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Abstract 
We report on extensions to a Java distributed computation library (JDCL) by Fritsche, Power, 
and Waldron, with application to a problem in the field of bioinformatics. Within our 
framework the system has been extended to support applications requiring a MIMD (multiple 
instruction, multiple data) architecture. The system has been evaluated through a DNA pattern 
matching application over a network of 90 PCs. The user is required to extend only two Java 
classes to completely configure a distributed computation. 

1 Introduction 
A class of distributed computation systems is based on the client-server model. This class is 
characterised by (i) clients that instigate all communication and have no knowledge of each 
other (no peer-to-peer communication), (ii) a server that has little information on, or control 
of, its clients, and (iii) computations that are insensitive to fluctuations in the number of 
clients or client failure. Well-known and successful systems in this class include the Great 
Internet Mersenne Prime Search (GIMPS) [1] and SETI@Home [2]. These systems are 
usually designed with a single application in mind, and are not generalisable or 
programmable. A Java distributed computation library (JDCL) [3] was designed to provide a 
simple general-purpose platform for developers who wish to quickly implement a distributed 
computation in the context of a SIMD (single instruction, multiple data) architecture. Its aims 
were to allow developers to abstract completely from networking details and to allow 
distributed computations to be reprogrammed without requiring any client-side 
administration. Its attractions included network and platform independence, simplicity of 
design, and ease of use for developers. 

Our contribution has been to continue development of the system, bringing it to a level 
in terms of functionality and robustness that permits demonstration of a large-scale 
application. The JDCL was in an early stage of development and required a number of 
enhancements to bring it up to such a level. In addition to refining the functionality and 
efficiency of existing features of the JDCL [3] our system contains enhancements that are in 
line with the aspirations of its original developers. They include facilitating ease of 
distribution [the client consists of an initialisation file and a single jar (Java archive) file], and 
coping with client failure. The server is capable of both detecting client failure and 
redistributing the computational load. 

Other enhancements (not aspirations of the original JDCL developers) include adding 
security to the clients, and expanding the range of applications that the JDCL can support. A 
security manager has been developed that limits the downloaded task's interaction with the 
client software and donor machine. The client software also integrates seamlessly with the 
donor machines. As a low-priority service it utilises only "spare" clock cycles so that the 
inconvenience a donor experiences is minimised. The other major enhancement is the 
system' s emulation ofa MIMD (multiple instruction, multiple data) architecture. This is 
explained in Sect. 2. The design of the system is outlined in Sect. 3. 

Java proved to be an ideal language for the development of this system. It was 
possible to design a straightforward interface to the system: users are required to extend only 
two classes to completely reconfigure a distributed computation. Furthermore. identical 
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clients (and identical downloaded tasks) could be run on a variety of platforms. Existing 
programmable distributed environments or libraries range from MPI [4] and PVM [5] to 
JavaSpaces [6] and the Java OO Neural Engine (Joone) [7]. The strength of our system, we 
believe, is that it takes full advantage of dynamic multiprocessor architectures (such as the 
Internet itself) in which individual processors work in a completely asynchronous manner and 
do not have the ability to efficiently support a shared memory. 

2 Computational theory for MIMD emulation 
A major enhancement of our system is its emulation of a MIMD architecture. In order to do 
this, the server simulates a pipeline processor capable of repackaging and redistributing 
partial results during a computation. In this section, we give the computational theory of 
MIMD emulation through client server processing. 

Consider an input X. and a computation on that input C(X) that returns some result r. 
We could say that r = C ( X ) .  In client-server computing, the server partitions the input data 

into n segments 
n-I 

X = ~ x  i , (1) 
i=0 

such that each transformation xi ---+ C(x  i) = ~ is performed by one of a set of clients. The 

server reconstructs the original result by combining these partial results 
n - I  

r = C ( X )  = U C ( x i ) ,  (2) 
i=0 

where 10 denotes an appropriate combination operation. In pipeline processing, a computation 

is decomposed into m smaller transformations that each acts on the result of the previous 
transformation, r=C(X)=cm_,(c , ,_2( . . . c , (co(X)) . . . ) )  , where X is the input. A recursive 

definition of this concept could be written as follows, 

= I c 0 ( X )  i f . j = 0 ;  

r1 [ci(r/_ ,) if j > 0 .  (3) 

where r = t;,,_~ can be regarded as the seed to the recursion and defines the final result. The 

first clause in Eq. (3) is the terminating condition (passing the input to the first 
transformation) and the second clause describes how the result of any one transforrnation 
depends on the preceding transformation. We use the following compact notation to represent 
the recursive definition of Eq. (3). 

m-I  

r = C ( X )  = H c / ( X )  , (4) 
j =0 

where [I denotes the operation to appropriately pass the results of one transformation to 
another. Equation (4) describes passing the complete input X to transformation Co. the result 
being passed to cl, and so on. Staying within the pipeline processing paradigm, we could 
further partition the input into n segments, as described in Eq. (1), and pass each segment in 
turn through the complete sequence of 1,7 transformations. Appropriately combining the partial 
results at the end of the final transformation, as in Eq. (2). would allow us to write Eq. (4) as 

,<(  ,,,-i 

The advantages of the representation in Eq. (5) include the ability to arbitrarily change the 
granularity of the data throughput (some transformations may have restrictions on the size or 
format of their arguments) and to permit parallelisation of the computation. Pipeline 
computations could possibly be regarded as MISD (multiple instruction, single data). 
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It is possible to combine both the client-server (SIMD) and pipeline (MISD) models. 
This is important if we want to allow clients to effect arbitrary transforms rather than each one 
performing the same cc/. In this case, the server divides the computation as well as the data. It 
distributes to the clients a description of a transformation c/as well as a data segment x:. Since 
the partitioning shown in Eq. (1) is possible, there will not be any interdependencies between 
different parts of the data stream. Equations (4) and (2) could therefore be combined as 

m - I  n - I  

r = C ( X ) = H U c , ( x i  ) , (6) 
.j=0 i=0 

which describes transforming all of  the data segments with c~ before applying Ci<, and so on. 
Since Eqs. (5) and (6) describe the same computation, this shows that the order in which each 
qi(xi) is effected is unimportant, as long as one finds the appropriate (U,I] )  pair. An out-oiL- 

order implementation of Eq. (6) is a MIMD computation. Consequently, an MIMD emulator 
is the by-product of  a loosely coupled client-server simulation of a highly structured pipeline 
processor. This computational theory tells us nothing about how to find an appropriate (U ,[-I) 

pair, or how efficient the resulting MIMD emulation might be. Sanders [8] has proposed an 
efficient algorithm to emulate MIMD computations on a synchronous SIMD system. Our 

Pipeline Processor MIMD 

Client-Server, . " SIMD 

" JDCL 

Network, 
,, d , , ,  ' , ' , 

Fig. l: System layers of abstraction 

The standard client-server model 
of  a single processing stage. 

asynchronous system should admit emulation algorithms 
that are even more efficient because it completely avoids 
what Sanders calls SIMD overhead [8] (where the globally 
issued instruction is not required locally). Our system is still 
susceptible to load imbalance overhead but this problem- 
dependent issue is inherent to all parallel computing, 
including MIMD parallelism. Figure 1 shows an abstract 
model of  the system. The user sees a pipeline processor, 
which sits on a client-server architecture and uses the JDCL. 
is available to the user by constructing a pipeline composed 

3 Design of the system 
The design mirrors that of  Sanders [8] with a number of enhancements inspired by our 
computational model. The user partitions the MIMD algorithm into multiple independent 
sequential stages, if possible. Each stage corresponds to a node in a theoretical 'pipeline." The 
code corresponding to all stages (the Task) is sent to clients as a Java class. Execution of each 
of the (one or more) stages then proceeds as a SIMD computation as in [8]. The server 
maintains a list (or Bucket) of partial results corresponding to the input to each pipeline stage. 
As soon as there are sufficient partial results in a bucket (as specified by the user) they are 
combined by the server and sent to a client along with a token indicating which part of the 
code to execute (i.e. which stage in the pipeline). The client returns this token so that the 
server can file the result in the next Bucket in the sequence. As such. all stages of the pipeline 
could be 'processing" at the same time if the particular problem allowed. Our system is 
therefore most efficient at emulating MIMD computations that can be naturally expressed as a 
pipeline of SIMD computations. 

The server is divided into three main sections. The ServerEngine (see Fig. 2) manages 
all server-side data structures, classes, and logs. It retrieves all of  its parameters from a user- 
defined initialisation file and is responsible for loading the user-defined classes. The 
communication section (ConnectionManager. etc.) handles all the communication between 
the server and client. The user-defined classes (Task and DataHandler) are extended by the 
user to specify a distributed computation. DataHandler partitions the data to be bundled with 
copies of Task, sets appropriate flags (if necessary) in Task. and collates the partial results. 
The Bucket class is available to the user to avail of  pipeline processor functionality when 
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designing DataHandler. The client design (see Fig. 3) can be split into two main parts. The 
ClientEngine is responsible for such tasks as initialising the software, starting the security 
manager, log files, and GUI. The ClientMessageHandler is responsible for tasks such as 
implementing and managing the communications protocol, initialising and managing the 
downloaded Task, keeping track of all timing functions, and managing the data units from the 
server. Full details on the design of the JDCL and its extensions can be found in [3,9]. 

4 Evaluation 
It is evident that when simulating a pipeline processor the server is responsible for effecting 
peer-to-peer communication between neighbouring processing stages, and will undoubtedly 
be the bottleneck in a MIMD emulation. In fact, finite bandwidth at the server (rather than 
finite memory) ultimately limits the scalability of the system. This is because the server 
maintains information only about tasks (completed and uncompleted): space complexity is 
dependent only on the size of the computation and is independent of the number of clients. 
Since the server is designed never to initiate communication with a client, an essential 
practical consideration is sharing the limited bandwidth at the server between clients returning 
results and clients looking for a new task. This balance is investigated while examining how 
the server copes with overloading through an empirical evaluation. 

A cut-down version of the DNA substring problem (outlined in Sect. 5) was 
partitioned into 100 work units (each requiring approximately 6 minutes of processing time). 
and repeatedly solved over differept numbers of  clients in the range [1,90]. We employed a 
laboratory of 90 Dell Optiplex GXI machines (Pentium 600MHz processor, 128Mbytes 
memory, 6Gbytes storage). Our server resided on a Dell Optiplex GX110 machine (Pentium 
1000MHz processor, 256Mbytes memory) with a 10Mbit/s connection to the laboratory. For 
these tests we had sole use of the processor and network resources. Clients were encoded with 
two wait times. A 'retry wait' determines how long a client will wait before retrying to 
connect to the server (if it failed to connect). A 'null wait' determines how long a client will 
wait before asking for a new task after the server previously informed it that there were 
currently no outstanding tasks. The smaller the null wait time the quicker clients will conae on 
board when the server does need them. However, unsuccessful requests for tasks could slow 
the overall computation by blocking clients that are trying to return results. 

To simulate in the order of thousands of client connections we handicapped the server 
at an operating system level by only allowing it a fixed number of socket connections each 
minute. As the allowable rate of socket connections was reduced, we found that the systeln's 
performance became increasingly sensitive to the difference between the null wait time and 
the processing time required for the task. Figure 4(a) shows plots of processing time against 
number of clients, for two different null wait times, a fixed retry wait of 10s. and a maximum 
rate of 15 connections/minute at the server. Figure 4(b) shows the same data plotted to 
indicate speedup. The plots show that by carefully selecting the null wait time we can strike a 
balance between pressing clients into service as soon as possible and blocking clients that are 
trying to return results with requests for new tasks. [Figure 4(b) shows a comparison with the 
desired linear speedup. Our deviation from this can be partially explained by not configuring 
the number of tasks to be very much greater than the number of processors.] 

5 Application 
Strands of DNA can be regarded as strings of base-4 syrnbols. The nucleotides adenine, 
guanine, cytosine, and thymine are represented by the symbols A. G, C, and T, respectively. 
Our application involved building up a picture of the repeated substrings within a DNA 
strand. We chose the DNA of the tuberculosis bacterium, which contains approximately 5M 
nucleotides. As well as exact-matched substrings, we also permitted insertions and deletions. 
tip to a maximum in each case. because slightly different DNA strings can code fbr the same 
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functionality. In each case, we searched the complete DNA strand and recorded the locations 
of all repeated substrings of length greater than 13 in a database. The longest exact-match 
substring in tuberculosis contains 1526 nucleotides and first appears at index 400211 of its 
sequenced DNA. A more detailed account of these results is in preparation [ 10]. 

We ran the three distributed algorithms over the aforementioned laboratory of 90 
clients and recorded the speedup data shown in Table 1. For these computations we did not 
have sole use of the laboratory. The number of processors varied as at times some machines 
were switched off or were booted into operating systems on which a JVM was not installed. 
We noted, however, that at all times at least 40 processors were working for the server. The 
disparity between speedups (i) and (ii) was due to choosing a task size for the former that was 
too small (thus not making efficient usage of the intra-laboratory network resources). The 
difference between speedups (ii) and (iii), we believe, simply reflects the uncertainty of 
resource-availability in a busy university laboratory environment. Taking only the results for 
insertions and deletions, our system has demonstrated an average speedup of 53 with 
(assuming a full complement of 90 processors) an efficiency of 59%. 

6 Conclusion 
We have refined the JDCL in terms of efficiency and functionality, including the successful 
extension of the system to emulate a MIMD architecture. This has allowed us to implement a 
large-scale bioinformatics application. The system is completely generalisable, and because it 
is written in Java, the developer interface can be simplified to the extension of two classes. As 
would be expected, the system is also platform and network independent. Future work 
includes a scheduler for the server and a selection of client-side configuration options to 
increase its acceptability among potential donors. 

We gratefully acknowledge assistance from the Department of Computer Science, 
NUI Maynooth, and technicians M. Monaghan, P. Marshall, and J. Cotter. We also thank the 
anonymous reviewers of this paper for their valuable contributions. 
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Fig. 4. Evaluation of overloading on the server: (a) processing time. and (b) speedup. 

Search strategy Single processor 40--90 processors Speedup 
(i) Exact matching 130 hours 28 hours 4.6 

(ii) Insertions 1790 hours 31 hours 57.7 
(iii) Deletions 1670 hours 35 hours 47.7 

Table 1. Speedup achieved for each of the three repeated substring search strategies. 
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