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amined by using the phase space formalism. The fractional order separation has a lower bound and an upper
bound that depend on the signal at hand and the noise in the optical system used for measurement. On the
basis of a theoretical analysis, it is shown that for a given optical system a judicious choice of fractional order
separation requires some a priori knowledge of the signal bandwidth. We also present some experimental re-
sults in support of the analysis. © 2007 Optical Society of America

OCIS codes: 070.2575, 100.5070, 120.5050.

1. INTRODUCTION

Noninterferometric deterministic phase retrieval meth-
ods have received considerable attention since the work
by Teague [1,2] and Streibl [3]. These methods have been
used for a broad range of applications from microscopy
[4,5] to astronomy [6], with both fully [7,8] and partially
coherent sources [9,10] and wavelengths ranging from the
visible to x rays [11]. In a broad sense, all of these meth-
ods extract the phase and thereby the complete signal in-
formation from single or multiple intensity measure-
ments by using a deterministic algorithm based on the
underlying physical model. Most of the deterministic
phase retrieval methods are based on the transport of in-
tensity model including the methods of Teague and
Streibl.

Another class of methods reconstructs the signal by
sampling phase space distribution functions like the am-
biguity function (AF) [12—-15]. The underlying philosophy
of these approaches, generically referred to as phase space
tomography, is that the phase space distribution func-
tions such as the AF contain the entire signal informa-
tion. Some methods reconstruct the signal by sampling
the entire phase space distribution function in a grid.
Semichaevsky and Testorf [16] and Nugent [11] have pre-
sented a description of the various deterministic phase re-
trieval techniques using phase space distribution func-
tions.

Methods have been proposed to extract signal informa-
tion from the intensity of the fractional Fourier transform
(FRT) of the signal. Alieva and co-workers [17-19] pro-
posed a method to reconstruct the signal from two close
fractional Fourier power spectra. In the context of metrol-
ogy, intensity measurements in FRT domains have been
used to extract information regarding object tilt and
translation [20-22]. Lohmann et al. [23] have pointed out
that for lossless transmission of information the system
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space-bandwidth product should encompass the signal
space-bandwidth product, with both signal and system
space—bandwidth products being represented as an area
in the Wigner domain. Depending on the signal at hand
and detector used, FRT systems will provide different
quality results as compared with Fresnel transform sys-
tems based on free-space propagation as we move from
one domain to another [24].

In this paper, we use the phase space formalism to ex-
amine the signal recovery methods where the signal is
captured in two FRT domains in which the orders of the
two optical implementations of the FRT differ by very
little. In this case we can describe the two resulting FRT
domains, into which the Wigner distribution function
(WDF) of the signal has been projected, as being close,
since their angular separation in phase space is small.
Such a treatment helps us in comparing these methods
with the phase space tomographic methods that are based
on sampling the entire phase space [12-15]. From the lit-
erature it appears that the signal extraction methods
based on output intensity measurements at two close FRT
domains lead to a lesser number of necessary samples.
However, we show that the choice of the necessary frac-
tional order separation needs some a priori knowledge of
the input signal bandwidth and noise in the optical sys-
tem. This is because (i) the bandwidth of the signal re-
sults in an upper bound on the fractional order separation
and, (il) more important, in a differential method the ef-
fect of noise in the system is deleterious and leads to a
lower bound on the fractional order separation. Using the
example of a quadratic phase signal (which can easily be
generated experimentally by using a thin lens), it is
shown that for a given noise level in the system a signal
with a lower rate of change of spatial frequency has a
higher upper bound and can be estimated by using a
larger difference in FRT order.

© 2008 Optical Society of America
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We use an optical system that performs a scale-
invariant FRT to experimentally estimate the spatial fre-
quency distribution (local spatial frequency [25]) of input
quadratic phase signals generated by two lenses of focal
length 8 mm and 20 cm. We use the same fractional order
separation to characterize the spatial frequency distribu-
tion of both lenses. It is seen that for the 20 cm focal
length lens the spatial frequency distribution estimated is
erroneous, as the fractional order separation is inad-
equate to accommodate the measurement of this signal.

2. PROJECTION SLICES IN PHASE
SPACE

Let us consider a one-dimensional signal f(-). Let f,(-) rep-
resent the FRT of f{(-), defined as

fa(x) = f f(xO)Ka(xer)de9 (1)

where

exp(ia/2) X% 2uxx, X5
Ka(xrxo) = —F— exp i - — + .
\isin a tana sina tana

(2)

The integrals, unless otherwise specified, run from —«
to +o. When «=0, the kernal K,(x,x)) reduces to &(x
—-xp), and we have fy(x)=f(x). When a=m, the kernal
K, (x,xo) reduces to Sx+xg), and we have f.(x)=f(-x).
When a=7/2 and a=-n/2, we have the Fourier trans-
form (FT) and inverse FT of the input signal, respectively.

In the following analysis, we use two phase space dis-
tributions [25] of the signal—the WDF and the AF. The
WDF of f(-), W(x,v) is defined as

W(x,v):J/<x+%)f*<x—%)exp(—iZmzx’)dx’, (3)

while the AF, A(%,7) is

A(a?,i):f/(fc+g)ﬁ(&—;)exp(—ﬂmﬁ)d&. (4)

The AF is related to the WDF through the FT and inverse
FT,

A(E,i):ffW(x,v)exp[— 127(vx — vx)]dxdw. (5)

The zeroth-order moment of the WDF is related to the
AF through the FT:

A(O,i):fmo(x)exp(— i27x)dx, (6)
where
mo(x)=fW(x,v)dv=IO(x). (7)

In Eq. (7), Ij(x)=|f(x)|? is the intensity of signal f(x). In a
similar way the derivative of AF is related to the first-
order moment of the WDF"
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dA(x,v)
ox

=27Tifm1(x)exp(— i27vx)dx, (8)
=0

x=l

where

mq(x) =f vW(x,v)dv=vlj(x). 9)

The fractional power spectrum |f,(x)|?, denoted I ,(x), is
equivalent to the radon Wigner transform of the signal-
projection of the WDF W(x,») of the signal rotated by an
angle a. This equivalence between the radon Wigner
transform and the FRT power spectrum was pointed out
by Lohmann et al. [26] and is written as

I,(x)= f W(x cos a— vsin a,x sin a + v cos a)dv. (10)

We now proceed to relate the fractional power spec-
trum, which can be measured by using an optical system

performing an FRT, to the AF of the signal. Let I,(%) de-
note the FT of I (x):

1,9 = f I,(x)exp(- i277x)dx. (11)

Using Eqs. (10) and (11), one can relate I (V) to the A(x,7)
as follows:

I =A X, 9)|z=_5 sin @57 cos - (12)

Taking the FT of the fractional power spectrum of the
signal is equivalent to taking a slice through the AF of the
signal along x=-7sin « and v=7cos «. To reconstruct the
AF, one needs to measure the fractional power spectrum
of the signal at all orders. By piecing together the FT of
the entire fractional power spectrum at appropriate
angles, one can reconstruct the AF and thereby the corre-
sponding signal. Since AF representation has redundancy,
it is not necessary to exactly reconstruct the entire AF for
signal recovery. Dragoman [27] has shown that the sec-
tion x=x, parallel to the X plane contains the entire signal
information. However, it is is not always possible to ac-
cess this plane by using optical systems based on linear
canoninal transforms [24].

For most real-world signals, it may be sufficient to re-
cover the signal by measuring the zeroth- and first-order
moments of the WDF as given by Egs. (6) and (8). Equiva-
lently, one may also use A(0,7) and JA(0,v)/dx. In the
analysis that follows it may be seen that the latter quan-
tity can be extracted from two intensity measurements in
two close FRT domains «y and ay+Aa. This is the philoso-
phy underlying the signal recovery approach using two
optical implementations of close-fractional-order systems.
For the following analysis and without loss of generality
we take @p=0. Hence, we can write

I)(9) = Lo (P)lag=0= AR, D)z=0,5-35 (13)
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TAQ(T/) = ja0+Aa(5)|a0=0 = A(x>]_})|9?=—Aal~/,7/=17s (14)

where we assume the small-angle approximation cos Aa
~1 and sin Aa=Aa. Using a first-order Taylor series ex-
pansion, we can write that

JA(x v)
Alx + Ax,v) = A(x,v) + (15)
Then using Eqgs. (15), (13), and (14), we can write

L.»-1»  AED

= - v ) (16)
Aa o %=0,7=7
and therefore, in the limit Aa—0,
dA(X,7) -1dI,(x)
— = — exp(—i2mvx)dx.

ax o v da w0

(17)

From Eqgs. (8) and (9), we know the relation between
the local spatial frequency v(x) and the first-order deriva-
tive of the signal’s AF,

1 dA(x,v)
v(x) = —

Substituting Eq. (17) into Eq. (18) and using the math-
ematical identity

exp(i27vx)dv. (18)
x=0

1
-— f —exp[-i27u(x -X)]du =sgn(® -x), (19)
m ) u

where sgn denotes the signum function, one obtains an
equation [17-19] relating the local spatial frequency »(-)
to the measured quantity d//da,

dI (x)

v(x) = sgn(x — x)dx. (20)

a=0

2Io(x)

In the above discussion, we have assumed the initial
FRT order ay=0 for simplicity of analysis. A similar
analysis can be done for other values of « in a rotated co-
ordinate system to obtain

dI (x)

v(x) = sgn(® -x)dz.  (21)

a—ao

21, (x)

It may be noted that in the above case the ayth FRT of the
signal is extracted, from which the signal may be derived
by performing an FRT of order —q(. Extending Eq. (20) to
two dimensions, it can be shown that

_a¢(x,y) ff M o a0 (%,5)
ve(x,y) = P ZIOO(x,y "

xsgn(x - %) 8y — 7)dxdy (22)

aOaO

for the case when @, # @, (anamorphic systems) and
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o) J f dL,(%,7)
Vx(x,.’)’) - o 210(x’y)
Xsgn(x - X)dly - y)dxdy (23)

when a,=a,=a. Similarly, we can write the equation for

the spatial frequency component in the y direction by in-
terchanging the roles of x and y.
The phase ¢(x,y) can then be calculated as

x y
Plx,y) = f v, (ac,y)dx + f vy(x,y)dy, (24)

k k

where % is a constant.

As an example, consider the signal f(x)=exp[2mi(bgx?
+b1x+bg)]. The WDF of this signal is W(x, v)=8(2bgx+b,
-v), and using Eq. (10) we can write the fractional power
spectrum as

I,(x) =f S(mix —mgov+by)dv,

where

mq = 2by cos a—sin «, mg = 2by sin a + cos a.
(25)
Rescaling the coordinates, we can rewrite this as
1
Ia(x’)z—f Sx" —v+by)dy, x'=mqx. (26)
mg
In this case,
dl(x')
da

=—2b2f Sx' —v+bydy, x'=2byx,

a=0

(27)

and Eq. (20) can therefore be written as

1 dl,(x") x' dx’
f _ sgn —. (28)
210(.’)6) da =0 2b2 2b2

Assuming uniform intensity in the image plane (ag
=0), i.e., a pure phase object, Iy(x)=1, and substituting
d/,/da from Eq. (27) into Eq. (28), after some simplifica-
tion Eq. (28) reduces to the expected result v(x)=2bsx
+b1.

v(x) =

3. CHOICE OF FRACTIONAL ORDERS

For practical purposes, how close should the two FRT or-
ders be? To answer this question, we refer to Fig. 1, where
a top view of the AF A(x,v) of a one-dimensional signal, as
given by Eq. (4), is presented to illustrate sampling con-
siderations. Shown in the figure are samples (indicated by
dots) of two slices of the AF. One slice is along the v axis,
and the second passes through the origin and is at an
angle a=A« to the v axis. The samples correspond to the
FT of the two intensity measurements at FRT orders «
=0 and a=A« [See Egs. (13) and (14)]. For Eq. (16) to be
satisfied for all values of 7,
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ARD=1®)

T

Fig. 1. Schematic representation (top view) of the AF of the one-
dimensional signal illustrating sampling considerations. For il-
lustration, the figure is greatly exagerated and simplified. The
dots indicate samples of the FT of the two intensity measure-
ments at FRT orders 0 and Aa. The two arrows indicate the val-
ues A(7,0) and A(v,-7A«@) of the two samples at (7,0) and (7,
-PAa).

(A7/2)tan Aa < &, (29)

where Av is the full bandwidth of the signal and & is the
sample separation rate along x. The full bandwidth is de-
fined from a Nyquist perspective as the width containing
greater than 99% of the total signal power. To satisfy the
Nyquist sampling criteria, & <1/Av. This places an up-
per bound on A« indicating that

Aa < 2/AT2. (30)

The lower bound on A« is dictated by noise in the sys-
tem. Assuming the noise to be a stationary random pro-
cess, let N be the power spectral density of the noise in
the system. Once again, let Av denote the operating band-
width of the signal. The separation of the fractional or-
ders A« of the two measurements I,(x) and I,,(x) in Eq.
(16) should satisfy the inequality

A2
J [I1,(7) = To(9)|2dD > NyAD. (31)
)

Equation (31) states that the choice of Aa should be
such that the energy of the difference signal [I,,—1(](+)
should be greater than the noise power NyAv.

Taking the example discussed in the previous section,
fle)=exp[2mi(box®+b1x+by)], let us calculate the upper
bound and the lower bound on Aa. If W is the width of the
detector array used, then the bandwidth Av=b,W. The
upper bound on Aa may be written as

Ao < 2/b2W2. (32)

From Eq. (25), we can write the FT of the measured sig-
nals I(x) and I, ,(x) as

- imvb,
Iy(v) =exp 5 av),
2
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1 127vb,
exp o(v).
2b2AC¥+ 1 2b2—AC¥

I,,(v)=

(33)

Substituting from Eq. (33) into Eq. (31) and after some
algebraic manipulations we obtain

2
{W} > NoAT. (34)
Therefore,
1
7 [Ny W) - 1]

(35)

Equation (35) suggests that Ny=0, i.e., when there is
no noise, Aa can take arbitrarily low values. As N in-
creases, the lower bound of A« increases. In the above ex-
ample, the lower bound on A« also depends on the rate of
change of frequency by of the chirp signal. From Eq. (34)
it may be seen that for a given noise level in the system
the signal-to-noise ratio is higher for a signal with a
larger value of by. In other words, the effects of noise be-
come more pronounced as the signal frequency becomes
lower. Thus, for a given system noise, a fractional order
separation that is suitable for a quadratic phase signal
with a high value of b, may lead to erroneous results for a
signal with a low value of by. This prediction is experi-
mentally validated in Section 5. Equations (30) and (31)
act so as to limit the range of values Aa can assume,
which allows accurate measurements to be performed
given a priori knowledge of the signal bandwidth. Thus
the optimal choice of A« requires some a priori knowledge
of the signal bandwidth and the noise in the system.
Though this method requires only 2N samples as com-
pared with N2 samples required for methods that sample
the entire phase space [12-15], more a priori knowledge
of the signal is required, as compared with these latter
methods, for the judicious choice of FRT orders «, and
ap+Aa.

Equation (21) exhibits singularity behavior when I,XO
=0. This can be avoided by chosing FRT domains close to
orders a=0 or a=. As suggested by Teague [2], the sharp
irradiance nulls are filled in by defocusing. Also, the
choice of «aq is dictated by practical considerations like
walk-off in the system due to apertures.

4. SLICES IN PHASE SPACE USING A
SCALE-INVARIANT FRT SYSTEM

The quantity dI (-)/da in Eq. (23) can be measured by us-
ing a scale-invariant FRT system [28] comprising two
spherical lenses of focal length f separated by a distance
dy. The input plane and output planes are at distances d;
from the first and second lenses, respectively. The optical
fields in the input and output planes of the optical system
are related by a two-dimensional scale-invariant FRT
given by

fols2,8y) = f f f(sX,sy) K (x,y;%,y)dxdy, (36)

where
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Fig. 2. Experimental results for 8 mm focal length lens (diameter 3 mm): (a) spatial frequency v,, (b) spatial frequency v, with the y
direction averaged out; (c) spatial frequency »,; (d) spatial frequency v, with the x direction averaged out. The dashed—dotted lines in (b)
and (d) indicate the predicted spatial frequency corresponding to an 8 mm focal length lens.

24y X+ 297 B2+ factor. If the distances d; and d, are related by
K, (x,y;X,y) =exp| i7 - — + .
tan a sin « tan o ; 2fd1(d1—f)+f2
@7) - d? e
(x,y) and (x,y) are coordinates in the output and input
planes, respectively, «a is the FRT order, and s is a scaling then the system performs a FRT of order a given by

(38)

Phase (in radians)

-1.5 -1.5
Fig. 3. Phase calculated from the estimated spatial frequency for the 8 mm focal length lens.
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| ddi-2p) (39)
ascos™| o A |

The scale factor s in Eq. (36) is given by s=\f, where \ is
the wavelength of the light. It may be seen that d;=f and
dy=2f give a=2, corresponding to imaging with a magni-
fication —1, while setting d;=0 and dy=f gives a=0, cor-
responding to imaging with magnification 1.

To estimate the quantity df,(-)/d«, the FRT system is
configured to perform FRT of orders a; and ay separated
by a small value Aa. The orders are so chosen that (a;
+a)/2~0. The corresponding intensities, I,,, and I,,,, are
measured at the ouput of the optical system. Then the
rate of change is approximated by

dIa(x) Ial(x) - Ia2(x)
~—, (40)
da w0 Aa
L, (0 + 1,
Io(x) i T (41)

By measuring [ a and [ ag the local spatial frequency
components in the x and y directions, »,(-) and »,(-), can
be estimated by using Eqs. (22) and (41).

5. EXPERIMENT

We estimated the curvature of the field created by a thin
spherical lens [29] of focal length 8 mm and clear aper-
ture 3 mm. The lens was placed in the input plane of an
FRT system and illuminated by a collimated laser beam

@

X

Spatial frequency v

y

Spatial frequency v
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(A=633 nm). For a plane-wave input, under the paraxial
approximation the field immedietly after the spherical
lens is given by f(x,y)=exp[jm(x2+y?)/\f;], where f; is the
focal length of the lens in the two orthogonal x and y di-
rections. This is the two-dimensional extension of the one-
dimensional chirp signal discussed in Sections 2 and 3
with by=1/2\f; and b,=0. If the lens is tilted with respect
to the optical axis of the system, the value of b; is non-
zero. The optical system performs a scale-invariant opti-
cal FRT with the input and output coordinates scaled by a
factor s= \s“)Tf, where f'is the focal length of the lens used in
the FRT system [see Eq. (36)]. Accounting for this scaling,
bo=f/2f;, and the spatial frequency as measured by the
system is f/f;.

With the 8 mm lens placed at the input, the optical sys-
tem is first configured to obtain a FRT order a=w (f
=160 mm, d;=160 mm, and dy=320 mm), and the first
intensity measurement is performed. This is preferred,
for practical reasons, to the =0 system configuration,
where the input and output planes coincide with the
plane of the lenses. The second intensity measurement is
done by perturbing the fractional order by a small value
Aa=0.006 corresponding to a perturbation in d; by
0.5 mm and dy by 1 mm. The intensity measurements
were performed with a CCD (Imperx Model, 1024
X 1024 pixels, 7.6 um square pixel). The width of the sen-
sor array is W=8 mm in both x and y directions. Figure
2(a) shows the value of v, estimated by using Eq. (22).
Figure 2(b) shows v, averaged along the y direction. Plot-
ted as the dashed-dotted line is the theoretically expected
curve with the value b,=20 and 6,;=0 for /=160 mm and
;=8 mm. The difference in the experimentally deter-

(b)
1 : : :
experimental
5% —-—- theoretical
0.5 — b
> -7
iy .
o
3 0
g
= 05
o
=
(0]
Q1
w
1.5 : : : : :
-1.5 -1 -0.5 0 0.5 1 1.5
Position x (in mm)
(d)
1 - v
experimental
= —-—" theoretical
@

nd
&

Spatial frequency v
o
w0 o

15 -1 05 0 05 1 15
Position y (in mm)

Fig. 4. Experimental results for the 20 cm focal length lens: (a) spatial frequency v,; (b) spatial frequency v, with the y direction aver-
aged out; (c) spatial frequency v,; (d) spatial frequency v, with the x direction averaged out. The dashed—dotted lines in (b) and (d) in-
dicate the predicted spatial frequency corresponding to a 20 cm focal length lens.
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Fig. 5. Collimated beam input: (a) spatial frequency v,; (b) spatial frequency v, with the y direction averaged out; (c) spatial frequency

vy; (d) spatial frequency v, with the x direction averaged out.

mined curve and the theoretically expected curve may be
attributed to various experimental errors. The main
sources of experimental errors are the positioning errors
of the lenses leading to errors in the distances d; and d,,
errors in collimation of the beam, and tilt of components
with respect to the optical axis of the system. The esti-
mated values of the focal length from the experimentally
determined curve were f,=8.36 mm and f,=8.3 mm. Fig-
ure 3 shows the phase estimated from the spatial
frquency shown in Fig. 2.

Figure 4 shows the plots corresponding to a lens of focal
length 20 cm. The measurements were carried out for the
same FRT order separation, Aa=0.006, used in the previ-
ous case. As can be seen from the plots, this fractional or-
der separation leads to an erroneous detection of spatial
frequency. For this case, the value of b,=0.8 leads to a
higher value of the lower bound than predicted by Eq.
(35).

For completeness, in Fig. 5 we show the results for the
case when there is no input signal. The measurements
were carried out for the same FRT order separation, Aw
=0.006, used in the previous case and collimated illumi-
nation. The result therefore corresponds to noise and
drifts in the system and places a lower threshold on per-
formance.

6. CONCLUSION

In this paper, we examined the signal recovery methods
that use two intensity measurements in two close FRT do-

mains, using the phase space formalism. Although these
methods require fewer samples than phase tomographic
methods that sample the entire phase space, the choice of
the fractional order separation needs a priori knowledge
of the signal bandwidth and noise level of the optical sys-
tem used for measurement. This is because (i) the band-
width of the signal results in an upper bound on the frac-
tional order separation and, furthermore and very
significantly, (ii) the noise in the system leads to a lower
bound on the FRT order separation. Using the example of
a quadratic phase signal, we have shown that for a given
noise level in the system, signals with a lower rate of
change of spatial frequency have a higher upper bound.
We used a scale-invariant fractional Fourier optical
system to experimentally estimate the spatial frequency
distribution of quadratic phase signals generated by two
lenses of focal length 8 mm and 20 cm. Using the same
fractional order separation for both the lenses, it was
found that for the case of the 20 cm focal length lens the
spatial frequency estimated is erroneous, as the fractional
order separation is inadequate to extract this signal.
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