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Abstract: The Fourier plane encryption algorithm is subjected to a
known-plaintext attack. The simulated annealing hewrgtjorithm is used

to estimate the key, using a known plaintext-ciphertext, paiich decrypts
the ciphertext with arbitrarily low error. The strength dfet algorithm

is tested by using this estimated key to decrypt a differephertext
which was also encrypted using the same original key. Wenasghat the
plaintext is amplitude-encoded real-valued image, andyaasonly the
mathematical algorithm rather than a real optical systesth ¢hn be more
secure. The Fourier plane encryption algorithm is foundetsisceptible to

a known-plaintext heuristic attack.
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1. Introduction

Many image encryption algorithms have been proposed imtg@ars Refs. [1-9], to cite just
a few. Many of these algorithms can be implemented usingalgi&chniques taking advantage
of both the natural two-dimensional (2D) imaging capaieditof optics and the parallelism
achievable with optical processing. Optical systems ase ehpable of encrypting real-world
3D objects [7, 9]. Optical encryption algorithms have yetutalergo the rigorous cryptanal-
ysis which all conventional cryptographic algorithms ambjected to. There are instances in
the literature when an optical encryption mechanism is shitmbe robust to blind decryption
for selected keys in the key space. However, this is not sefffido evaluate the strength of
an encryption algorithm. Two previous studies have alrdagign performed on the strength
of optical encryption [10, 11], specifically on the well-kmo the Fourier plane encoding al-
gorithm [2] also analyzed in this paper. Carnicer et al. [A0¢ Frauel et al. [11] examined
exact solutions to pixels in the decryption key, with thenfer concentrating only on chosen-
plaintext attacks [12] (where the attacker had the advantddpeing able to choose whatever
plaintext-ciphertext pair they want) and the latter coasity both chosen-plaintext and known-
plaintext attacks [12]. In Ref [10], a Dirac delta functianused as the chosen plaintext to find
the Fourier plane key. The method proposed in Ref [11] isdasethe principle that Fourier
plane encoding algorithm is linear. In this paper, we taksfitist steps of a cryptanalysis using
heuristics to estimate the decryption key and describe whkrmaintext attack on the Fourier
plane-encoding algorithm. The advantage of using a héutisestimate decryption key pixels
rather than an analytical technique to determine exactisakifor the pixels is that heuristics
can take considerable less time to run. Furthermore, sirecddta routinely encrypted by op-
tical encryption is image data, slight errors in the deaegjdata can often be tolerated, and so
an exact solution is not generally required.

In a known-plaintext attack, discussed in this paper, alsiaghitrary (unchosen) plaintext-
ciphertext pair and the encryption method are known by tteekér. Furthermore, we assume
that the plaintext is amplitude-encoded real-valued im&gi¢éh this a priori information, our
approach is to use a simulated annealing (SA) algorithm {@3Jnd a key which decrypts
the ciphertext (encrypted image) with some chosen err@stiold. We choose this error to
be sufficiently low so that the entire information in the ihpmage can be recovered. The so
obtained key is used to decrypt a different” unseen platnncrypted using the same set of
original keys. The encryption algorithm is evaluated bag@dn its ability (in terms of length
of time on a particular computing platform) to withstand & heuristic decryption attack
using the known-plaintext, and (ii) based on the resultirigren the decryption of an unseen
plaintext.

2. Fourier plane encoding algorithm

The Fourier plane algorithm encodes an input imége a stationary white noise by using two
statistically independent random phase codes in the inpoemnd Fourier plane. The image is
multiplied by the first random phase cole A Fourier transform is performed on this product
and multiplied by the second random phase cBgeA second Fourier transform gives the
encrypted image. The encoded imagean be expressed mathematically as

@ =[f(.)Re]*Ra(.) (1)

whereX denotes the Fourier transform of X, andlenotes a convolution. The intensity of the
approximated input imagéis decoded as

TP = |w() *Re() @)
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whereR; is the SA algorithm’s estimation of the complex conjugatdiefIf we assume that
the input image is real-valued, then we are only interestéél|iand can effectively ignorB;.
Therefore in our analysis, when we refer to the decryptione mean mask,.

3. Known-plaintext attack using SA algorithm

One way to test the strength of an encryption algorithm castdted as follows: with particular
known a priori information, how difficult is it for an attacke find the key to a ciphertext which
would make it possible to retrieve the plaintext? In knoviaigext cryptanalysis, the attacker
has a priori knowledge of the encryption mechanism as wall laintext and ciphertext pair.
If the attacker is able to find the key used for a given plaittéghertext pair, then the security
of all the past and future ciphertexts, which used the sammeakecompromised.

Let us assume that the attacker tries to decrypt a ciphegtestypted using Fourier plane
encoding by the blind decryption method. In this methodi€d)ies to decrypt the ciphertext
by randomly picking a key from the key space, and compareethdting ‘decrypted’ plaintext
to the original plaintext.

The probability of finding the correct masktisearches would be approximately 1 where
K is the size of the key space. For lnx N pixel encryption phase mask with phase levels,
the key space is as large is= mN*N. If one considers that some fractiofe) < [0,1] of the
keys could give a decryption with some acceptable egrdinen the probability of finding one
of these (estimated) keys increases[tos)K]~* for a particulare. If the attacker finds any
one of these estimated keys (s)he would decrypt the ciptievith some error. The important
guestion, however, is whether or not this estimated deinyfey can also be used to decrypt
another (unseen) image, encrypted with the same origiralption key. If a single unseen
image is decrypted, then one could consider the encrypgégnak having been broken. If no
unseen image can be found that is adequately decryptedytiesrould consider the encryption
algorithm as having withstood a SA heuristic decryptioaektusing that particular computing
platform for that amount of time.

We apply a SA algorithm [13] to find a phase mask which wouldrapimately decrypt the
ciphertexty(.) to give an estimated plaintex{.) such that the normalized root mean squared
(NRMS) error is equal to or less than some threstsolihe NRMS error is calculated as

S 3N llali, )~ 1, D)
NRMS= 5
J SN NG, )P 3)

wherelg(.) = |f()[> andI () = | f(.)[?

Our SA algorithm involved the following steps:
Step 1: An initial guess for the random phase maRkis made by assigning the phase of
the Fourier transform of the encrypted imagg) to every other pixels in both dimensions (i.e.
half the number of pixels) [14]. The other half was chosemaanly from a uniform probability
distribution in the rang€0 2m). The step countar is initialized to zero and the error threshold
€ is set to the desired value. The initial temperattires chosen sufficiently high so that the
perturbation probability in Step 4 will be large.
Step 2: The cost valud is calculated as the NRMS error between the decrypted imedjéhe
original plaintext image.
Step 3: One pixel of Rz is randomly selected and perturbed iyt where a,, is the scale
of perturbation [14] at the" step, chosen a8 log(A+ E,)/C]P whereE, denotes the cost
function calculated at the™ step as in Step 2. The parameté&sB, C and p will have been
fixed at the beginning of the algorithm so tlef~ 1. p determines the rate of decreaseonof
.The new cost functiorg"®", is calculated using the perturbed phase mask.
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Fig. 1.Time taken to estimate the key which would decrypt the encdyjpbage of A with an NRMS
error of 0.1. Results of 50 trials, 25 each for cases whemigzi is a 3% 32 pixel image and 6464
pixel image.

Step 4: The change in cost function due to the perturbation is ¢aled asAE = E"*V—E . The
newly perturbed mask is acceptedE < 0. Otherwise, the mask is accepted with a probability
p(AE) = exp—AE/T) whereT is the temperature parameter.

Step 5: Steps 2, 3, and 4 are repeated until the system convergesdiven temperaturé.
The system is considered to have convergedHj is less than 5% of the initial value for each
iteration.

Step 6: The temperature is decreased according to the annealiegisieT = To/(1+n), and
the step numben is incremented.

Steps 2 to 6 are repeated until the NRMS error between thgmteckimage and the original
plaintext image is reduced to belay

4, Resultsand discussion

We started with an imag& and its encrypted cipherteyia, encrypted using the Fourier plane
encoding algorithm. The SA algorithm was used to estimatédly that would decryppa with

an error (NRMS error) of 0.1. The estimated Kyis used to decrypt a different ciphertepg
corresponding to a plainte® The NRMS error in the decrypted image is measured. The error
in the estimated imagB is expected to be greater than thattofWe performed 25 trials each
for two cases when imagk has 3% 32 and 64 64 pixels. For each trial we chose a different
starting point for the SA algorithm. We used a Dell OptipleXZ80 Intel Pentium 4 CPU 2.8
GHz PC with 504 MB of RAM memory and MATLAB version 7 for ourais. The time taken
for the algorithm to converge to an NRMS error of 0.1 in thergpted imageA for 25 trials

is shown in Fig. 1. The NRMS error in the decrypted im&g®r 25 trials is shown in Fig. 2.
ImagesA andB are shown in Fig. 3(a) and Fig. 3(e), respectively.

The average time taken in 22 out of 25 trials when A is & 32 pixel image is 22 minutes.
The average error in decrypted imagéor these 22 trials is 0.44. However trials 9, 22, and 25
have an average of 144 minutes and their average error is\WWI8nA is a 64x 64 pixel image,
the average time taken in 24 out of 25 trials is 343 minuteg dinor in decrypted image
for these 24 trials is 0.4. The time taken for the remainiaggr(trial 3 in Figs. 1 and 2) is 560
minutes and the corresponding error for the decrypted inBigé.87.

The plaintext image#\ and B are shown in Fig. 3(a) and (e), respectively. The real and
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Fig. 2.NRMS error to decrypt the encrypted image of B. The key usedth@sne found to decrypt
the encrypted image of A with NRMS error of 0.1. A and B are eptay using the same set of keys.
Results of 50 trials, 25 each for cases when plaintext isxa322pixel image and 6464 pixel image.

imaginary parts of the complex-valued encrypted imgigeare shown in Fig. 3(b) and (c), re-
spectively. Figs. 3(f) and (g) show the real and imaginary pithe complex valued encrypted
imageys. The decrypted image afis with an error of 0.1 is shown in Fig. 3(d) and thatya$
with an error of 0.4 is shown in Fig. 3(h).

Of the 50 trials performed, we note that the SA algorithm ewsged to a solution in all cases,
within 560 minutes on our particular computing platformgddaund a key to decryppa with
an error of 0.1. Of these 50 trials, in 46 cases, the key saftdgsdecrypts another unseen
encrypted imag@s with an error of 0.4 [that is still sufficient to read the infieation, see Fig.
3(h)]. Only in four cases, was the error in decryptipyg twice this value (approx. twice as
large) and thus we regard these cases as having failed tgpte€he existence of these four
failed cases potentially adds to the security of the Foynlemne encryption technique and poses
a problem for any attacker. If an attacker cannot identifghsiailed cases, since plainte&is
unseen, (s)he might never to able to tell, given a plaintgttertext painA, Ya), whether or
not a key that correctly decryptgs has been identified. However, we note that the algorithm
also takes much longer to converge in these four cases. Ton&lps a clear indication as to
whether a key, which successfully decryj, has been found or not. Therefore our proposed
use of the SA technique is as follows:
Step (a). Given the plaintext-ciphertext pdiA, a) and an unseen ciphertagg, run in parallel
s= 3 trials of the SA algorithm.
Step (b). As soon as the first of thetrials converges, accept that key and deciypt
With probability 0.9995 there will be at most two failed caseit of three trials, therefore with
this probability the above approach will, on average, sssftdly decryptyg within 3x343
minutes (given a 6464 pixel image and our particular computing platform). Weehassumed
that the probability of a failed case is 4/50 = 0.08, and thatstatistical sample of 50 trials in
this paper is sufficient to determine this fact. Regardlésiseosufficiency of our sample, if the
probability of a failed case is less than 0.5 (as it certaagpears to be) running SA fer> 3
trials and picking the majority answer will increase everitfar the probability of successfully
attacking the Fourier plane encryption algorithm usingdih@wn-plaintext SA heuristic attack.
We have found that the average time for attacR(s?) where 'n’ is the number of pixels in the
plaintext and ciphertext.
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Fig. 3.(a) Images from the 6464 pixel trials: (a) the plaintext A, (b) the real part and tfed imagi-
nary part of the complex-valued encrypted image of A, (d) therygted image with an NRMS error
of 0.1, (e) the plaintext B, (f) the real part and (g) the imagynpart of the complex-valued encrypted
image of B, (h) the decrypted image B with an NRMS error of 0.4] @nthe decrypted image B in
trial 3 with an NRMS error of 0.8.

5. Conclusion

We tested the strength of Fourier plane encryption algaritiith respect to a known-plaintext
attack. We used an SA algorithm to estimate the key that wdaldypt a ciphertext corre-

sponding to a plaintext with a predetermined arbitrary lovoe In 46 of the 50 trials, the so

estimated key decrypted a different unseen ciphertextypten using the same original key
with reasonably low error. The results from these experisishow that the Fourier plane en-
cryption algorithm is susceptible to a known-plaintexhakiwith a SA heuristic. In our analysis
we have assumed that the images to be encrypted are amggitedeled images. Furthermore,
our analysis is of a mathematical formulation of the endgyptlgorithm itself, and does not

take into account properties of the optical hardware thdttadhe security of the technique.
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