’Neill (2015) examine the sensitivity
and specificity of BMI-based tests for obesity, relative to alternative measures such as
bioelectrical impedance analysis or waist circumference-based measures. The results
in both these papers suggest that BMI-based measures of obesity may suffer from
high rates of false negatives (or low sensitivity); there is a danger that BMI (even
when based on clinically measured height and weight) may underreport true obesity.
In addition, some papers have discussed the appropriateness of a uniform threshold

1 As well as making it difficult to determine true underlying prevalence rates, measurement error also
causes problemswhen trying to estimate relationships between themismeasured variable and other correctly
measured outcomes. Carroll et al. (2006) provide an excellent general summary of work in this area, while
O’Neill andSweetman (2013) provide a recent discussion and analysis in the specific context ofmismeasured
obesity. However, this is not the focus of the current paper. We also follow the vast majority of research
and public discussion in this area and treat body mass index as a satisfactory measure of obesity (for some
discussion of this issue, see Burkhauser et al. 2009).
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for BMI-based obesity measures when applied to different groups (Hu 2008). We do
not focus on either of these issues in this paper. Instead, we take the standard BMI
measure and threshold, which despite its potential weaknesses is still by far the most
popular measure of obesity, and examine the informational content of self-reported
obesity rates in this context. To do this, we use bounds developed in Molinari (2008)
and Nicoletti et al. (2011).

Let X∗ denote the true measure of BMI and D∗
X a true obesity indicator equal

to one if X∗ > 30 and zero otherwise. The true obesity rate is given by Pr(D∗
X =

1) = Pr(X∗ > 30). Typically, we do not have access to X∗ and must rely on a self-
reported measure, X . The observed obesity indicator DX is equal to one if X > 30 and
zero otherwise, and the observed obesity rate is Pr(DX = 1) = Pr(X > 30). When
X∗ �= X , the observed BMI level is measured with error. Molinari (2008) provides
direct bounds in the presence of misclassification. The simplest bounds are obtained
under the assumption that

Assumption 1

Pr(DX∗ �= DX ) ≤ λ1 < 1.

Under this assumption, tight bounds on Pr(DX∗ = 1) are given by

UB1 = min {Pr(DX = 1) + λ1, 1}
LB1 = max {Pr(DX = 1) − λ1, 0} (1)

Alternative bounds follow from the imposition of alternative restrictions. If we assume

Assumption 2

Pr (DX = 1|DX∗ = 0) ≤ Pr (DX = 0|DX∗ = 1) ≤ λ2 < 1,

then by manipulating the bounds reported in (3.7) and (3.8) of Molinari (2008), we
can establish the following bounds for the obesity rate2

UB2 = min
{
Pr(DX=1)

1−λ2
, 1

}

LB2 = max
{
Pr(DX=1)−λ2

1−2λ2
, 0

} if Pr(DX = 1) < .5 and λ2 < .5. (2a)

UB2 =
{
Pr(DX=1)

1−λ2

}

LB2 = 0
if 1 − Pr(DX = 1) > λ2 ≥ 5. (2b)

Assumption 2 states that it is more likely for obese people to report a BMI below the
obesity threshold than it is for non-obese people to report a BMI above the threshold.

Nicoletti et al. (2011) consider restrictions on the indirect misclassification proba-
bilities, Pr(DX∗ = x∗|DX = x). Using

2 Additional bounds are possible to cover other configurations of Pr(DX = 1) and λ2, but the bounds in
(2a) and (2b) cover all the cases observed in our later empirical analyses.
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Assumption 3

Pr (DX∗ = 0|DX = 1) ≤ Pr (DX∗ = 1|DX = 0) ≤ λ3 < 1,

they derive the following bounds:

UB3 = Pr(DX = 1)(1 − λ3) + λ3
LB3 = Pr(DX = 1)

(3)

If we assume that Assumptions 1–3 all hold, we can combine the information from the
three individual bounds. The resulting identification interval is given by {LB∗,UB∗},
where LB∗ is the maximum between {LB1,LB2,LB3} and UB∗ is the minimum
between {UB1,UB2,UB3}. We check the validity of all these assumptions later.

3 Data

To estimate the misclassification rate, we use two data sets: the National Health and
Nutrition Examination Survey (NHANES) for the USA and the Surveys of Lifestyle
Attitudes and Nutrition (SLAN) for Europe. The NHANES is a programme of studies
designed to assess the health and nutritional status of adults and children in the USA.
Earlier waves of the NHANES data have been used previously to examine the extent of
misclassification error in self-reportedBMI (Villanueva 2001;Kuczmarski et al. 2001).
We use the NHANES 2009–2010 to derive our misclassification rates, as the timing is
consistent with the 2010 Behavioural Risk Factor Surveillance System (BRFSS) used
to derive obesity rates across US states later in the paper. The NHANES 2009–2010
data set contains data for 10,537 individuals of all ages. Interviews were carried out
between 1 January 2009 and 31 December 2010. When we restrict attention to white
individuals aged between 18 and 65, with both self-reported and recorded BMI, we
have 1055 women and 1030 men.

When estimating misclassification rates for the European analysis, we use the Irish
SLAN data. The SLAN data are cross-sectional surveys of Irish men and women
conducted in 1998, 2002 and 2007. These data have been used to examine trends
in obesity in Ireland (Shiely et al. 2010) and provide key inputs into health policy
making in Ireland (National Taskforce on Obesity 2005). We use the 2002 SLAN data
to estimate European misclassification rates so as to be consistent with the timing of
the European Community Household Panel data used for the European analysis.3

In addition to self-reported measures of height and weight, both the NHANES
and SLAN data contain independent measures of the respondent’s height and weight.
Comparing obesity status on the basis of self-reported and recorded measures of BMI
allowsus to estimate the underlyingmisclassification rates in bothdata sets. In addition,
the availability of two independent auxiliary data sources also allows us check the
robustness of the assumptions imposed on the misclassification rates in deriving our
bounds.

3 None of the substantive results in our paper change if we use the 1998 or 2007 SLAN data instead of the
SLAN 2002 data or the NHANES III data instead of NHANES 2009–2010.
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Table 1 Summary statistics for ECHP data

Country Total sample size Overall obesity rate Male obesity rate Female obesity rate

Italy 10,866 .075 .085 .066

Ireland 3142 .085 .085 .085

Sweden 4406 .091 .099 .082

Denmark 3109 .091 .091 .091

Greece 6817 .093 .099 .088

Portugal 8270 .095 .088 .103

Belgium 3338 .100 .117 .085

Austria 4331 .104 .109 .099

Spain 8897 .123 .136 .110

Finland 4433 .127 .123 .130

Average .098 .103 .093

In order to compare obesity rates across Europe, we use the European Community
Household Panel (ECHP). The ECHP provides self-reported BMI for ten European
countries from 1998 to 2001.4 We use data for 2001. In keeping with the earlier
restrictions, we limit our analysis to those aged between 18 and 65. Summary statistics
are provided in Table 1. In general, self-reported obesity rates are higher for men than
for women. In keepingwith Brunello and d’Hombres (2007), we find that self-reported
obesity rates vary across countries with Italy having the lowest rate and Finland the
highest.5

When comparing obesity rates across US states, we use the 2010 Behavioural Risk
Factor Surveillance System (BRFSS). The BRFSS is a telephone survey conducted
by the Centers for Disease Control and Prevention in the USA. There are 451,075
total records for 2010. Such a large sample size makes it possible to compute reliable
state-level descriptive statistics. We limit our analysis to whites aged between 18 and
65.6 Summary statistics for men and women, which are given in Table 2, show that
Mississippi has the highest rate of obesity for white men and that West Virginia had
the highest rate for white women. Although the BRFSS has the advantage of large
sample sizes, it is similar to the ECHP in that only self-reported weight and height
are available. In this paper, we examine the extent to which meaningful rankings of
obesity across countries and states persist after accounting for misclassification error.

4 France, Germany, the Netherlands, the UK and Luxembourg also participated in the ECHP, but the height
and weight data needed to construct BMI were not available for these countries.
5 Our obesity rates differ to those reported in Brunello and d’Hombres (2007) because we look at all
respondents, whereas they focus on employees working at least 15h. They also trim the sample excluding
people with BMI < 15 or BMI > 35. These cut-off points correspond approximately to the bottom .05 and
top 2% of the sample, respectively. We include all observations in our analysis.
6 We have also carried out the analysis for all races together. This had no effect on the key findings of the
paper.
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Table 2 Summary statistics for BRFSS data

State Total sample size Overall
obesity rate

Male obesity
rate

Female
obesity rate

Alabama 3183 .32 .33 .31

Alaska 1088 .30 .29 .31

Arizona 2250 .28 .28 .28

Arkansas 1754 33 .37 .30

California 6866 .24 .25 .23

Colorado 6507 .22 .25 .20

Connecticut 3284 .24 .28 .21

Delaware 2048 .29 .30 .28

District of Columbia 1295 .11 .12 .11

Florida 15,880 .31 .33 .29

Georgia 2576 .29 .30 .28

Hawaii 1448 .20 .21 .18

Idaho 3960 .28 .30 .27

Illinois 2502 .28 .30 .26

Indiana 5354 .33 .35 .31

Iowa 3505 .31 .34 .29

Kansas 4723 .33 .35 .32

Kentucky 4777 .35 .36 .34

Louisiana 3128 .30 .34 .28

Maine 5079 .30 .30 .30

Maryland 4446 .28 .33 .25

Massachusetts 8544 .26 .30 .23

Michigan 4216 .33 .34 .32

Minnesota 5566 .26 .29 .24

Mississippi 2978 .33 .38 .30

Missouri 2722 .34 .34 .34

Montana 4069 .26 .28 .24

Nebraska 9270 .32 .34 .31

Nevada 2007 .26 .30 .23

New Hampshire 3749 .29 .30 .27

New Jersey 5882 .25 .30 .21

New Mexico 2363 .24 .25 .24

New York 4032 .26 .30 .23

North Carolina 5754 .28 .30 .27

North Dakota 2875 .31 .34 .29

Ohio 5423 .32 .34 .31

Oklahoma 3430 .33 .32 .33

Oregon 2564 .30 .30 .30
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Table 2 continued

State Total sample size Overall
obesity rate

Male obesity
rate

Female
obesity rate

Pennsylvania 5992 .31 .32 .30

Rhode Island 3619 .28 .30 .27

South Carolina 3515 .31 .33 .30

South Dakota 3450 .31 .34 .28

Tennessee 2936 .34 .33 .34

Texas 6097 .30 .32 .28

Utah 6517 .25 .28 .22

Vermont 4312 .25 .26 .25

Virginia 2701 .30 .31 .28

Washington 10,520 .30 .30 .29

West Virginia 2651 .36 .37 .35

Wisconsin 2587 .30 .31 .28

Wyoming 3412 .27 .29 .25

Table 3 Misclassification rates from NHANES 2010 and SLAN 2002 data

Men Women

NHANES 2010
estimated value (SE)

SLAN
2002
estimated
value (SE)

NHANES 2010
estimated value (SE)

SLAN 2002
estimated
value (SE)

Pr(DX∗ �= DX ) .07 (.008) .116 (.026) .047 (.006) .103 (.022)

Pr (DX = 1|DX∗ = 0) .02 (.005) 0 .01 (.004) .0357 (.0157)

Pr (DX = 0|DX∗ = 1) .17 (.019) .40 (.075) .121 (.017) .318 (.07)

Pr (DX∗ = 0|DX = 1) .035 (.009) 0 .021 (.008) .143 (.058)

Pr (DX∗ = 1|DX = 0) .086 (.01) .139 (.03) .058 (.0097) .094 (.0238)

The misclassification rates for the SLAN data are based on the numbers reported in Table 2 of Shiely et al.
(2010). Their report is based on individuals aged 18 and older. Unfortunately, the public release version
of the 2002 data does not contain the clinical results, so we cannot directly calculate the misclassification
rate for the 18–65 group. However, we have used later waves of the SLAN data to examine the sensitivity
of our findings to the inclusion of the older workers when calculating the rate and found that it made little
difference to the results

4 Results

Table 3 reports the estimated misclassification rates from NHANES and SLAN. The
estimated misclassification rate is approximately 7 and 5% for men and women in the
NHANES data and 10–11% in the SLAN data. However, the Irish and US misclassi-
fication rates estimates are not statistically significantly different from each other.

Both auxiliary data sets provide clear support for the direct monotonicity assump-
tion (Assumption 2). Very few people report BMI’s above the obesity threshold when
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Table 4 Estimated bounds by country for men and women

Country Men Women

(λ1 = .168, λ2 = .55
and λ3 = .199)

(λ1 = .147, λ2 = .458
and λ3 = .142)

LB∗ UB∗ LB∗ UB∗

Denmark .09143 .20319 .09125 .168371

Belgium .11701 .26003 .08480 .15646

Ireland .08485 .18857 .08509 .15699

Italy .08460 .18801 .06559 .12103

Greece .09845 .21878 .08816 .16267

Spain .13552 .30117 .10975 .202492

Portugal .08778 .19509 .10261 .189321

Austria .10903 .24229 .09936 .183324

Finland .12305 .27346 .13039 .240583

Sweden .09986 .22192 .08232 .151884

For each country, the estimates of the lower and upper bounds are reported

their true BMI is below 30. In contrast, the proportion of the NHANES sample who
report a BMI below 30 when their recorded measure exceeds the obesity threshold is
12% for women and 17% for men. The corresponding estimates based on the Irish
data are 32 and 40%, respectively. The data also provide support for the indirect
monotonicity assumption (Assumption 3). The condition is violated in only one of the
four samples we consider (women in the SLAN data).7,8

In the analysis that follows, we use the misclassification rates for the Irish SLAN
data when estimating the bounds for the ten European countries and the misclassifica-
tion rates from the NHANES data when estimating the bounds for the US states. We
follow Nicoletti et al. (2011) and set the bounds on the misclassification probabilities
equal to the estimated values plus twice their standard errors. We then use these mis-
classification rates to estimate upper and lower obesity bounds as described in Sect. 2.

Table 4 reports the upper and lower obesity bounds {LB∗,UB∗} for our tenEuropean
countries.9 We first use these bounds to compare the male and female obesity rates

7 Although we use the 2002 SLAN data because its timing corresponds to the timing of the ECHP data,
we also checked misclassification rates using the 1998 and 2007 SLAN data. Assumptions 2 and 3 hold for
both men and women in both these data sets.
8 We have also used the NHANES data to check whether the misclassification rates reported for the USA
vary by region. Unfortunately, the public release file of the NHANES data does not include state identifiers.
However, we can compare misclassifcation rates by census region and fail to reject the null hypothesis that
the misclassification rates are equal across regions.
9 The bounds for both men and womenmake use of all three assumptions. Although the point estimates for
the 2002 SLAN data suggest that Assumption 3may be violated for women, we cannot reject the hypotheses
that the two rates are equal. The effect of relaxing this assumption when calculating the bounds for women
is to widen the interval even further [the lower bound becomes zero for all countries]. This does nothing to
change the substantive findings of the paper.
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within countries. Despite the general tendency for male obesity rates to be higher than
female obesity rates, we see that the bounds for men and women overlap in every
country. Consequently, it is not possible to make any comparisons across gender once
the potential loss in information arising from measurement error is accounted for.

Wenext determine the extent towhich one canmake rankings across these countries.
To distinguish between countries, we require the upper bound for one country to
be less than the lower bound for another country. Once again meaningful rankings
are very difficult given the width of the bounds. Of all the comparisons available
across European countries, the only comparison that is robust to the adjustment for
measurement error is that the obesity rate for women in Finland is higher than that
for women in Italy. It is important to emphasise that this is a problem of identification
resulting from measurement error rather than one of sample size. Once we allow for
the loss of information inherent in self-reported obesity measured using the SLAN
misclassification rates, there is simply not enough information in the data to make
meaningful distinctions across countries. Simply obtaining larger samples (or more
of the same type of data) will not solve this problem.

In the remainder of this section, we report the results when our bounds are applied
to differences in obesity rates across US states. We begin by looking at the US gender
gap in obesity. The obesity rates reported in Table 2 show that the raw self-reported
obesity rate is higher for men than for women in 49 of the 51 cases anlaysed. However,
once again, the results in Table 5 reveal that it is more difficult to make comparisons
across gender once we allow for measurement error. The gender gap is robust to
our adjustment for measurement error in only eleven of the states. These states are
Arkansas, Colorado, Connecticut, Louisiana, Maryland, Massachusetts, Mississippi,
Nevada, New Jersey, New York and Utah. In each of these states, the bounds indicate
that the obesity rate for white males is higher than that for white females, even when
the error in self-reported BMI is taken into account. In all the other states, the obesity
bounds for men and women overlap.

However, in contrast to the earlier European analysis, the results in Table 5 show that
meaningful rankings across US states based on self-reported obesity are still possible
with only minimal assumptions on the error process. For men, one can distinguish
between a set of high-obesity states consisting of {Arkansas, Indiana, Iowa, Kentucky,
Louisiana, Michigan, Mississippi, Missouri, Nebraska, North Dakota, Ohio, South
Dakota, Tennessee and West Virginia} relative to a grouping of low-obesity states
consisting of {California, Colorado, District of Columbia, Hawaii, New Mexico and
Vermont}. For women, the number of meaningful rankings is even larger though the
groupings are quite similar to the male classes. The high-obese states for females
include Alabama, Indiana, Kentucky, Michigan, Nebraska, Ohio, Oklahoma, Penn-
sylvania, Tennessee and West Virginia, and the low-obese states include {California,
Colorado, Connecticut, District of Columbia, Hawaii, Maryland, Massachusetts, Min-
nesota, Montana, Nevada, New Jersey, New Mexico New York, Utah, Vermont and
Wyoming}.

These groupings are very similar to the unadjusted groupings that appear in the
popular press. Since 2008, Gallup has published a well-being index for each state in
the USA which includes the state obesity rates as a component. These indices are
constructed using data from telephone interviews in which data on health perceptions,
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Table 5 Estimated bounds by state for men and women

State Men Women
(λ1 = .086, λ2 = .2096
and λ3 = .106)

(λ1 = .069, λ2 = .16
and λ3 = .077)

LB∗ UB∗ LB∗ UB∗

Alabama .3321 .4029 .3088 3620

Alaska .2888 .3642 .3089 .3621

Arizona .2830 .3580 .2752 .3276

Arkansas .3661 .4333 .3027 .3564

California .2534 .3207 .2274 .2707

Colorado .2429 .3073 .1962 .2336

Connecticut .2747 .3475 .2049 .2440

Delaware .2993 .3735 .2792 .3325

District of Columbia .1167 .1476 .1094 .1302

Florida .3336 .4042 .2916 .3461

Georgia .3034 .3772 .2806 .3340

Hawaii .2123 .2685 .1810 .2155

Idaho .2989 .3732 .2740 .3262

Illinois .2967 .3712 .2642 .3146

Indiana .3495 .4184 .3139 .3667

Iowa .3406 .4105 .2933 .3478

Kansas .3493 .4183 .3153 .3680

Kentucky .3621 .4298 .3433 .3939

Louisiana .3395 .4095 .2806 .3340

Maine .3017 .3757 .3009 .3547

Maryland .3247 .3964 .2520 .3000

Massachusetts .2938 .3687 .2278 .2712

Michigan .3431 .4127 .3139 .3738

Minnesota .2852 .3609 .2425 .2887

Mississippi .3771 .4432 .2989 .3529

Missouri .3419 .4116 .3377 .3887

Montana .2760 .3492 .2422 .2884

Nebraska .3375 .4078 .3074 .3608

Nevada .3010 .3752 .2330 .2774

New Hampshire .3021 .3761 .2744 .3267

New Jersey .2982 .3726 .2048 .2438

New Mexico .2449 .3098 .2421 .2883

New York .2942 .3690 .2323 .2766

North Carolina .3023 .3762 .2692 .3205

North Dakota .3392 .4092 .2941 .3484

Ohio .3374 .4076 .3029 .3566

Oklahoma .3189 .3910 .3287 .3804
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Table 5 continued

State Men Women
(λ1 = .086, λ2 = .2096
and λ3 = .106)

(λ1 = .069, λ2 = .16
and λ3 = .077)

LB∗ UB∗ LB∗ UB∗

Oregon .2985 .3728 .2950 .3493

Pennsylvania .3210 .3930 .3033 .3569

Rhode Island .3038 .3776 .2684 .3195

South Carolina .3308 .4017 .2902 .3448

South Dakota .3353 .4058 .2839 .3379

Tennessee .3323 .4031 .3422 .3929

Texas .3219 .3939 .2789 .3319

Utah .2826 .3576 .2201 .2621

Vermont .2596 .3284 .2502 .2979

Virginia .3122 .3851 .2829 .3368

Washington .3024 .3764 .2886 .3434

West Virginia .3656 .4329 .3513 .4013

Wisconsin .3138 .3865 .2841 .3383

Wyoming .2949 .3696 .2530 .3012

For each state, the estimates of the estimates of the lower and upper bounds are reported

including self-reported height and weight, are gathered. Using these raw data, states
are grouped according to obesity rates. Typically in the reported analysis, Gallup
distinguishes between the ten states with highest obesity and the ten states with the
lowest obesity rates. When we compare the Gallup results, based on unadjusted self-
reported data10, with our results that take measurement error into account, we find a
substantial overlap. Nine of the ten states identified by Gallup as low-obesity states
appear in one or the other of our low-obesity classes (either the male or the female
class), the exception being Rhode Island. In addition, 10 out of the top 11 most obese
states in the Gallup report are listed in our high-obesity states (the exception being
South Carolina).

We can illustrate the geographical distribution of adjusted obesity by plotting the
state rankings after accounting for measurement error. The results for women are
shown in Fig. 1. Here, we distinguish between low-obesity states, high-obesity states
and states for which no clear ranking is possible. Even allowing for the potential loss
of information due to measurement error, there is still an obvious grouping of high-
obesity states in the mid-west and south of the US, with lower-obesity states located
in the east and west. These findings indicate that cross-state variation in self-reported
BMI in the USA, when used in conjunction with our bounds, may still provide a useful
source of information for understanding the causes and consequence of obesity despite
potential misreporting of obesity.

10 http://www.gallup.com/poll/146534/obesity-lowest-colorado-highest-west-virginia.aspx.
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Fig. 1 Rankings of US states by female obesity rates allowing for potential loss of information from
self-reported BMI

5 Discussion

The results from Sect. 4 suggest that meaningful obesity rankings across European
countries are likely to be difficult using only self-reported data. This is because the
estimated misclassification rate is higher in Europe than in the USA and also because
the variation in obesity rates across countries is relatively small to begin with. Con-
sequently, the rankings are not robust to adjustments which account for the loss of
information arising from errors in self-reported obesity status. When confronted with
cases like this, we would urge readers to be very cautious about making rankings.
This is not a problem of imprecise estimates but rather one of identification, reflecting
the cost of measurement error. In these cases, identification of meaningful rankings
requires extra information over and above the minimal assumptions adopted in our
analysis. Researchers are free to try alternative adjustments in an attempt to obtain
narrower bounds ormore detailed rankings. However, since our bounds are tight, given
our assumptions, our findings make explicit the fact that any more detailed rankings
can only be securedwith additional information or assumptions. In this way, our analy-
sis forces researchers to be explicit about these restrictions and to justify why they
may be appropriate.

Our analysis of US obesity rates on the other hand shows that self-reported obe-
sity rates may still form the basis of meaningful rankings, when used in conjunction
with our bounds, provided that the misclassification rate is sufficiently low and the
variation across observations is sufficiently large. Ideally, we suggest that readers use
estimates of the misclassification rate in self-reported obesity (either those we pro-
vide or perhaps estimates of their own), along with our bounds, to derive interval
estimates of the true obesity rate—this is not difficult in practice. However, if read-
ers are looking for a quick rule of thumb, then we draw attention to the fact that, in
every case we considered, the estimated lowest bound given by the actual reported
obesity rate. In light of this, we would encourage readers to think of self-reported
obesity rates as lower bounds on the true rate. In addition, the upper bounds for
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the US states are all about 15–20% higher than the reported obesity rate. A quick
rule of thumb for researchers interested in comparing obesity rates across states
would therefore be to think in terms of intervals of the form {OBSR : (1.20) ∗ OBSR}
for each state, rather than point estimates, where OBSR is the self-reported obe-
sity rate. If these intervals do not overlap, then you can rank the two states using
only minimal assumptions on the error process. However, if the intervals overlap,
then further restrictions would be required. For example, suppose that we wished
to compare Arkansas (reported obesity rate of 36.61) with New Mexico (reported
obesity rate of 29.95). Using our suggested rule of thumb rather than comparing
the point estimates, we compare the interval (36.61:43.93) for Arkansas, with the
interval (29.95:35.94) for New Mexico. Since these do not overlap, we remain con-
fident that Arkansas has a higher obesity rate than New Mexico, even allowing
for the self-reported nature of the data. However, a comparison of Arkansas and
Louisiana would involve a comparison of Arkansas interval of (36.61:43.93) with
the interval for Louisiana of (33.95:40.74). Since these overlap, we would caution
against drawing inferences from a comparison of these two states even though the
reported obesity rate in Arkansas is almost three percentage points higher than in
Louisiana.

6 Conclusion

We examine the robustness of obesity rankings across ten European countries and fifty
US states, taking into account any potential loss of information resulting from mea-
surement error in self-reported BMI. In doing so, we place only minimal restrictions
on the error process. Our analysis shows that a meaningful ranking of countries in
Europe is difficult once measurement error in the European data is taken into account.
The inability to rank European countries is a reflection of the cost of measurement
error. Researchers who feel that the loss of rankings is too heavy a price to pay for
adopting only minimal assumptions are free to adopt additional restrictions (or equiv-
alently incorporate additional information about the error process) into their analysis
in a quest for meaningful rankings; however, our results force such researchers to be
explicit about what these restrictions are and why they are appropriate.

However, our analysis also shows that the use of self-reported obesity rates, in and
of itself, need not eliminate all information. We illustrate this using data on obesity
rates across the US states. In contrast to the cross-country European results where
obtaining meaningful rankings was difficult, the measurement error-adjusted bounds
we derive for the USA are still informative about the rankings of US states by obesity.
This reflects the greater variation in obesity rates across US states, as a result of
which the US rankings are more robust to the adjustments for measurement error. The
US rankings that emerge, after allowing for measurement error, are consistent with
rankings typically reported in the popular press based on raw uncorrected BMI. These
results show that cross-state variation in self-reported obesity rates in the US, used in
conjunction with the bounds we report, may still provide a useful input into an analysis
of the causes and consequences of obesity in the USA.
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