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Abstract. We present a reconfigurable optical implementation of an
acousto-optic algebra processor, based on a calomel (single crystal mer-
curous chloride) matrix-vector multiplier. Two successful applications are
demonstrated: neural network training and curve detection. In the first, a
perceptron learns two-input Boolean functions. In the second, a connec-
tionist model of the Hough transform is generalized to handle arbitrary
curves. Experiments for line detection and circle detection are per-
formed, and the Hough transform’s throughput is solely limited by the
update latency of the acousto-optic unit. © 1999 Society of Photo-Optical Instru-
mentation Engineers. [S0091-3286(99)01007-7]
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1 Introduction

The application of artificial neural networks~ANNs!, or
experimental analyses of neuron dynamics, require h
ware solutions suitable for large-scale implementations
particular, reconfigurable implementations that facilitate
creasing numbers of network interconnections are hig
desirable. Electronic and optical implementations ha
been intensively investigated with many proposed archi
tures presented in the literature.1–5 It has been shown tha
optical implementations provide a more suitable solution
the problem of increased interconnections. The opt
implementations are not without problems, however. R
search has shown that imaging aberrations and light de
tion issues severely restrict the number of neurons avail
in the proposed architectures.6–9

Recent experiments by Gao et al.10 use lenslet arrays in
a coaxial arrangement to successfully implement an opt
neural network with 32332 neurons. Mori et al.11 have an
optical matrix-vector multiplier that uses 2-D~two-
dimensional! structures@liquid crystal display~LCD! pan-
els# to implement a two layer network. Our system use
matrix-vector multiplier based on a combination of LC
and acousto-optic~AO! devices and can be used for bo
types of connectionist processing~Hopfield and
multilayer!. In common with other implementations, th
matrix of weights is displayed on a 2-D LCD panel, but
contrast, the input vector is encoded in the acoustic wav
an AO unit with a calomel substrate. Calomel~mercurous
chloride! is the best developed member of a promisi
class of photoelastic materials, the mercurous halid
whose unusual optical and acoustic properties may sig
cantly extend the performance of AO devices.12–16

In this paper, we describe the experimental model a
present the successful results of implementing two set
experiments using the architecture. The first involves
training of a single-layer perceptron ANN using seve
two-input logical functions. In the second set, we imp
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ment a Hough transform~HT!. We employ the connection
ist model of Seth and Datta17 for our HT and extend their
work by utilizing reconfigurable SLMs to enable weig
updates and increasing the dimensions of the input sp
In addition, we extend Seth and Datta’s straight line imp
mentation to one that detects circles and show that our f
generalized model can be used to detect any arbit
shape.

1.1 Calomel

A class of photoelastic materials, the mercurous halid
exhibit unusual optical and acoustic properties that lo
promising for many signal processing and spectrum ana
ing tasks. Single crystal mercurous chloride (Hg2Cl2), or
calomel,12–16 is the best developed member of this cla
and boasts a high spectral transmission range, low acou
attenuation and a very low shear mode acoustic velocity
addition, calomel combines the most advantageous p
erty of each of tellurium dioxide and fused quartz~two
more widespread AO materials! with its high AO figure of
merit M2 ~Ref. 18! and capability to withstand large optica
power densities,19 respectively.

Calomel AO cell fabrication details and experimen
data,12–15 comparisons between the properties of calom
and various other AO materials,16 and details of our par-
ticular calomel AO cell20 can be found in the literature
Although a reliable preparation technique12 has been devel-
oped for mercurous chloride single crystals, the materia
low hardness and high fragility cause significant difficulti
when fabricating an AO unit.

2 Architecture

The operation of our processor can be visualized from
schematic in Fig. 1. Using optical components each row
the matrix is directed through, and is thus multiplied by, t
vector encoded in the second SLM. Summing the result
values in each row produces a vector representing the in
0 © 1999 Society of Photo-Optical Instrumentation Engineers
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Naughton et al.: General-purpose acousto-optic connectionist processor
matrix-vector product. The implementation of o
space-integrating21 optical processor can be seen schem
cally in Fig. 2 and in the photograph in Fig. 3. The valu
of the weight matrix and the image vector are controlled
a computer program executing on a personal computer

As shown in Fig. 2, the collimated beam from the HeN
laser is first expanded. The beam expander consist
lenses L1 and L2 and has an expansion ratio of 1:50. In
vertical direction~side view!, cylindrical lens L3 operates
as a Fourier lens in the standard 1-f setup, such that the
matrix columns are Fourier transformed at L3’s focal pla
The AOU’s acoustic beam was centered along this pl
such that it coincided with the zero-order of the LCD s
nal’s 1-D Fourier transform. In the horizontal direction~top
view in Fig. 2!, lens L3 does not influence the laser bea
The input vector is encoded in the acoustic wave of
AOU, which operates in the Bragg regime. As a result,
first AO diffracted order~given sufficient time and space t
spatially expand! is a 2-D signal containing the multiplica
tion of the matrix coefficients from each row of the LC
and this input vector. The row summation and imaging
the detector is performed by lenses L4 and L5 and
sampled vector interfaced to a PC.

The system consists of a 20 mW HeNe laser, an am
tude modulating Sony LCX012AL TFT~thin film transis-
tor! LCD panel (6403480 pixels), and an 8-bit intensit
resolution Panasonic WVCD50 CCD~charge-coupled de
vice! camera with the automatic gain functionality disable
By extracting a predefined pattern of pixels from our 2
CCD image we could simulate a 1-D detector of arbitra
width. The AOU consists of a calomel substrate orienta
for a shear mode acoustic beam, with a 75 MHz cen

Fig. 2 Schematic of the optical setup: LCD, matrix spatial light
modulator; AOU, AO unit encoding a vector; and CCD, detector.

Fig. 1 Space-integrating AO matrix-vector multiplier.
f

frequency. The crystal was grown by BBT Materials Pr
cessing, Czech Republic, and the cell fabricated by I
Optics, United Kingdom. Through tests with step-functio
gradient intensity images of varying dynamic ranges
have determined empirically that our LCD/AOU/CCD
combination enables 6 bits of intensity resolution on t
LCD panel.

2.1 Fourier Optical Model

Coherent optical systems are straightforward to anal
since they can be approximated using the equations of F
rier optics. If we ignore scaling factors due to lens config
rations and let (x,y) describe each space domain and~a,b!
describe each frequency domain along our optical syst
the detected output signalsDET can be written as

sDET~a,2y!

5UC~a!E E
2`

`FA~b!g~x!E
2`

`

f ~x,y! exp~ i2pby! dyG
3exp@ i2p(ax1by)# dx db U2

, ~1!

wheref is the LCD panel signal andg is the signal encoded
in the acoustic beam. The 1-D signalA is a binary-valued
spatial frequency bandpass filter, infinite in thex-direction,
which corresponds to the height of the acoustic beam al
its length. We presume that the acoustic beam underg
negligible absorption and divergence. If such divergence
to be modeled, then a real-valued 2-D filter should be u
for A. Finally, C is a binary-valued 1-D spatial frequenc
bandpass filter, infinite in they-direction, which corre-
sponds to the width of the linear CCD sensor.

2.2 Simulated Detector Plane Signals

Using the preceding idealized 3-f model, several simula-
tions of the output plane signal were performed wi
MATLAB from The Mathworks Inc. We see from thes
experiments that the limitations of a finite acoustic bea
height and finite linear detector width are extremely impo
tant considerations when implementing a coherent A
matrix-vector multiplier.

The first set of experiments sought to determine the
fect of a finite AO interaction height. Figure 4 contains
sample optical signal immediately behind the LCD pan
which combines the LCD sampling frequency with an a
bitrary modulation function. The acoustic beam acts a
bandpass filter on the Fourier spectrum of each matrix c
umn. Figure 5 shows the effect of a finite AO interactio

Fig. 3 Photograph of the optical setup.
1171Optical Engineering, Vol. 38 No. 7, July 1999
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Naughton et al.: General-purpose acousto-optic connectionist processor
height on spatial resolution in the output plane. As le
vertical spatial frequencies make it through the system,
separate horizontal spectra of the output signal~which cor-
respond to individual summed rows of the matrix-vect
point multiplication! become less distinguishable. The im
plications for numerical computations are obvious. A
acoustic beam whose height is not sufficient to pass eno
vertical spatial frequency information will cause the ind
vidual output vector data values to overlap in the detec
plane. If the AO interaction height cannot be changed, th

Fig. 4 Input signal for the interaction height experiments that simu-
lates a portion of the LCD panel with arbitrary pixels turned on or off.

Fig. 5 Results from the interaction height experiments when Fig. 4
is the input plane signal: (a) the unfiltered signal appearing in the AO
plane, (b) corresponding output plane signal showing clearly sepa-
rated rows of information, (c) the spatially filtered signal due to a
finite acoustic beam height, and (d) corresponding output plane sig-
nal.
1172 Optical Engineering, Vol. 38 No. 7, July 1999
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either a new Fourier lens configuration to rescale the
quency spectrum or a spatial separation of the inputs in
LCD plane is required.

The model also tells us that the diffracted orders due
the vertical pixel structure do not affect our computatio
Figure 5~a! contains three horizontal orders,21, 0, and
11. By filtering in the vertical direction@Fig. 5~c!# we
ensure that the21 and11 orders, which contain the ver
tical sampling frequency information, do not propagate f
ther through the system.

A second set of simulation experiments were underta
to determine the effects of employing a linear detector
finite width. As with the previous experiments, the iss
here is that a device of finite dimensions is attempting
measure a~theoretically! infinite Fourier spectrum and in
doing so performs a bandpass filtering operation~see Fig.
6!. For these experiments a constant acoustic vector of
was used. A finite detector width will mean that we,
effect, measure the matrix-vector product of a blurred v
sion of our inputs. Once again, the model tells us that if
filter out the11 and21 orders due to the horizontal LCD
sampling frequency@those orders in Fig. 6~b! not preserved
in Fig. 6~d!#, the horizontal pixel structure does not affe
our computation.

2.3 Processor Development

The time-invariant nonuniformities in our system were d
to the laser~Gaussian beam profile!, AOU ~attenuation, an-
isotropy, inhomogeneous regions!, and optics~dust, aberra-
tions!. All time-independent nonlinearities were succes
fully compensated for in our system since temporally th
act as constants. Time-dependent nonuniformities~thermal

Fig. 6 Results from the detector width experiments: (a) the input
signal immediately behind the LCD panel, (b) the corresponding out-
put plane signal assuming a detector of arbitrary width, and (c) the
input signal as it appears to a detector of finite width which only
measures a portion [that shown in (d)] of the output plane signal.
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Naughton et al.: General-purpose acousto-optic connectionist processor
variations in the equipment, vibrations, airborne dust, el
trical noise!, optical interference, and oversampling~LCD,
camera and frame grabber! conspire to reduce the linearit
of the system. However, physical experiments with the s
tem ~presented later in the paper! show that these time
dependent nonuniformities do not appreciably affect
processor and, in the case of ANN training, are actuall
desirable influence.

For certain experiments, the AO unit was not direc
used in the computation. It lay in the optical path and co
tained an acoustic beam of constant amplitude~and con-
stant frequency! representing a vector of 1’s. This served
evaluate the other equipment and to verify the effect
linearity of the system while still taking into account th
physical properties of our calomel AO cell. To effect
multiplication, both area and intensity modulation was e
ployed at the LCD plane. This was achieved by using
LCD panel to represent a lower resolution matrix of da
values, where each data value was encoded in a squa
pixels. With grid squares of side 10 pixels, area modulat
effectively enabled 100 resolvable levels. The two imag
were combined in a computer memory and the resul
image was sent to the LCD panel. Under illumination, t
signal immediately behind the LCD panel represented
product of the area and intensity modulating matrices.

Since negative numbers cannot be readily represe
with a light intensity, an algorithm to allow real-value
perceptron weights in a21 to 11 range to be represente
in a 0 to11 range was developed in advance. Our matr
vector product processor must compute

yi5(
j

ai j xj , ~2!

where each inputxjPR1 is a positive real-valued numbe
and each weightai j PR and each outputyiPR are ~possi-
bly negative! reals. Introducing a constantKPR1

yi5(
j

~ai j 1K2K !xj , ~3!

and expanding

yi5(
j

~ai j 1K !xj2K(
j

xj , ~4!

enables us to define the following encoding scheme

yi5(
j

ci j xj2Rmax(
j

xj , ~5!

whereRmax is the largest positive value that can be rep
sented in our system andci j 5(ai j 1Rmax) is the encoded
weight. If we ensure thatRmax1Rmin50, then sinceci j

PR1 our encoding scheme will transform the set of re
valued weightsai j to the positive real valuesci j required
by an intensity modulating SLM. By subtracting the co
stantRmax(jxj at the end of the calculation we return o
matrix-vector product to the correct value in the21 to 11
range.
of

t

d

3 Computational Theory and Representation

ANNs are an obvious application for exploiting the hig
connectivity possible with optical processors. The se
correcting nature of ANNs also means that they are so
what tolerant to individual low precision or incorrect ca
culations throughout their learning cycle. In gener
calculating the weight updates for one layer of an AN
involves a matrix-vector inner product, such as that sho
in Eq. ~2!, where the signal to neuronyi is the sum of the
vector of inputsxj multiplying yi ’s set of input synaptic
weights ai j . In this paper, we implement a single-lay
perceptron22 with binary inputs, bipolar outputs, rea
valued weights, delta learning rule and threshold trans
function. The learning tasks were of a linearly separa
class of problems: several two-input logic functions. T
represent these Boolean operations with a perceptron
classification output vector was transformed from the m
common unipolar set$0,1% to the bipolar set$21,1%. We
have already shown how a negative weight space may
represented by an intensity modulating SLM.

Detecting curves in an image is an important element
task in machine vision. The HT has long bee
recognized23–25 as a robust technique for the detection
analytically defined shapes in a scene. The position of
highest peak in Hough space indicates the position~and
possibly orientation, scale, etc.! of the most likely curve in
image space matching our description. The HT can also
generalized26 to reveal the presence of a shape that can
be parametrically formulated~a fingerprint for example!.

Due to the HT’s wide use and applicability, an optic
ANN implementation17 of the transform is highly desirable
Such an implementation would combine the massively p
allel connectivity of neural network paradigms with th
parallelism of optical systems. This should significan
lower the currently restrictive computational complexity
the transform on digital electronic architectures for lar
images.

3.1 Connectionist Model of the HT

Seth and Datta17 have proposed a neural network model f
the HT that transforms image space into Hough space v
parameter space. Input images are represented as ve
and each neuron in image spaceui is connected to all neu
rons in parameter space through interconnection weig
Each weightwi j and each neuron in the parameter spa
can have the value 0 or 1, and the value of each elemen
Hough spaceAj is given by

Aj5(
i 51

m

v j
i 5(

i 51

m

wi j
i ui , ~6!

wherev j
i is the j th neuron of thei th parameter space.

The feed-forward architecture and binary representa
of neurons are two significant features of this model wh
make it suitable for optical implementation. Seth and Da
have already presented an algorithm that can be use
obtain the values of the weight matrix for line detectio
The following pseudo-code algorithm could be used
circle detection,
1173Optical Engineering, Vol. 38 No. 7, July 1999
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Naughton et al.: General-purpose acousto-optic connectionist processor
r max5~xmax
2 1ymax

2 !1/2

t5~r max21!/r max.

For all image pixels (xi ,yi)

For all possible (a,b,r )

ei j 5r j
22~xi2aj !

22~yi2bj !
2

if ~2t,ei j ,t ! then

wi j 51

otherwise wi j 50

where interconnection errorei j is compared against thresh
old t, and wherea andb define the center andr the radius
of the circle. After updating the weights, the weight matr
contains the information required to map every possi
point in image space to parameter space. Therefore,
shape in the image space with parameter values within
appropriate range can be detected using the same we
matrix. In effect, each row of the weight matrix represen
one possible configuration of the shape in the image,
shown in Fig. 7.

Although these algorithms map closed form analytica
described curves to a weight space, the weight space i
is fully generalized. Any arbitrary shape can be represen
by simply building up a weight matrix representing all a
lowable configurations~varying position, orientation, scale
pose, etc.! of that shape.

4 Implementation and Experimental Results

An ANN with simple individual functions and a straight
forward weight space update algorithm was chosen
single-layer perceptron. It had been thought that any in
curacies in calculating the weight space updates during
perceptron’s training phase would be detrimental to lea
ing. It has been shown recently, however, that synap
noise~which we equate with the random analog inaccu
cies introduced by time-dependent nonuniformities in o
optical processor! in a multilayer perceptron during its
training phase will enhance fault-tolerance, generalizat
ability and learning speeds.27

Fig. 7 Weight space matrices: (a) matrix to detect lines in a 4
34 pixel image with slopes from 21 to 1 (interval of 0.25) and in-
tercepts from 0 to 3 (interval of 1) and (b) matrix to detect circles
with various centers and radii in a 636 pixel image.
1174 Optical Engineering, Vol. 38 No. 7, July 1999
y

t

lf

For the following perceptron experiments, a consta
vector was encoded in the acoustic beam. The complete
of binary input vectors was optically encoded on the LC
panel as a matrix using intensity modulation while t
weight space was encoded using area modulation. By
senting the input vectors simultaneously as a matrix, e
inner product could be computed in parallel and a comp
learning epoch calculated instantaneously. The perceptr
nonlinear transfer function was effected through a softw
thresholding operation on the captured CCD signal. N
weights were calculated using the average of the f
weight adjustment vectors~one corresponding to each inpu
vector!. The new weight space was then scaled to the ma
mum LCD resolution before the SLM was updated by t
PC. The delay between epochs is introduced by the up
latency of the LCD~refreshing at 32 kHz vertically and 6
kHz horizontally!, the matrix-vector computation itself~3
ns!, the frame rate of the CCD sensor~effectively 50 Hz!,
and a small software routine. The software delay increa
linearly ~as opposed to quadratically! with an increase in
the number of neurons.

Currently, the acoustic signal propagation is not sy
chronized with the detector. A sequence of frames~with
adjustable phase! is captured while the signal propagat
through the AO cell and the correct frame extracted ma
ally. This procedure is satisfactory for a single pass
rangement, however, to automate the process we req
strict synchronization between the AO cell, the detect
and possibly the laser.

4.1 AO Perceptron

A perceptron to learn selected two-input Boolean ope
tions was successfully implemented on the architectu
The four input vectors were

X15^0,0&, X25^0,1&, X35^1,0&, X45^1,1&.

The perceptron also had a bias input of 1, and an associ
weight. At each epoch, the four input vectors were s
through the system, generating four outputs. These out
are plotted against epoch number in Fig. 8 for the AND a
NOR operations. To aid visualization, lines are drawn b
tween the discrete values in time. The outputs are sho
here before application of the transfer function and the
fore give a quantitative indication of the robustness of
system. In particular, the distance of each output from
threshold can be seen, as well as how symmetrically the
of outputs is distributed on either side of the threshold.

Initially the weight space was set to zero, which corr
sponds physically to random values determined by
time-variant nonlinearities in the system. It was found th
normalization of the weight space~rescaling to the full in-
tensity resolution of the LCD! between epochs resulted i
improved convergence. In addition, the inherent noise
the optical system helped weights avoid settling into lo
minima. For example, while learning the NOR operati
@Fig. 8~b!# the four outputs have settled at constant valu
representing a temporary solution. However, sufficie
noise in the system at epoch 11 enables the outputs to c
out of this local minimum, producing a more desirable d
tribution either side of the zero threshold.



Naughton et al.: General-purpose acousto-optic connectionist processor
Fig. 8 Graphs of the four unthresholded outputs corresponding to the input vectors X1 to X4 (defined
in the body of the paper) plotted against epoch number for each of two Boolean functions. The
threshold level is shown as a dotted line in each graph. (a) When the outputs have stabilized (by epoch
17) the bipolar thresholded outputs for X1 to X3 have the value 21 and X4 has the value 11, which is
the correct response for a perceptron that has learned the AND operation. (b) A similar graph where
input X1 is the only vector that generates a 11 output showing that the perceptron has been success-
fully trained with the NOR operation.
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The learning coefficient in each of these examples w
h50.05. Several different values forh were tested; how-
ever, the convergence time remained typically between
and 35 epochs for each of six logical functions tested. M
importantly, the development of the weight space over ti
was similar for eachh chosen~see Fig. 9!. This insensitiv-
ity to h is thought to be due to the weight space norm
ization between epochs.

As mentioned earlier, although the AOU was not in
tially used in a processing capacity, the success of th
experiments showed the effective linearity of our AO pr
cessor. This enabled us to confidently implement an HT
the system and utilize the increased vector update rat
our AO SLM. No processing capability is lost in goin
from a 2-D~LCD! to a 1-D~AO! input representation~un-
less, for example, one employs a lenslet array
interconnection10! since a 2-D representation requires t
input vector to be replicated on each row.
e

f

4.2 AO HT

In the first HT experiment we sought to detect straight lin
in a 434 pixel image. This repeats the original experime
of Seth and Datta.17 In our reconfigurable implementation
the weight matrix of Fig. 7~a! was used. The input image i
shown in Figs. 10~a! and 10~b!. The highest peak in row 28
of Hough space@Fig. 10~c!# indicates that a line has bee
detected in the input image with a slope of21 and an
intercept of 3. The second experiment verifies this res
The weight matrix and the image vector are simultaneou
encoded on the LCD panel using area and intensity mo
lation respectively. The detected CCD image@Fig. 10~d!#
once again reveals a maximum value in the 28th ro
Hough spaces are characteristically noisy in contrast to
highly resolved peaks of correlation planes, and this is
flected in our noisy optical measurements.
Fig. 9 Adjustments to weight w2 during NAND learning experiments with four different values for the
learning coefficient h. Although the learning times for each h are not identical, we can see from the
significant overlap in the plots that the development of the weights over time is somewhat invariant to
the learning coefficient chosen.
1175Optical Engineering, Vol. 38 No. 7, July 1999
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Naughton et al.: General-purpose acousto-optic connectionist processor
The third experiment involved detecting a circle in
square image of side 6 containing multiple objects~see Fig.
11!. The circle detection matrix of Fig. 7~b! was used as the
weight space, and once again the input matrix was enco
using intensity modulation on the LCD panel. The result

Fig. 11 Circle detection with the AO HT: (a) a schematic of the 6
36 input image, (b) a 1-D representation of this input for AO modu-
lation, and (c) result of the matrix-vector product detected by CCD
camera showing a peak in the 129th row of Hough space.

Fig. 10 Line detection with the AO HT: (a) the 4 3 4 input image,
(b) the input image represented as an electrical signal for modula-
tion of the AOU, (c) the Hough space from the first experiment
showing maximum optical energy in row 28, and (d) maximum opti-
cal energy in row 28 of the Hough space from the second experi-
ment.
1176 Optical Engineering, Vol. 38 No. 7, July 1999
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the transformation to Hough space revealed a maxim
value in the 129th row, which corresponds to the corr
detection of a circle with radius 2 and center~3,3!.

5 Conclusions and Future Work

A reconfigurable optical computing platform, based on
calomel AO matrix-vector multiplier, was designed an
built. We outlined the major considerations that arise wh
building such a system and presented the successful re
of training a bipolar-output perceptron with several~lin-
early separable! logical operations to analyze the proce
sor’s soft learning capabilities. It was possible to compe
sate for all of the system’s time-invariant nonlinearities a
we found that those remaining inherent nonlinearities int
duced a level of noise and crosstalk that actually aid
learning.

Subsequently, we chose to implement a connectio
model of the HT and verified its operation by detecti
lines and circles. Our Hough space is fully generaliza
and can be used to represent any arbitrary shape with v
ing position, orientation, scale, or pose. The advantage
our AO implementation over other techniques include
computational space-complexity independent of image s
~up to the maximum allowable resolution of our LC
panel!, a transformation throughput limited only by the a
erture time of the AO cell, and a reconfigurable weig
matrix easily controllable by a computer program on a P

Calomel’s exceptional optical properties make it a pro
ising material for AO signal processing. We have foun
however, that these properties come at the cost of redu
quality in the final fabricated unit through a combination
crystal growth complexity and strict handling requiremen

Our short term goals are focused on expanding the A
and HT implementations to utilize the full space-bandwid
product of our LCD panel. It will then be possible to a
commodate the weight space of an ANN layer with up
640 inputs and up to 480 neurons, while only linearly i
creasing the computation time due to the thresholding s
ware routine.@The theoretical computing power of our op
tical setup~based on a 6403480 pixel LCD panel and an
85 ms AO unit update time! is calculated as 3.63109 real-
valued multiplications per second.# In addition, acquiring a
custom built linear detector with an appropriate pixel asp
ratio and ability to synchronize with the AO unit will re
move our current necessity to use an area-scan CCD c
era.

Hard learning~solving problems whose solution spac
are not linearly separable! is not possible using a singl
layer perceptron but it is possible to implement more
phisticated networks using a multiple pass optical arran
ment. These experiments have addressed both the cons
tional and operational difficulties of such an arrangeme
currently under development, which is a tellurium dioxid
based optical neural network capable of hard learning.
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