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Abstract: We apply two novel nonuniform quantization techniques
to digital holograms of three-dimensional real-world objects. Our com-
panding approach, combines the efficiency of uniform quantization with
the improved performance of nonuniform quantization. We show that
the performance of companding techniques can be comparable with
k-means clustering and a competitive neural network, while only re-
quiring a single-pass processing step. The quantized holographic pixels
are coded using lossless techniques for the calculation of compression ratio.
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1. Introduction

With the development of megapixel CCD sensors with high spatial resolution and dynamic
range, digital holography [1, 2, 3, 4, 5, 6, 7] has become a popular technique for three-
dimensional (3D) imaging [8]. A technique known as phase-shift interferometry [2, 5] was
used to record our in-line digital holograms. The resulting digital holograms are in a suitable
form for processing or transmission. Each hologram encodes multiple views of the object from
a small range of angles. By applying numerical Fresnel propagation techniques [3, 5, 9] to
appropriate regions [10, 11], we can reconstruct any one of these perspectives of the object.

The dimensions of our digital holograms are 2028×2044 pixels, storing 8bytes of real infor-
mation and 8bytes of imaginary information for each pixel. To increase storage and transmis-
sion efficiency [12], we compress our holograms. The noisy appearance of digital holograms
causes lossless data compression techniques, such as Huffman, to perform poorly [13]. The use
of lossy compression techniques to initially quantize our hologram data seems essential.

Quantization and phase quantization have been applied successfully to Fourier and holo-
graphic data in the past [14, 13, 15, 16, 12, 17, 18, 19, 20, 21]. In this paper, we apply quantiza-
tion directly to the complex-valued holographic pixels. Uniform quantization has been chosen
in the past because of the time-efficient implementations it admits [13, 12, 21]. Nonuniform
quantization achieves better compression ratios, but at the cost of requiring an iterative cluster-
ing technique. Companding quantization exhibits the speed of uniform quantization combined
with the improved results of nonuniform quantization. We employ two companding approaches
to quantize our holographic data and further apply lossless compression to the quantized data.

2. Digital Hologram Quantization

Two 3D objects (a die and a bolt) were used in our experiments. The digital holograms
are stored in real-imaginary format, with each holographic pixel requiring two floating-point
values. Uniform quantization is defined for an individual pixel H(x,y) as

H ′(x,y) = round
{

H(x,y)×σ−1×
[
2(b−1)−1

]}
(1)

and is applied to each x ∈ [1,Nx],y ∈ [1,Ny], where

σ = max{|min [Im(H)]| , |max [Im(H)]| , |min [Re(H)]| , |max [Re(H)]|} . (2)
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Fig. 1. NRMS error of the reconstructed die object plotted against number of clusters with
uniform quantization and (a) k-means quantization and (b) Kohonen competitive. Non-
optimized means using the clusters from the bolt to quantize the die.

Here, Nx and Ny are the number of samples in the x and y directions, respectively, b represents
the number of bits per real and imaginary value, max(·) returns the maximum scalar in its
argument(s), and round(α) = �α + 0.5�. All real and imaginary values will then be integers
in the range [−2(b−1) + 1,2(b−1)− 1]. After decompression and prior to object reconstruction,
each value is rescaled, by dividing by 2 (b−1)−1, to the [−1,1] interval.

In our compression experiments, a digital hologram H is compressed and then decompressed
as H ′, and an object U ′ reconstructed by numerical propagation. The quality of the compressed
reconstruction is measured using normalized rms (NRMS) difference, calculated from

D =

[
Nx−1

∑
m=0

Ny−1

∑
n=0

{|U(m,n)|− ∣∣U ′(m,n)
∣∣}2 ×

(
Nx−1

∑
m=0

Ny−1

∑
n=0

|U(m,n)|2
)−1]1/2

, (3)

where (m,n) are discrete spatial coordinates in the reconstruction plane. In order to reduce
the effects of speckle noise, only amplitude in the reconstruction plane is considered and a
5×5 pixel mean filtering operation is applied prior to calculation of NRMS difference.

2.1. Nonuniform iterative quantization

The nonuniform distribution of our hologram data prevents uniform quantization from per-
forming optimally. We require nonuniform quantization, since in a histogram representation,
our data is denser around the origin (low amplitudes), thus requiring more cluster centers, and
sparser away from the origin (high amplitudes). By nonuniformly positioning the cluster cen-
ters to match the fact that there is a higher probability that the pixel will have a low amplitude
value, the cluster centers can be used more efficiently.

We previously employed the k-means clustering algorithm [22] and a Kohonen competi-
tive neural network [23] to nonuniformly quantize our hologram data. The iterative techniques
produce satisfactory results, however it is not practical to iterate the algorithms each time a
hologram is to be compressed. Ideally, the cluster centers from one hologram could be stored in
a lookup table and applied with reasonable results to the quantization of subsequent holograms.
(The JPEG algorithm uses a hard-coded lookup table of cosine-domain quantization values ar-
rived at through performance evaluation over a database of sample input images.) However,
given that these algorithms adapt so well to the data they have been trained on, we have found
that the set of cluster centers is significantly less effective when used to quantize a different
hologram. This is illustrated in Fig. 1 (a), where it can be seen that quantizing the die hologram
using the clusters obtained by applying k-means to the bolt hologram results in consistently
increased compression errors. Figure 1 (b) shows similar results for the competitive network.

To overcome the computational requirements of iteration, we decided to produce a general
hard-coded pattern of clusters that would be effective as a quantization codebook. This hard-

#69916 - $15.00 USD Received 13 April 2006; accepted 15 May 2006

(C) 2006 OSA 12 June 2006 / Vol. 14,  No. 12 / OPTICS EXPRESS  5131



-1 -0.5 0 0.5 1
-1

-0.5

0

0.5

1

Real axis

Im
a

gi
n

ar
y 

a
xi

s

-1 -0.5 0 0.5 1
-1

-0.5

0

0.5

1

Real axis

Im
a

gi
n

ar
y 

a
xi

s

-1 -0.5 0 0.5 1
-1

-0.5

0

0.5

1

Real axis

Im
a

gi
n

ar
y 

a
xi

s

(a) (b) (c)
Fig. 2. Scatter plots of the diamond companding grid with (a) 9, (b) 25, and (c) 49 clusters.
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Fig. 3. NRMS error of the reconstructed object plotted against number of clusters with
uniform, companding diamond, k-means, and Kohonen competitive for (a) die and (b) bolt.

coded pattern would need to be in the form of a cluster-generating function parameterized by
a number of clusters. If this pattern was sufficiently general, it would also overcome the over-
adaption problem.

3. Companding quantization

Since uniform quantizers are simpler and more time-efficient than nonuniform quantizers, one
effective nonuniform quantization technique involves nonlinearly transforming the data so that
a uniform quantizer can be applied. This so-called companding quantization technique, works
well if the distribution of the data can be described, or closely approximated, analytically. A
compander is a nonuniform quantizer that is composed of a compressor, a uniform quantizer,
and an expander. Companding quantization has been widely used in digitization, compression,
and noise-free transmission of audio signals but little research has been done to investigate its
usefulness in the compression of images.

3.1. Diamond companding grid

We have developed an approach analogous to companding that involves nonuniformly trans-
forming a fixed-interval sampling grid of the complex plane, rather than transforming the input
data. The grid is compressed in regions where the input data is dense (for example, close to
the origin) and the grid is stretched in regions where the input data is sparse. The samples are
then treated as cluster centers to quantize the input data. Figure 2 shows a companding grid,
which we call the diamond pattern, based on a logarithmic sampling distribution. The inter-
cluster spacing for the diamond pattern was determined through quantization experiments with
several digital holograms. Figure 3 shows the results of using the companding grid to quan-
tize a 1024×1024pixel window of each hologram. For both holograms, the companding grid
performs as well as k-means and Kohonen competitive over numbers of cluster centers in the
[25,100] range. This is a significant improvement over the non-optimized iterative techniques
shown in Fig. 1. For smaller and larger numbers of clusters than the [25,100] range (correspond-
ing to higher compression ratios and higher quality reconstructions, respectively) the iterative
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Fig. 4. Scatter plots of the spiral companding grid with (a) 25, (b) 49, and (c) 81 clusters.
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Fig. 5. NRMS error of the reconstructed object plotted against number of clusters with
companding diamond and spiral grids for (a) die and (b) bolt.

(a) (b) (c) (d)
Fig. 6. Reconstructions with 5×5 mean filtering using the spiral companding grid for die
with (a) 9 clusters, and (b) 49 clusters, and for bolt with (c) 9 clusters, and (d) 49 clusters.

techniques clearly outperform the non-iterative companding technique. In the case of a larger
number of clusters, this is not considered significant; as the ratio of number of pixels to number
of clusters decreases, the performance of uniform and nonuniform quantization will converge
(this trend is visible in Fig. 3).

3.2. Logarithmic spiral companding grid

In order to improve the performance of companding for smaller numbers of clusters, we de-
veloped a second companding grid using a logarithmic spiral function (known as the Bernoulli
spiral or Fibonacci spiral). In polar coordinates, the spiral has the form r = ae bθ , where r is the
distance from the origin, θ is the angle, and a and b are arbitrary constants.

Figure 4 shows the distribution of clusters for the spiral companding grid. Figure 5 shows
plots of NRMS error in reconstructions for both holograms quantized using the diamond and
the spiral companding grids. For numbers of clusters less than 25, spiral companding improves
on the performance of the diamond companding technique, while being as effective for larger
numbers of clusters. Reconstructions of both holograms quantized with the spiral companding
grid are shown in Fig. 6.

4. Lossless compression of quantized digital holograms

To complete the compression procedure, lossless techniques (Huffman, Lempel-Ziv (LZ77),
Lempel-Ziv-Welch (LZW) and Burrows-Wheeler (BW)) were applied to the quantized digital
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Fig. 7. NRMS error of the reconstructed object plotted against compression ratio with com-
panding spiral grid for (a) die and (b) bolt.

hologram data. Huffman coding [24], an entropy-based technique, is one of the oldest and most
widely used compression methods. Each symbol in the input is replaced by a codeword, with
more frequent symbols assigned shorter codewords. The LZ77 algorithm [25] takes advantage
of repeated substrings in the input data and replaces variable length strings with a pointer to the
previous occurrence of that string. LZW [26] improves upon LZ77 by maintaining a lookup ta-
ble of variable sized codewords, and is also less biased towards local redundancy. BW [27] uses
a sorting operation to transform its input into a format that can be compressed very successfully
using one of the other three techniques (in our particular implementation, Huffman coding).

Compression ratio, r, is a measure of the number of bits of uncompressed data that are
actually communicated with a single bit of compressed data and is calculated from

r =
uncompressed size
compressed size

. (4)

In practice, the actual compression ratio will be dependent on the needs of the user, specifically
how much reconstruction loss they are willing to tolerate for their particular applications.

Figure 7 shows NRMS error plotted against compression ratio for all lossless techniques
for the spiral companding grid for both holograms. BW outperforms the other three lossless
compression techniques for most numbers of cluster centers for both holograms.

5. Conclusion

Although it is a fast technique, uniform quantization does not make efficient use of its quantiza-
tion space (set of cluster centers). Iterative nonuniform quantization techniques achieve lower
hologram reconstruction errors with the same number of clusters, but learning is computation-
ally expensive. To find a trade-off between speed and satisfactory results, we investigated two
companding quantization patterns: a diamond grid and a spiral grid. Experimentation has shown
that this technique provides comparable hologram reconstruction quality for quantization com-
pression equal to that of k-means and Kohonen competitive, combined with the advantage that
the quantization can be performed during a single pass of the data. It has also been shown that
careful construction of the companding grid can make it insensitive to moderate changes in the
distribution of hologram data. This is a particular problem for other iterative nonuniform quan-
tization techniques, where a set of quantization clusters trained to perform well on one digital
hologram, will not necessarily perform well on an unseen digital hologram. Finally, lossless
techniques were applied to the quantized holograms, with BW producing the highest compres-
sion ratios over all techniques for both holograms used in our experiments. Compression ratios
in excess of 70 were obtained.

The authors wish to thank Enrique Tajahuerce and Yann Frauel for use of their hologram
data. This research received the support of Enterprise Ireland and Science Foundation Ireland.
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