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1 Introduction ment a Hough transforHT). We employ the connection-

ist model of Seth and Dattafor our HT and extend their
work by utilizing reconfigurable SLMs to enable weight
updates and increasing the dimensions of the input space.
In addition, we extend Seth and Datta’s straight line imple-
mentation to one that detects circles and show that our fully
generalized model can be used to detect any arbitrary

shape.

The application of artificial neural network®A\NNs), or
experimental analyses of neuron dynamics, require hard-
ware solutions suitable for large-scale implementations. In
particular, reconfigurable implementations that facilitate in-
creasing numbers of network interconnections are highly
desirable. Electronic and optical implementations have
been intensively investigated with many proposed architec-
tures presented in the literatuf@ It has been shown that
optical implementations provide a more suitable solution to 11 Calomel
the problem of increased interconnections. The optical A class of photoelastic materials, the mercurous halides,
implementations are not without problems, however. Re- exhibit unusual optical and acoustic properties that look
search has shown that imaging aberrations and light detec{romising for many signal processing and spectrum analyz-
tion issues severely restrict the number of neurons availableing tasks. Single crystal mercurous chloride ¢(8f), or
in the proposed architectur&s’ calomelt*~'®is the best developed member of this class
Recent experiments by Gao et'luse lenslet arrays in ~ and boasts a high spectral transmission range, low acoustic
a coaxial arrangement to successfully implement an optical attenuation and a very low shear mode acoustic velocity. In
neural network with 3% 32 neurons. Mori et df* have an ~ addition, calomel combines the most advantageous prop-
optical matrix-vector multiplier that uses 2-Otwo- erty of each of tellurium dioxide and fused quaftwo
dimensional structuregliquid crystal display(LCD) pan- ~ More widespread AO materialwith its high AO figure of
els] to implement a two layer network. Our system uses a MeritM, (Ref. 1§ and capability to withstand large optical
matrix-vector multiplier based on a combination of LCD Power densities; respectively. _ _
and acousto-opti¢AO) devices and can be used for both Calomel AO cell fabrication details and experimental
types of connectionist processing(Hopfield and data,“""> comparisons between the properties of calomel
multilayen. In common with other implementations, the &nd various other AO r(paterlajlg,and details of our par-
matrix of weights is displayed on a 2-D LCD panel, but in ficular calomel AO ceft can be found in the literature.
contrast, the input vector is encoded in the acoustic wave of Although a reliable preparation technidfibas been devel-
an AO unit with a calomel substrate. Calontelercurous ~ OPed for mercurous chloride single crystals, the material’'s
chloride is the best developed member of a promising low hardngss_and h|ghfrag!llty cause significant difficulties
class of photoelastic materials, the mercurous halides, When fabricating an AO unit.
whose unusual optical and acoustic properties may signifi- )
cantly extend the performance of AO devic¢és'® 2 Architecture
In this paper, we describe the experimental model and The operation of our processor can be visualized from the
present the successful results of implementing two sets ofschematic in Fig. 1. Using optical components each row of
experiments using the architecture. The first involves the the matrix is directed through, and is thus multiplied by, the
training of a single-layer perceptron ANN using several vector encoded in the second SLM. Summing the resulting
two-input logical functions. In the second set, we imple- values in each row produces a vector representing the inner
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Fig. 1 Space-integrating AO matrix-vector multiplier.

matrix-vector product. The implementation of our
space—integratir% optical processor can be seen schemati-
cally in Fig. 2 and in the photograph in Fig. 3. The values
of the weight matrix and the image vector are controlled by
a computer program executing on a personal computer.
As shown in Fig. 2, the collimated beam from the HeNe

laser is first expanded. The beam expander consists of©
lenses L1 and L2 and has an expansion ratio of 1:50. In the

vertical direction(side view, cylindrical lens L3 operates
as a Fourier lens in the standardflsetup, such that the
matrix columns are Fourier transformed at L3’s focal plane.

AO unit

LCD panel

Fig. 3 Photograph of the optical setup.

frequency. The crystal was grown by BBT Materials Pro-
cessing, Czech Republic, and the cell fabricated by Isle
Optics, United Kingdom. Through tests with step-function
gradient intensity images of varying dynamic ranges we
have determined empirically that our LCD/AOU/CCD
combination enables 6 bits of intensity resolution on the
LCD panel.

2.1 Fourier Optical Model

oherent optical systems are straightforward to analyze
since they can be approximated using the equations of Fou-
rier optics. If we ignore scaling factors due to lens configu-
rations and letX,y) describe each space domain dng3)
describe each frequency domain along our optical system,

The AOU's acoustic beam was centered along this plane the detected output signgher can be written as

such that it coincided with the zero-order of the LCD sig-
nal’s 1-D Fourier transform. In the horizontal directiGop
view in Fig. 2, lens L3 does not influence the laser beam.
The input vector is encoded in the acoustic wave of the
AOU, which operates in the Bragg regime. As a result, the
first AO diffracted ordekgiven sufficient time and space to
spatially expangis a 2-D signal containing the multiplica-
tion of the matrix coefficients from each row of the LCD
and this input vector. The row summation and imaging on
the detector is performed by lenses L4 and L5 and the
sampled vector interfaced to a PC.

The system consists of a 20 mW HeNe laser, an ampli-
tude modulating Sony LCX012AL TFTthin film transis-
tor) LCD panel (640480 pixels), and an 8-bit intensity
resolution Panasonic WVCD50 CClzharge-coupled de-
vice) camera with the automatic gain functionality disabled.
By extracting a predefined pattern of pixels from our 2-D
CCD image we could simulate a 1-D detector of arbitrary
width. The AOU consists of a calomel substrate orientated
for a shear mode acoustic beam, with a 75MHz center

Fig. 2 Schematic of the optical setup: LCD, matrix spatial light
modulator; AOU, AO unit encoding a vector; and CCD, detector.
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wheref is the LCD panel signal anglis the signal encoded

in the acoustic beam. The 1-D signalis a binary-valued
spatial frequency bandpass filter, infinite in thelirection,
which corresponds to the height of the acoustic beam along
its length. We presume that the acoustic beam undergoes
negligible absorption and divergence. If such divergence is
to be modeled, then a real-valued 2-D filter should be used
for A. Finally, C is a binary-valued 1-D spatial frequency
bandpass filter, infinite in the-direction, which corre-
sponds to the width of the linear CCD sensor.

2.2 Simulated Detector Plane Signals

Using the preceding idealized 8-model, several simula-
tions of the output plane signal were performed with
MATLAB from The Mathworks Inc. We see from these
experiments that the limitations of a finite acoustic beam
height and finite linear detector width are extremely impor-
tant considerations when implementing a coherent AO
matrix-vector multiplier.

The first set of experiments sought to determine the ef-
fect of a finite AO interaction height. Figure 4 contains a
sample optical signal immediately behind the LCD panel,
which combines the LCD sampling frequency with an ar-
bitrary modulation function. The acoustic beam acts as a
bandpass filter on the Fourier spectrum of each matrix col-
umn. Figure 5 shows the effect of a finite AO interaction
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Fig. 4 Input signal for the interaction height experiments that simu-
lates a portion of the LCD panel with arbitrary pixels turned on or off.

height on spatial resolution in the output plane. As less
vertical spatial frequencies make it through the system, the
separate horizontal spectra of the output signéiich cor-
respond to individual summed rows of the matrix-vector
point multiplication become less distinguishable. The im-
plications for numerical computations are obvious. An

|
I
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Fig. 6 Results from the detector width experiments: (a) the input
signal immediately behind the LCD panel, (b) the corresponding out-
put plane signal assuming a detector of arbitrary width, and (c) the
input signal as it appears to a detector of finite width which only
measures a portion [that shown in (d)] of the output plane signal.

acoustic beam whose height is not sufficient to pass enough

vertical spatial frequency information will cause the indi-
vidual output vector data values to overlap in the detector
plane. If the AO interaction height cannot be changed, then

(@)

(©

Fig. 5 Results from the interaction height experiments when Fig. 4
is the input plane signal: (a) the unfiltered signal appearing in the AO
plane, (b) corresponding output plane signal showing clearly sepa-
rated rows of information, (c) the spatially filtered signal due to a
finite acoustic beam height, and (d) corresponding output plane sig-
nal.
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either a new Fourier lens configuration to rescale the fre-
guency spectrum or a spatial separation of the inputs in the
LCD plane is required.

The model also tells us that the diffracted orders due to
the vertical pixel structure do not affect our computation.
Figure Ja) contains three horizontal orders;1, 0, and
+1. By filtering in the vertical directioffFig. 5(c)] we
ensure that the-1 and+ 1 orders, which contain the ver-
tical sampling frequency information, do not propagate fur-
ther through the system.

A second set of simulation experiments were undertaken
to determine the effects of employing a linear detector of
finite width. As with the previous experiments, the issue
here is that a device of finite dimensions is attempting to
measure dtheoretically infinite Fourier spectrum and in
doing so performs a bandpass filtering operatisee Fig.

6). For these experiments a constant acoustic vector of 1's
was used. A finite detector width will mean that we, in
effect, measure the matrix-vector product of a blurred ver-
sion of our inputs. Once again, the model tells us that if we
filter out the+1 and—1 orders due to the horizontal LCD
sampling frequencijthose orders in Fig.(6) not preserved

in Fig. 6(d)], the horizontal pixel structure does not affect
our computation.

2.3 Processor Development

The time-invariant nonuniformities in our system were due
to the lasefGaussian beam profjleAOU (attenuation, an-
isotropy, inhomogeneous regignand opticgdust, aberra-
tions). All time-independent nonlinearities were success-
fully compensated for in our system since temporally they
act as constants. Time-dependent nonuniformitiesrmal
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variations in the equipment, vibrations, airborne dust, elec-

trical noise, optical interference, and oversamplifigCD,
camera and frame grabbeamonspire to reduce the linearity

of the system. However, physical experiments with the sys-

tem (presented later in the papeshow that these time-

dependent nonuniformities do not appreciably affect the
processor and, in the case of ANN training, are actually a

desirable influence.
For certain experiments, the AO unit was not directly

used in the computation. It lay in the optical path and con-

tained an acoustic beam of constant amplit¢aded con-
stant frequencyrepresenting a vector of 1's. This served to

evaluate the other equipment and to verify the effective PErceptro

linearity of the system while still taking into account the
physical properties of our calomel AO cell. To effect a
multiplication, both area and intensity modulation was em-

ployed at the LCD plane. This was achieved by using the

LCD panel to represent a lower resolution matrix of data

3 Computational Theory and Representation

ANNSs are an obvious application for exploiting the high
connectivity possible with optical processors. The self-
correcting nature of ANNs also means that they are some-
what tolerant to individual low precision or incorrect cal-
culations throughout their learning cycle. In general,
calculating the weight updates for one layer of an ANN
involves a matrix-vector inner product, such as that shown
in Eq. (2), where the signal to neuroy) is the sum of the
vector of inputsx; multiplying y;’s set of input synaptic
weights a;; . In this paper, we implement a single-layer
#F with binary inputs, bipolar outputs, real-
valued weights, delta learning rule and threshold transfer
function. The learning tasks were of a linearly separable
class of problems: several two-input logic functions. To
represent these Boolean operations with a perceptron the
classification output vector was transformed from the more

values, where each data value was encoded in a square ofoMmon unipolar sef0,1} to the bipolar se{—1,1}. We
pixels. With grid squares of side 10 pixels, area modulation have already shown how a negative weight space may be
effectively enabled 100 resolvable levels. The two images épresented by an intensity modulating SLM.

were combined in a computer memory and the resultant

image was sent to the LCD panel. Under illumination, the

Detecting curves in an image is an important elementary
task in machine vision. The HT has long been

signal immediately behind the LCD panel represented the recognized®=>° as a robust technique for the detection of

product of the area and intensity modulating matrices.

analytically defined shapes in a scene. The position of the

Since negative numbers cannot be readily representedhighest peak in Hough space indicates the positimd

with a light intensity, an algorithm to allow real-valued
perceptron weights in &1 to +1 range to be represented
in a 0 to+1 range was developed in advance. Our matrix-
vector product processor must compute

yi:; aijX; , (2

where each input; R* is a positive real-valued number,
and each weigh#;; € R and each outpuy; € R are (possi-
bly negative reals. Introducing a constakte R*

yi:; (ajj +K=K)xj, ©)

and expanding

yi=> (aij+K)Xj_K; Xj, (4)

i

enables us to define the following encoding scheme
yi=; Cijxj_Rmax; X s (5

whereR, . IS the largest positive value that can be repre-
sented in our system angj; = (a;; + Rmayd is the encoded
weight. If we ensure thaRya+Rnin=0, then sincec;;
eR™ our encoding scheme will transform the set of real-
valued weightsa;; to the positive real values;; required
by an intensity modulating SLM. By subtracting the con-
stantRn,2X; at the end of the calculation we return our
matrix-vector product to the correct value in thel to +1
range.

possibly orientation, scale, et@f the most likely curve in
image space matching our description. The HT can also be
generalizetf to reveal the presence of a shape that cannot
be parametrically formulate¢h fingerprint for example

Due to the HT's wide use and applicability, an optical
ANN implementatiof’ of the transform is highly desirable.
Such an implementation would combine the massively par-
allel connectivity of neural network paradigms with the
parallelism of optical systems. This should significantly
lower the currently restrictive computational complexity of
the transform on digital electronic architectures for large
images.

3.1 Connectionist Model of the HT

Seth and Dattd have proposed a neural network model for
the HT that transforms image space into Hough space via a
parameter space. Input images are represented as vectors
and each neuron in image spages connected to all neu-
rons in parameter space through interconnection weights.
Each weightw;; and each neuron in the parameter space
can have the value 0 or 1, and the value of each element in
Hough spacé\; is given by

AIZE U}:E W:jui, (6)

Wherev} is thejth neuron of thaéth parameter space.

The feed-forward architecture and binary representation
of neurons are two significant features of this model which
make it suitable for optical implementation. Seth and Datta
have already presented an algorithm that can be used to
obtain the values of the weight matrix for line detection.
The following pseudo-code algorithm could be used for
circle detection,
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For the following perceptron experiments, a constant
vector was encoded in the acoustic beam. The complete set
of binary input vectors was optically encoded on the LCD
panel as a matrix using intensity modulation while the
weight space was encoded using area modulation. By pre-
senting the input vectors simultaneously as a matrix, each
inner product could be computed in parallel and a complete
learning epoch calculated instantaneously. The perceptron’s
nonlinear transfer function was effected through a software
thresholding operation on the captured CCD signal. New
weights were calculated using the average of the four

Fig. 7 Weight space matrices: (a) matrix to detect lines in a 4 weight adjustment V_eCtO'(s’ne corresponding to each inpUt_
x 4 pixel image with slopes from —1 to 1 (interval of 0.25) and in- vectoh. The new weight space was then scaled to the maxi-
tercepts from O to 3 (interval of 1) and (b) matrix to detect circles mum LCD resolution before the SLM was updated by the
with various centers and radii in a 66 pixel image. PC. The delay between epochs is introduced by the update

latency of the LCD(refreshing at 32 kHz vertically and 60
kHz horizontally, the matrix-vector computation itse(8

Fma= (Xt Yoaad 2 ns, the frame rate of the CCD sens@ffectively 50 Hz,
and a small software routine. The software delay increases
t= (I max— 1)/T max linearly (as opposed to quadraticgllyith an increase in
the number of neurons.
For all image pixels X; ,y;) Currently, the acoustic signal propagation is not syn-
. chronized with the detector. A sequence of franfegh
For all possible &,b,r) adjustable phages captured while the signal propagates
) 5 5 through the AO cell and the correct frame extracted manu-
e =ri—(xi—a)"—(yi—by) ally. This procedure is satisfactory for a single pass ar-
rangement, however, to automate the process we require
if (—t<e;<t) then strict synchronization between the AO cell, the detector,
and possibly the laser.
Wij = 1
otherwise w;;=0 4.1 AO Perceptron

_ _ _ _ A perceptron to learn selected two-input Boolean opera-
where interconnection erra; is compared against thresh-  tions was successfully implemented on the architecture.
old t, and wherea andb define the center andthe radius ~ The four input vectors were
of the circle. After updating the weights, the weight matrix
contains the information required to map every possible X1=(0,0, X,=(0,1), Xz=(1,0), X,=(1,1).
point in image space to parameter space. Therefore, any
shape in the image space with parameter values within the o .
appropriate range can be detected using the same WeighEl'he perceptron also had a bias input of 1, and an associated

matrix. In effect, each row of the weight matrix represents \t’;/]?é%hth ﬁ]t ee:csfl eer;pocgr,] et?aetirzoufr()::p(;ttltvjtcst o_rrsh (\a,\'lseer%usteﬂts
one possible configuration of the shape in the image, as J Y ' 9 9 puts. b

shown in Fig. 7 are plotted against epoch number in Fig. 8 for the AND and

Although these algorithms map closed form analytically ghd\gsno&iraézggfétgo\/gge\élsi#a’tlilriaetlogﬁe“rl)eustpirtes irraewsnhg\?v_n
described curves to a weight space, the weight space itsel g : .
; : . here before application of the transfer function and there-
is fully generalized. Any arbitrary shape can be represented X RS
by simply building up a weight matrix representing all al- fore give a quantitative indication of the robustness of the

. . X - , : system. In particular, the distance of each output from the
lowable configurationgvarying position, orientation, scale, :
pose, eto. of that shape. threshold can be seen, as well as how symmetrically the set

of outputs is distributed on either side of the threshold.

. . Initially the weight space was set to zero, which corre-
4 Implementation and Experimental Results sponds physically to random values determined by the
An ANN with simple individual functions and a straight- time-variant nonlinearities in the system. It was found that
forward weight space update algorithm was chosen: anormalization of the weight spaceescaling to the full in-
single-layer perceptron. It had been thought that any inac- tensity resolution of the LCPbetween epochs resulted in
curacies in calculating the weight space updates during theimproved convergence. In addition, the inherent noise in
perceptron’s training phase would be detrimental to learn- the optical system helped weights avoid settling into local
ing. It has been shown recently, however, that synaptic minima. For example, while learning the NOR operation
noise (which we equate with the random analog inaccura- [Fig. 8b)] the four outputs have settled at constant values
cies introduced by time-dependent nonuniformities in our representing a temporary solution. However, sufficient
optical processorin a multilayer perceptron during its noise in the system at epoch 11 enables the outputs to climb
training phase will enhance fault-tolerance, generalization out of this local minimum, producing a more desirable dis-
ability and learning speedé. tribution either side of the zero threshold.

1174 Optical Engineering, Vol. 38 No. 7, July 1999
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Fig. 8 Graphs of the four unthresholded outputs corresponding to the input vectors X; to X, (defined
in the body of the paper) plotted against epoch number for each of two Boolean functions. The
threshold level is shown as a dotted line in each graph. (a) When the outputs have stabilized (by epoch
17) the bipolar thresholded outputs for X; to X3 have the value —1 and X, has the value + 1, which is
the correct response for a perceptron that has learned the AND operation. (b) A similar graph where

input X, is the only vector that generates a + 1 output showing that the perceptron has been success-
fully trained with the NOR operation.

The learning coefficient in each of these examples was 4.2 AO HT
gv:e?.?r?é ig;}’iﬁ;g;‘fzeer%%giurﬁ;g dV\{)e/:)eic:sebotla;tvr\]/g\évr; oI the first HT experiment we sought to detect straight lines
and 35 epochs for each of six logical functions tested. More |r} a 4?4 pixel m;ge. This repe?ts thelor_lglnlal expenment
importantly, the development of the weight space over time ©f Seth and Datta. In our reconfigurable implementation,

was similar for eachy chosen(see Fig. 9. This insensitiv-  the weight matrix of Fig. @ was used. The input image is
ity to # is thought to be due to the weight space normal- shown in Figs. 1() and 1@b). The highest peak in row 28
ization between epochs. of Hough spacg¢Fig. 10c)] indicates that a line has been

As mentioned earlier, although the AOU was not ini- detected in the input image with a slope efL and an
tially used in a processing capacity, the success of theseintercept of 3. The second experiment verifies this result.
experiments showed the effective linearity of our AO pro- The weight matrix and the image vector are simultaneously
cessor. This enabled us to confidently implement an HT on ocoded on the LCD panel using area and intensity modu-

the system and utilize the increased vector update rate of,_.. ; ; .
our AO SLM. No processing capability is lost in going lation respectively. The detected CCD imgdg. 10d)]

from a 2-D(LCD) to a 1-D(AO) input representatiofun- once again reveals a maximum value in the 28th row.
less, for example, one employs a lenslet array for Hough spaces are characteristically noisy in contrast to the

input vector to be replicated on each row. flected in our noisy optical measurements.
- DE 1 1 1 T 1 1 1 1 1
g *.n=05
E +...n=005
2 X .. n=0005
;§ ol o ... n=0.0005
5
[
B
B05F
'
g
[}
< 1 =Pl 1 1 1 1 1 1 1 1
0 5 10 15 20 25 30 35 40 45 50

Epoch

Fig. 9 Adjustments to weight w, during NAND learning experiments with four different values for the
learning coefficient 7. Although the learning times for each 7 are not identical, we can see from the
significant overlap in the plots that the development of the weights over time is somewhat invariant to
the learning coefficient chosen.
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—_— the transformation to Hough space revealed a maximum
; : I I I value in the 129th row, which corresponds to the correct
” ” : ” H : detection of a circle with radius 2 and cent&r3).

5 Conclusions and Future Work

(b) A reconfigurable optical computing platform, based on a
calomel AO matrix-vector multiplier, was designed and
built. We outlined the major considerations that arise when
building such a system and presented the successful results
of training a bipolar-output perceptron with sevefhh-
early separablelogical operations to analyze the proces-
sor’'s soft learning capabilities. It was possible to compen-
sate for all of the system’s time-invariant nonlinearities and
we found that those remaining inherent nonlinearities intro-
duced a level of noise and crosstalk that actually aided
learning.

Subsequently, we chose to implement a connectionist
model of the HT and verified its operation by detecting
lines and circles. Our Hough space is fully generalizable
and can be used to represent any arbitrary shape with vary-
ing position, orientation, scale, or pose. The advantages of
our AO implementation over other techniques include a
computational space-complexity independent of image size
(up to the maximum allowable resolution of our LCD
pane), a transformation throughput limited only by the ap-
(© (d erture time of the AO cell, and a reconfigurable weight
matrix easily controllable by a computer program on a PC.

Calomel’s exceptional optical properties make it a prom-

<— row 28 —» :‘-e

Fig. 10 Line detection with the AO HT: (a) the 4 X 4 input image,
(b) the input image represented as an electrical signal for modula-

tion of the AOU, (c) the Hough space from the first experiment ising material for AO signal_ processing. We have found,
showing maximum optical energy in row 28, and (d) maximum opti- however, that these properties come at the cost of reduced
cal etnergy in row 28 of the Hough space from the second experi- quality in the final fabricated unit through a combination of
ment.

crystal growth complexity and strict handling requirements.
Our short term goals are focused on expanding the ANN
and HT implementations to utilize the full space-bandwidth
product of our LCD panel. It will then be possible to ac-
commodate the weight space of an ANN layer with up to
d640 inputs and up to 480 neurons, while only linearly in-
creasing the computation time due to the thresholding soft-
ware routine[The theoretical computing power of our op-
tical setup(based on a 640480 pixel LCD panel and an
: . A . e A — 85 us AO unit update timis calculated as 3:610° real-
S 1110 1 valued multiplications per secorjdn addition, acquiring a
bl ikt bt Ml Sk ik i bibsbinilh Sl custom built linear detector with an appropriate pixel aspect
(b) ratio and ability to synchronize with the AO unit will re-
move our current necessity to use an area-scan CCD cam-
era.
Hard learning(solving problems whose solution spaces
are not linearly separables not possible using a single
<— row 129 layer perceptron but it is possible to implement more so-
phisticated networks using a multiple pass optical arrange-
ment. These experiments have addressed both the construc-
tional and operational difficulties of such an arrangement,
(a) currently under development, which is a tellurium dioxide-
based optical neural network capable of hard learning.

The third experiment involved detecting a circle in a
square image of side 6 containing multiple objgsese Fig.
11). The circle detection matrix of Fig.(ld) was used as the
weight space, and once again the input matrix was encode
using intensity modulation on the LCD panel. The result of
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